COMPUTATION RESEARCH GROUP CGTM NO. 196
NovemBer 1979

MASTER
0 NI e

STANFORD PASCAL COMPILER

SAssAN HAZEGHI

CoMPUTATION RESEARCH GROUP
STANFORD LINEAR ACCELERATOR CENTER
STANFORD, CALIFORNIA 94305

WORKING PAPER

Do not quote, cite, abstract,
or reproduce without prior
permission of the author(s).

¥

Introduction

This note is a description of the Stanford Pascal system.
It is also intended to serve as a guide for its setup, wuse and
maintenance. The system consists of a machine independent Pascal
compiler, @ post-processor for adapting the output of the
compiler to the IBM-370 system, a set of run-time support and
interface routines and finally, a library of utility programs to
help users in uwriting, debuggingd and evaluating Pascal programs.

Though primarily concerned with the IBM-370 implementation
of the system, this writeup c¢an also be o0f use to those
interested in bootstraping the system onto other environments.
A@ditional information about the bootstrap process andrsor
implementations on other machines can be found in references [U4]

through [7].

The rest of this writeup is organized as follows: Section 2
describes the compilet/post-processor and non-standard features
of the Pascal implementa®ion. Section 3 provides instruction$
and JCL for setting up the system. Section 4 explaihs some of
the implementation details and provides a few storage saving
ideas. Section 5 contains a sample program and demonstrates what
kind of output to expect wunder varibus conditions. Section 6
indicates which features have changed from earlier versiond of
the Stanford Pascal system. Users of previous versiors should
take special note of this section. Sections 2.2.1, 2.2.3-2.2.9,
2.3.1, 2.4.1, 2.4.3, 3, 4.1 and 5 contain information of interest
to theée average users. Other parts of this note are meant
primarily for the people who maintain the system or would like to
modify it for their particular need. Access to reference [1] is
also essential for all users.

PAGE 2

Stanford Pascal Compiler

The Stanford Pascal Compiler is -a modified version of the
Zurich Pascal_P2 compiler (MAY 1974 variant) and except for a feu
minor extensions processes the same language (see [2] for more
details on Pascal_P). The compiler itself is a 5000 line Pascal
program that translates the source program into an intermediate
form which is the machine language for a mythical Stack Computer
(the so called P machine, hence the name P_Compiler). The output
cf the compiler is then fed to a post processor, the
P_Translator, which in turn translates the P_Code into the
IBM/7370 code, generating either an Object Module or =a 370

Assembly language program. The P_Translator is also written in
Pascal (aprox. 4000 source lines) ' and like the compiler ¢ would
benefit from any improvement in the code

‘generationstranslation of the combined system.

Except for a few cases involving the mbvement or comparison
of large structures (i.e. large records, arrays, etc. implemented
by the "Long" 370 "SS" type 1instructions), the translator
generates instructions common to 370 and 360 series 4and, with
small changes, it is possible to (optionally) genérate 360-only
instructions. ‘

The translation from P_Code to 370 code 1is based on a
general scheme for converting Polish style expressions into
"Register" oriented code without actually simulating the Stack
Machine on the Stack-less Computer which, due to lack of the
hardware Stack and appropriate instructions, tends to be
fairly inefficient. Furthermore, the organization of the
translator is such that its modification to generate object code
tor othér register oriented computers should be straightforward.

The run-time support package and the 1I/0 interface is
written to operate under 0S/VS or OS/7MVT and has also been tried
by other users under VM. Using small I/0 buffers (i.e. 10..12K
bytes), the <current version of the Compiler/Post_Processor can
compile itself, and/or other moderate size programs, in a 128K
region. A larger region, houwever, would improve the 1I/0
efficiency.

The Sub_Monitor and I/0 Interface

The Sub Monitor and the 1/0 interface consist of a set of
assembly language routines which set up the run time environment
and implement ¢the 1I/0 related Standard Procedures/Functions
of Pascal. The sub monitor also initializes the environment for
FORTRAN routines (by calling #IBCOM) if there are any FORTRAN
routines present. They will be present if there are any explicit

2.2.1

PAGE 3

references to external FORTRAN routines in the Pascal program

(see the section on external routines) or if any of the
mathematical functions, SIN, COS, ARCTAN, LN, EXP or SQRT, are
used. All references to these mathematical functions are

implemented as calls to the corresponding FORTRAN double-
precision functions.

Implementation Restrictions/Extensions etec.

The modifications to the Zurich Compiler are primarily in
the areas of " providing TYPE information for certain
instructions at the P_Code level, 2) boundary alignment of
variables according to the 360370 requirements and 3) separating
CHARacters from INTEGERs in their internal representation. These
changes should be transparent to the end user. Otherwise for a
complete list of restrictions imposed by the P_Compiler refer to
{2}. In addition:

Miscellanebull Réstrictions

-Only TEXT files (FILE OF CHAR) are presently supported. For a
method of circumventing this restriction, ske Section 2.2.5.

-Files can be declared only in the main program (i.e. as global
variables).

~-Files can be passed only as VAR parameters to procedures or
functions.

-Integers are limited to the range -2%%31 to 2¥#31-1. This upper
limit is the value specified by the constant MAXINT.

~Reals are implemented in the double-precision format on the IBM
360-370. This implies a precision of approx. 16 significant
digits and a range of 10%%-78 to 10**76 for the magnitude.

-Sets are limited to 64 elements. The ordinal range for the base
type of the set must not extend outside the range 0..63.

-String constants are limited to a maximum length of 64
characters.

-Reals can be printed to only 12 digit accuracy (even though all
real arithmetic is performed to 16 digit accuracy).

-A GOTO statement leading to a Label outside the procedure
containing that statement is not allowed.

2.

2.

2.2

2.3

PAGE 4
~The PACKED sattribute in array and record declarations has no
effect. All character/boolean arrays are always packed
automatically with one element per byte. Standard procedures

PACK and UNPACK, however, are supported and can operate on PACKED
as well as unPACKED arrays.

-The standard procedure DISPOSE (as described in [11]) is not
supported, instead, dynamic storage (acquired through the use of
the standard procedure NEW) should be managed through the use of
the predefined procedures MARK(P: Any_pointer_type); and
RELEASE(P: Any_pointer_type). MARK is used to save the current
value of the Heap pointer and RELEASE will reset the Heap pointer
to the value specified by its (pointer type) argument. As an
example, the following sequence:

.. MARKChp); ... NEW(x); ... NEW(y); ... RELEASE(Chp); ...

leaves (the size of) the dynamic area unchangéd:. Note that the
pointers "x" and "y" become "undefined" after the RELEASE
operation and cannot be used beforé they 4re redefinéd. (Heap is
the area from which dynamic storage i8 allocated.)

Storage Allocation for Variables

The Compiler allocates and aligns Pdscal simple data types
adcording to the following table :

TYPE SIZE ' ALIGNED ON
CHAR,BOOLEAN 1-BYTE 1-BYTE BOUNDARY
INTEGER 4-BYTES 4-BYTE BOUNDARY
SET 8-BYTES 4-BYTE BOUNDARY
REAL 8-BYTES 8-BYTE BOUNDARY
Dynanic storade., houever, is aluays allocated on 8-Byte

bodundaries to avoid the necessity of alignment at run-time (as
opposed to the Compile Time alignment). Note that Subranges are
represented by their Base type and Enumerated types are treated
as integers. The P+ compilation option (see 2.2.8) may be used
to reduce the storage allocated to small integers, but at a cost
in execution time. For the sake of space and time efficiency, it
is a good practice to declare program variables in the order of
their relative size. In particular, by defining simple type
varibles before arrays and large records, you can ensure that all
of the small variables may be accessed by a short address field,
resulting in a shorter and somewhat faster program.

The Character Set and Pascal Identifiers

PAGE §

-Characters are internally represented by their EBCDIC value
(i.e. ORD('a') = 129 = HEX'81'). Although this should be of no
consequence to "clean" programs that make no assumption about the
ordinal values of characters, one should note that: SUCC('a') =
'hb'; but SUCC('i') <> 'j'. Furthermore, because of the size of
the EBCDIC character set, the construct: SET OF CHAR; is not a
valid type (use the July 77 version of the compiler if you have a
pressing need for this feature).

~-ldentifiers may be of any length but only the first 12
characters are significant.

-Pascal keyuords and other identifiers may contain upper and
lower case letters interchangeably. For example, Ident and IDENT
are treated as the same identifier. B

‘—Identi!iérs may include the dollar and underscore ("$" and "_")
characters wherever a digit may appear.

-The followihg symbols ‘are treateﬂ iﬂentically by the input
scanner of the compiler : .

FUNETIRNY ‘e or &
't} or '#)° *AND' or '8°
‘'t or (/! '‘OR' or ‘?ﬁ
'1' or '/ *NOT' or '-!

Note that comment brackets should be used consistently and a
comment opened by the '(¥*' bracket cannot be closed with the '}

synbo}.

-The Pascal ‘'uparrow' character is represented by '8" (the 'at
sign' character).

-The '#' character (pound sign) is treated as a skip character
and ignored by the compiler.

-The double-quote (") is used as a directive to skip text. All
text up to and including the next double-quote is totally
ignored. i

-The above mentioned conversions do not apply to string constants
in which the input characters are not subject to any automatic
translation and/or interpretation.

2.2.4 Language Extensions
-The range designator A..B may be used to specify constant values

A, A+1, ... B-1, B, instead of enumeration of all the individual
values (e.g. [1, 4..8, 10, 12..20) is a good set constructor).

PAGE 6

Note that this abbreviation may also be used in CASE labels. For
example one can wurite:

case CH of

‘a'. o'l ARTLL'IY 2 ST
'g'..'9¢ : S2 3
end ;

~Superfluous separators ' ; ' preceding the END symbol in Record
(and variant) declaration, Case Statement and Procedure

definitions are ignored by the compiler.
-Functions of Type SET may be defined.

-The Tag field of a case variant record may be unnamed, in which
case no space will be allocated for it. This feature, which is in
the *'standard' language, allous access to different variants of a
record when the type of each variant is known through some other
context.

e.g., record A: Some_type ;
case BOOLEAN of
TRUE: (B: Type_b) ;
FALSE: (C: Type_c) ;
end ; ‘

2.2.5 Files and File Handling

-The tompiler khows about 6 predefined TEXT files, INPUT, OUTPUT,
PRD, PRR, QRD and QRR, with INPUT used as input only, OUTPUT used
&4s output only and PRD, PRR, QRD, QRR used as input after a RESET
and as output after a REWRITE operation. :

-The PROGRAM hea&ding should include the names of all the
predefined {files used in the program, otherwise one has to
RESET/REWRITE these (as well as all other user defined) ¢files
before they are accessed. Note that the default mode of INPUT,
PRD and QRD is 'input' while OUTPUT, PRR and QRR are opened for

‘output' if they appear in the PROGRAM parameter list. In order
to use a predefined file in other than its default mode (e.g. to
use PRD for 'output'), instead of listing it in the program

heading, simply 'RESET' or 'REWRITE' that file prior to the
relevent 170 operation(s).

-1t the file name is missing from the argument list of a file-
handling proceduresfunction then the file name INPUT or . OUTPUT is
inserted as appropriate. For example, READLN, READLN() and
READLNCINPUT) are all equivalent as are PAGE, PAGE() and
PAGE(OUTPUT). :

PAGE 7

-Boolean variables may be input from textfiles. The single
letter 'T* represents TRUE and 'F' represents FALSE. Leading
blanks are ignored and any other input character results in
error. The {file pointer is positioned to the charcter
immediately follouing the 'T' or 'F' character. Note that louwer-
case input ('t' and 'f') is also accepted.

-String variables may be input using READ or READLN. For
example, if S is a variable with the type ARRAY[1..N] OF CHAR,

then READ(INPUT,S) is equivalent to:

for I:= 1 to N do
if not EOLN(INPUT) then READCINPUT,SI[I))

else SII) := * ';

-Only textfiles (file of CHAR) are currently supported. Houwever
the effect of other file types can be obtained through overlay
techniques. For example, to use the PRZ file as though it were
declared as FILE OF REAL, the fdlloling cdde can be used:

var PRR_ELEMENT: record :
case BOOLEAN of
TRUE: (R: REAL)} ‘
FALSE: (CH: arrayl1..8] of CHAR)

end;
{ we oﬁit o{her declarations, etc.)}

PRR_ELEMENT.R := 0.5; {Assign REAL value}
WRITE(PRR,PRR_ELEMENT.CH); {Write it as a string}

{ input from the file can be performed similarly }

.2.6 Additional Standard Procedures and Functions

CARD(S: Any_set_type) : - returns an INTEGER result equal to the
cardinality of the set, S. For example, CARD([3,8,43,60]) has

the value 4.

CLOCK(I: INTEGER) returns an integer result corresponding to the

value of the system clock. I1f 1=0, the result is the execution
time in thousandths of a second that have been used since the
Pascal program started. Other values of I currently yield

undefined results.

EXIT(I: INTEGER) : causes the Pascal program to terminate
execution. The value, I, 1is used as the program's user return
code and can be tested in the JCL used to run the progran. The
value used should be non-negative and less than 1000 to avoid
confusion with the return codes used for Pascal errors.

PAGE 8

EXPO(R: REAL) ¢ returns an INTEGER result equal to the exponent
in the internal machine representation of the real number, R. To
use EXPO, it is necessary to knouw that real numbers are
normalized in the form:
" & exponent
t mantissa * 16

where 1716 <= mantissa < 1 (except if the real number is zero
then the mantissa is zero and the exponent is -64). For example,
EXPO(1.0) is 1, EXPO(16.0) is 2, EXPO(256.0) is 3, etc. The EXPO
function is wuseful {for making fast determinations of the
magnitude of a number (much faster than using the LN function).

LINELIMIT(F: TEXT: 1I: INTEGER) : sets a limit of 1 subsequent
output lines for the file r. After I more lines have been
written, an error message would be issued automatically.
Initially, there are no limits in effect for any {file.
Performing a REWRITE or calling LINELIMIT with 1I<=0 will cancel
any limit in effect for the file. If thé file name, F, |is
omitted, OUTPUT is assumed.

MESSAGE(S: Any_string_type) : causes a charagter string to be
written to the 0.8. message log that is printed along with the
JCL listing for the job. Thére is a limit of 120 characters on
the length of this message.

MARK(P: Any_pointer_type) : saves the current value 0f the Heap
pointer in the pointer variable P. -~

RELEASE(P: Any_pointer_type) : resets the heap pointer using the
value of P. .This effectively releases all the dynamic storage
allocated (through the use of NEW) since the last MARK operation
on P.

SKIP(F: TEXT; I: INTEGER) : if F is open for output, the effect
is gsimilar to I successive calls to WRITELN(F). When I=0, the
next output line will overprint the current line. 1f F is open
for input, the effect is similar to I successive calls to
READLN(F). When I=0, the current input line will be re-read. 1If
the file name, F, is omitted, OUTPUT is assumed.

SNAPSHOT(I,J: INTEGER) causes a snapshot dump of active
storage. This procedure requires access to the symbol table
output of the compiler which is available only if the program is
compiled with the D+ option in effect (see 2.2.8). The first
parameter I specifies the number of active procedures/functions
whose variables are to be printed. For example, 1=3 specifies
the 3 most recently entered procedures/functions. Specifying I=0
gives a dump of all active procedures/functions back to the main
program. The second parameter J determines the type of dump.
J=10 specifies the maximum amount of information is to be

PAGE 9

printed. J=0 is similar except that arrays are compressed by
printing only the contents -o0of the first few and last few
elements. J=1 produces only a list of the active procedures and
functions. '

PACK/UNPACK : The restrictions on the ¢type of the parameters to
these standard procedures are somewhat relaxed. The targets/source
opernads need not be declard as PACKED arrays and, in addition,
the source operand may be a string constant.

TRAP(I: INTEGER; VAR V: any type) : generates a call to an
external user supplied routine with the entry point '$PASTRAP'.
The value of I is passed in GPR-0 and the address of V is passed
in GPR-1. The first parameter, I, is intended to be used as a
‘function' code and the second parameter V is to pass values
tosfrom the external routine. The object code for the external
routine containing '$PASTRAP' entry point should be included with
the object code of the Pascal progran.

L4

2.2.7 Predefined Names ’
~ALFA is defihed to be the type ARRAY[1..10] OF CHAR.
-TEXT is defined to be the type FILE OF CHAR.

-MAXINT is defined to be an integer constant with the valde
2147483647 (i.e. 2%%31-1, the largest one-word integer value in
the 3607370 series). ‘

-DATE is a variable of type ALFA (ARRAY[1..10] OF CHAR) whose
value is the date on which estecution commented. For example,
'07-31-1979' corresponds to July 31, 1979.

-TIME i8 a variable of type ALFARA that contains the time at which
execution commenced. For example, '14:25:59 ' corresponds to 25
minutes and 59 seconds past 2 p.m.

-OSPARM is a pointer variable of type:

SRECORD
LENGTH: INTEGER;
STRING: ARRAY[1..64]
END;

A parameter string may be passed to the Pascal program via the
'PARM' field of the 'EXEC' JCL staement (see Section 2.3.1).

uheh this parameter string is supplied, OSPARM®.LENGTH is the
number of characters in the string and the string itself is held
in OSPARM3.STRING. When no parameter is provided, OSPARM has the
value NIL. Note that the subscript bound of 64 is purely nominal

PAGE 10

and no attempt should be made to access elements of STRING with
index values greater than the LENGTH value.

2.2.8 Compilation Options

Compiler Options are (as wusual) specified inside COMMENT
delimiters in any order, but with no other symbols/blanks between
them. These options and their default values are :

(*$L+,M-,D+,K-,N-,X-,P-,C+,A-,S+,F+,E ... other comments®)

where:

L+ lists(don't list) source program.

M- no margin/(set margin) at column 72 of input llnes.
D+ enables(disable) run-time checking.

K- don't emit/(emit) counters for program Run Profile.
N- Do not nest/(allow nested) comments. .
X~ clear/(set) external linkage flag.

P- Do not packs(do pack) subrange varldbles 1nt6 "bytes™.
C+ emit/(dofi't emit) P_Code. .

A- gen. 370 Obj. Mod./(gen. 370 assémbly landuage utput).
S+ saves(don't save) GPRs on procedures/function eh

F+ saves/(don't save) FPRs on procedures/fuliction efitry.

E Do a PHge Eject befdre continuing the source listing.

-M Option: The M option controls the margihs for source input.
When M- is in effect (the default), there are no margins and the
entire input record is read by the compiler. "When M+ is
specified, a rigﬂt margin at column 72 is set, so that columns 73
and beyond are ignored. M+ is useful for sequence numbered card
input. More control over the margins of the input lines is
provided by giving the M option in the form M(a,b). The first
decimal number, a, specifies the left margin and b sets the right

margin. That 1is, only the contents of columns a through b
(inclusive) are compiled and the rest of the input line is
ignored. No error occurs if b is given a value greater than the
siZze of source records, the input lines are read to their ends in
such a case. Houwever there is a compiler limitation which
restricts the maximum value of b to 120. (This limit may be

changed by recompiling the compiler with a different value for
the constant BUFLEN.) Consequently, M+ is equivalent to M(1,72)
and M- is equivalent to M(1,120). Note: the M option does not
come into effect until the following source record. If this
proves inconvenient, observe that the M option can be placed in
the JCL parameter string.

-D Option: With the D+ option in effect, various run-time checks
are performed.

PAGE 11

Subranges (including the Enumeration type variables) are
checked when being assigned to or passed as actual parameters to
procedures. Indices are checked before the indexing operation
and Pointers are checked when being assigned to and/or before
their use as references to other objects. Also, variables used in
construction of Sets (through the set constructor operator (...])
or being tested for Set membership are checked to be within range
prior to these operations. If the value being checked for
validity happens to be a congstant the appropriate check is done
at Compile (really post processing) time, otherwise for the sake
of conserving space, Run-Time check routine(s) are called to
perform the proper tests (as opposed to in-line checking which
would be more time-efficient).

It this option is in effect during compilation of a
procedure heading, then the prologue of that procedure checks
for the availability of sufficient storage on the run-time stack
before allocating space for the local variables of the
procedure. Similarly, the grouth (and shrinking) of the Heap is
checked to ensure the consistency of tH.'Run-Time Stack/Heap
structure. In order to detect uninitialized variablés as early as
possible, the entire 8tack/heap area as well as individual
procedure activation records, are clearéd to a fixed pattern (Hex
'81'). (This can potentially make a s1yh1110ant contribution to
the program's running time.) ’

Pointer values are checked before they are assigned and
before they are dereferenced. The value must refer to a locatioh
within the storage area allocated to the heap. Also, the special
pointer value NIL is valid on assignment but clearly invalid for
dereferencing.

In case a Run-Time error is detected, the offending value
with its declared range as well as the Proscedure, and the
relative location within the procedure, in which the error was
discovered will be printed. If the D+ option is in effect while
compiling the procedure heading, tHe approximate line number
corresponding to the error location will also be given. I1f any
of the above checks is possible at compile time, then the error
message will be generated by the post-processor and the execution
of the program will not be attempted. As the run-time diagnostic
messages are sent to OUTPUT file, this file should be included in
the set of Program files (i.e., DD statement for OUTPUT should be
present).

Depending on the type of the checking, one to three full
word instructions may be added to the object code per checking
site. This means that a procedure which translates into almost
8k bytes of code, may exceed this 1limit when the D+ option is
chosen. In such cases this option should be invoked either
selectively, -for small segments of the procedure, or the
procedure should be broken down into smaller routines for
debugging purposes (another incentive to avoid large
procedures!). '

PAGE 12

-K Option: This option will cause the compiler to allocate
counters and generate instructions needed to produce an execution
profile of the user program. After the (proper) termination of
the user Program with the above switch on, the Sub Monitor uill
output the counter values onto the QRR file, which should not be
used by the user program. The Execution Profile Generator will
then read these counts, as well as the source program listing and
an auxiliary file generated by the compiler, in order to produce
a formatted 1listing which includes the execution count of each
(executable) line of the source program. The Execution Profile
Generator and the necessary JCL are included in the TESTLIB file
on the distribution tape. The Compiler usually generates a
minimal number of additional instructions when this option is
invoked, but in some marginal cases these extra instructions may
cause a procedure to exceed the 8k size limitation, in which case
the user may disable the Counts for that procedure or divide the
procedure into smaller segments.

-N option: When the 'N+' option is in effect, comment brackets
may be properly nested. For example, (® (* *) (* ¥#) *)
would be a valid comment form.. When 'N-' (the default) is in
effect, the comment would be closed at the first "*)" bracket.
Nested comments are useful when it is desired to c¢omment-out
sections of a Pascal progranm. Note that the obtidn switches can
be set only by the first level (outer most) ¢tomments.

-X Option: The immediate effect of this option is to change the
CSECT némes generated by the post-processor for Pascal procedures
and the main progranm. Normally, ;the CSECT name for a
procedure/function is formed from the fitst few characters of its
name followed by a unique integer and the main program has the
CSECT name $MAINBLK. While the 'X+' option is in effect, the
CSECT names are taken directly ifrom the proceduresfunction name.
(Only the first 8 characters of the name are significant if used
to create a CSECT name. It 1is the wuser's responsibility to
ensure that the CSECT nameg are all distinct.) The main program
is renamed to #MAINBLK (so that it is not automatically invoked
by the sub-monitor program). The 'X+' option facilitates the
creation of external Pascal procedures or functions. See Section
2.2.9, below.

-P Option: The Pack option 'P+' may be invoked universally, if
the program does not use Dynamic REAL type variables (or
recordssarrays with REAL components), or selectively around
procedures which need large data areas (either directly, through
regursion or dynamic allocation etc.) to reduce the program's
data space requirement. With the default value of the switch,
Dynamic storage is allocated on double-word boundaries, with a
potential for memory fragmentation. Furthermore, uwhen this
switch is on, scalar type variables which are in the range 0..255
are internally treated as CHARs, with one byte allocated per

PAGE 13

variable. Note that, in terms of running time, this
representation is slightly less efficient than the standard
representation of Scalar/Subrange Types as full word integers.

R byte-packed subrange variable cannot be passed as a
reference (VAR) parameter to a procedure where the corresponding
formal parameter 1is declared to be an INTEGER, nor can it be
included in the parameter 1list of a READ statement. This may
cause the compiler to 'find' some errors in an otherwise well-
formed program when the Pack option is selected.

The 'P+' option is incompatible with the 'D+' setting and
should not be specified when the run-time check is enabled.
Otherwise the values of the variables, as printed by the SNAPSHOT
routine, may not be accurate.

-F and S Options: I1f you have complicated REAL expressions
involving call(s) to REAL functions in your program, you should
leave the 'F+' switch ON, otherwise the 'F-' option would be more
efficient. Likewise, if you do not use complicated expressions
involving INTEGER valued Functions (and you havd many procedure
calls in your program); you may get a fastér running program by a
*s-' option for the higher models of 37b (in which the LM/STM
instructions are much slower than L/ST instructions).

Notes:

Oonly options L,D,M,K and E are of interest to the average
user who should not be concerned with (and confused by) the
details of the other switches. Options F and S should be used
with care and some understanding of the code generation pattern
of the compiler.

The option 1list (excluding the comment delimiters and the
*'$' tag) may be passed to the compiler through the 'PARM' field
of the JCL 'EXEC' statement. This mode is particularly useful for
interactive environméhts and avoids the need for editing the
source program file in order to set/reset some of the option

switches.

2.2.9 External Procedures
- Creating an External Pascal procedure

The simplest approach is to forego the wusage of global
variables within the external procedure. This procedure can then

be compiled as part of a program that contains no global

declarations, that sets the X+ <compilation option and that
contains no main program code. A small example of this is shown
in Section 3.7. The object code created for the external

procedure can be concatenated to the object code for the calling

PAGE 14

program before being link-edited or loaded into memory. The
calling program must contain a declaration for the external
procedure. The declaration follows the same syntax rules as for
ordinary procedure definitions except that the code body is
omitted. The keyword EXTERNAL simply follows the procedure
heading.

It 1is possible for the calling program and the external
procedure to share variables in the global environment. To do
this, it is necessary to compile the external procedure using the
identical global declarations as for the calling progran. Also

note that the SNAPSHOT routine cannot print the values of
variables internal to an external procedure unless the symbol

table file created for the external procedure during its
compilation is saved. It must then be concatenated to the symbol
table {file created for the calling program during its

compilation.

Note: As there is absolutely no Type/count checking provided by
the Loader, it is important to make sure that the definition of
the separately compiled Pascal/FORTRAN programs be consistent (in
the number and Type of parémeéters) with the declaration of the
corresponding procedure/function headings in the proegram making
the calls. In the case of a separately compiled Pasc¢al program,
it is also important ‘for the two declarations to have identical
static nest levels if there is a potential two-way 1link (i.e.
repeated cross calls) between the modules involved.

-Calling an External FORTRAN Routine

The FOHRTRAN functions/subroutine should be declared as an
internal Pascal functions/procedure but with the keyword FORTRAN
replacing the body of the code. Note that all reference type
paraméters should be declared as Pascal VAR paraimeters and the
basic types INTEGER, REAL, CHAR and BOOLEAN in Pascal correspond
to FORTRAN's INTEGER®*Y, REAL*8, LOGICAL*1 and LOGICAL#*{
respectively. For example, to invoke FORTRAN's GAMMA function,
~the following code could be used:

function DGAMMA(X: REAL): REAL; FORTRAN;

RESULT := DGAMMA(1.0);

Note: the double-precision versions of the FORTRAN routines
should be used for guaranteed compatibility. However, single-
precision versions will usually work correctly. If a Pascal REAL
value is passed to "a FORTRAN REAL*Y variable, some low-order
digits are lost. I{ a result is returned from a FORTRAN REAL*Y
expression to a Pascal REAL variable some undefined low-order
digits are generated (implying that it may be impossible to
return an exact zero result in these circumstances).

PAGE 15

The FORTRAN message file FTO6F00) should be present if you
try to run a program which will call a FORTRAN routine. This is
regardless of any 1/70 activity of the FORTRAN routine, for which

you may have to include other DD statements as well. As the
FORTRAN initialization routine (#IBCOM) tries to open this file
at the entry to the monitor, the absence of this statement will

cause an early (hard to diagnose) ABEND.
-Calling an External Assembler Routine

One method 1is to call an assembler routine via the TRAP
built-in function. The routine must be given an entry point name
of $SPASTRAP. One of the routine's parameters may have any type.
~Consequently, any amount of information can be communicated via

an appropriate record type parameter. _

A second method is to code the routine to use FORTRAN
parameter passing conventions and to call this routine as though
it were a FORTRAN routine. The only drawback is the limitation
of parameter types to those that have equivalents in FORTRAN.

Finally, the routind cdn, be called &s though it were a
Pascal exterhal routine. To Hcdess parameters dnd to return a
result, some Kknowledge of the Pascal run-time organization is
required. The calling program creates an activation record that
is accessed via register 13. This reécord contains the paraneters
and a location to receiye the returned besult. The record's
layout is shown in Sectibfi 4. The patalféters correspond to the
first few local variables. Note that for VAR paraheters, it is
the address of the argument that is placed in the activation
record.

The Run-Time Environment

Prior to entry to the user program, the Pascal Sub Monitor
acquires all the remaining storage in the user program's region,
and returns a small portion of this space to the operating system
to be wused for I/0 buffers. The rest of the storage area is
shared between the run-time STACK, where program (compile time)
variables are allocated, and the HEAP, which is wused for
allocation of dynamic storage (created explicitly by the
programmer through the Standard Procedure NEW). The HEAP is
internally organized as another stack, which growss/shrinks in the
opposite direction of the variable allocation STACK, and it is
the programmer's responsibility to ensure that the two do not run

into each other in the course of the program's execution. The
only notable restrictions imposed by the run-time environment on
the source program are: 1) a limit of 10 distinct levels of

static nesting of procedures, an arbitrary limit which may be
increased if needed, and 2) a limit of 8K bytes on the size of
individual procedures/functions (approx. 400..500 source lines).

PAGE 16

2.3.1 JCL ‘Parameter String

The user may specify the size of the run-time STACK/HEAP,
the size of the area to be used for 170 buffers by the Operating
System, the maximum running time of the program, the number of
run-time errors to be tolerated, and generation of a memory dump
in the 'PARM' field of the JCL 'EXEC' statement as follows:

7/ EXEC USERPROG,PARM='USER PARMS /STACK=xxxK,IOBUF=yyyK,
ERRLIM=n, TIME=222S, NOSNAP,NOSPIE,NOCC,DUMP*

'USER PARMS': Parameter string to be passed to the user program
(if any). The user program can access this string through the
OSPARM built-in variable (see section 2.2.7).

'XXXK': Size 0of the storage area (in K bytes) to be allocated for
the run-time Stack and Heap. This value, if not specified,
defaults to the size of the largest 8btainable contiguous area of
memory minus the size of the I/70 buffer area.

'yyyK': Size of the storage area (in K byfes) that is returned to
the system for use as 1/0 buffers etc. This,vaidq which is
independent of the Stack size parameter (i.é. the xxx value),
will be defaulted to '36K', if not sbbcified by the user. The
default value, depending on the BLKSIZE of the files used in the
program, bhould be sufficient for 6/8 files.

'n': The number of (hon fatal) run-time errors that should be
tolerated before the user program is terminated. The default
value for 'n' is '1' and the program will normally stop executiof
after the first run time error is detected.

tzz228"': Maximum (estimated) running time of the program in
seconds. 1f this parameter is present, the program will be
stopped after the specified time limit.

*NOSNAP': This suppresses the automatic call to SNAPSHOT that is
usually made when the Pascal program terminates due to an error.
The option is useful if the symbol table file is unavailable, if
the SNAPSHOT dump would waste too much paper or if the P+
compilation option was used.

*NOSPIE': This suppresses the interception of '0Cn' type abends
by the sub-monitor. The option would only be wuseful when
debugging by means of 0S core dumps and for particularly stubborn
errors (or when the bug is not in the Pascal program but in
another program to which Pascal is linked).

'NOCC': When this keyword is NOT present, the first character on
each output line may be consumed for character control purposes.

PAGE 17

1f NOCC is specified, no control characters are assumed and they
will be automatically inserted by the sub-monitor. The use of
NOCC implies that the only methods of controlling output spacing
are the PAGE and SKIP built-in procedures.

*DUMP': Thii switch will cause &an 0S style memory dump to be
generated when the number of run-time errors equals the 'ERRLIM'.

1f the user program is entered through the Loader, the above
parameter list should be included in the 'PARM' 1list to the
Loader, and separated from the Loader parms by the '/' delimiter.

2.3.2 Invoking Pascal from Assembler Progranms

Any Pascal program that has been saved as a load module (see
Section 3) may be invoked from an assembler program. A typical
calling sequence could be:

LINK EP=PASCAL,PARAM=(PARM1),VL=1

PARMI e H'13',CL13'/TIME=10,DUMP"

.

The patameter corresponds t6 the JCL pdrameter string described
in Section 3.1. It is set up as a halfwdrd, containing the count
of characters, immediately followed by those characters. The
sub—-monitor imposes a maximum length of 256 characters.

In common with many IBM-supplied processors, it is possible
to provide a second parameter to specify ddnames that override
those used in the Pascal program. Only the predefined ddnames
(INPUT, OUTPUT, PRD, PRR, QRD, QRR) <can be overridden. The
second parameter consists of a halfuword integer followed by a

character string containing the replacement ddnames. The
halfuord integer must equal the number of characters in the
string and it must be a multiple of 8. For example, to replace

INPUT with SYSIN, OUTPUT with SYSPRINT, PRR with SYSUT! and to
leave the other ddnames unchanged:

LINK EP=PASCAL,PARAM=(PARM1,PARM2);VL=1

Plkﬂl DC H'13',CL13'/TIME=10,DUMP*

PARM2 pc . H'32! Length of following list
DC CL8'SYSIN' replaces INPUT
DC CL8'SYSPRINT' replaces OUTPUT
DC XL8'0"’ defaults to PRD

DC CL8'SYSUT1* replaces PRR

2.4.1

PAGE 18

As seen in the example, an entry of binary zeros indicates that
the built-in ddname is to be used. The entries in the list must
be in order corresponding to INPUT, OUTPUT, PRD, PRR, QRD, QRR.

Before control is returned to the calling program, the sub-
monitor closes all files used by the Pascal program and releases
all dynamically acquired storage.

Compiler Outputs and Messages

Unless explicitly suppressd by the 'L-*' option selector, the
compiler generates a listing of the source program as it is read
in. This listing also includes sequence number, static
procedure/function nest level and program/data location counter
fields on each line.

The Level field is vused to indicate the static level at
which each procedure or function is defined with the main program
being at level 1. This column can be used to determine the scope
of identifiers in the program and also clearly marks the
beginning and ending of iunctiozs or procedures.

While processing variable declardatibns in each procedure or
function, the Programs/Data Location Counter $ield ifldicates the
amount ‘6f storage allocated for local variﬁb;ks thus far. The
same field shows the number of fintermédiate) instructions
generated for each procedure or fiinctioh whed the body (code
section) of these routines are being compiled. . At the end of
each procedure/function this value showus the ¢total number of
instructions emitted up to that point in the program and it caid
be used as an indication of the size of Ihe program being
compiled. Each intermediate (P_CODE) instruction approximately
corresponds tb one 'RX' type (i.e. 4-byte) 370 instruction.

Compilation Error Messages

WHen the compiler finds a syntax error, it will place a
marker ('9') pointing to the token past the position where the
error was actually detected (i.e. one should search to the left
and above the pointer to £ind the cause of the error). Each
error indicator is followed by an ‘error number' that corresponds
to the codes given in the Pascal User Manual and Report [1]}. At
the end of compilation, the meanings for each error code that
occurred are printed out. Runaway comments (i.e. comments with
bad or missing closing brackets) can be easily located by the
frozen value of the 'P/D LC' field and improper BEGIN/END nesting
or missing end of procedure/functions can be traced with the help
of the value in the 'LVL' field.

Note: error codes 398 and 399 correspond to implementation
restrictions. '

PAGE 19

2.4.2 Post-Processor Error Messages

The following error codes mostly indicate that an internal
table in the post-processor has overflowed. In such cases, the
easiest fix is to split the Pascal program into smaller
procedures/functions and to nest the procedures more deeply. 14
it is necessary to ocreate a new version of the post-processor
with larger table sizes, the appropriate change is indicated
after the error message text belouw.

253~ Procedure too long (larger than 8K hytes).
-=> Divide (the procedure) and conquer.
254- Too many long (string) constants.
-=> Recompile the Post_Processor with a larger value f{for
MXSTR. :
256- Too many Procedures/Functions referenced in this Proc.
' --> Recompile the Post_Processor with a larger value for
MXPRC.
259- Expression too complicated.
--> Simplify the expressidil by rearrhnging and/or breakifg.
263- Too many (bbmp:ldf generated) Labels ihp this Procedure.
~«> Recompile the Post_Processor with a lhrger valhe for
MXLBL.
281- Too many Integer constants in thigd Procedure.
;-> :ecompile the Post_Processor with a larget value f{for
XIN
282- Too many Double Word (REAL,SET) constants in this Procedure.
~-=> Recompile the Post_Processor wuwith a larger value for
MXDBL.
300- Divide by Zetro (result of constant prépagat:on)
-=> Fix up the (constant) expression evaluating to Zeto.
302- Index/subrafige value out of range (constant propagation ?)
‘ -=->» Fix up the (constant) espression to be within range.
501- Array component too largeé (larger than 32K).
-=> Reducée the range of the last (rightmost) indecies of the
array and/or reorder the dimensions of the array so that
they are ordered from the largest (leftmost) to the smallest
(rtightmost).

The following errors normally indicate an inconsistency in the
Compiler and7or the Post_Processor. For more detail about these
(and similar) messages refer to the source of the program issuing
the message.

601- Type conflict of operands in the P_Program.
602~ Operand should be of type 'ADR'.

604~ Illegal type for run-time checking.

605—- Operand should be of type 'BOOL'.

606- Undefined P_Instruction code.

607~ Undefined Standard Procedure name.

608- Displacement field (of address) out of range.

PAGE 20

609- 'Small' Proc Larger than 4K.

--> Recompile the Post_Processor with "SHRT_PROC = 300".
611~ Bad INTEGER alignment.
612- Bad REAL alignment.

613- Bad REAL constant. ,
614- Inconsistent Procedure Table file "PRD".
==> Fix the JCL ands/or the 'QRR' output of the compiler.

The error messages, if any, are followed by the name and the
line number of the Procedure in which they are detected. If the
Statement/expression causing the error cannot be easily
identified, you should recompile the program with the 'A+'
Option, listing the output of the Post_Processor (or the Input to
370/Assembler). See Section 3 (d) £for an example of how to do
this. As the source program line numbers appear at regular
intervals in this outputg as well as the source program listing,
it should be easy to associate the error message with its source.

2.4.3 Run-Time Errors

After a run-time error has occurred, there is usually an
error message printed (either by SNAPSHOT or by the sub-monitor).
Houwever, in soie circumstances (e.g., if no OUTPUT file is
provided) it is necessary to deduce the problem from the user
return code that is normally printed Wwith the various operating
systém messages for the job. The return code value should be
interpreted according to the following table.

Return Code: Implies:

1001 INDEX VALUE OUT OF RANGE

1002 SUBRANGE VALUE OUT OF RANGE

1003 ACTUAL PARAMETER OUT OF RANGE

1004 SET MEMBER OUT OF RANGE

1005 POINTER VALUE INVALID

1006 STACK/HEAP COLLISION

1007 ILLEGAL INPUT/RESET OPERATION

1008 ILLEGAL OUTPUT/REWRITE OPERATION

1009 SYNCHRONOUS I/0 ERROR

1010 PROGRAM EXCEEDED THE SPECIFIED RUNNING TIME

1019 INVALID FILE DEFINITION

1012 NOT ENOUGH SPACE AVAILABLE

1013 UNDEFINED OR OBSOLETE SUBMONITOR OPERATION
(should not occur)

1014 LINELIMIT EXCEEDED FOR OUTPUT FILE

1020 ILLEGAL INPUT PAST END OF FILE

1021 BAD BOOLEAN ON INPUT

1022 BAD INTEGER ON INPUT

1023 BAD REAL ON INPUT

PAGE 21
200X PROGRAM INTERRUPTION CODE ‘X'

3001 EXTERNAL ERROR (e.g. BAD P.RAMBTBR TO MATH
ROUTINES LOG, SQRT,.... etc)

X 1XX UNABLE TO CALL ON 'SNAPSHOT' AFTER A RUN ERROR -
(this happens if there is not enough space or if
SNAPSHOT was not included in the Load Module or if
the NOSNAP parameter was specified in JCL)
OTHER DIGITS OF THE RETURN CODE TO BE INTERPRETED
AS ABOVE

NOTE: Return codes 1007 or 1008 could imply a bad or non-
existant DD Statement for the accessed file, wrong direction for
the 1/0 operation or an attempt to access a file prior to a
RESET/REWRITE operation. Code 1009 usually implies that the file
has conflicting DCB attributes.

In genoral, err: meshayes poind to tHb (approximate)
logation of the error fthin the Pascal program. Note houwever
thdt the predefined filéd appearing in the program heading are
opened on entry to the Pascal program and any problems that arise
will cause errot messages that refer to the beginning of the
‘main' program (and not to any statements using the files).

Appendix A contains a complete directory of the error codes
and messages generated by the compiler and the run-time system.

3.

PAGE 22

System Set-up and Maintenance Procedures .

To bring up the system follow these steps:

a) Transfer File 5 {from tape to disk, creating a card format
PDS.

b) Perform link-edits to create load modules for the compiler
(Pascal), the P-Code assembler (ASMPCODE), the run-time sub-
monitor (PASCMON) and the run profile generator (PASPROF).

c) Set up your JCL and run some sample programs.

d) You may also want to create a Catalogued Procedure to avoid
the bulky JCL for standard compilations.

The {following are JCL samples you may find Helpful in
creating the Load Modules and running progranms. Note that the
JCL statements provided here are meant to be used as a guideline
and they may need to be modified before you c#n run them at your
installation. - '

a) Copy file 'S (PASLIB) from the distribu{ion tape to a disk.
You should substitute the volume-serial numbers of a scratch disk
and a disk to hold the Pascal object library {for the names,
WORKO1 and DISK99, respectively. Warning: the control cards for
IEHMOVE have a very rigid format, Continuations are sighalled by
a noh-blank charactetr in column 72; the continued text must begin
in column 16 0of the next card.

Cbpying Object Files from the Distribution Tape

77 JOB
/7/COPY EXEC PGM=IEHMOVE
/7/SYSPRINT DD SYSOUT=A
/7/7SYSUTI DD UNIT=DISK,DISP=OLD,VOL=SER=WORKO!
7/7SOURCE DD UNIT=T9-1600,DISP=(OLD,KEEP),VOL=SER=PASCAL
/7TARGET DD UNIT=DISK,VOL=SER=DISK99,DISP=0OLD ‘
/7/7SYSIN DD *

COPY DSNAMESWYL.CG.PAS.PASLIB, c

FROM=T9-1600=(PASCAL,5), FROMDD=SOURCE, c

TO=DISK=DISK99,RENAME=Pascal.PASLIB,CATLG
Vo4

Generation of Load Modules

77 JOB
/7LKED EXEC PGM=IEWL,PARM='MAP,NCAL"

PAGE 23

/7/SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSLMOD DD UNIT=DISK,DSN=PASCAL.SYSLMOD,
vs SPACE=(TRK, (4,3, 1),RLSE),DISP=(NEW,CATLG)
//SYSPRINT DD SYSOUT=A
7/0BJECT DD DSN=PASCAL.PASLIB,DISP=SHR
//SYSLIN DD *

INCLUDE OBJECT(PASMONO,PASOBJ)

ENTRY $PASENT

NAME PASCAL

INCLUDE OBJECT(PASMONO,ASMPOBJ)

ENTRY $PASENT

'NAME ASMPCODE

INCLUDE OBJECT(PASMON, PASSNAP)

LIBRARY ($MAINBLK)

ENTRY $PASENT

ALIAS $PASENT

~ NAME PASCMON B

INCLUDE OBJECT(PASMONO,PASPROF)

ENTRY $PASENT

NAME PASPROF
7/ =

Running a Pascal Progranm

The following set up can be used to compile, post_process

and rup & user program. Note that the source program is read
!ronﬁCOHPILE.INPUT. its listing is sent to COMPILE.OUTPUT, the
intermediate code is sent to COMPILE.PRR and

Procedures/Symhol/Counter tables are sent to COMPILE.QRR.
COMPILE.QRR enables the Compiler to print an error log at the end
of the sourte listing in case it detects any syntax error. The
option list for the compiler may be passed in the 'PARM' field of
the 'EXEC' card for the COMPILE step.

1{ thete are no compilation errors, the Post-Processor
generates an object module (POSTPROC.PRR) uwhich is linked to the
run-time monitor PASCMON. The routine SNAPSHOT forms part of the
PASCMON module. SNAPSHOT can be called directly by the Pascal
program or it may be called automatically by the sub-monitor in
case of a run error. . In either case, SNAPSHOT will access the
GO.QRD file to read symbol table information. The D+ compilation
option must be enabled for this information to be available.

If the K+ option is chosen in the source progranm, the
PASPROF module is automatically invoked at the end of the GO step
in order to print a brief summary of the statement execution
frequencies. If you wish a full execution profile listing,
follow the instructions given 1in Section 3.6. The GO.PRD DD
statement is required by the execution profiler.

PAGE 24

Note: this JCL is set up in the form of an "in-stream™ JCL

procedure. Ideally, the JCL procedure should be copied into the
catalogued ' JCL procedures library at your installation. The
procedure consists of the PROC JCL card and the following cards,
up to but not including the PEND card. Also observe that only

the member PASCMON (with alias name S$PASENT) 1is loaded from the
call library PASCAL.PASLMOD listed in the GO.SYSLIB DD statement.
It may be more appropriate to remove PASCMON from this file and
place it in some other load module library that is referenced in
GO.SYSLIB.

77 JOB

/7/PASCAL PROC GOTIME=10

77 %

/7% STEP ONE: COMPILE THE SOURCE PROGRAM
77 %

/7/COMPILE EXEC PGM=PASCAL,COND=(0,LT)
/7/STEPLIB DD DSN=PASCAL.PASLMOD,DISP=SHR
//0UTPUT DD SYSOUT=A ‘

//PRD DD DSN=PASCAL.PASLIB(PASMSG),DISP=SHR
//PRR DD DSN=EEPCODE,UNIT=SYSDA,DCB=RECFM=VB,
V4 spncss(wnt.(20,5).nnsz).bxsp=(,pASS)
/7QRR DD DSN=EBTABLES,UNIT=SYSDA,DCB=RECFM=VB,
V4 SPACE=(TRK, (5,2J,RLSE),DISP=(,PASS)
/7% '

/7% STEP TWO: (POST) PROCESS THE P_CODE

77 %

/7/7POSTPROC EXEC PGM=ASMPCODE, COND=(0,LT)
/7/STEPLIB DD DSN=PASCAL.PASLMOD,DISP=SHR

/7INPUT DD DSN=%.COMPILE.PRR,DISP=(OLD,DELETE)
//7PRD DD DSN=%_ COMPILE.QRR,DISP=(OLD,PASS)

/7/70UTPUT DD SYSOUT=A

//7PRR DD DSN=£EOBJECT,UNIT=SYSDA,DCB=RECFM=FB,

/77 SPACE=(TRK,(10,5),RLSE),DISP=(,PASS)

/7% '

77% STEP THREE: LOAD AND GO

7% ,

/77G0 EXEC PGM=LOADER,COND=(0,LT),PARM='//TIME=EGOTIME"

//STEPLIB DD DSN=PASCAL.PASLMOD,DISP=SHR (NEEDED FOR K+ ONLY)
//7SYSLIN DD DSN=#_POSTPROC.PRR,DISP=(OLD,DELETE)

//7SYSLOUT DD SYSOUT=A

//7SYSLIB DD DSN=SYS1.FORTLIB,DISP=SHR

/77 DD DSN=PASCAL.PASLMOD,DISP=SHR
//PRD DD DUMMY

//7QRD DD DSN=#% COMPILE.QRR,DISP=(OLD,DELETE)
//7QRR DD UNIT=SYSDA,SPACE=(TRK,(2,2))

//FTO06F001 DD SYSOUT=A
/770UTPUT DD SYSOUT=A

77 PEND
77 %
//RUN EXEC PASCAL,PARM.COMPILE='compilation option list'

7//COMPILE.INPUT DD *

PAGE 25
(% the Pascal source program ¥*)

77GO.INPUT DD *
(* input data, if any *)
77

Inspection of Generated Code

This procedure can be used to inspect the 370/Assemblly code
generated by the compiler. The JCL assumes that the (JCL)
procedure, PASCAL, has been catalogued. 1f it has not, you must
insert the procedure definition as given in (b) after the JOB
card. Note: the assembly code that is produced can be combined
with the macro definitions that are provided in
Pascal .PASLIB(PBGN) and then assembled, loaded and executed.
Houwever, this mode of operation is not recommended (the assembly
time could be 3-4 times that of the codpilation time).

77 JOB
/7/7PEEK 'EXEC PASCAL,PARM.COMPILE='A+',COND.GO=(0,LE)
/7/7COMPILE.INPUT DD *

(% Pascal Qburce program, including other~options; NOTE ‘'A+' %)

//POSTPROC.PRR DD SYSOUT=A
77

Saving Pascal Programs as Load Modules

In order to oreate & Load Module from a Pascal program the
following set up can be used. The JCL assumes that a dataset,
ARTHUR.LOAD, has previously been allocated and catalogued and
will be used to hold the created 1load module named BILL. As
before, it assumes that PASCAL is a catalogued JCL procedure. 1If
it is not, add the procedure definition given in (b) to the

beginning of this card deck. If you are creating a new version
of a compiler program (i.e., the PASCAL or ASMPCODE load modules)
you should substitute PASCAL.PASLIB(PASMONO) for

Pascal .PASLMOD(PASCMON) 'in the JCL. This is to use the smaller
faster version of the sub-monitor that is recommended for "safe"

programs. If you do not make this substitution, no harm will
result.

/77 JOB }

//7SAVE EXEC PASCAL,COND.GO=(0,LE)

//7COMPILE.INPUT DD %

(* Pascal source program ¥*)

3'6

PAGE 26

7/LKED EXEC PGM=IEWL,PARM='MAP,LET'

/7/78SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(50,50))
//7SYSLMOD DD DSN=ARTHUR.LOAD(BILL),DISP=0OLD
//SYSPRINT DD SYSOUT=A

/7/7SYISLIB DD DSN=SYS!1.FORTLIB,DISP=SHR

//78SYSLIN DD DSN=PASCAL.PASLMOD(PASCMON),DISP=SHR

V4 DD DSN=8LEOBJECT,UNIT=SYSDA,DISP=(OLD,DELETE)
77 DD *

ENTRY SPASENT
77

To run a Pascal progran‘that has been saved as a load
module, the following pattern of JCL may be used:

77 JOB

/7760 EXEC PGM=BILL,PARM='/NOSNAP,TIME=15"
//STEPLIB DD DSN=ARTHUR.BILL,DISPaSHR)
//70UTPUT DD SYSOUT=A

//FTO06F001 DD SYSOUT=A

77 %
/7% DD CARDS FOR OTHER FILES, IF NEEDED.
/7%
/77INPUT DD *
(* Input Data - if required #*)
/77

Generatidn of Execution Profiles

The standard JCL setup (section 3.3) will allow a brief
(very condensed) execution profile to be printed if the K¢
compilation option is used. In order to generate the full profile
(a program listing uWith execution frequencies alongside each
statement), either of the following schemes can be used. The
first method is quite simple but it requires the Pascal source
program to be available in a disk file. Suppose it is stored and
catalogued under the name SOURCE.PASCAL. The following job could
then produce the desired profile.

77 JOB
//PROFILE EXEC PASCAL,PARM.COMPILE='K+'
//COMPILE.INPUT DD DSN=SOURCE.PASCAL,DISP=SHR
77GO0.PRD DD DSN=SOURCE.PASCAL,DISP=SHR
//7GO.INPUT DD %

(¥ Input Data - if required %)
77

.Alternatively, the following JCL can be used to generate a
compiler-formatted program profile. Some of the extra JCL is to
ensure that a source listing is produced even if the COMPILE or

PAGE 27

POSTPROC steps terminsate with error(s). As in 3.3, the JCL is
arranged to use an in-stream procedure. This procedure, PASCALK,
should ideally be added to your installation's catalogued
procedures library also.

Vo4 JOB

//PASCALK PROC GOTIME=10

s7%

74 STEP ONE: COMPILE THE SOURCE PROGRAM
77%

//COMPILE EXEC PGM=PASCAL,PARM='K+',COND=(0,LT)
//STEPLIB DD DSN=PASCAL.PASLMOD,DISP=SHR
//70UTPUT DD DSN=EELISTING,UNIT=SYSDA,

77 SPACE=(TRK,(10,10),RLSE),DISP=(,PASS)
//PRD DD DSN=PASCAL.PASRLIB(PASMSG),DISP=SHR
//PRR DD DSN=&E&PCODE,UNIT=SYSDA,DCB=RECFM=VB,
77 SPACE=(TRK, (20,5),RLSE),DISP=(,PASS)
//QRR DD DSN=&&ETABLES,UNIT=SYSDA,DCBsREGFM=VB,
77 ‘ SPACE=(TRK,(5,5),RLSE),DISP=(; PASS)
77% ‘

s/s% STEP TWO: (POST) PROCESS THE P_CODE

77 ®

//POSTPROC EXEC PGM=ASMPCODE,COND=¢0,LT)
/77/STEPLIB DD DSN=PASCAL.PASLMOD,DISP=SHR

/7INPUT DD DSN=#% COMPILE.PRR,DISP=(OLD,DELETE)
//7PRD DD DSN=#* COMPILE.QRR,DISP=(OLD,PASS)

/77QUTPUT ° DD SYSOUT=A : ;

//PRR DD DSN=EEOBJECT,UNIT=SYSDA,DCB=RECFM=FB,

Vs SPACE=(TRK, (10,5),RLSE),DISP=(,PASS)

/7/7%

Ve STEP THREE: LOAD AND GO

V4

7760 ~ EXEC PGM=LOADER,COND=(0,LT),PARM='//TIME=EGOTIME"

//STEPLIB DD DSN=PASCAL.PASLMOD,DISP=SHR

//SYSLIN DD DSN=%*,POSTPROC.PRR,DISP=(OLD,DELETE)
/7/SYSLIB DD DSN=SYSI.FORTLIB,DISP=SHR

77 DD DSN=PASCAL.PASLMOD,DISP=SHR
//8YSLOUT DD SYSOUT=A

//SYSTERM DD SYSOUT=A

/7PRD DD DSN=% COMPILE.OUTPUT,DISP=(OLD,PASS)
/77QRD DD DSN=% COMPILE.QRR,DISP=(OLD,PASS)
/7QRR DD UNIT=SYSDA,SPACE=(TRK.,(5,2))

/7/70UTPUT DD SYSOUT=A
/7/FTO06F001 DD SYSOUT=A

i ! ,

77% PRINT THE SOURCE PROGRAM IF ANY STEP FAILED
77 %

7//LISTSRC EXEC PGM=1EBGENER,COND=((1000,GT,GO0),EVEN)
/7/SYSPRINT DD DUMMY

/77SYSIN DD DUMMY

/7/7SYSUTI DD DSN=% COMPILE.OUTPUT,DISP=(OLD,DELETE)

3.7

PAGE 28

/7/78YSUT2 DD SYSOUT=A
77 %

77 PEND

77 %

/7RUNCOUNT EXEC PASCALK
/7/COMPILE.INPUT DD *

(* Pascal source program %)

/7/7GO.INPUT DD *
(* input data - if any %)
/77

Note that the profiler's sctions are controlled by the input
that it receives in the QRR file. 1If the file is empty (as it is
with the JCL is Section 3.3), a brief summary is generated.
Otherwise it may contain the program text (either as the source
form or in the compilation output form) in which case, a program
listing with statement execution frequencies on the left is
printed.

Using External Pascal Procedures'

To compile and save an external Pascal proceduresfunction as
an obhject module. The existance of a pre-allocated, céatalogued
dataset CHARLIE.OBJECT 'to hold the object code is assumed.
Example coding:

/77 JOB
//SAVE EXEC PASCAL,PARM.COMPILE="'X+"',COND.GU=(0,LE)
//7COMPILE.INPUT DD *
(* Note the X+ option ¥*)
PROGRAM DUMMY;
PROCEDURE EXTRT(PARM!1, PARM2: REAL J;
VAR X,Y,Z: INTEGER;
BEGIN
(* Body of the external routine %)
END;
BEGIN
(* No main program code ¥)
END.
//POSTPROC.PRR DD DSN=CHARLIE.OBJECToDISP=0LD
V4

An example of how to use this saved external procedure nou
follous:

77 JOB
77RUN EXEC PASCAL

PAGE 29

//COMPILE.INPUT DD *®
PROGRAM MAINCINPUT,OUTPUT);
VAR St, S2: REAL; '
(* other declarations omitted *)
PROCEDURE EXTRT(PARM!, PARM2: REAL); EXTERNAL;
(* other proceduresfunction defs omitted %)
BEGIN v

EXTRT(S1, 82); (% invoke the routine *)

END.

//GO.SYSLIN DD
Va4 _ DD
/7 DD DSN=CHARLIE.OBJECT,DISP=SHR

77GO.INPUT DD *)
(* input data - if any #*)
Vo4

Printing the Bodumentation File

~ To print another -copy‘bi this document, the following job
may be siubmitted. Note that the SYSUT2 output must be
transmit&ed to a device that supports the full uppers/lolier~case
character set.

77 ~ JOB ;
/7L18T EXEC PGM=IEBPTPCH
7/SYSPRINT DD $YSOUT=A
//SYSUT1 DD UNIT=T9-1600,DISP=(OLD,KEEP),VOL=SER=PASCAL,
77 LABEL=(1,SL),DSN=WYL.CG.PAS.PASDOC
7//SYSUT2 DD SYSOUT=A UPPER/LOWER-CASE PRINTER
7/7SYSIN DD *
PRINT PREFORM=A,MAXFLDS=1
RECORD FIELD=(80)
7/

4.

PAGE 30

Some Implementation Details

The Sub Monitor, entered via the $PASENT entry point,
acquires all the space available to the user program, releasing
some 36K bytes of it for 1/0 buffers, and sets up the run-time
STACK/HEAP as well as the appropriate registers. It then calls
the user program (at $MAINBLK) and eventually regains control
upon proper termination of the program or a call to the EXIT
routine within the program. The monitor, if returned to through a
call to EXIT, will return the argument of the EXIT as the Step
Return code, otherwise it will return a zero value.

I/0 and File Structure

The I/0 routines handle all the operations on the Predefined
Files., with each file having its oun set of flags and data
control block. Locate-mode I/0 is used universally and this
implies that there is effectively no limit on the file record
sizes other than the amoulit of storage available for system

buffers (controlled by the IOBUF paramdter). ost file formats
are supported. The following 1list shows all the allouwed
combinations of RECFM attributes: ,

(Forvy) [B])] I S [AornM)| or 1]

wuhere square brackets enclose an optiondl choice and rouhd
brackets enclose a codphlsory choice. For example, FBSA and VB
are allowed combinations.

There is one minor quirk. Due to a basic incompatibility
between locate-mode I/0 and U-format records, all output U-format
records are written with their maximum length. However, a file
containing U-format records with varying sizes can be read
correctly.

Output lines destined for F and U format files are padded
with blanks at their right ends so as to achieve the required
LRECL for the file. V format files do not require such padding
and none is performed - except that the operating system will not
actept completely empty lines, these are replaced with lines
containing a single blank. -

Over-long output lines (i.e., they contain more characters
than the file's LRECL value) are split whenever the LRECL value

is exceeded.
If DCB attributes are omitted from the JCL (and are not

available from the dataset control block) the sub-monitor will
supply reasonable defaults. The default values are chosen
according to the following rules (the rules must be applied in
the order given):

1- If RECFM is unspecified, it defaults to VB for all files
except OUTPUT: for that file it defaults to VBA.

PAGE 31

2- If LRECL is unspecified, it defaults to a basioc value of 80
for all files except OUTPUT; for that file it is 132. 1f
the RECFM includes the V attribute, 4 is added to the basic
value. It the RECFM includes the A or M attributes, an
additional 1 is added. ‘

3- If the BLKSIZE is unspecified, then the default depends on
whether the RECFM includes the V, F or U attribute.

V: BLKSIZE is set to 1600 for all files except OUTPUT; {or
that file it is 3200.

F: BLKSIZE is chosen to be the largest multiple of LRECL
that does not exceed the numbers given above for RECFM=V.
Houwever, if this would cause BLKSIZE to be zero, then
BLKSIZE is made equal to the LRECL value.

U: The BLKSIZE is set equal to the LRECL.

4- 1f BUFNO is unspecified, it defaults to 3 for all files
except OUTPUT; for that file it defaults to 5.

To conform to the specification of the Revised Report of
Pascal, an extra blank is inserted at thHy end of every redord of
a textfile on input. For dxample, it F is a textfile then
successive calls to GET(F) will step F8 through all the
characters in thé current input record. when F8 is theé last
character, another call to GET(F) will cause F2 to be a blank and
EOLN(F) to become True. One more call of GET(F) Wwill step F3 to
the first character of the next record. :

At the end of a textfile, the actions are as follous.
Suppose that F3 refers to the last character in the last record
of the input file F. Then a call to GET(F) will make EOLN(F)
true and make F® be a blank, however EOF(F) is still false. One
more call of GET(F) causes EOLN(F) and EOF(F) to bdth be true and
F9 is still a blank. More calls of GET(F) do not change this
situation.

Character-by-character input beyond the end-of-file marker
does not cause a run-time error <+~ HBlanks aré simply read.
Houwever, any attempt to read a Booleah, Integér or Real value
past the end of file causes a run-time error.

ProceduresFunction Call Mechanism and Stack Organization.

Procedure Calls follow the usual O0S conventions. In
addition, register 12 (GPR 12) points to the base (bottom) of the
STACK, serving as the base register for the GLOBAL variables. GPR
13 points to the base of the data area (activation record) of the
currently active procedure, serving as Base Register for the
(very) LOCAL variables. Everything in between (i.e. non LOCAL,
non GLOBAL) 1is accessed by loading the base address of the
associated activation record from the DISPLAY table into a

PAGE 32

temporary register (GPR 14 or 1). The DISPLAY table, consisting
of ' entry per static nesting level of the program, is within the
GLOBAL data frame and thus always accessible. Note that GLOBAL
program variables start atter the CHARacter File buffers and the

variables defined within procedures, depending on whether the
FPRs are saved or not, start after the FPR Save Area or Function
result location. This scheme allous GPR 13 to point to a

Register Save Area (with the usual forwards/backward links) while
being the LOCAL data Base Register at the same time.

The current value of the HEAP pointer is kept in the
location following the GPR Save Area ' and this location
corresponds to the 'NP' register of the P_Machine. GPR 10 and 11
are used as Base Registers for the currently active Procedure and
GPR 2..9 as well as FPR 2..4% make up the expression evaluation
stack. For more information on the organization of Run-Time stack
and the use of the Display Table see [3) and [4].

The following table shows thé dtate of the STACK/HEAP
structure while running a Pascal progranm.

STACK

GPR12--> 000- GLOBAL <(bottom of run-time STACK)
004- Back Link, Save Area.
008- Forward Link, Save Area.
012- GPR Save Area, (GPRI4..GPR12).

072~ Current HEAP (NEW) Pointer, 'NP°'.
076- End of Heap Pointer, 'NPO'.
080- FPR Save Area.

flz- Fixs/Float Conversion Constant8. (4 Double Words)
144- DISPLAY(1]

180- DISPLAY[10] .
248- INPUT® (INPUT file buffer)
249- OUTPUT® (OUTPUT file buifer)

250- PRD3 (PRD file buffer)
251~ PRR? (PRD file buffer)
252- QRD® (QRD file Buffer)

253- QRR® (QRR file buffer)
. (buffers for other files)

280~ DATE

PAGE 33

290~ TIME
300- OSPARM
304- First (user declared) GLOBAL program variable.

GPR13--> 8n+0 LOCAL (current Stack Frame)
+004 Back Link, Save Area.
+008 Forward Link, Save Area (NIL at this time).
+012 GPR Save Area, (GPRI14.,.GPR12).

+072 FUNCTION result, (unused in case of PROCEDURES)
+080 FPR save area (optional)
+080 LOCAL (first local variable if FPRsS not saved)

+112 LOCAp (first local variable, if FPRs saved)

NP —-> 8m Next (to be) allocated DYNAMIC variable.
(HEAP area already alloc¢ated)
NPO --> 83 End of HEAP and user data space.
HEAP
Note: Program variables are allocated in the order of
declaration within each declaration group and the address
appearing in the sourceé listing produced by the compiler, 1is the

fddress of the first variable allocated in that group. For
example the program listing: '

1 304 0 PROGRAM NONSENSE(OUTPUT)
2 304 1 VAR I, J, K : INTEGER;

3 316 1 CH, NXTCH : CHAR ;

4 318 1 ..

* o o

means that Location 304 is assigned to the variable I,

308 Jdy

312 K,

316 CH,

317 NEXTCH,

etc,

PAGE 34

The comments preceding the source code of the compiler,
postprocessor and the 1170 module also provide some useful
information for those interested in the organization of the run-
time environment.

Hints on Run Time Errors

In case you encounter a run-time error while running a
program (i.e. a program ABEND), first check the following points
before resorting to the 0S generated DUMP.

1) See if the appropriate options are specified (e.g., you should
not run a program with the C- option selected).

2) Make sure all the files used in the program appear in the
parameter list of the PROGRAM statement, ands/or they are
RESETed/REWRITten before any operation takes place. Also note
that the direction of operation should be compatible with the
file and/or the previous RESET/REWRITE on that file (i.e. no READ
from dutput or after a REWRITE etc.) I1f the run-time check is
enabled (either by default or an explicit 'D+') or a Run Proifile
(execution frequency of program statements) is requested by the
'K+' switch, it is important that the JCL for the additional
Symbol Table and/or Counter files are properly included 1in the
user program. A missing or incorrect DD statement for such files
may cause the program to be terminated in the Pascal monitor
without a clear connection to the user progranm.

3) Check that there is a DD statement for every iile used in the
progtam and RECFM, LRECL and BLKSIZE have accveptable values.

4) The size of the region in which you run the program should be
sufficient to accommtdate the code as well as data. The program
listing gives you an approximate idea of the size of the program
and the data area. Recursive procedures however, depending on
how deep the recursion goes, may need much more space than the
size of their local variables may suggest. You can check to see
if the run—-time STACK and HEAP are <colliding by comparing the
HEAP pointer (at GPR123+72) and GPR13 which points to the base of
the LOCAL data area.

5) Check for bad (uninitialized, out of range) indices as well as
illegal pointer references caused by wuninitialized/NIL pointers
in the procedure causing the ABEND.

Also see the extended run-time checking iacilitiesA (the D+
compilation option).

PAGE 35

Storage Saving Considerations

In general the P_Code assembler trades memory for speed and,
in particular, it prefers a sequence of RX and RR type 370
instructions over the corresponding SS type instructions which
tend to be more compact though usually slower (the difference is
quite noticeable on the larger 370 models). However, it is
possible to reduce the storage requirement of your program in
certain cases.

1) Dynamic storage 1is currently allocated on 8-byte boundaries.
If you do not wuse this kind of storage for REAL values, you
can change the alignment factor to 4 (= INTSIZE) as opposed to
8 (5 REALSIZE) in the Procedure NEW! of the Compiler. This
should improve memory usage specially if dynamic storage is
heavily used.

2) The current sub-monitor releases some 36K bytes of storage to
be used for 1I/0 buffers. This Qpqu could be reduced to as
little as 8K, leaving the rest ior'tﬁe user program, by using
smaller BLKSIZEs for the files. By reducinhg the above space
to 8K, you can compile the Compiler in a 128K region.

3) 1f you group variables and fields K with the same (internal)

type together, you may improve the storage utilization by
cutting doun on fragmentation of the memory. This is
particularly important in the case of ARRAYs OF RECORDS which
contain fields of different types. The rearrangement. of

fields, houever, should not be done at the expense of clarity
and ;ogicnl continuity of data declarations.

4) See the Pdck Option in section 2.3.8.

PAGE 36

5. Examples

The following program (a small deviation from the standard
Factorial example) shous a simple -and very expensive- uway of
generating a table of Fibonacci Numbers and it is also meant to
illustrate the Compilation, Post_Processing and Execution of a
typical Pascal program. The compiler output has been slightly
edited to compress its width across the page.

" Sample Program, including the necessary JCL "

77 JOB
//TEST EXEC PASCAL
//COMPILE.INPUT DD *

PROGRAM fib_demo(OUTPUT) ;
TYPE pos_int = 0..30 ;

VAR i : pos_int ;
time : INTEGER ;

FUNCTION fibonacci(j :pos_int) : INTEGER ;
(*To evaluate fibonacci & j, for j >= 0,
subject to integer overflowu¥*)

BEGIN
IF j = 0 THEN fibonacci := 0
ELSE IF j = 1 THEN fibonacci := 1
ELSE fibonacci := fibonacci(j-1) + fibonacci(j-2) ;
END

BEGIN (*fib_demo¥)
FOR i := 10 TO 25 DO
BEGIN time := CLOCK(O0) ;
WRITELN(®' Fibonacci % ', i:3, ' is :', fibonacci(i):6,
' (Compute time =', CLOCK(0)-time:5, ' Milli Sec.)') ;
END ‘
END.
77

" Source Program listing generated by the Compiler "

LINE # P/D LC LVL < Stanford Pascal Compiler, Version of July-78 >

1 288 1) PROGRAM fib_demo(OUTPUT);
2 288 1)
3 288 1) TYPE pos_int = 0..30;

4 288
5 288
6 292
7 296
8 296
9 8y
10 84
11 84
12 0
13 5
14 12
15 29
16 8y
17 84
18 0
19 15
20 18
21 37
22 53
23 62

1)
L)
1)
1
1)
2)

2)
2)
2)
2)
2)
2)
2)
2)
1)
1)
1)
1)
1
1)

PAGE 37

VAR i : pos_int;
- time : INTEGER:;
FUNCTION fibonacci(j :pos_int) : INTEGER;
(*To evaluate fibonacci % j, for j >= 0,
subject to integer overflou*)
BEGIN -
IF 3 = 0 THEN fibonacci := 0
ELSE IF j = 1 THEN fibonacci := 1
ELSE fibonacci := fibonacci(j-1) + fibonacci(j-2);
END;
BEGIN (®*fib_demo*)
FOR i := 10 TO 25 DO
BEGIN time := CLOCK(0);
WRITELN(' Fibonacci & ', i:3, ' is :', fibonacci(i):é6,
' (Compute time =', CLOCK(O0)-time:5, ' Milli Sec.)');
END; .
END.

nRER NO SYNTAX ERROR(S) DETECTED.

LA A 23 LINE(S) READ, 1 PROCEDURE(S) COMPILED,

HRER 94 P_INSTRUCTIONS GENERATED, 0.04 SECONDS IN COMPILATION.

3

Post_Processor meséages "

* X" NO ASSEMBLY ERROR(S) DETECTED.

RxEx 672 BYTES OF CODE GENERATED, 0.05 SECONDS IN P_CODE ASSEMBLY.

" Output of the Sample Program "

Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci

LR B R

10 is : 55 (Compute time = 4 Milli Sec.)
11 is : 89 (Compute time = 5 Milli Sec.)
12 is : 144 (Compute time = 8 Milli Sec.)
13 is : 233 (Compute time = 12 Milli Sec.)
14 is : 377 (Compute time = 19 Milli Sec.)
15 is : 610 (Compute time = 31 Milli Sec.)
16 is : 987 (Compute time = 51 Milli Sec.)
17 is : 1597 (Compute time = 83 Milli Sec.)
18 is : 2584 (Compute time = 133 Milli Sec.)

Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci

The

L B K N N

19
20
21
22
23
24
25

is
is
is
is
is
is
is

4181 (Compute
6765 (Compute
10946 (Compute
17711 (Compute
28657 (Compute
46368 (Compute
75025 (Compute

following is the result
after having been modified to cause a Run Error.

PAGE 38 ~

time 215 Milli Sec.)

time = 348 Milli Sec.)
time = 565 Milli Sec.)
time = 914 Milli Sec.)
time = 1475 Milli Sec.)
time = 2386 Milli Sec.)
time = 3862 Milli Sec.)

of running the same program

" Qutput of the CompilesPost_Process step "

LINE % P/D
1 288

2 288

3 288

4 288

5 288

6 292

7 296

8 296

9 84
10 84
K 84
i2 0
13 5
14 12
is 29
16 84
17 84
18 0
19 15
20 18
21 37
22 53
23 62
* % %R NO
% % % % 23

LC

1
1)
LB
1)
n
1)
1)
1)
2)

2)
2)
2)
2)
2)
2)
2)
2)
1)
1)
1)
1)
1)
1)

LVL < Stanford Pascal Compiler, Versioh ot July-78 >

PROGRAM fib_demo(OUTPUT);

TYPE pos_int = 0..30;

v

AR

pos_int;

time : INTEGER;

FUNCTION fibonacci(j :pos_int) : INTEGER;
(%To evaluate fibonacci # j, for j >= 0,

BEGIN
IF j

= 0 THEN f{ibona

subject to integer overflou¥*)

cci := 0

ELSE IF j = 1 THEN fibonacci := 1

ELSE fibonacci :=
END;

BEGIN (¥*fib_demo¥*)

FOR 1
BEGIN

:= 10 TO 25 DO
time := CLOCK

WRITELN(' Fibonacci

L]

(Compute time =*,
END;
END.

SYNTAX ERROR(S) DETECTED.

LINE(S) READ,

ExER 94 P_INSTRUCTIONS GENERATED,

fibonacci(j-1) + fibonacci(j-3);

(0);
$ ', i:3, ' is :', fibonacci(i):6,
CLOCK(0)-time:5, ' Milli Sec.)');

! PROCEDURE(S) COMPILED,

0.04 SECONDS IN COMPILATION.

% % % %

* %% ¥

PAGE 39

NO ASSEMBLY ERROR(S) DETECTED.

672 BYTES OF CODE GENERATED, 0.05 SECONDS IN P_CODE ASSEMBLY.

Output of the GO step "

Fibonacci ®* 10 is

% % % %
3% % %
%% xR
3% 3% % %
* 3% % %

3% % % *

%% % %

% % 3% %

%3 % %

*% XN

* % %R

% % 3% %

3% % % %

% % 3¢ %

* % % %

3% 3% % *

% % % %

SNAPSHOT DUMP OF PROGRAM *¥¥¥
'SNAPSHOT' was called by --> 'Pascal_MONITOR'
Run. Error: 1002 from line: 14 of procedure: 'fibonacci’
SUBRANGE VALUE OUT OF RANGE ~
The offending value: -1 is not in the range: 0..30
Variables for 'fibonacci' are:

= 2
procedure 'fibonacci' was called by -->:'£ibonacci' from
Variables for 'fibonacci' are:

= 3
procedure 'fibonacci' was called by --> 'fibonacci' from
Variables for 'iibonacci' are:

= 4 |
procedure 'fibonacci' was called by --> 'fibonacci' from
Variables for ‘'fibonacci' are:

= 5
procedure ‘'fibonacci' was called by --> 'fibonacci' from
Variables for 'fibonacci' are:

= 6
procedure ‘'fibonacci' was called by --> 'fibonacci' from
Variables for 'fibonacci' are:

= 7

procedure 'fibonacci' was called by --> 'fibonacci' from

line:

line:

line:

line:

line:

line:

14

14

14

14

14

14

PAGE 40

*%%% Variables for 'fibonacci' are:

b = 8

%#%% procedure 'fibonacci' was called by --> 'fibonacci' from line:

*%x%% Variables for 'fibonacci' are:

J =9

%#x%* procedure 'fibonacci' was called by --> 'fibonacci' from line:

#%¥%x% Variables for 'fibonacci' are:

b = 10

®#%%% procedure 'fibonacci' was called by --> '$SMAINBLK' from line:

#%%¥% Variables for '$SMAINBLK' are:

i = 10
time- = 25

kx%% END OF DUMP #®%xx

The following is the result of yet another run of the same
program with the 'K+' option. The (only) source listing is
gennerated by the last &tep in the run and it followes any other
output that the user program may broodﬂce. The zrototype JCL for
this run is provided 1in section 3(§). (Note the increased

“"compute" time.)

* Qutput of the Compile/Post_Process step "

* X X% NO ASSEMBLY ERROR(S) DETECTED.

14

14

20

EXXN 804 BYTES OF CODE GENERATED, 0.06 SECONDS IN P_CODE ASSEMBLY.

" Output of the GO step — including the Profiler output "

Fibonacci 10 is : 55 (Compute time 3 Mi]lli 8ec.)
Fibonacci 11 is : 89 (Compute time 5 Milli Sec.)
Fibonacci 12 is : 144 (Compute time 8 Milli Sec.)

13 Milli Sec.)
20 Milli Sec.)
33 Milli Sec.)
54 Milli Sec.)

13 is : 233 (Compute time
14 is : 377 (Compute time
15 is : 610 (Compute time
16 is : 987 (Compute time

Fibonacci
Fibonacci
Fibonacci
Fibonacci

L R

LINE & RUN CNT LVL < Stanford Pascal Compiler, Version of

QOO JOUTLE WN =

-

1

13
14
15
16
17
18
19
20
21
22
23
24

* % %

%* % % %

% % % %

Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci

v

L R R R K R K K B J

17 is : 1597 (Compute time
18 is : 2584 (Compute time
19 is : 4181 (Compute time
20 is : 6765 (Compute time
21 is : 10946 (Compute time
22 is : 17711 (Compute time
23 is : 28657 (Compute time
24 is : 46368 (Compute time
25 is : 75025 (Compute time

o ouwououu N

" Ouput of the PROFILE step "

121338
196329
317651
635318

16
16
16
16

1)
1
1)
1)
1
1)
1)
1)
1)
2)

2)
2)
2)
2)
2)
2)
2)
2)
1)
1)
1)
1)
1)
1B

(¥$K+ %)
PROGRAM fib_demc(OUTPUT);

TYPE pos_int = 0..30;

VAR i : pos_int;
time : INTEGER;

FUNCTION fibonacci(j :pos_int)
(*To evaluate fibonacci # j,

87
140
227
369
595
963

1562
2527
4092

Milli
Milli
Milli
Milli
Milli
Milli
Milli
Milli
Milli

PAGE 41

Sec.)
Sec.)
Sec.)
Sec.)
Sec.)
Sec.)
Sec.)
Sec.)
Sec.)

July-78 >

: INTEGER;

tor j >=

0.,

subject to integer overflow*)

BEGIN ‘
IF j = 0 THEN fibonacci := 0
ELSE IF j = 1 THEN fibonacci

r= |

ELSE fibonacci := fibonacci(j-1) + fibonacci(j-2);

END;

BEGIN (*fib_demo¥*)
FOR i := 10 TO 25 DO

BEGIN time := CLOCK(O0);
WRITELN(' Fibondcci % ', i:3,

'is

.
H

! (Compute time =', CLOCK(O0)-time:5,

END;
END.

* NO SYNTAX ERROR(S) DETECTED.

24 LINE(S) READ,

100 P_INSTRUCTIONS GENERATED,

1 PROCEDURE(S) COMPILED,

?

fibonacci(i):6,
Milli Sec.)'):;

0.05 SECONDS IN COMPILATION.

PAGE 42

Changed Features and Neu Options

The following list is provided as a convenience to users of

previous versions of Stanford Pascal. The list briefly mentions
the features that are new or are implemented differently from the
earlier versions. These features either correspond to the

standard Pascal now, as described in Jensen and Wirth [1], or are
described in an earlier section of this document.

-Global textfiles may now be declared and passed as VAR
parameters to procedures or functions.

-The character set is now the EBCDIC character set and not the 63
character set that corresponded to the CDC Scientific character
set.

-The predefined constant MAXINT, the predefined types ALFA and
TEXT, the predefined fupctions and procedures PAGE, ROUND,
LINELIMIT, CARD, SKIP and EXPO are provided.

-The predefined variables DATE, TIME and OSPARM are added.

-The sub-monitor now handles most IBM file formats.

-The sub-monitor now supports input and output of Booleans.

-The sub-monitor now checks the format of Booleans, integers and
reals that are input. It also rejects any attempt to read any of
these same datatypes when the end of file is reached.

-fhe sub-monitor will automatically invoke the execution protfile
generator (PASPROF load module) if the Pascal execution outputs

run counts to the QRR file (i.e., if the Pascal program was
coltpiled with tHe K+ option).

-The input of character strings is now handled differently.

-The JCL parameters passed to the sub-monitor now include NOSNAP,
NosPIE and NOCC.

-User parameter strings may be passed to the Pascal program.

-Comments may be nested (under control of the 'N+' compilation
option).

-The M (margins) compilation option has an extended meaning.
-The sequence number field on input cards (col.s 73-80) no longer

is printed instead of the source line number when M+ is
specified.

PAGE 43

-Compilation input is no longer restricted to card image format.
The input may contain any of the allowed file formats, but only
the first 120 characters in each record are significant.

-The M (margins) compilation optiqn has an extended meaning.

-The sequence number field on input cards (col.s 73-80) no longer
is printed instead of the source line number when M+ is
specified.

-Compilation input is no longer restricted to card image format.
The input may contain any of the allowed file formats, but only
the first 120 characters in each record are significant.

-Subranges such as 1..10 are acceptable labels in CASE statements
or the variant parts of records. Also subranges may appear in
constants of type SET; e.g., [1..4) is equivalent to [1,2,3,4].

-Functions of type SET may be declared.
~The tag field of a case varianf record may be left unnamed.

-The offsets of vafiables in the stack are now assighed
ditferently.

~-The {first 12 characters of Pascal identifiers are now
significant.

-Lower case letters may be used in identifiers and reserved
words.

-External Pascal procedures may be created and used.

~FORTRAN subroutihes/functions may be called {from Pascal
programs. (A separate version of the sub-monitor is not required
for this.)

-The different versions of the run-time support routine PMONSRC
are now merged into a single progrdam and with the wuse of
(boolean) assembly time suitches, one may get the compact object
form suitable for system programs, or the full sized object to be
used in conjunction with user programs.

PAGE uy
Acknowledgements

This note owes a great deal to Nigel Horspool of McGill
University who, amongst other things, converted a group of
chronologically ordered sections into the present document. He
also upgraded the I/70 interface to provide support for various OS
file formats. The SNAPSHOT routine is written by Eral Waldin ot
SLAC and the run-time profile generator PROFILER is due to
Richard Sites of Los Alamos Scientific Laboratory. The programs
in the TESTLIB are contributed by many people and it is hoped
that it will evolve into a library of utility routines of general
interest to Pascal users.

References:

1] K. JENSEN, N. WIRTH. ‘'Pascal, User Manual and Report' (2nd
ed.), Springer-Verlag, New York, 1975,

[2) K. NORI, U. AMMAN, K. JENSEN, H, NAGEL. ‘The Pascal "p*
Compiler, Implementation Note$';, Berichte des Instituts
fur Informatik, E.T.H. Zurich, bkc. 1974.

[3] D. GRIES. 'Compiler Construction for Digital Computers', John
Wiley and Sons, Neu York, 1971.

[4] S. HAZEGHI. 'Bootstrap and Adaptation of a Pascal Compiler on
the IBM/370 System', CGTM-194, Stanford Linear Accelerator
Center, July 1979, '

[5] S. HAZEGHI, L. WANG. 'R Shott Note on High Level Languages
and Microprocessors', Conference Proceedings of the 2nd West
Coast Computer Fair, San Jose, CA., March 1978.

[6] E. GILBERT, D. WALL. 'SOPAIPILLA Maintenance Manual', CSL
Technical Report no. 158, Stanford University, March 1978.

{71 B. HITSON. 'Pascal/P_Code Cross Compiler for the LSI-11',
- SLAC-PUB-2246, Stanhford Linear Accelerator Center, Jan. 1979.

Sassan Hazeghi, Nov. 1976.

Computation Research Group,
Stanford Linear Accelerator Center,
Box 4349,

Stanford, CA. 94305.

Phone (415) 854-3300 x2359.

Date of last update:

PAGE 45

Jan.-26-77.
Mar.-0u4-77.
May =-20-77.
June-09-77.
Nov.-15-77.
Jul .-28-78
Sep.-18-78
May -20-79
July-01-79
Aug -09-79
Oct.-18-79

PAGE 46

Appendix A

1- Pascal compiler error messages:

1- error in simple type.
2- identifier expected.
3- "program" expected.
4- ")" exypected.
5- ":" expected.
6- illegal symbol.
7- error in parameter list.
8- “of" expected.
9- "(" expected.
10- error in type.
11- left square bracket expected.
12- right square bracket expected.
13- "end" expected.
14- ";" expected. '
15- integer expected.
16— "=" expected.
17- "begin" expected.
18- error in declaration part.
19- error in field list.
20- "," expected.
21- "%¥v expected.
50- error in constant.
51- ":=" expected.
52- "then" expected.
53- "until" expected.
54- "do" expected.
55— "to" or "downto" expected.
56- "if" eupected.
57- "file" expected.
58~ error in factor.
%9- error in variable.
101- identifier declared tuice.
102- low bound exceeds highbound.
103- identifier is not of appropiate class.
t04- identifier is not declared.
105~ sign not allowed here.
106- number expected.
107- incompatible subrange types.
108- file not allowed here.
109- type must not be real.
110- tagfield type must be scalar or subrange.
111- incompatible with tagfield type.
112- index type must not be real.
113- index type must be scalar or subrange.
114- base type must not be real.
115- base type must be scalar or subrange.
116~ error in type of standard procedure parameter.

117-
118-
119-
120-
121-
122-
123-
124-
125-
126-
127-
128-
129-
130-
131-
132~
133-
134-
135-
136-
137-
138-
139-
140-
141~
142
143~
“luf
145-
146~
147-
148~
149~
150~
151-
152-
153-
154~-
155~
156~
i57-
168~
159-
160-
161~
162~
163-
164-
165-
166-
167-
168-

PAGE 47

unsatisfied foruard reference.

forward reference type iden*ifier in variable declaration.
forward declared; repetition of parameter list not allowed.
function result type must be scalar, subrange, or pointer.
file value parameter not allowed.

forward declared function; repetion of result type illegal.
nissing result type in function declaration.

f-format is for real type only.

error in type of standard function parameter.

number of parameters does not agree with declaration.
illegal parameter substitution.

result type of parm function does not agree with declaratn.
type conflict of operands.

expression is not of set type.

only tests on equality allowed.

strict inclusion not allowed.

file comparison not allowed.

illegal type of operand(s).

type of operand must be boolean.

set element must be scaldr ¢or subrange.

set element types not compatible.

type of variable is not an array.

index type is not compatible with declaration.

type of variable is not a record.

type of variable must be a file or pointer.

illegal parameter substitution.

illegal type of loop control varlable.

illegal {ype of expressxon

type conflict.

assignment of files not allowed.

label type 1nzompat1b1e with selecting expression.
subrange bounds must be scalar.

index type must not be integer.

assignment to standard function is not allowed.

assignment to formal function is not allowued.

no such field in this record. |

type error in reéad.

agtual parameter must be a variable.

control variable may not be declared on intermediate level.
multiply defined case label.

too many cases in case statement.

missing corresponding variant declaration.

real or string tagfields not alloued.

previous declaration was not forward.

duplicate forwuard declarations.

parameter size must be constant.

missing variant in declaration.

substitution of standard procedure/function not allowed.
multidefined label.

multideclared label.

undeclared label.

undefined label.

169-
170~
171-
172-
173~
174~
175-
176~
177~
178~
179-
180-
181-
201-
202-
203-
204~
205-
206-
250-
281~
252-
253~
254~
255-
256-
257-
258-
259-
260-
300~
301~
302-
303-
304
390-
398-
399-
400-
401-

PAGE 48

error in base set.

value parameter expected.

standard file was redeclared.

undeclared external file.

FORTRAN procedure or function expected.

Pascal procedure or function expected.

missing file "input® in program heading.

missing file "output™ in program heading.
assignment to function identifier not allowed here.
multiply defined record variant.

X-opt of actual procsfunc does not match formal declaration.
control variable must not be formal.

constant part of address out of range.

error in real constant- digit expected.

string constant must not exceed source line.
integer constant exceeds range.

8 or 9 in octal number.

zero length string not allowed.

integer part of real constant exceeds range.

too many nested scopes of idéntifiers. .

too many nested procedures ahd/or fuplctiohs.

too many forward references of proctdure éntries.
procedure too long. ‘

too many long constants in this procedures.

too many errors in this source line.

too many external references.

too many externals.

too many local files.

expression too complicated.

too many exit labels.

division by zero.

no case provided for this value.

index expression out of bounds.

value to be assigned is out of bounds.

element expression out of range.

premature end of program, (bad program structure).
implementation restriction.

variable dimension arrays not implemented.
illegal expression.

compiler consistency check !

PAGE 49

2- Pascal post-processor error messages:

253~

254-

256-

259~

263~

281-

282-

300-

302-

501-

Procedure too long (larger than 8K bytes).

--> Divide (the procedure) and conquer.

Too many long (string) constants.

--> Recompile the Post_Processor with a larger value for
MXSTR.

Too many Procedures/Functions referenced in this Proc.

-=> Recompile the Post_Processor with a larger value for
MXPRC.

Expression too complicated.

~-=-> Simplify the exupression by rearranging ands/or breaking.
Too many (Compiler generated) Labels in this Procedure.

~-=> Recompile the Post_Processor with a larger value for
MXLBL.

Too many Integer constants in this Procedure.

-=> Recompile the Post_Processor with a larger value for
MXINT

Too many Doubie Word (REAL,SET) constants in this
Procedure. '
--> Recompile the Post_Processor with a larger value for
MXDBL. .

Divide by Zero (result of constant propagation).

-=> Fix up the (constant) expression evaluating to Zero.
Index/subrange value out of range (constant propagation ?)
-=> Fix up the (constant) expressiohito be within range.
Array component too large (larger than 32K).

-=~> Reduce the range of the lagst (rightmost) indecies of
the array andsor reorder the dimensions of the array so
that they are ordered frém the largest (leftmost) ¢to the
smallest (rightmost).

Compiler/Post-processor concistancy checks:

601~
602-
604-
605~
606
607-
608~
609-

611-
612-
613-
614~

Type conflict of operands in the P_Progran.

Operand should be of type 'ADR'.

Illegal type for run-time checking.

Operand should be of type 'BOOL'.

Undefined P_Instruction code.

Undefined Standard Procedure name.

Displacement field (of address) out of range.

Small Proc Larger than U4K.

--> Recompile the Post_Processor with "SHRT_PROC = 300".
Bad INTEGER alignment.

Bad REAL alignment.

Bad REAL constant.

Inconsistent Procedure Table file "PRD".

-=> Fix the JCL and/or the 'QRR' output of the compiler.

PAGE 50 —~

3- Runtime error messages: .

1001-
1002~
1003-
1004~
1005~
1006-
1007-
1008-
1009-
1010-
1011~
1012-
1013~
1014
1020~
1021-
1022~
1023-

200X-

3001-

X1XX-

index value out of range.

subrange value out of range.

actual parameter out of range.

set member out of range.

pointer value invalid.

stack/heap collision (i.e. program needs mor stak space).
illegal input/reset operation.

illegal output/reurite operation.

synchronous is/70 error.

program exceeded the gspecified running time.

invalid file definition.

not enough space available.

undefined or obsolete submonitor call (should not occur).
LINELIMIT exceeded for output file.

illegal input past end of file.

bad BOOLEAN on input.

bad INTEGER on input.

bad REAL on input.

program interruption code 'X°',
--> enable debug option 'D+' and rerun the progranm. ' _ .fﬁ\

external error (e.g. bad parameter to math routines etc.)

unable to call on 'snapshot' after a run error

(this happens if there is not enough space or if snapshot
was not included 1in the load module or if the nosnap
parameter was specified in jcl) other digits of the return
code to be interpreted as above

