
., .

aJfUTATHr~ r£SEARCH GROJP

MASTER COpy
DO NOT REMOVE

STANFORD PASCAL COMPILER

SASSAN HAZEGHI

COMP~TATION RESEARCH GROUP
STANFORD LINEAR ACCELERATOR CENTER

STANFORD~ CALIFORNIA 94305

WORKING PAPER
Do not quote, cite, abstract,
or reproduce without prior
permission of the author(s}.

CGTM 00. 19£
~bVEMBER 1979

•
.. ~

•

f"'"'. ..

1. Introduction

This note is a description of the Stanford Pascal system.
It is also intended to serve as a guide for its setup, use and
maintanance. The system consists of a machine independent Pascal
compiler, a post-processor for adapting the output of the
compiler to the 18M-370 system, a set of run-time support and
interface routines and finally, a library of utility programs to
help users in writing, debuggin§ and evaluating Pascal programs.

Though primarily concerned with the 18M-370 implementation
of the system, this writeup can also be of use to those
interested in bootstraping the system onto other environments.
A.ditional information about the bootstrap process and/or
implementations on other machines can be found in references (q)
through (7).

The rest of this writeup is organized as follows: section 2
describes the co~pilet/post-proces~ot and non-standard features
of the .ascal implementation. Section 3 provides instructioni
and JCL for setting up the system. Section 4 explaihs some df
the implementatiort d~tails and provides a few storage saving
ideas. Section 5 contains a sample program and dembnstrates what
kind of output to eKpect under varibus conditions. Section 6
indicates which features have changed from earlier versiort. of
the Stanford Pascal system. Users of pre~ious versions should
take special note of this section. sections 2.2.1, 2.2.3-2.2.9,
2.3.1, 2.4.1, 2.4.3 J 3, q.1 and 5 contain information of interest
to th* average O~.rs. Other parts of this note are meant
primarily for the people who maintain the system or would like to
modify it for their particular need. Access to reference [1) is
also essential for all user$.

PAGE 2

2. Stanford Pasoal Compiler

The Stanford Pascal Compiler isa modified version of the
Zurich Pascal_P2 compiler (MAY 1974 variant) and exoept for a few
minor extensions processes the same language (see [2J for more
details on Pascal_Pl. The compiler itself is a 5000 line Pascal
program that tran~lates the source program into an intermediate
iorm which is the machine language for a mythical Stack Computer
(the so called P machine, hence the name P_Compiler). The output
of the compiler is then fed to a post processor, the
P_Translator, which in turn translates the P_Code into the
IBM/370 code, generating either an Object Module or a 370
Assembly language program. The P_Translator is also written in
Pascal (aprox. '+000 source lines) and like the compiler. would
benefit from any improvement in the code
'generation/translation of the combined system.

Except for a few cases in~olving the mbvement or comparison
of large structures (i.e. large records, arrays, etc. implemented
by the "Long" 370 "55" type instructions), the translator
generates instructions common to 370 and 360 seties and, with
small changes, it is possible to (optionally) generate 360-only
instructions.

The translation from P_Code to 370 code is based on •
general scheme for converting Polish style expressions into
"Register" oriented code without actually si~ulating the Stack
Machine on the Stack-less Computer which, due to lack of the
hardware St.ck and appropriate instructions, tends to be
fairly ineffioient. Furthermore, the organization of the
translator is such that its modification to generate object code
for oth~r register oriented computers should be straightforward.

The run-time support package and the I/O interface is
written to operate under OS/VB or OS/MVT and has also been tried
by other users under VM. Using small I/O buffers (i.e. 10 .. 12K
bytes), the current version of the Compiler/Post_Processor can
compile itself, and/or other moderate size programs, in a 128K
region. A larger region, however, would improve the I/O
efficiency.

2.1 The Sub_Monitor and I/O Interface

The Sub Monitor and the I/O interface consist of a set of
assembly language routines which set up the run time environment
and implement the I/O related Standard Procedures/Functions
of Pascal. The sub monitor also initializes the environment for
FORTRAN routines (by calling IIBCOM) if there are any FORTRAN
routines present. They will be present if there are any explicit

PAGE 3

references to external FORTRAN routines in the Pascal program
(see the section on external routines) or if any of the
mathematical functions, SIN, COS, ARCTAN, LN, EXP or SQRT, are
used. All references to these mathematical functions are
impl •• ented as calls to the corresponding FORTRAN double­
precision functions.

2.2 Implementation Restrictions/Extensions etc.

The modifications to the Zurich Compiler are primarily in
the areas of 1) providing TYPE information for certain
instructions at the P_Code level, 2) boundary alignment of
variables according to the 360/370 requirements and 3) separating
CHARacters from INTEGERs in their internal representation. These
changes should be transparent to the end user. Otherwise for a
complete list of restrictions imposed by the P_Compiler refer to
(2]. In addition:

. r

2.2.1 Mi8cellane~u' ~.strictioh~

-Only TEXT files (FILE OF. CHAR) are presentl, supported. For a
method of circumventi~g this restriction, .~e ~ection 2.2.5.

-Files can be declared only in the main program (i.e. as gloHal
variables).

-Files can be passed only as VAR parameters to procedures or
functions.

-1ntegers are limited to the range -2**31 to 2**31-1. This upper
limit is the value specified by the constant MAXINT.

-Reals are implemented in the double-precision format on the IBM
360-370. This implies a precision of approx. 16 significant
digits and a range of 10**-78 to 10**76 for the magnitude.

-sets are limited to 64 elements. The ordinal range for the base
type of the set must not extend outside the range 0 .. 63.

-string constants are limited to
characters.

a maximum length of 64

-Reals can be printed to only 12 digit accuracy (even though all
real arithmetic is performed to 16 digit accuracy).

-A GOTO statement leading to a Label outside the procedure
containing that statement is not allowed.

PAGE If

-The PACKED attribute in array and record declarations has no
effect. All character/boolean arrays are always packed
au~omatically with one element per byte. Standard procedures
PACK and UNPACK, however, are supported and can operate on PACKED
as well as unPACKED arrays.

-The standard procedure DISPOSE (as described in (1]) is not
supported, instead, dynamic storage Cacquired through the use of
the standard procedure NEW) should be managed through the use of
the predefined procedures "ARK(P: Any_pointer_type); and
RELEASECP; Any_pointer_type). MARK is used to save the current
value of the Heap pointer and RELEASE will reset the Heap pointer
to the value specified by it. (pointer type) argument. As an
example, the following seq.uence:

MARK(hp); ... NEW(x); ... NEW(y); ... RELEASE(hp); ...

leaves (the size of) the dynamic area unchang@~~ Note that the
pointers "x" and "y" become "undefined" after the RELEASt
operation and cannot be used ~efor. they 'r. redefin.d. (Heap is
the area from which dynamic storage it allocated.)

2.2.2 storage Allocation for Variables

The Compiler allocates and aligns P~.cal simple data types
adcording to the following table

TYPE SIZE' ALIGNED ON

CHA~,BOOLEAN 1-BYTE 1-BYT~ BOUNDARY
INTEGER If-BYTES 'l-BYT BOUNDARY
SET 8-IYTES If-BYTE BOUNDARY
REAL 8-BYTES 8-BYTE BOUNDAky

Dyn.mic storage, however, is always allocated on 8-Byte
boundaries to avoid the necessity of alignment at run-time Cas
opposed to the Compile Time alignment). Note that Subranges are
represented by their Base type and Enumerated types are treated
as integers. The p+ compilation option (see 2.2.8) may be used
to reduce the storage allocated to small integers, but at a cost
in execution time. For the sake of space and time efficiency, it
is a good practice to declare program variables in the order of
their relative size. In particular, by defining simple type
variblel before arrays and large r@cords, you can @nIUf@ that all
of the small variables may be accessed by a short address field,
resulting in a shorter and somewhat faster program.

2.2.3 The Character Set and Pascal Identifiers

..

•

/"'"". .

2.2.4

PAGE 5

-Characters are internally represented by their EBCDIC value
(i .•. ORD('.') • 129 = HEX'St'l. Although this should be of no
consequence to "clean" programs that make no assumption about the
ordinal values of characters, one should note that: SUCC('a') =
'b" but SUCC('i') <> 'j'. Furthermore, because of the size of
the EBCDIC character set, the construct: SET or CHAR; is not a
valid type (use the July 77 version of the compiler if you have a
pre~sing need for this feature).

-Identifiers may be of any length but only the first 12
characters are significant.

-Pascal keywords and other identifiers may contain upper and
lower case letters interchangeably. For example, Ident and IDEHT
are treated as the same identifier.

-Identifiers ~ay include the doll~r and underscore ("S" and "_H)
oharaoters wherever a digit may appear.

-The followibg symbols
scann.r of the compiler

're treatad i.entioally by the input

, (,

: r :
,) ,

br t(*'

or '.)'
or '(/'
or '/)'

• e- or
'AND' or
'OR' or
'NOT' or

Not. that comment brackets should
comment opened by the '(*' bracket
sy.bo,l.

' . .
: t:
' ~ i

be used consistently and a
cannot be closed with the 'l'

-The Pascal '~~arrow' character is represented by 'a', (the 'at
sign' character).

-The 't' character (pound sign) is tre.t~d as a skip charact~r
and ignored by the compiler:

-The dOUble-quote (") is used as a dlrective to skip text. All
text up to and includirig the neK~ double-quote is totally
ignored.

-The above mentioned conversions do n9t apply to string constants
in which the input characters are nbt subject to any automatic
translation and/or int~rpretation.

Language Extensions

-The range designator A .. B may be used to specify constant values
A, A + 1, ... B-1, B, ins tea d 0 f en u mer a t i on 0 f a I I th e i n d i v i d u a 1
values (e.g. (1,4 •. 8, 10, 12 .. 20] is a good set constructor).

PAGI 6

Note that thia abbreviation .ay alao be used in CASE labels. For
exaaple one aan write:

aase eH of
'.· .. ·i', ·A· .. 'I' 51
'0' .. '9' S2

end ;

-Superfluous .eparators '; 'preoeding the END symbol in Record
(and variant) declaration. Ca.. statement and Procedure
definitions .re ignored by the co.piler.

-Functions of Type SET •• y be defined.

-The Tag field of a case variant record aay ba unn.med, in which
casa no .pace will be allocated for it. This feature, which is in
the 'standard- language, allow. acce •• to ~iff.rent variant. of a
record when the type of each v.riant is known through .oae other
context.

e.g., record A: So •• _type J

ca •• BOOLEAN of

end

TRUE: (B: Type_b)
FALSE: (C: Type_c) ;

2.2.5 File. and File H.ndling

-The bompiler khows about 6 predefined TEXT files, IHPUt, OUTPUT.
PRO, PRl, QRD and QRR, with INPUT' used as input only, OUTPUT used
•• output only and PRO, PRR, QRD, QRR used a. input .fter a RESET
and a8 output .fter a REWRITE' opetation.

-The PROGRAM h.ading should include the naaes of, all the
predefined fil •• us.d in the program, otherwise one has to
RESET/REWRITE these (as well as all other user defined) files
before they are accessed. Hate that the default mode of INPUT,
PRO and QRD is 'input· while OUTPUT, PRR and QRR are opened for
'output' if they appear in the PROGRAM para.eter list. In order
to us. a predetined file in other than its default mode (e.g. to
use PRn for 'output'), instead of listing it in the program
heading, simply 'RESET' or 'REWRITE' that file prior to the
relevent I/O operation(s).

-If the file name is missing from the argument list of a file­
handling procedure/fuflction then the file naae INPUT or,OUTPUT is
inserted as appropriate. For example, READLN, READLN() and
READLH(IHPUT) are all equivalent as are PAGE, PAGEC) and
PAGE(OUTPUT).

I"" .

PAG! 7

-Boolean variable •• ay be input fro. textfile.. The single
letter 'T' repre •• nts TRUE and 'F' represents FALSE. Leading
blan~s are ignored a~d any other i~put character results in
error. Th. file pointer ia positioned to the aharater
iamediately following the 'T' or 'F' character. Hate that lower­
aase input ('t' and eft) is also aaaepted.

-String variables may be input using READ or RtADLH. For
exaaple, if S is a variable with the type ARRAY[l .. H) OF CHAR,
then READ(IHPUT,S) is equivalent to:

for 1:= 1 to N do
if not EOLN(IHPUT) then ISAD(INPUT,S[II)

else sl I] : = • ';
-Only textiiles (file of CHAR) are ourrently supported. However
the effect of other file types g.n be obtained through overlay
techniqu... For exa.ple, to uae thePR~ file as though it were
declared as FILE OrRElL, the.fdllo"ing cdde aan be used:

var PRR_ELEMENT: record
oa •• BOOLEAN of

TRUE & (,.: REAL).
,its!: (C~l arrayll .. 81 of CHAR)

ehd;

(we o.it dlher declarations, etc.)

PRR_ELEMENT.R := 0.5; (A.sign REAL value)
WRITE(PRR,PRR_ELEMENT.CH); {Writ. it as a string}

(input from the file oan be perfor_ed siailarly)

2.2.6 Additional Standard Procedures and Functions

CARD(S: Any_set_type)
cardinality of the set, s.
the value 4.

CLOCKCI: INTEGER) returns
value of the system clock.
time in thousandths of a
Pascal program started.
undefined results.

returns an INTEGER result equal to the
ror example, CARD([3,8,~3,60)) has

an integer result corresponding to the
If 1=0, the result is the exeoution

second that have been used since the
Other values of I currently yield

EXIT(!: IHT!GER) causes the Pascal program to terminate
execution. The value, I, is used as the programts user return
code and can be tested in the JeL used to run the program. The
value used should be non-negative and less than 1000 to avoid
confusion with the return codes used for Pascal errors.

PAGE 8

EXPO(R: REAL) t return. an INTEGER result equ.l to the exponent
in the intern.l •• chine r.pr •• entation of the real number, R. To
use EXPO, it i. nece •• ary to know that real numbers .re
normalized in the form:

! exponent
t .anti.sa * 16

~

where 1/16 <- .anti.sa < (except if the real number is zero
then the mantissa ia zero and the exponent is -64). For example,
EXPO(1.0) i. " £XPO(16.0) is 2, EXPO(256.0) i. 3, etc. The &XPO
function is useful for .aking f •• t determinationa of the
magnitude of a number (.uch f •• tar than u.ing the LN function).

LINELI"ITCF: TEXT; I: INTEGER): .ets a limit of I subsequent
output line. for the file r. After I more lines have been
written, an error message would be issued auto.atic.lly.
Initially, there are no li.its in .ffect for .ny file.
Performing a REWRITE or callin9 LIMELI"IT with, 1<=0 will c.ncel
any limit in effect for the file. If thl file name, F, is
omitted, OUTPUT ia as.umed.

HESSAGE(S: Any_atring~type) : cauaes a cha~.~iet string to be
written to the O~~. • •••• g. log that ia print.d along with the
JeL listing for the job. Th*re is a limit of 120 characters on
the length of this message.

"ARKCP: Any_pointer_type): save. the current value of the Heap
pointer in the pointer variable P.

RE~EASE(P: Any_pointer_type) resets the heap pointer using the
va1ue of P. This effectively releases all the dynamic storage
allocated (through the tise of HEW) since the last MARK operati~n
on P.

SKIP(': TEXT; I: IHTEGER): if F is open for output, the effect
is aimilar to I successive calls to WRITELH(r). Whed 1=0, the
next output line will overprint the current line. If F is open
for input, the effect i. similar to I successive call. to
READLHCF). When 1=0, the current input line will be re-read. If
the file nam., F, is omitted, OUTPUT is assumed.

SNAPSHOT(I,J: INTEGER) causes a snapshot dump of active
storage. This procedure requires access to the symbol table
output of the compiler which is available only if the program is
compiled with the 0+ option in effect Csea 2.2.81. Tha firgt
parameter I specifies the number of active procedures/functions
whose variables are to be printed. For example, ·1=3 specifies
the 3 most recently entered procedures/functions. Specifying 1=0
gives a dump of all active procedures/functions back to the main
program. The second para.eter J determines the type of dump.
J=10 specifies the m.~i.um amount of information is to be

. ,~

PAGE 9

printed.
printing
elements.
functions.

J=O is .imilar except that array. are compre.aed by
only the content. -~f the first few and l.st few

J=1 produces only a li.t of the active procedure. and

PACK/UNPACK The restrictions on the type of the parameters to
these atandard procedurea are 80mewhat relaxed. The target/.ource
opernada need not b. declard a8 PACKED arrays and, in addition,
the aource operand a.y be a atring conatant.

TRAPeI: INTEGER; VAR V: any type) generat.a a call to an
external user supplied routine ~ith the entry point '.PASTRAP'.
The v~lu. of I ia p.aaed in GPR-O and the addr ••• of V is passed
in OPk-1. The first parameter, I, is intended to be u8ed as a
'function' code and the aecond paramater V i. to p •• s values
to/from the external routine. The object code for the external
routine containing '.PASTRAP· entr~point should be included with
the object code of the P •• cal progra •.

2.2.7 ,Predefined Na .. ea

-ALrA ia defihed to be the type lRRAYI1 .. 101 or c~A~.

-TEXT ia defined to be the type rILE or CHAR.

-HAXIHT ia defined to be
2147483647 C •. e. 2 •• 31-1,
the 360/370 ' •• ries).

an integer constant with the valJ.
the largeet one-word integer value in

-DATE ia a variable of type ALtA (AkRAY(1 •. 181 or CHAR) whose
valueie the date on which eM.cutton commenbed. For example,
'07-31-1979' corresponds to July 31, 1979.

-TIHE i. a variable of type ALlA
execution commenoed. ror example,
minutes and 59 seconds past 2 p.m.

that contains the time at which
'14:25:59 'corresponds to 25

-OSPAR" is a pointer ~.riable of type:

.RECORD
LENGTH: INTEGER;
STRING: ARRAY(1 .. 64]
END;

A para.eter string may be passed to the Pascal program via the
'PAR"' field o~ the 'EXEC' JCL steement Csee Section 2.~.f ,.
When this parameter string is supplied, OSPARMa.LENGTH is the
riumber of characters in the string and the string itself is held
in OSPARM8.STRING. When no parameter is provided, OSPAR" has the
value NIL. Note that the subscript bound of 6~ is purely nominal

PAGI 10

and no atte.pt .hould be .ade to acce •• element. of STRING with
index value. greater than the LENGTH value.

2.2.8 Compilation Options

Compiler Options are (as usual) .pecified inside COMMENT
delimiters in any order. but with no other .y.bols/blanks between
th.m. These options and their default valu •• are:

(*tL+,n-,D+,K-,N-,X-.P-,C+,A-,S+,f+,E ••. other commenta*)

L+ list/(don't list) source program.
H- no .a~gin/(set margin) at column 72 of input lin •••
0+ anable/(disable) run-tim. checking~
K- don't emit/(.mit) counters for progra. RUn Profile.
N- Do not ne.t/(allow nestad) comments.
X- clear/(set) external l~nkage flag.. ,
p- Do not pack/(do pack) subrange vari.bles int6 "byte.".
C+ emit/(doA't .mit> P Cod~. , '. j

A- gen. 370 Obj. Mod./7g.n~ 37~ Issj.bly la~~uage ~utput).
S+ save/(don't save) qPRs on procedure/function .ht~y.
F+ save/(don't save) FPRs on procedure/fuh~tion e~tr'.
E Do a Pdge Eject befdre continuing the source listing.

-M Option: The n option controls the margihs for source input.
When M- is in effect (the def~ult), ~here are· no m~rgihs and the
entire input record is read by the cO.Jailer. 'When h+ is
specified, a rig~t margin at column 72 is set. so th~t columns 73
and beyond are ignored. M+ is useful for sequence numbered catd
input. More control over th. margins of the input lines is
provided ~y giving the M option in the form M(a,b). The first
decimal number. a. specifies the left margin and b sets the right
margin. 'That is. only the contents of columns a through b
(inclusive) are compiled and the rest of the input line is
ignored. No error occurs if b is given a value greater than the~
si2e of source records. the input lines are read to their ends in
such a case. However there is a compiler limitation which
restricts the maximum value ot b to 120. (This limit may be
changed by recompiling the compiler with a different value for
the constant BUrLEN.) ConseqUently, M+ is equivalent to M(1,72)
and M- is equivalent to M(1,120). Hote: the M option does not
come into effect until the following lourc@ r@cord. If this
proves inconvenient, observe that the M option can be placed in
the JCt parameter string.

-D Option: With the 0+ option in effect, various run-time checks
are performed.

PAGE 11

Subranges (including the Enumeration t~pe variables) are
checked when being assigned to or passed as actual- para.eters to
procedur.s. Indic.s are checked before the indexing operation
and Pointer. are checked when being assigned to and/or before
their u.e a. reference. to other objects. Also, variables used in
construction of Sets (through the set constructor operator [...])
or being tested for Set m.mbership are checked to be within range
prior to these operations. If the value being checked for
validity happens to be a constant the appropriate check is done
at Compile (r •• lly post proce.sing) time, otherwise for the sake
of conserving space, Run-Time check routineCs) are called to
perform the proper te.ts (as opposed to in-line checking which
would be more time-efficient).

If this option ia in affect during compilation of a
procedure heading, then the prologue of that procedure checks
for the availability of sufficient storage on the run-time stack
before allocating space for ~he local variables of the
procedure. Similarly. the growth (and shrirtking) of the Heap is
checked to ensure the consi~tency of tHe Run-T~.a stack/Heap
structure. In order to dttect uninitialized variabi's as eariy as
po.sib'le, the entire I,tack/heap area as well as indIvidual
procedure activation records, are cleared to a fixed pattern (Hex
'Sf'). (This can potentially make a si.hifiaant contribution to
the program's running time.) J

Pointer values are checked before' they are assigned and
before they are dereferenced. The value must refer to a locatloh
within the storage area allocated to the heap. Also. the special
pointer value HIL is valid on assignment but clearly invalid for
dereferencing.

In ca •• a Run-Time error is detected, the offending value
with its declared range as well as th. Prooedure. an6 the
relative location within the procedure, in wftich the error was
discovered will be printed. If the D+ option is in effect while
compiling the procedure headihg, the approximate line number
corresponding to the error location will also be given. If any
of the above checks is possible at compile time, then the ertor
message will be generated by the post-processor and the executiOn
of the program will not be attempted. As the run-time diagnostic
.e.sages are sent to OUTPUT file. this file should be included in
the set of Program files (i.e., DD statement for OUTPUT should be
present) .

Depending on the type of the checking, one to three full
word instructions may be added to the object code per checking
site. This means that a procedure which translates into almost
8k bytes of code, may exceed this limit when the D+ option is
chosen. In such cases this option s~ould be invoked either
selectively, -for small segments of the procedure. or the
procedure should be broken down into smaller routines for
debugging purposes (another incentive to avoid large
procedures!).

PAGE 12

-K Option: This option will cause the compiler to allocate
counters and generate instructions needed to produce an execution
profile of the user program. After the (proper) termination of
the user Program with the above switch on, the Sub Monitor will
output the counter values onto the QRR file, which should not be
used by the user program. The Execution Profile Generator will
then read these counts, 8S well as the source program listing and
an auxiliary file generated by the compiler, in order to produce
• formatted listing which includes the execution count of each
(executable) line of the source program. The Execution Profile
Generator and the necessary JeL are included in the TISTLIB file
on the distribution tape. The Compiler usually generates a
minimal number of additional instructions when this option is
invoked, but in some marginal cases these extra instructions may
cause a procedure to exceed the 8k size limitation, in which case
the user may disable the Counts for that procedure or divide the
procedure into smaller segments.

-H option: When the tH~t option is in effect, comment brackets
may be properly nested, For eKam~le, (* (* *) (* *) *)
would; be a valid comm~nt form.. 'When 'N-t (the defaultj is in
effec~, the comment would be cl~sed at the first "*)" bracket.
Hested comments are useful when it is desired to comment-out
sections of • Pascal program. Hote that the o~tidn switches can
be s.t only by the first level (outer most) co~.@nts.

-x Option: The immediate effect of this option is to change the
CSEcr n.mes generated by the p~st-processor for Pascal prodedur~s
ahd the main program. Hormally, ~the estcT name for a
procedure/function is formed from the fitst few characters of its
name followed by a unique integer and the main program has the
CSECT name *MAIHBLK. While the 'X+' option is in effect, the
CSECT names ate taken directly from the procedure/function name.
(Only the first 8 characters of the name are significant if used
to create a CSEcr name. It is the user's responsibility to
ensure that the CSECT name$ are all distinct.) The main program
is renamed to IMAIHBLK (so that it is not automatically invoked
by the sub-monitor program). The 'X+' option facilitates the
creation of external Pascal procedures or functions. See Section
2.2.9, below.

-P Option: The Pack option 'P+' may be invoke~ universally, if
the program does not use Dynamic REAL type variables (or
records/arrays with REAL components), or selectively around
procedures which need larga data araag (either dir@ctly, through
recursion or dynamic allocation etc.) to reduce the program's
data space requirement. With the default value of the switch,
Dynamic storage is allocated on double-word boundaries, with a
potential for memory fragmentation. Furthermore, when this
switch is on, scalar type variables which are in the range 0 .. 255
are internally treated as CHARs, with one byte allocated per

PAGE 13

variable. Note that, in terms of running time, this
representation is slightly less efficient than the standard
representation of Scalar/Subrange Types as full word integers.

A byte-packed subrange variable cannot be passed as a
reference (VAR) parameter to a procedure where the corresponding
formal parameter is declared to be an INTEGER, nor can it be
included in the parameter list of a READ statement. This may
cause the compiler to 'find' some errors in an otherwise well­
formed program when the Pack option is selected.

The 'P+' option is incompatible with the 'D+' setting and
should not be specified when the run-time check is enabled.
Otherwise the values of the variables, as printed by the SNAPSHOT
routine, may not be accurate.

-F and S Options: If you have complicated REAL eKpressions
in~olving call(s) to REAL functions in your program, you should
leave the 'F+' switch ON, otherwise the 'F-' option would be more
efficient. Likewise, if you do not use complioatad expressions
involving INTEGER valued Functions (and you hav. many procedure
calls in your program'. you *ay get a fas~_r running program by.a
'S-' option for the hi9h~r models of 37b (in which the LH/StM
instructions are much slower than L/ST instructions).

Notes:

Only options L,D,M,K and E are of interest to the average
user who should not be concerned with (and confused by) the
details of the other switches. Options F and S should be used
with care and some understanding of the code generation pattern
of the compiler.

The o~tion list (excluding the comment delimiters and the
'.' tag) may be passed to the compiler through the 'PARM' field
of the JeL 'EXEC' statement. This mode is particularly usefUl for
interactive environmehts and avoids the need for editing the
source program file in order to set/reset some of the option
switches.

2.2.9 External Procedures

- Creating an External Pascal procedure

The simplest approach is to forego the usage of global
variables within the external procedure. This procedure can then
be compiled ~s part of a program that contains no global
declarations, that sets the X+ compilation option and that
contains no main program code. A small example of this is shown
in Section 3.7. The object code created for the external
procedure can be concatenated to the object code for the calling

PAGE 14

program before being link-edited or loaded into memory. The
calling program must contain a declaration for the eKternal
procedure. The declaration follows the sama syntax rules .s for
ordinary procedure definitions eKcept that the code body is
omitted. The keyword EXTERNAL simply follows the procedure
heading.

It is possible for the calling program and the external
procedure to share variables in the global environment. To do
this, it is necessary to compile the extarnal procedure using the
identical global declarations as for the calling program. Also
note that the SNAPSHOT routine cannot print the values of
variables internal to an external procedure unless the symbol
table file created for the external procedure during its
comptlation is .aved. It mu.t then be concatenated to the s,mbol
table file created for the calling program during its
compilation.

Note: As there is absolutel, no Type/count checking provided by
the Loader, it is important to make sure that the definition of
the separataly compiled Pasqal/rORTRAN programs be consistent (in
the number and Type of par' •• tars) with the declaration of the
corresponding procedure/function headings in the program making
the calls. In the case of a separately campi ad PasCal program,
it is al.o important (for the two declarations to have, identical
static nest levels if there is a potential two-way link (i.e.
repeated cross calls) between the modules involved.

-Calling an External FORTRAN Routine

The FolTRAN function/subroutine should be declar.d as an
internal Pascal function'~rodedure but with the keyword FORTRAN
replacing the body of the code. Note that all reference type
par.m~ters should be declared as Pascal VAR para~eters and the
basic types IHTEG£R, kEAL, CHAR and BOOLEAN in Pascal correspond
tb FORTRAN's INTEGER*4. REAL*8, LOGICAL*1 and LOGICAL*1
respectively. For example, to invoke FORTRANts GAMMA function,
the following code could be used:

function DGAMMA(X: REAL): REALJ FORTRAN;

RESULT := DGAMMA(1.0);

Hote: the double-precision versions of the FORTRAN routines
should be used for guaranteed compatibility. However, sin§l@­
precision versions will usually work correctly. If a Pasoal REAL
value is passed to 'a FORTRAN REAL*4 variable, some low-order
digits are lost. If a result is returned from a FORTRAN REAL*4
expression to a Pascal REAL variable some undefined low-order
digits are generated (implying that it may be impossible to
return an exact zero result in these ciroumstances).

r", .

2.3

PAGE 1S

The FORTRAN message file FT06FOOl shoUld be present if you
try to run a program which will call a FORTRAN routine. This is
regardless of any I/O activity of the FORTRAN routine, for which
you may. have to include other DO statements as well. As the
FORTRAN initialization routine (fIBCOM) tries to open this file
at the entry to the monitor, the absence of this statement will
cause an early (hard to diagnose) ABEND.

-Calling an External Assembler Routine

One method is to ca 111 an asse·mb 1 er rout i ne vi 8 the TRAP
built-in function. The routine must be given an entry point name
of $PASTRAP. One of the routine's parameters may have any type.
Consequently, any amount of information can be communicated via
an appropriate record type parameter.

A second method is to code the routine to use FORTRAN
parameter passing conventions and to call this routine as though
it were 8 FORTRAN routine. The only drawback is the limitation
of parameter types to those t~at have equivalents in FORTRAN.

Finally, the routin' cah., be called as though it were a
~a8cal exterhal ro~tine. To jc~ess param~~ets ~nd io return a
tesult, some knowledge of the Pascal run-time organization ia
required. the calling program create. an activation record thai
is accessed via register 13. This record contains the para~eters
and a location to receiye the returne~,~~sult.· The record's
layout is shown in Secti~ft~. The patalAters correspond to the
first few local variables. Note that for VAR para~eters, it is
the address of the argument that is placed in the activation
record.

The Run-Time Environment

Prior to entry to the user program, the Pascal Sub Monitor
acquires all the remaining storage in the user program's region,
and returns a small portion of this space to th. operating system
to be used for I/O buffers. The rest of the storage area is
shared between the run-time STACK, where program (compile time)
variables are allocated, and the HEAP, which is used for
~lloc~tion of dynamic storage Ccreated explicitly by the
programmer through the Standard Procedure NEW). The HEAP is
internally organized as another stack, which grows/shrinks in the
opposite direction of the variable allocation STACK, and it is
the programmer's responsibility to ensure that the two do not run
into each other in the course of the program's execution. The
only notable restrictions imposed by the run-time environment on
the source program are: l' a limit ol 10 distinci levels ol
static nesting of procedures, an arbitrary limit which may be
increased if needed, and 2) a limit of 8K bytes on the size of
individual procedures/functions Capprox. 400 .. 500 source lines).

2.3.1 JeL ·Para.eter String

The u.er .ay specify the size
the size of the area to be uaed for
System, the maximum running tim. of
run-time errors to be tolerated. and
in the 'PARM' field of the JCL 'EXEC'

PAGE 16

of the run-time STACK/HEAP,
I/Obuffera by the Operating
the progra., the number of
generation of a m.mory dump
state.ent as follows:

// EXEC USERPROG,PARM='USER PARMS /STACK=KKKK,IOBUF=yyyK.
ERRLIM=n,TIME=zzzS,NOSNAP.NOSPIE,"OCC,DUMP'

'USER PARMS': Parameter string to' be passed to the user program
(if any). The user program can access this string through the
OSPARM built-in variable (see section 2.2.7).

'KxxK': Size of the storage area (in K bytes) to be allocated for
the run-tille Stack and Heap. Thia value, if not specified,
defaults to the size of the largest bbtainable contiguou. area of
me.ory minus the size of the I/O buffer area.

'Y1yK': Size of the storage area (in K bytes) that i. returned to
the system for use as I/O buffers eto. Thi.,val~. which is
indfpendent of the Stack size parameter (i.e. the KKX value),
wil be defaUlted to '36K', if not .~.cified by the user. The
default value, depending on the BLKSIZE of the files used in the
program, lhbUld be sufficient for 6/8 files.

'nt: The number of Chbn fatal) run-time errors that .hould be
tolerated before the user program is terminated. The default
value'for 'fi- is '1' and the program will normally stop executioH
after the first run time error is detected.

'zz~S': Maximum (estimated) running time
seconda. If this parameter is present,
stopped after the specified time limit.

of the program in
the program will be

'NOSNAP': This suppresses the automatic call to SNAPSHOT that is
usually made when the PaScal program terminates due to an error.
The option is useful if the symbol table file is unavailable, if
the SNAPSHOT dump would waste too mu~h paper or if the P+
compilation option was used.

'NOSPIE': This suppresses th. interception of 'OCn t type abends
by the sub-monitor. The option would only be useful when
debugging by means of OS core dumps and for particularly stubborn
errors (or when the bug is not in the Pascal program but in
another program to which Pascal is linked).

'NOCC': When this keyword is NOT present, the first character on
each output line may be consumed for character control purposes.

PAGE l'

If MOCC is specified, no control characters are aaau_ad and they
will be automatically inserted by the sub-monitor. The use of
MOCC iaplies that the only •• thods of controlling output spacing
are the PAGE and SkIP bUilt-in procedures.

'DU"P': This switch will caus. an OS style memory dump to be
generated when the number of run-time errors equals the 'ERRLIn'.

If the user program is entered through the Loader, the above
param.ter list· should be included in the 'PARM' list to the
Loader, and aeparated from the Loader parms by the '/' delimiter.

2.3.2 Invoking Pascal from Assembler Programs

Any Pascal program that has been saved as a load module (see
Section 3) m., be invoked from an assembler program. A typical
oalling sequence could be: .

LINK EP=PASCAL,pIRAM=(P1RM1),VL=1

PARM1 DC H'13',CL13'/TII1E=10,DUMP'

The patameter corresponds tb the JeL p~rameter strin~ described
in Section 3.1. It ia .et up .1 a halfwdrd, containing the count
o~ characters. immedi.t~ly followed by those characters. The
sub-monitor imposes a maximum length of 256 characters.

In oommon with many IBM-supplied processors, it is possible
to provide a second parameter to specify ddnames that override
thosa used in the Pascal program. Only the predefined ddnames
(INPUT, OUTPUT. PRO, PRR, QRD, QRR) can be overridden. The
secorid parameter consists of a halfword integer followed by a
character string containing the replacement ddnames. The
halfword integer must equal the number of characters in the
string and it must be a multiple of 8. For example, to replace
INPUt with SYSIN. OUTPUT with SYSPRINT, PRR with SYSUT1 and to
leave the other ddnames unchanged~

PARl'll DC H'13',CL13'/TIME=10,DUMP'
P1R"2 DC H'32' Length of following list

DC CLS'SYSIN' replaces INPUT
DC CLS'SYSPRIHT' replaces OUTPUT
DC XLS'O' defaults to PRD
DC CLS'SYSUT1' replaces PRR

PAGE 18

A. s.en in the exa.ple. an entry of binary zero. indicates that
the bUilt-in ddna •• is to be us.d. The entri •• in the list must
be in order corr •• ponding to INPUT. OUTPUT. PRD. PRR. QRD. QRR.

Before control is returned to the calling program, the sub­
monitor olos.s all files used by the P •• o.l program and rel ••• es
all dyna.ically acquired storage.

2.~ Compiler Outputs and Messages

Unless expltoitly .upprelsd by the 'L-' option seleotor, the
compiler generate. a listing of the source program as it is read
in. This listing al80 include. .equenoe number, static
procedure/function nest level and progra./data location counter
fields on eaoh line.

Th. Lev.l field is used to indicat. the static level at
which each procedure or function i. defined with the .ain program
being at level 1. This column can be used-- to d.termi,.e the soope
of identifiers in the program and also cl.arly marks the
beginning and end~ng of funotio~8 or procedur ••.

While proces.ing variable declar.tibns in eac~ ,rocedur. or
function, the Program/Data Location Counter field i"dicat •• the
a.oUnt'bf storage allocated for local vari.bl~. thus far. The
same field shows the number ol~inter.'d'at.) instructions
generated f or each procedure 'or tUncl i oh 'whed' the bod, (code
section) of th.se routine. are being oo~piled. ~ At the end ~f
each procedure/function this value shows the total nUmber of
ihstructions emitted up to that point in the prQgra. and it oarl
be used as an indication of the size of ~h. program being
compiled. laah intermediate (P_CODE) instruction approxi.ately
corr •• ponds tb one 'RX' type (i.e. ~-byte) 37G instruction.

2.'.1 Compilation Error ne •• ag ••

When the co.piler find. a synta~ error, it will place a
marker ('a') pointing to the token RA11 the position where the
error wa. actually deteoted (i.e. one should .earch to the left
and above the pointer to find the cause o~ the error). Each
error indicator is followed by an 'error number' that corresponds
to the codes given in the Pascal User Manual and Report (11. At
the end of compilation, the meanings for each error code that
ocaurred are printed out. Runaway comments (1.e. comments with
bad or aissing closing brackets) can be easily located by the
frozen value of the 'P/D Le' field and 1mproPlt BEGIN/EHD n@lting
or missing end of procedure/functions can be traced with the help
of the value in the 'LYL' field.

Hote: error codes 398 and 399 correspond to implementation
restrictions.

r" .

PAGE 19

2.~.2 POlt-proc ••• or Error "e •• ag ••

The following error code. mo.tly indicate that an internal
table in the post-prooe •• or h ••. ov.rflowed. In suoh oa ••• , the
eaaieat fix i. to split the Paacal progra. into sm.ller
prooedures/funotion. and to ne.t the prooedure •• ore deeply. If
it i. nece •• ary to areat. a new version of the po.t-processor
with larger table sizes, th •• ppropri.te ohange is indioated
after the error me.sage text below.

253-

254-

256-

259-

263-

281-

282-

300-

302-

501-

Procedure too long (larger than 8K by tea).
~-> Divide (the prodedure) and oonquer.
Too many long (atring) constanta.
--> Reoompile the post_prooessor with a larger value for
"XSTR.
Too .any Procedures/Funotion, referenoed in this Proc.
--> ~.oompil. the Po.t_Pro~~.sor with a larier value for
"XPRC.
Expression too co.pJic.t.~~ , ,
--) Simplify the .xpr ••• tarl by r.~rt~nging and/or bteakibg.
Too many ('Ot,. .. pi ldi- generated) L.bels' i ~th i sa .. P rooedu ra.
_ .. > Recompile the .Poat_Proce.sor wit·lt.. larger valla. for
nXLBL.
Too many Integer constants in thi. Procedure.
--> leoompile the Post_Processor with a larget value for
.tXI"'
Tdo .any Double,Word (R£AL,SET) oonstants in this Procedure.
--)k~compil. the Poat_Processor with a larger value for
nXDBL.
Divide by Ze~o (result of constant pr6pagatibn).
--> Fix up the (oonstant) expression' evaluating to Zetd.
I nd ex/subraftg e v.l ue au t of rang.e (cons tan t propaga t i on ?)
--> Fix up the (constant) e~pression to be within range~
Array'component too larg. (larger than 32K).
--> Reduc~ the range of the l.st (rightmost) indeoies of the
array and/or reorder the dimensions of the arr.y so that
they are ordered from the largest (left.ost) to the s.allest
(rightmost).

The f~llowing errors normally indicate an inconsi.tency in the
Compiler and/or the Post_Processor. For more detail about these
(and similar) messages refer to the souroe of the program issuing
the message.

601- Type conflict of operands in the P_Program.
602- Operand -should be of l type • ADR' .
604- Illegal type for run-time checking.
605- Operand should be of type 'BaaL'.
606- Undefined P_Instruction code.
607- Undefined Standard Procedure name.
608- Displaoement field Cof address) out of range.

PAGE 20~.

609- 'Small' Proa Larger than ~K.
--> Reco.pile the Poat_Proce.sor with "SHIT_PIOe • 300".

611- Bad INTEGER alignment.
612- lad RIAL align.ent.
613- Bad REIL constant.
614- Ineon.i.tent Procedure Table file "PRD".

--> Fix the JCL and/or the 'QRR' output of the aompiler.

Th. error ••••• g •• , if any, are followed by the na ••• nd the
line number of the Procedur. in which they are detected. If the
Stat.ment/expression causing the error cannot be easily
identified, you should teco.pile the program with the 'A+'
Option, listing the output of the Po.t_~rocessor (or the Input to
3?O/Ass •• bler). See Section 3 (d) for an exa.ple of how to do
this. Aa the source program line numbers .ppe.r.t regular
intervals in this outputg a. well a. the aource progra. listing,
it should be .a.y to asaociate the error mes.age with its .ource.

2.~.3 Run-Tim. Errors

After a run-time error has occurred, there is usu.lly an

" .

error me.sage printed (either by SNAPSHOT or by the sub-monitor). . ~
However, in so~e circumstances (e.g., if no OUTPUT file is
provided) it is necessary to deduce the prob1ea from the user
return code that is normally printed ~ith the various operating
.yst ••• e.sage. for the job. The return code value should be
interpreted aocording to the following table.

R.t~rn Code:

1001
1002
1003
100~

1005
1006
1007
1008
1009
1010
101 1
1012
1013

Implies:

INDEX VALUE OUT or RANGE
SUB RANGE VALUE OUT OF RANGE
ACTUAL PARAnETER OUT or RANGE
SET nEMBER OUT OF RANGE
POINTER VALUE INVALID
STACK/HEAP COLLISION
ILLEGAL INPUT/RESET OPERATION
ILLEGAL OUTPUT/REWRITB OPERATION
SYNCHRONOUS I/O ERROR
PROGRAn EXCEEDED THE SPECIFIED RUNNING TIME
INVALID FILE DEFINITION
NOT EHOUGH SPACE AVAILABLE
UNDE'l~ED OR OBSOLETE SUBMONITOR OP~ftATIOH
(should not occur)

1014 LINELIMIT EXCEEDED rOR OUTPUT FILE
1020 ILLEGAL INPUT PAST END OF FILE
1021 BAD BOOLEAN OH INPUT
1022 BAD INTEGER ON INPUT
1023 BAD REAL OH INPUT

200X

3001

X1XX

PROGRA" INTERRUPTION COOl 'X'

EXTERNAL ERROR (•. g. BAD PARA"ETER TO "ATM
ROUTINES LOG, SQRT, ••.• atc)

PAGE 21

UNABLE TO CALL ON 'SNAPSHOT' AFTER A RUN ERROR
(this happens if there is not enough space or if
SNAPSHOT wa. not included i~ the Load Module or if
the HOSHAP parameter was .pecified in JCL)
OTHER DIGITS OF THE RETURN CODE TO BE INTERPRETED
AS AIOVE

HOT!: Return codes 1007 or 1008 could imply a bad or non­
existant DD statement for the accessed file, wrong direction for
the I/O operation or an atte.pt to acc.ss a file prior to a
RESET/REWRITE operation. Code 1009 ~sually implies that the file
has con f 1 i c tin g 0 C I • t t rib ute 8 . . -- ·

In general #.:, errqr .e8~age. poin' to i"~ (approKimate)
loqation of the ~rror "'hin the~.a.ca1 program. Note however
th~t the predefined fil" appearing in lhe program h.ading are
op'.ned on entry to the ·Pa.cal program and any proble.s that arise
... i 11 cause erro't- messages that refer to the beginning of the
'main' progra. (and not to any .tatements using the files).

Appendix A contains a complete directory of'the error codes
and me~s.ges generated by the compiler and the run-tille .y.t ••.

PAGE 22

3. System set-up and Maintenance Prooedures

To bring up the syst •• follow these steps:

a) Transfer rile 5 from tape to disk, ore.ting a oard for.at
PDS.

b) Perfora link-edits to create load modules for the compiler
(Pascal), the P-Code assembler (ASMPCODE), the run-time sub­
monitor (PASCMON) and the run profile generator (PASPROr).

c) Set up your JCL and run some aample programs.

d) You may also want to create a Catalogued Procedure to avoid
the bulky JeL for standard compilations.

The following are JCL sampl.. you may find Helpful in
creating the Load Modules and running programs. Not. that the
JCL statements provided here are meant to ba used as a guideline
and they may need to be modified befor~ you a~n run th •• at your
installatiora .

•) Copy file -5 (PASLIB) from the distribution tape to a disk.
You should subatitute the volume-serial numbers of a scratch disk
and a disk to hold the Pascal object library for the names,
WORK01 and DISK99, respectively. Warning: the control cards for
IEHMOV! have a very rigid fbrmat. Continuations are signalled by
a noh-blank ch~racte~ in column 72; the continued text must begin
in column 16 of the next card.

3.1 Cbpying Object Files from the Distribution Tape

//

//cdpy
//SYSPRINT
/I'SISUT1
//SOURCE
.I/TARGET

JOB
EXEC PGI1=IEdMOVE
DD SYSOUT=A
DD UNIT=DISK,DISP=OLD,VOL=SER=WORKOl
DD·UNIT=T9-1600,DISP=(OLD,KEEP),VOL=SER=PASCAL
Db UHIT=DISK,VOL=SER=DISK99,DISP=OLD

//SYSIN DD *
COpy DSNAnE=WYL.CG.PAS.PASLIB, C

FROM=T9-1600=(PASCAL,S),FROMDD=SOURCE, C
TO=DISK:DISK99,REHAnE-Pascal.PASLIB,CATLG

//

3.2 Generation of Load Modules

//

//LKED
JOB
EXEC PGI1=IEWL,PARI1='I1AP,HCAL'

//SYSUT1 DD UHIT=SYSDA,SPACE=(CYL,(1,1»
//SYSLHOD DD UNIT=DISK,DSN-PAseAL.SYSLHOD,
// SPACE=(TRK,(~,3,1),RLSE),DISP=(HEW,CITLG)
//SYSPRINT DD SYSOUT-l
//OIJECT DD DSN-PASCAL.PASLIB,DISp.SHR
//SYSLIN DD *

INCLUDE OBJECTCPAsnoNo,PASOBJ)
ENTRY .PASENT
NII'IE PASCAL
INCLUDE OBJECT(PISHONO,ASHPOBJ)
ENTRY 'PASENT

·NAI'IE ISI1PCOD~

//

INCLUDE OBJECTCPASHON,PASSNAP)
LIBRARY (.I'IAIHBLK)
ENTRY 'PASENT
ALIAS .PASENT
NAME PASCMON
INCLUDE OBJECTCPASMONO,PASPROr)
ENTRY 'PASENT
NAI'IE PAIPROF

3.3 Running a Pascal Program

PAGE 23

~ " The following set up can be ~.ed to compile, post_process
and rup ~ user program. Not. 'hat the source program is r.ad
fro.' C b i1 PI L E . I N PUT, it. lis tin g is. en t to COM PI L E . 0 U T PUT, the
intermediate code is sent to COMPILE.PRR and
Procedure/Symbol/Counter tables are sent to COMPILE.QRR.
COI'IPILE.QRR enables the Compiler.to print an etror log at the end
of the .our~e listing in case it detects any syntax error. The
option list for 'he compiler may be passed in the 'PARM' field of
the 'EXEC' card for the COMPILE step.

If there are no compilation errors, the Post-Processor
generates an object modUle (POSTPROC.PRR) which is linked to the
run-time monitor PASCMON. The routine SNAPSHOT forMs part of the
PASCMON module. SNAPSHOT can be called directly by the Pascal
program or it may be called automatical11 by the sub-monitor in
case of a run error. . In either case, SNAPSHOT will access the
GO.QRD file to read .y.bol table information. The D+ compilation
option must be enabled for this information to be available.

If the K+ option 1s chosen in the source program, the
PASPROr module is automatically invoked at the end of the GO step
in order to print a brief summary 01 ~he s~a~emenl execu!~on
frequen~ies. If you wish a full execution profile listing,
follow the instructions given in Section 3.6. The GO.PRD DD
statement is required by the exeQution profiler.

PAGE 21t

Hote: this JCL is set up in the form of an "in-stream" JCL
procedure. Ideally, the JCL proc.dur~ should be copied into the
catalogued JCL procedures library at your installation. The
procedure consists of the PROC JCL card and the following cards,
up to but not including the PEND card. A180 observe that only
the member PAscnON (with alias name .PASENT) is loaded fro. the
call library PASCAL.PASLMOD listed in the GO.SYSLIB DD statement.
It may be .ore appropriate to remove PASCMON from this file and
place it in 80 •• other load module library that is referenced in
GO.SYSLIB.

//

//PASCAL
//*

JOB
PROC GOTIME=10

//* STEP ONE: COMPILE THE SOURCE PROGRAn
//*

//COnPILE
//STEPLIB
//OUTI'UT
//PRD
//PRR
//
//QRR
//

EXEC PGM=PASCAL,COHD=(O,LT)
DD DSN~PASCAL.PASLnOD,DISP=SHR

DD SYSOUT=A
DD DSH=PASCAL.PASLIBCPASMSG),DISP=SHR
DD DSN=&&PCODE,UNIT=SYSDA,DCB=RECrM=VB,

SPACE~(TR~,(20,S),RLSE),DISP.(,PASS)
DD DSN=&8TABLES,UNIT=SYSDA,DCB=RECFM=V8,

SPACE=(TRK,(S,2),RLSE),DISP.(,PASS)

//* STEP TWO: (POST) PROCESS THE P_CODE
//*

//POSTPROC
//STEPLIB
//I"PUT
//PRD
//OUTPUT
//PRR
//

//*

EXEC PGM=ASMPCODE,COND=(O,LT)
DD DSN=P1SC1L.PASLHOD,DISP=SHR
DD DSN=*.COnPILE.PRR,DISP=(OLD,DELETE)
DD DSN=*.COMPILE.QRR,DISP=(OLD,PASS)
DD SYSOUT=A
DD DSH=&&OBJECT,UNIT=SYSD1,DCB=RECFM=FB,

SPACE=(TRK,(10,5),RLSE),DISP~(,PASS)

//* STEP TdR!!: LOAD lHD GO
/~*

//GO
//STEPLIB
//S'iSLIN
//SYSLOUT
//SYSLIB
//

//PRD
//QRD
//QRR
//FT06F001
//OUTPUT
//

//*

EXEC PGH=LOADER,COND=(0,LT),PARM=t//TIME=&GOT1ME t

DD DSN=P.SCAL.PASLHOD,DIS~=SHR (NEEDED FOR K+ ONLY)
DD DSN=*.POSTPROC.PRR,DISP=(OLD,DELETE)
DD SYSOUt=A
DD DSH=SYS1.FORTLIB,DISP=SHR
DD DSN=PASC1L.PASLHOD,DISP=SHR
DD DUMMY
DO DSH=*.COMPILE.QRR,DISP-(OLD,D!L~T!)
DD UHIT=SYSDA,SPACE=(TRK,(2,2»
DD SYSOUT=A
DD SYSOUT=A
PEND

//RUH EXEC PASCAL,PARM.COMPILE=tcompilation option list'
//COMPILE.IHPUT DD *

PAGE ?5

(* the P.scel source program *)

//GO.INPUT DD •
(* input data, if any *)

//

3.~ Inspection of Generated Code

Thi. procedure can-be used to inspe~t the 370/Assemblly code
generated by the compiler. The JCL assumes that the (JeL)
procedure, PASCAL, ha. been catalogued. If it has not, you must
insert the procedure definition as given in (b) after the JOB
card. Hote: the asse.bly code that is produced can be combined
with the macro definitions that are provid.d in
Pascal.PASLIB(PBGH) and then aSlembled, loaded and eKecut~d.
However, this mode of Qper.tion f. no~ recommended (the assembly
time could be 3-4 times that of the cO~Pilation time).

// JOB
"ptEK EXEC PASCAL,PARM.COMPILE='A+',COND.GO=(O,LE)
//COk~ILE.INPUt DD *
(* Pascal s~urce p~ogram, including other'optioris. NOTE 'A+' *)

//POSTPROC.PRR DDSYSOUT=A
/'

3.5 Saving Pascal Pro~r.ms as Load Modules

In order to areate a Load Module from a Pascal program the
following set up can be used. The JCL aasu.e. that a dataset.
ARTHUR. LOAD, has previously been allocated and catalogued and
will be used to hold the created load module named BILL. As
before, it assumes that PASCAL is a catalogued JCL procedure. If
it is not, add the procedure definition given in (b) to the
beginning of this card deek. If you ate creating a ne~ version
of a compiler program (i.e., the PASCAL or ASMPCODE load modules)
you should substitute PASCAL.PASLII(PASMOKO) for
Pascal.PASLMOD(PASCMON) 'in the JeL. This is to use the smaller
faster version of, the sub-monitor that is recommended for "safe"
programs. If you ~o not make this SUbstitution, no harm will
result.

// JOB
//SAVE EXEC PASCA~,COND.GO=(O,LE)
'/COMPILE.IHPUT DD *

(* Pascal source program *)

//LKED
/I'SYSUT1
I'/SYSLnOD
/I'SYSPRIHT
//SYSLIB
//SYSLIN
1'1'

EXEC PGM=IEWL,PARM='MAP,LET'
DD UNIT=SYSDA,SPACE=(TRK,(SO,SO»
DO OSH=ARTHUR.LOAD(BILL),DISP=OLD
DD SYSOUT=1
DD DSH=SYS1.FORTLIB,DISP=SHR
DD DSN=PASCAL.PASLMOD(PASCMON),DISP=SHR
DD DSH=&&OBJECT,UHIT=SYSDA,DISP=(OLD,DELETE)
DD * 1'1'

ENTRY
1'/

.PASENT

PAGE 26

To run a Pascal program that ha. been saved a. a load
module, the following pattern of JCL may be used:

/1'
/I'GO
I'I'STEPLIB
I'I'OUTPUT
//FT06F001
1'1'.

//*
1'1'.

JOB
EXEC PGM=BILL,PARM='/NOSNAP,TIMEa1S'
DD DSH=ARTHUR.BILL,DISP=SHR
DD SYSOUT=A
DD SYSOUT=A

DD CARDS FOR OTHER FILES, IF HEEDED.

//INPUT DD *
(. Input Data - if required .)

//

3.6 Generatidn of Execution Profiles

The standard JCL setup (section 3.3') will allow a brief
(~ery condensed) execution profile to be printed if the K+
compilation option is used. In order to generate the full profile
(a program listing with execution frequencies alongside each
statemeht), either of the following scheaes can be used. The
first method is quite simple ,but it r.quir.s the Pascal source
program to be available in a disk file. Suppose it is stored and
catalogued under the name SOURCE. PASCAL. The following job could
then produce the desired profile.

// JOB
//PROFILE EXEC PASCAL,PARM.COMPILE='K+'
IICOMPILE.INPUT DD DSN=SOURCE.PASCAL.DISP=SHR
I'I'GO.PRO DD DSH=SOURCE.PASCAL,DISP=SHR
//GO.IHPUT DD *

(. Input Data - if required *)
//

Alternatively, the following JCL can be used to generate a
compiler-formatted program profile. Some of the extra JCL is to
ensure that a source listing is produced even if the COMPILE or

PAGE 27

POSTPROC step. terminate with errorCs). Aa in 3.3, the JCL is
arranged to u •• an in-.t~ ••• prooedure. This procedure, PASCALK,
should id •• lly be added to your installation'. catalogued
procedures library al.o.

// JOB
//PASCALK PROC GOTII1E-10
//*

//* STEP ONE: COMPILE THE SOURCt PROGRAM
//*

.I.1COMPILE
//STEPL%I
/.I0UTPUT
//

//PRD
//P,R,R
//

//Qtl
//

EXEC PGM=PASCAL,PARM.'K+',COND=CO,LT)
DD DSN=P~SCAL.PASLHOD,DISP.SHR
DD DSN=&&LISTING,UNIT=SYSDA,

SPAC~=(TRK,(1b,16),~~SE),DISP.(,PASS)
DD DSN=PASCAL.PASRLIBCPASMSG),DISP=SHR
DD DSN=&&PCODE,UNIT=SYSDA,DCB=REC'H=VB,

SPACt·(TRK;(20,$),RLS~);DISP=(,PASS)
DD DSN=&&TABLJS,~NIT=SYSDA,DCB.kIOr~=V8,

SP1CE=(TRK,(S,S),RLS£),DISP-C'iPASS)

//- STEP TWO: (POST) PROCESS THE P_CODE
//*
//POSTPROC
//STEPLIB
//I",UT
/"RD
//OUTPIT
//~RR
//

//*

EXEC PGM=ASMPCOD!,COHDc(O,LT)
DO DSN=PASCAL.P1SLMOD,DISP=SHR
DD DSN=*.CO"P~LC~PRR,DtS~=(OLD,~ELETEl
00 DSN=*.COn,tLC.QRR,OI$P=(OLD,PAS$)
DD SISOUT=1
DD DSN.&&O*JECT,UNIT=S~SDA,DCB.REct"=rB,

SPACE=(TRK,(10,S),RLSE),DISP=(,PASS)

/~* STEP THREE: LOAD AND GO
//-

//GO
//STEPLIB
//SYSLIN
//SYSLIB
//

//SYSLOUT
//SYSTERM
//PRD
//QRD
//QRR
//OUTPUT
//rT06F001
/.1*

EXEC PGri=LOADER. '.CO"D=(O."LT)'PARM='~/TIME=&GOTIME'
D6 DSN=PASCAL.PASLMOD,DISP=SHR .
DO DSH=*.POSTPROC.PRR,DISP=(OLD,DELETE)
DD DSN=S~S1.FORTLIB,DIS~=SHR
DD DSH=PASCAL.PASLMOD,DISP=SHR
DD SYSOUT;:1
DD SYSOUT-A
DD DSN=*.COMPILE.OUTPUT,DISP=(OLD,PASS)
DD DSH=*.COMPILE.QRR,DISP=(OLD,PASS)
DD UNIT=SYSDA,SPACE=(TRK,CS,2»
DO SYSOUT=A
DD SYSOUT=A

//* PRINT THE SOURCE PROGRAM IF ANY STEP FAlt!D
//*

/.ILISTSRC
//SYSPRINT
//SYSIN
//SYSUT1

EXEC PGM=IEBGEH~R,COHD=C(1000,GT.GO),EVE")
DD DUMMY
DD DUMMY
DD DSH~*.COHPILE.OUTPUT,DISP=COLD,DELETE)

//SYSUT2
//*

//

//*

DD 5Y50UT=1

PEND

//RUNCOUNT EXEC PASCALK
//conPILE.INPUT DD *

(* Pa8cal source program *)

//GO.INPUT DD •
(* input data - if any.)

//

PAGE 28

Note th~t the prdfiler'8 .etton8 are oontrolled by the input
that it receives in the QRR file. If the file i ••• pty (a. it is
with the JCL is Section 3.3), a brief 8u •• ary is generated.
Otherwi8e it may contain the progr •• text (either a. the sourc.
for. or in the compilation output fot.) in whioh case, a program
listing with .tate.ent execution frequ.n~ie. on the left t.
printed.

3.1 Using External Pasoal Procedure.

To compile and .ave an _xt.rna! ~a.cal ~rocedure/functi~n ••
an object module. The exi.tance of • pre-allocated, citalogued
dataset CHARLIE.OBJECT ,to hold the object code is a •• umed.
Example coding:

// JOB
//SAVE EXEC PASCAL,PARn.COnPILE='X+',COND.Gd=(O,LE)
//COnPILE.IHPUT DD *

(* Note the X+ option *)
PROGRAM DUMMY;

PROCEDURE EXTRT(PAR"', PARft2: REAL)J

VAR X,Y,Z: IHTEGER;
BEGIN

(* Body of the external routine *)
END;

BEGIN
C* No main program code *)

END.
J/POSTPROC.PRR DD DSN=CHARLIE.OBJECT,DISP=OLD
//

An example of how to use this saved external procedure now
follows:

//
//RUN

JOB
EXEC PASCAL

-,

//conPILE.INPUT DD *
PROGRAn HAIH(IHPUT,OUTPUT);

VAR S1, S2: REAL;"
(* other deolarationaomitted *)

PROCIDURE EXTRT(PARn1, PARM2: REAL); EXTERNAL;
(* other procedure/funotion defa omitted *)

BEGIN

EXTRT(S1, S2); (* invoke the routine *)

END.
//GO.SYSLIN DD
// DD
// DD DSN=CHARLlt.OBJECT,DISP=SHR
//GO.IHPUT DD *

(* input data - if any *)
//

3.8 Printing the ebd~ment.tion File

PAGE 29

To print another· copy tttj this document, thai following job
.ay be i sUbili tted. Hote, that the SYSUT2 output must be
transmitted to a device that supports the full upp.r/19~er~c.8e
character set.

//
//tlST
'/SYSPRI"T
//SYSUT1
//
//SYSUT2
//SYSIN

JOB "
EXEC PGM=IEBP~PCH
OD ItSOUT=A
DD UHtT=T9-1600.DISP=(OLD,KEEP),VOL=SER.PASCAL,

LABEL=(1,SL),~SN=WYL.CG.PAS.PASDOC
DD SYSOUT=l U~PER/LOWER-CASE PRINTER
DD *

PRINT
RECORD

PREFORH=A,HAXFLDS=1
rIELD=(SO)

//

PAGE 30

4. Some I.plementation Details

The Sub Monitor, entered via the .PASEKT entry point,
acquires all the apace avail.bl. to the user program, releasing
some 36K bytes of it for I/O buffersl and sets up the run-time
STACK/HEAP aa well as the appropriate registers. It then calls
the user program (at tHAIHBLK) and eventually regains control
upon proper termination of the program or a call to the EXIT
routine within the program. The monitor, if returned to through a
call to EXIT, will return the argument of the EXIT •• the Step
Return code, otherwise it will return a zero value.

4.1 I/O and File Structure

The I/O routines handle all the operations on the Predefined
Files, with each file having its own set of flag. and data
control block. Locate-mode I/O i8 used universally and this
implies that there is effectively no limit on the file record
sizes other than the ,mouHt 0. itdrage available for system
buffera (controlled by the IOBur par ••• ter). ~ost file formats
are supported. The following lis. showa all the all~wed
combinationa of RECF" attributes:

(F or V) (B) [S) (A or "J or U
where square bracket. enclose an optional choice and rodhd
brackets enclose a co~pblsory choice. For exa.~l., FBSA and VB
are allowed combinations.

There is one minor quirk. Due to • baaic incompatibility
between locate-mode I/O and U-format records, all output U-format
records are written with their maximum length. However, a file
containing U-format records with varying sizes can be read
correctly.

output lines destined for F and U format files are padded
with blanks at their ri~ht ends so as to achie~e the required
LRECL for the file. V format files do not require such padding
and none is performed - except that the operating system will not
accept completely empty linfs, these are replaced with lines
containing a single blank.

Over-long output lines (i.e., the~ contain more characters
than the file's LRECL value) are split whenever the LRECL value
is exceeded.

If DCB attributes are omitted from the JCL (and are not
available from the dataset control block) the sub-monitor will
supply reasonable defaults. The default values are chosen
according to the following rules (the rules must be appli@d in
the order given):

1- If REcrM is unspecified, it defaults to VB for all files
except OUTPUT: for that file it defaults to VBA.

,-

PAGE 31

2- If LRECL' is unspecified. it defaults to a basio value of 80
lor all fll.a except OUTPUT; for that fi1e it is 132. If
the RECF" include. the V attribute. 4 is added to the basic
value. If the RECF" includes the A or" attributes, an
additional 1 is added.

3- If the BLKSIZE is unspecified, then the default depends on
whether the RECF" includes the V, F or U attribute.
V: BLKSIZE i. set to 1600 for all files except OUTPUT, for

that file it is 3200.
F: BLKSIZE i. dhosen to be the largest multiple 01 LRECL

that does not exceed the numbers given above for REC'"=V.
However, if this would cause BLKSIZE to be zero, then
BLKSIZE i. made equal to the LRECL value.

U: The BLKSltE is set equal to the LRECL.

4- If BurNO is unspecified, it default. to 3 lor all liles
except OUTPUT; for that file it defaults to 5.

To cOhfor. to the .pecificatidn of. the aevised Report o~
Pa.ca1. an extra blank i. inserted at tHl.~ end of every reoord of
a textlile on input. For ~xample, ! F is a textfile then
.ucce.si~e calls to GET(r) ~ill step ta th~ough all the
charact.ra in th. current inp~t record. ~hen Fa is th. last
character, another call to GET(r) will cause ra to be a blank and
EOL"(r) to become True. One more call of GET(r) ~ill atet F. to
the first character of the next r~cord.

At the end of a textfile, the actions are as follows.
Suppbae that Fa refers to the last character in the last record
of the input file F. Then a call to GET(r) will make EO~N(F)
t rue an d m ~ keF a ; b e a b 1 an k, h owe v erE 0 F (r) iss t ,i 1 1 f a 1. e . On e
more call of GET(r) causes EOLH(r) and EOF(r) to bdth be true and
F. is .till a blank. More call~ of GET(F) do not change this
situation.

Character-by-character input beyond the end-ai-file marker
do.s not cause a ru~-time error ~lanks ar. simply read.
However, an~ attempt to read a Booleah, Integer or Real value
past the end of tile causes a run-time error.

4.2 Procedure~Function Call Mechanism and Stack Organiz.tion.

Procedure Calls follow the usual OS conventions. In
addition, register 12 (aPR 12) points to the base (bottom) of the
STACK, serving as the base register for the GLOBAL variables. GPR
13 points to the base of the data area (activation record) of the
currently active procedure, s~rving as Base Register for the
(very) LOCAL veri.bles. Everything in between (i.e. non LOCAL,
non GLOBAL) is accessed by loading the base address of the

~ associated activation record from the DISPLAY table into a

PAGE 32

temporary register (aPR 14 or 1). The DISPLAY table, consisting
of 1 entry per static nesting level of the progra., is within the
GLOBAL data frame and thus always aece.sible. Note that GLOBAL
program variables start after the CHARacter Fila buffers and the
variables defined within prooedures, depending on whether the
fPRs are saved or not, start after the rPR Save Area or Function
result location. This sch.~. allows GPR 13 to point to a
Register Save Area (with the usual forward/backward links) while
being the LOCAL data Base Register at the sa.e time.

The ourrent value of the HEAP pointer is kept in the
location following the GPR Save Area and this location
corresponds to the 'NP' register of the P_Machine. GPR 10 and 11
are used as Base Registers for the currently active Procedure and
GPR 2 .. 9 as well as FPR 2 .. ~ make up the expression evaluation
stack. For more information on the organization of Run-Time stack
and the use of the Display Table aee [31 and (~I.

The following table shows thl ~tate bf the STACK/HEAP
structure whil. running a , •• cal program.

STACK . ~

GPR12--> 000- GLOBAL (bottom of run-ti •• STACK)
004- Back Link, Save Area.
008- Fotward Link, Save Area.
012- GPR Sav. Area, (GPRt4 .. GPR12).

072- Current HEAP (HEW) Pointer, 'NP'.
076- End of Heap Pointer, 'NPO'.
080- FPi Save Area.

112- Fix/Float Conversion Constant •. (~ Double Words)

144- DISPLAY(1)

180- DISPLAY(101
248- INPUTa (INPUT file buffer)
249- OUTPUTI (OUTPUT file buffer)
250- PRoa (PRO file buffer)
251- PRRa (PRD file buffer)
252- QRDti (QRb file Buffer)
253- QRRa CQRR file buffer)

(buffers for other files)

280- DATE

~

GPR13-->

NP -->

HPO -->

HEAP

290- TIME
300- OSPARM

PAGE 33

30~- First (user declared) GLOBAL pro~ra. variable.

8n+0 LOCAL (current Stack Frame)
+004 'ack Link, Save Area.
+008 Forward Link, Save Area (NIL at this time).
+012 GPR Save Areat (GPR14 .. GPR12).

+072 FUNCTION result, (unused in case of PROCEDUREs)
+080 FPR save area (optional)
+080 LOCAL (first local variable if FPRs not saved)

+,112 LOCAL (first local variable, if FPRs saved)

Hext (to be) allocated DYNAMIC variable.

(HEAP area already allocated)

8j End of HEAP and user data space.

Hote: program variables are allocated in the order df
declaration within each declaration group and the address
appearing in the sourc~ listing produced by the compiler, is the
address of the first variable allocated in that group. For
example the program listin~:

, 304 0
2 304 1
3 316 1
4 318 1

PROGRAM HONSEHSE(OUTPUT) J
VAR I j J, K : INTEGER;

CH, HXTCH : CHAR;

means that Location 304
308
312
316
317

is assigned to the variable I,

etc,

J,
K,
CH,
HEXTeH,

PAGE 34

The comments preceding the source code of the compiler,
postprocessor and the I/O module also provide some useful
information for those interested in the organization of the run­
time environment.

4.3 Hints on Run Time Errors

In case you encounter a run-time error while running a
program (i.e. a program ABEND), first check the following points
before resorting to the OS generated DUMP.

1) See if the appropriate options are specified (e.g., you should
not run a program with the C- option selected).

2) Make sure all the files used in the program appear in the
parameter list of the PROGRAM statement, and/or they are
RESETed/REWRITten before any operation ,·takes place. Also note
that the direction of operation _houle! be '~(jlDPatibie with the
file and/or the previous RESET/REWRITE on that file (i.e. no READ
from dutput or after a REWkITE etc.) If the run-time check is
enabled (either by default or an eKplicit 'D+') or a Run Profile
(execution frequency of program statemants) is requested by the
tK+t switch, it is important that the JCL for the additional
Symbol Table and/or Counter files are properly included in the
user program. A missing or incorrect DD statement for such files
may cause the program to be ter~inated in the Pascal monitor
without a clear conhedtion to the user program.

3) Check that there is a DD statement for every ft"le used in the t
progt.m and RECFM, LRECL and BLKSIZE have acceptab e values.

4) The size of the region in which you run the program should be
sufficient to accommodate the code as well as data. The program
listing gives you an approKimate idea of the size of the program
and the data area. Recursive procedures however, depending on
how deep the recursion goes, may need much more space than the
size of their local variables may suggest. You can check to see
if the run-time STACK and HEAP are colliding by comparing the
HEAP pointer (at GPR128+72) and GPR13 which points to the base of
the LOCAL data area.

5) Check for bad (uninitialized, out of range) indices as well as
illegal pointer references caused by uninitialized/NIL pointers
in the procedure causing the ABEND.

Also see the eKtended run-time checking facilities (the D+
compilation option).

PAGE 35

~.~ storage Saving Considerations

In general the P_Code aSlembler trades memory for speed and,
in partioular, it prefers a sequenoe of RX and IR type 370
instructions over the corresponding SS type instructions which
tend to be more compaot though usually slower (the difference is
quite noticeable on the larger 370 models). However, it is
possible to reduce the storage requirement of your program in
certain cases.

1) Dynamic storage is currently allocated on 8-byte boundaries.
I! you do not use this kind of storage for REAL values, you
can change the alignment factor to 4 (= INTSIZE) as opposed to
8 (~REALSIZE) in the Procedure HEW1 of the Compiler. This
should improve memory usage specially if dynamic storage is
heavily used.

2) The current sub-mdnitor releases some 36K byt.s of storage to
be used for I/O buffers .. This .p~Re could. be reduced \0 as
little as 81(, leaving the rest for the user program, by using
smaller BLKSIZEs for the files. Bt reducihg the abbve space
to 8K, you can compile the Compiler in a 128K region.

3) If you group variables and fields& with the same (internal)
type together, you may impr~ve tn. storage utilization by
cutting down on fragmentation of the memory. T~is is
particularly important in the case of ARRAYs Of RECORD. which
contain fields of differe~t types. The rearrangement of
fields, however, should not be done at the expense of clarity
and logical contipuity of data declarations.

4) See the '.ck Option in section 2.3.8.

PAGE 36

s. Examples

The following program (a small deviation from the standard
Factorial example) shows a simple -and very expensive- ·way of
generating a table of Fibonacci Numbers and it is also meant to
illustrate the Compilation. Post_Processing and Execution of a
typical Pascal program. The compiler output has been slightly
edited to compress its width across the page.

" Sample Program, including the n~cessary JCL "

// JOB
//TEST EXEC PASCAL
//COMPILE.INPUT DD *

PROGRAM fib_demo(OUTPUT)

TYPE pos_int = 0 .. 30 :

VAR i
time

: pos_int ;
: INTEGER ;

FUNCTION fibonacci(j :pos_int) : INTEGER
(*To evaluate fibonacci' j. for j >= 0,

subject to integer overflow·)

BEGIN
IF j = 0 THEN fibonacci := 0
ELSE IF j'= 1 THEN fibonacci := 1

ELSE fibonacci := fibonacci(j-l) + fibonacciej-2)
END :

BEGIN (*fib_demo*)
FOR i := 10 TO 25 DO

BEGIN time:= CLOCK(O)
WRIT!LN(' Fibonacci I " i:3, , is :'. fibonacci(i):6,

(Compute time ='. CLOCK(0)-time:5, , Hilli Sec.)') ;
END

END.
//

" Source Program listing generated by the Compiler"

LINE t P/D LC LVL < Stanford Pascal Compiler, Version of July-78 >

1 288 1) PROGRAM fib_demo(OUTPUT):
2 288 1)
3 288 1) TYPE pos_int = 0 •• 30i

,

.~

4
5
6
7
8
9

10
11
12
13
11f
15
16
17
18
19
20
21
22,
23

288 1)
288 1)
292 1)
296 1)
296 1)

81f 2)

81f 2)
84 2)
o 2)
5 2)

12 2)
29 2)
84 2)
81f 2)
o 1)

15 1)
18 1)
37 1)
53 1)
62 1)

VAR i : pos_int;
tille : INTEGER;

FUNCTION fibonaooi(j :p08_int) : INTEGER;
(*To evaluate fibonacci I j, for j >= 0,

PAGE 37

subjeot to integer overflow.)

BEGIN
IF j = 0 THEN fibonacci := 0
ELSE IF j = 1 tHEN fibonacci := 1

ELSE fibonacci := fibonacci(j-1) + fibonacci(j-Z);
EHD;

BEGI~ (*fib_dello*)
FOR i := 10 TO 25 DO

BEGIN time:= CLOCKCO);
WRITELN(' Fibonacci' ., i:3, , is :', fi.onacci(I):6,

(Compute time =', CLOCK(0)-tlme:5, ' "illi Sea.)');
END;

END.

**** HO SYHTAX ERROR(S) DETECTED.

**** 23 LINECS) READ, 1 PROC£DURE(S) COMPILEb,

**** 94 P~IHSTRUCTIONS GENERATED, 0.04 SECONDS IN COMPILATION.

" post_processor messages "

**** NO ASSE"BL~ ERROR(S) DETECTED.

**** 6?2 BYTtS OF COD! GENERATED. O,oS SECONDS IN P_CODE ASSEMBLY.

" Output of the Sample Program "

Fibonaooi I 1 0 is 55 (Compute time = If Milli Sec.)
Fibonacci I 1 1 is 89 (Compute time = 5 Milli Sec.)
Fibonacci I 12 is 144 (Compute time = 8 "i11i Sec.)
Fibonacci • 13 is 233 (Compute time! :: 12 Milli Sac.)
Fibonacoi I 14 is 377 (Compute time = 19 Mi1li Sec.)
Fibonacci I 15 is 610 (Compute time = 31 Mi11i Sec.)
Fibonacoi I 16 is 987 (Compute time = 51 "ill~ Sec.)
Fibonacci I 17 is 1597 (Compute time = 83 Mi11i Sec.)
Fibonacoi I 18 is 2584 (Compute time = 133 "i Iii Sec.)

PAG·! 38

Fibonacci I 19 is 4181 (Compute time = 215 l1illi Sec.)
Fibonacci I 20 is 6765 (Compute time = 348 Hilli Sec.)
Fibonacci • 21 is 10946 (Compute time = 565 Milli Sec.)
Fibonacci I 22 is 17711 (Compute t!me = 9111 Hilli Sec.)
Fibonacci • 23 is 28657 (Compute time = 1475 Milli Sec.)
Fibonacci I 24 is 46368 (Compute time = 2386 Milli Sec.)
Fibonacci • 25 is 75025 (Compute time = 3862 l1il1i Sec.)

The following is the result of running the same program
after having been modified to cause a Run Error.

" Output of the Compile/Post_Process step"

LINE t P/D LC LVL < Stanford Pascal Compiler, Ver.ibrt of July-78 >

1
2
3
14
5
6
7
8
9

10
1 1
12
13
14
; 5
16
17
18
19
20
21
22
23

288 1) PROGRAM fib_demo(OUTPUT);
288 1)
288 1) TYPE pos_int = 0 .. 30;
288 1)

288 1) VAR i : pos_inti
2 9 2 1) t i 1ft e : I H T·E d t R :
296 1)
296 1) FUNCTION fibonaeci(j :pos_int) : INTEGER;

84 2) (*To evaluate fibonacci t j, for j >= 0,

84 2)
84 2)

o 2)
5 2)

12 2)
29 2)
84 2)
84 2)
01)

15 1)
18 1)
37 1)
53 1)
62 1)

subject to integer overflow*)

BEGIN
IF j = 0 TdEN fibonacci := 0
ELSE It j = 1 THEN fibonacci := 1

tLSE fibonacci := fibonacci(j-1) + fibonacci(j-3);
END;

BEGIN (Ifib_demo l)
FO R i : = 10 TO 25 DO

BEGIN time:= CLOCKCO);
WRITELN(' Fibonacci I '~ i:3~ , is :'~ fibonacci(i):6,

(Compute time =', CLOCK(0)-time:5, , Mil11 Sec.)');
END;

END.

NO SYNTAX ERROR(S) DETECTED.

23 LINECS) READ, 1 PROCEDURE(S) COMPILED,

94 P_INSTRUCTIONS GENERAT~D, 0.04 SECONDS IN COMPILATION.

~

PAGE 39

**** NO ASSEMBLY ERRORCS) DETECTED.

**** 672 BYTES or CODE GENERATED, 0.05 SECONDS IN P_CODE ASSEMBLY.

" output of the GO step "

Fibonacci t 10 is :
•••• SNAPSHOT DUMP or PROGRAM ****

**** 'SNAPSHOT' was called by --) 'Pascal_MONITOR'
-*-- Run Error: 1002 from line: 1lJ of procedure: 'fibonacci'
**** SUBRANGE VALUE OUT or RANGE
**** The offending value: -1 is not in the range: O •• 30

**** Variables for 'fibonacci' are:

j = 2

•• *. procedure 'fibonacci' was called by --). 'fibonacci' from line: llJ

.* •• Variables for 'fibonacci' are: ...

r"\ ~ j = 3

***. procedure 'fibonacci' was called by --) 'fibonacci' from line: llf

.**- Variables for 'fibonacci' are:

j = 4

**** procedure 'fibonacci' was called by --) 'fibonacci' from line: PI

•••• Variables for 'fibonacoi' are:

j ;: 5

•• *. procedure 'fibonacci' was called by --) 'fibonacci' from line: 11f

**** Variables for 'fibonacaj' are:

j = 6

._** procedure 'fibonacci' was called by --> 'fibonacci' from line: 14

.*** Variables for 'fibonacci' are:

j = 7

.*** procedure 'fibonacci' was called by --> 'fibonacci' from line: 14

PAGE 40

**.* Variables for -fibonacci' are:

j = 8

* •• * procedure 'fibonacci' was called by --> 'fibonacci' from line: 14

**** Variables for 'fibonacci' are:

j = 9

.*** procedure 'fibonacci' was called by --> 'fibonacci' from line: 14

•••• Variables for 'fibonacci' are:

j = 10

•••• procedure 'fibonacci' was called by --> '.MAIHBLK' from line: 20

**** Variables for 'tMAINBLK' are:

i =
time'

10
= 25

-*** END OF DUMP ****

(

The following is the reiult of yet another tun of the same
program with the 'K+' option. The (only) source listing is
gerierated by the last ~tep in the run and it followes any other
output that the user program may prooduce. The ~rototype JeL for
this run is pro~ided in section 3(t). (Note the increased
"compute" tima.)

" Output of the Compile/Post_Process step"

**** NO ASSEMBLY ERRORCS) OETECTED.

**** 804 BYTES OF CODE GENERATED. 0.06 SECONDS IN P_CODE ASSEMBLY.

tt Output of the GO step - including the Profiler output "

Fibonacci I 10 is 55 (Compute time = ~ Hil1i !ec.)
Fibonacci I 1 1 is 89 (Compute time = 5 Milli Sec.)
Fibonacci I 12 is 144 (Compute time = 8 Mil1i Sec.)
Fibonacci I 13 is 233 (Compute time = 13 Milli Sec.)
Fibonacci I 14 is 377 (Compute time = 20 Milli Sec.)
Fibonacci I 15 is 610 (Compute time = 33 Milli Sec.)
Fibonacci I 16 is 987 (Compute time = 54 Milli Sec.)

,,-...
PAGE Ifl

Fibonacci • 17 is 1597 (Compute time .= 87 l1illi Sec.)
Fibonacci I 18 is 2584 (Compute time = lifO l1illi Sec.)
Fibonacci • 19 is 4181 (Coml»ute time = 227 Milli Sec.)
Fibonacci I 20 is 6765 (Compute time = 369 l1illi Sec.)
Fibonacci • 21 is : 10946 (Compute time = 595 l1illi Sec.)
Fibonacci I 22 is 17711 (Compute time = 963 l1illi Sec.)
Fibonacci • 23 is 28657 (Compute time = 1562 l1illi Sec.)
Fibonacci I 24 is 46368 (Compute time = 2527 l1illi Sec.)
Fibonacci • 25 is 75025 (Compute time = 4092 Milli Sec.)

/

" ouput of the PROFILE step "

LINE I RUN CNT LVL < Stanford Pascal Compiler, Version of July-78 >

1
2
3
&f
5
6
7
8
9

1) (*tK+*)
1) PROGRAM fib_demo(OUTPUT):

10

1)
1)
1)
1)
1)
1)
1)
2)

11 2)
12 2)
13 121338 2)
14 196329 2)
15 317651 2)
16 635318 2'
17 2)
18 2)
19 1 1)
20 16 1)
21 16 1)
22 16 1)
23 16 1)
24 1 1)

VAR i
time

pos_int;
lNTEGER;

FUNCTION fibonacci(j :pos_int) : INTEGER;
(*To evaluate fibonacci I j, for j >= 0,

subject to integer overflow*)

BEGIN
IF j = 0 THEN fibonacci :Z 0
ELSE IF j = 1 THEN fibonacci := 1

ELSE fibonacci := fibonacci(j-l) + fibonaQciCj-2);
EN'b;

BEGIk (*fib_demo*)
FOR i : = 10 TO 25 DO

BEGIN time:= CLOCK(O);
WRITELN(' Fibonacci •• , i:3, , is :', fibonacci(i):6,

(Compute time =', CLOCK(0)-time:5, , l1i11i Sec.)');
END;

END.

**** NO SYNTAX ERROR(S) DETECTED.

**** 24 LINECS) READ, 1 PROCEDURECS) COMPILED,

**** 100 P_INSTRUCTIONS GENERATED, 0.05 SECONDS IN COMPILATION.

PAGE 42

6. Changed Features and Hew Options

The following list is provided as a convenience to users of
previous versions of Stanford Pascal. The list briefly mentions
the features that are new or ara implemented differently from the
earlier versions. These features either correspond to the
standard Pascal now, as described in Jensen and Wirth (1), or are
described in an earlier section of this document.

-Global textfiles may now be declared .nd passed as VAR
parameters to procedures or functions.

-The character set is now the EBCDIC character set and not the 63
character set that corresponded to the CDC Scientific character
set.

-The predefined constant MAXIHT, the predefined types ALFA and
TEXT, the predefined functions and procedures PAGE, ROUHD,
tIMEt!MIT, CARD, SKIP and EXPO are provided.

-The predefined variables DATE, TIME and OSPAR~ are added.

-The sub-monitor now handle. most IBM fiie for.~ats.

-The sub-monitor now supports input and output of Boolearis.

-The sub-monitor now checks the format of Booleans, integers and
reals that are input. It also rejeqts any attempt to tead any of
these same datatypes when the end of file is reached.

-the sub-monitor will automatically
generator (PASPROF load module) if
run counts to the QRR file (i.e.,
compiled with tHe K+ option).

invoke the execution profile
the Pascal eKecution outputs
if the Pascal program was

-The input of character strings is now handled differently.

-The JCt parameters passed to the sub-monitor now include HOSHAP,
kOSPIE and HOCC.

-Us~r parameter strings may be passed to the Pascal program.

-comments may be nested (under control of the 'H+' compilation
option).

-The M (margins) compilation option has an eKtended meaning.

-The sequence number field on input cards (col.s 73-80) no longer
is printed instead of the source line number when M+ is
specified.

PAGE Cf3

-Compilation input is no longer restricted to card image format.
The input may oontain any of the allowed file formats, but only
the first 120 characters in·each record are significant.

-The M (margins) compilation option has an extended meaning.

-The sequence number field on input cards (col.s 73-80) no longer
is printed instead of the souroe line number when M+ is
specified.

-Compilation input i8 no. longer restricted to card image format.
The input may contain any of the allowed file formats, but ~nly
the first 120 characters in each record are significant.

-Subranges such as 1 •• 10 are acceptable labels in CASE statements
or the variant parts of records. Also subranges may appear in
con s tan t s 0 f t y peS E T ; e . g ., [1 •• 4 J i s eq u i val en t t 0 [" 2 , 3 , 4 J •

-Functions of type SET may be declared.

-The tag field of a Case variant record .ay tie lett unnamed.

-The offsets of variables in
differently.

-the first
significant.

12 characters of

the stack are now assigned

Pasoal identifiers are now

-Lower case letters may be used in identifiers and reserved
words.

-External Pascal procedures may be created and used.

~rORTRAN subroutih.s/function~ may be called from ~l.cai
programs. (A separate version of the sub-monitor is not reqUired
for this.)

-The different versions of the run-time support routine PMONSRC
are now merged into a· single progrllm and with the use of
(boolean) assembly time SWitches, one may get the compact object
form suitabl. for system ~rograms, or the full sized object to be
used in conjunction with user programs.

PAGE qq

Acknowledgements

This note owes a great deal to Nigel Horspool of McGill
University who, amongst other things, converted a group of
chronologically ordered sections into the present document. He
also upgraded the I/O interface to provide support for various OS
file formats. The SNAPSHOT routine is written by Eral Waldin of
SLAC and the run-time profile gen.rator PRorlLER is due to
Richard Sites of Los Alamos Scientific Laboratory. The programs
in the TESTLIB are oontributed by many people and it is hoped
that it will evolve into a library of utility routines of general
interest to Pascal users.

References:

(1) K. JENSEN, N. WIRTH~ 'Pascal, User Manual and Report' (2nd
ed.), Springer-Verlag, Hew York, '975.

[21 K. HORI, U. AMMAN, K. JENSEN, H~ NAGEL. 'The Pascal "PH
Compiler, Implementation Not"i~ 8erichte des Instituts
fur Informatik, E.T.H. Zurich, bi:c. 1974.

(3) D. GRIES. 'Compiler Construction for Digital Computers', John
Wi 1 ey and Sons, New Yo rk, . 1971 .

("I) S. HAZEGHI. 'Bootstrap and Adaptation of a Pascal Compiler on
the IBM/370 System', CGTM-194, Stanford Linear Accelerator
Center, July 1979.

[5J S. HAZEGHI, L. WANG. 'A Shott Note on High Lev.l Languages
and Microprocessors', Conference Proceedings of the 2nd West
Coast Computer Fair, Saq Jose, CA., March 1978.

[6 J E. GILBERT, D. WALL. 'SOPAIP!LLA Mail1tenance Manual', CSL
Technical Report no. 158, Stanford University, March 1978.

[7] B. HITSON. 'Pascal/P_Code Cross Compiler for the LSI-11',
SLAC-PUB-~246, Stahford Linear Accelerator Center, Jan. 1979.

Sassan Hazeghi, Nov. 1976.

Computation Research Group,
Stanford Linear Accelerator Center,
BOH 4349,
Stanford, CA. 94305.

Phone (415) 854-3300 x2359.

Date of last update:

PAGE '15

Jan.-26-77.
Har.-04-77.
May -20-77.
June-09-77.
Hov.-15-77.
Jul.-28-78
Sep.-18-78
May -20-79
July-01-79
Aug -09-79
Oct.-18-79

Appendix A

1- Pascal compiler error messages:

1- error in simple type.
2- identifier expected.
3- "program" expected.
4- H)" expected.
5- ":" expected.
6- illegal symbol.
7- error in parameter list.
8- "of" expected.
9- "(" expected.

10- error in type.
11- left square br~cket expected.
12- right square bracket expected.
13- "end" expected.
1'1- ";" expected.
15- integer expected.
16- "=" expected.
17- "begin" expected.
18- error in declaration part.
19- error in field list.
20- "," expected.
21- "*" expected.
50- error in constant.
51- ":=" expected.
52- "then" expected.
53- "until" expected.
54- "do" expected.
55- "to" or "do~nto" expected.
56- "if" expected.
57- "file" expected.
58- error in factor.
59- error in variable.

101- identifier declared twice.
102- low bound exceeds highbound.
103- identifier is not of a~propiate class.
10'1- identifier is not declared.
105- sign not allowed here.
106- number expected.
107- incompatible subrange types.
108- file not allowed here.
109- type must not be real.
110- tagfield type must be scalar or subrange.
111- incompatible with tagfield type.
112- index type must not be real.
113- index type must be scalar or subrange.
114- base type must not be real.
115- base type must be scalar or subrange.
116- error in type of standard procedure parameter.

PAGE '16

..

117-
118-
119-
120-
121-
122-
123-
1211-
125-
126-
127-
128-
129-
130-
13'-
132-
133-
134--
135-
136-
137-
138-
139-
140-
1111-
142-
1113-
144-
1115-
146-
147-
148-
149-
150'"
'51-
152-
153-
1511-
155-
156-
;57-
1S8-
159-
160-
161-
162-
163-
164-
165-
166-
167-
168-

PAGE 117

unsatisfied forward referenc~.

forward reference type iden~ifier in variable declaration.
forward declared; repetition of par •• eter list not allowed.
function result type must ba scalar, subrange, or pointer.
f~le value parameter not allowed.
forward declared function; repetion of result type illegal.
missing result type in function declaration.
f-format is for real type only.
error in type of standard function paraaeter.
number of parameters doe~ not agree with declaration.
illegal parameter 8ubstitution.
result type of parm function does not agree with declaratn.
type conflict of operands.
exprelsion is not Of set type.
only tests on equality all~wed.
strict inclusion not allowed.
file comparison not allowed.
illegal type of operand(s).
type of operand must be boolean.
set element must b~ scal~r ,r su~range.
set element types not co*patible.
type of variable is not an array.
index type is not compatible with declaration.
type of variable is not a record.
type of variable must be a file br pointet.
illegal para~~ter substitutfbn.
illegal type of loop control variable.
illegal type of expression.
type conflict.
assignment of fiies not allowed.
l.~el type inqompatible wiih seleatin~ expression.
subrenge bounds must be scalar.
index type must not be integer.
aSSignment to standatd function is hot allowed.
aSSignment to formal fUrlction is not allowed.
no such field in this record. \
type error in read.
aotual patameter ~ust be a variable.
control variable may not be declated on inter •• diate level.
multiply defined case label.
too many cases in case statement.
missing corresponding variarit declaration.
real or string tagfields not allowed.
previous declaration was not forward.
duplicate forward declara,tions.
par a met e r s i 2 emu s t bee o:n s tan t .
missing variant in declaration.
sUbstituti·on of standard procedure/function not allowed.
multidefined label. '
multideclared label.
undeclared label.
undefined label.

169- error in base set.
170- value parameter expected.
171- standard file~as redeclared.
172- undeclared external file.
173- FORTRAN procedure or function eKpected.
174- Pascal procedure or function expected.
175- missing file "input" in program heading.
176- missing file "output" in program heading.
177- assignment to function identifier not allowed here.
178- multiply defined record variant.

PAGE 48

179- X-opt of actual proc/func doe. not matah fQrmal declaration.
180- control variable must not be formal.
181- constant part of address out of range.
201- error in real constant- digit expected.
202- string constant must not exceed souroe line.
203- integer constant eKceeds range.
204- 8 or 9 in octal number.
205- zero length string not allowed.
206- integer part of real constant exceeds range.
250- too many nested soopes of id'~tlfierlf. ,.
211- too many n •• ted procedUres and/or·fu'ctio~ •.
252- too many forward refer*rices of pr~c~aure ~ri\~ies.
253- procedure too long.
254- too many long constants in this procedures.
255- too many errors in this source line.
256- too many external r_ferences.
257- too many externals.
258- too many local files.
259- expression too complicated.
260- too many exit labels.
300- division by zero.
301- no case provided for this value.
302- index expression out of bounds.
303- value to be assigned is out of bounds.
304- element expression 6ut of range.
390- premature end of program, Cbad prograM structure).
398- implementation restriction.
399- variable dimension arrays not implemented.
400- illegal expression.
~01- compiler consisteney check!

•

PAGE 49

~. 2- Pascal post-processor error messages:

•

253- Procedure too long (larger than 8K bytes).
--> Divide (the procedure) and conquer.

25~- Too many long (string) constants.
--> Recompile the Post_Processor with a larger value for
MXSTR.

256- Too many Procedures/Functions referenced in this Proc.
--> Recompile the Post_Processor with a larger value for
HXPRC.

259- Expression too complicated.
--> Simplify the expression by rearranging and/or breaking.

263- Too many (Compiler generated) Labels in this Procedure.
--> Recompile the Post_Processor with a larger value for
MXLBL.

281- Too many Integer constants in this Procedure.
--> Recompile the Post_Processor with a larger
MXIHT

Double 282- Too many
Procedure.
--> Recompile
MXDBL .

Wotd (REAL.SET) constants

a larger

300- Divide by Zero (result of constant propagation).

value for

in this

value for

--> Fix u~ the (const~nt) expression evaluating to Zero.
302- Index/subrange value out of range (constant propagation ?)

--> Fix up the (constant) expressioh. to be within range.
I

501- Array component too large (larger than 32K).
--> Reduce the range of the 'last (rightmost) indecies of
the array and/or reorder the dimehsions of the array so
that they are ordered from the largest (leftmost) to the
smallest (rightmost).

Compiler/Post-processor concistancy checks:

601- Type conflict of operands in the P_Program.
602- Operand should be of type 'ADR'.
60~- Illegal type for run-time checking.
605- Operand should be of type 'BOOL'.
606- Undefined P_Instruction code.
607- Undefined Standard Procedure name.
608- Displacement field Cof address) out of range.
609- Small Proc Larger than 4K.

--> Recompile the Post_Processor with ~SHRT_PROC = 300".
611- Bad INTEGER alignment.
612- Bad REAL alignment.
613- Bad REAL constant.
614- Inconsistent Procedure Table file "PRD".

--> Fix the JCL and/or the 'QRR' output of the compiler.

3- Runtime error messages:,

1001- index value out of range.
1002- subrange value out of range.
1003- actual parameter out of range.
100Q- set member out of range.
1005- pointer value invalid.

PAGE 50

1006- stack/heap collision (i.e. program needs mor stakspace).
1007- illegal input/reset operation.
1008- illegal output/rewrite operation.
1009- synchronous i/o error.
1010- program exceeded the specified running time.
1011- invalid file definition.
1012- not enough space available.
1013- undefined or obsolete submonitor call (should not occur).
1014- LINELIMIT exceeded for output file.
1020- illegal input past end of file.
1021- bad BOOLEAN on input.
1022- bad INTEGER on input.
1023- bad REAL on input.

200X- program interruption code ·x·,
--> enable debug option 'D+' and rerun the program.

3001- external error (e.g. bad parameter to .ath routines etc.)

X1XX- unable to callan 'snapshot' after a run error
(this happens if there is not enough space or if snapshot
was not included in the load module br if the nosnap
parameter was specified in jcl) other digits of the return
code to be interpreted as above

•

