
CLASS NOTES FOR A PL/I COURSE 

Kenneth W, Dritz 

UdE.AUA.USERM 

ARGONNE NATIONAL ,LABORATORY, A9RGONNE, ILLINOIS 

Prepared for the U. S. ENERGY RESEARCH 
AND DEVELOPMENT ADMINISTRATION 
under Contract W-31-109-Enn-38 



DISCLAIMER 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency Thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any 
agency thereof. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible in 
electronic image products. Images are produced 
from the best available original document. 





Distribution Category: 
Mathematics and Computers 

(UC- 32) 

ARGONNE NATIONAL LABORATORY 
9700 South Cass Avenue 

Argonne, Illinois 60439 

CLASS NOTES FOR A PL/I COURSE 
-52, ?; 

c 2  

Kenneth W. Dritz 

Applied Mathematics Division 

r. .- - - -  - - -  --- . - - 

chc United Stater nor the United S u t o  Energy 
R e a r c h  and k v e l o p m n t  Administration, nor any of 

-..=-* . . -. 

November 197 5 

BTSTRIBUTION OF THIS DOCUMENT IS UNlLlMlJED n 



THIS PAGE 

WAS INTENTIONALLY 

LEFT BLANK 



PREFACE 

These notes were written for  use as a supplement t o  a three-week PL/I 
course taught by the author from October 20, 1975 t o  November 7,  1975 a t  
the Applied Mathematics Division of Argonne National Laboratory. The course 
was intended to  a t t rac t  scientists  and engineers from other Laboratory 
divisions who contemplated using PL/I i n  thei r  future progranrning. No 
special emphasis was placed on features useful i n  business appiications. 

In the  preparation of these notes (and of the classes themselves), use. 
was made of the fact  that  the sc ient is ts  for  whom they were intended could 
be assumed to  have had prior experience i n  programming w i t h  high level 
languages (probably FORTRAN). This assumpti&l is reflected h the absence 
of frequent demonstrations of the practical application of language elements 
to  the solution of complete and rea l i s t i c  problems. The notes (and the 
course) thus do not address the problem of teaching the non-programer how 
to program in P L ~  rather, they'supply the practicing programmer w i t h  the 
information needed t o  begin using PL/I t o  solve prob'lems he is already 
accustomed to  solving i n  other languages. 

That is not to say that  the experienced FORTRAN programmer w i l l  neces- 
sar i ly  find the road to  conversion to  be free of holes and bums. Certain 
traps' are lurking. Specifically , certain techniques and concepts of 
FORTRAN, i f  translated in the obvious way to  PL/I, result  i n  incorrect 
programs. Special e~~lphasis has been devoted to this problem. I t  is apparent, 
for  instance, i n  the discussions of the differences between fixed-point data 
(in PL/I) and integer data (in FORTRAN) ; the differences between the respec- 
t ive roles of defining (in PL/I) and equivalencing (in FORTRAN) ; and the 

. proper, and very different, ways to pass and use variable dimension informa- 
tion i n  the two languages. 

These notes were written over the short period of five weeks. Because 
of that rush, they are inevitably less polished than they could have been. 
This is hopefully.compensated by the very careful attention given to  the 
ordering of topics for  effective learning. The chosen order of introduction 
of topics, which was worked out over a three-week period before writing 
commenced, is intended to help the students avoid mental overload even when 
classes.  (corresponding to chapters) are taught un successive days. 

The vcry frequent references to passages i n  IBM manuals. (which are 
keyed indirectly through the reference . l ist  following Chapter 15) are an 
essential factor in keeping these notes as short as' they are. For instance, 
detailed syntax of statements is usually omitted from the notes, as are 
certain tables of information easily found i n  the manuals. The notes 
emphasize concc ts more tllasl details.  Unfortunately, the u t i l i t y  of the -+ references w i l l  e diminished i n  the future unless the page numbers can be 
s u c c e s s f ~ l y  updated to  ref lec t  sudr revisions as may have been incorporated 
in the manuals by then. 



. The author has pointed out some differences between the "current" 
language and the proposed ANSI Standard for  PL/I. The reader must be 
cautioned, however, that  .not - a l l  of the differences have been documented. 
(For instance, Chapter 1 does not mention the dropping of the I-to-N rule 
fo r  default arithmetic at tr ibutes,  which is certainly very important .) 
The absence. of a complete comparison is due to  the fact  that lists of 
lcnown differences were not constantly reviewed during the preparation of 
these notes ; differences were ci ted when they just  happened. t o  come to  mind. 

Structured programming advocates may be disappointed by the almost 
t o t a l  absence of orientation toward structured coding and development prac- 
t ices.  The GO TO statement is taught. The reason 'is that  th is  course is 
about the PL/I language and i t s  concepts ; it is not a course i n  programming 
methodology. Structured programming is a separate topic and can be (and in  
the author's opinion should be) taught independently of any particular 
language. 'fie author has not, however, entirely ignored the question of 
program correctness. H i s  contribution has been to  emphasize language purity 
and t o  enhance transportabiliry by carefully dis  tiriguishLig be tween the 
formal language definition and implementation-defined features. I l legal  
language , , 'is never demonstrated . No concessions are made to  . convenience. 

Finally, the author wishes t o  acknowledge the help of Matt Prastein 
and April Heiberger i n  preparing Chapters 1 k d  6 fo r  text editing i n  T U ;  
of the following secretaries i n  the Applied Mathematics Division for  thei r  
many weeks spent typing the copy: . . 

Marge Visser 
April Heiberger 
Judy Beumer i 

Grace Krause 
Nancy Piazza; 

of Linda Clark and Sue Katilavas for  handling a l l  aspects of the class notes 
a f t e r  typing; of Graphic A r t s  for  typing two chapters and printing a l l  of 
them; and of Paul Messina, Lou Just ,  and Dean Davis for  general administra- 
t ive  support. 

Kenneth W. D r i t z  
Applied Mathematics Division 
Argonne National Laboratory 
November, 19 7 5 
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Presented here are notes for a course in PL/I. They 
might serve as a guide to others who are developing a course, 
and indeed as class notes for that course. They might be 
useful as a textbook independent of any course; as such a 
textbook, however, they are not self-contained because of the 
built-in assumption that they will supplement lectures and be 
accompanied by manuals. 

Very nearly the full 1a.nguage is taught here, with the 
el~~phasis on concepts rather than practical details. The un- 
orthodox order in which concepts are introduced is the deliber- 
ate invention of the author. One effect of this is the complete 
avoidance of any discussion of 1/0 until roughly the midpoint of 
the course. The hoped-for consequence for students is an. 
,enhanced perception and understanding of the many concepts and - 
their logical relationships. 

The dawning of the age of transportability for PL/I pro- 
, grams gives the user a reason, for the first time, to avoid 
, convenient but illegal language. In their attention to this 
issue, these notes should help the user appreciate the value of 
sound coding practices and their negligible incremental cost at 
the most important time -when he is first starting out. 

vii 



0. Introduction to PL/I . course. 

0.1,. Welcome ! 

Welcome to  the PL/I course! 

I t  is hoped that  over the next' three weeks you wi l l  realize your 
goal of learning to  write. effective programs i n  PL/I ; 

Why so many class sessions? PL/I is a "massive" language. Even 
i f  much of the bewildering deta i l  is stripped away, leaving the 
major concepts, there is' a. l o t  to be taught and a l o t  to  be learned. 
We have, i n  fact ,  l e f t  out many of the 'subtleties and a l o t  of the 
detai l  (rules, conventions, restr ict ions , interactions, etc.  ) . No 
one can remember a l l  that,  anyway. That's what we have reference 
manuals for.  

Although they are  improving, reference manuals are s t i l l  not very 
good for teaching the broad concepts of a programming language! 
That's why we have developed this course. In i ts  planning we have 
devoted particular emphasis to  the choice of a logical order for  
the introduction of successive concepts. We beiieve th is  is the 
recipe for  successful Learning. A consequence of th is  is the 
deferring of any discussion 'of 1/0 un t i l  about the midpoint of the 
course;' since we don' t wish to  "jump the gun," examples. and homework' 
problems are necessarily and unrealistically I/O-free u n t i l  then. 
But even when we f inal ly  get to  I/O, we don' t take an overdose. 
Progressively more advanced aspects of 1/0 are assigned to  Lessons 7 ,  
8,' 9, ii, and 14. 

S t i l l ,  th is  is an ambitious ydertaking. A college semester is being 
crammed into three weeks! To receive f u l l  value from this course, 
you w i l l  need to  attend every lesson. Beyond that ,  you w i l l  need to, 
read the class notes and selected passages i n  'the manuals, and you 
are strongly urged t o  attempt the homgwork probleir~. 

0.2. Goals of the course. 

Sophisticated engineering applications i n  programming today are 
characterized by the combination of c roper ties and 'features they are 
required to exhihi t . For. instance, a sirigle, coherent applicat'ion 
program may need t o  combine sc ient i f ic  calculations, non-numerical 
calculations (such as logical calculations or t e x t  rrianipulationsj , 
large-scale auxiliary data management, and internal resource manage- 
ment. And certain kinds of programs, particularly those modeling 
physical sys tems , can benefit 'from more "natural" ways of representing 
information, such as by time-varying "structural" or  hierarchical 
relationships between items of data. Because PL/I can sa t is fy  a l l  
these needs i n  a smooth and consistent way, the primary goal of the 
PL/I course is to  teach nearly a l l  the major concepts of the language.: 



(The only significant one omitted is "teleprocessing," which is 
not available i n  our system anyway and which is not i n  the ANSI 
standard . ) 

Experience has shown that  PL/I programmers who have an incomplete 
knowledge of the language are l ikely to use inappropriate, i . e. , 
less  than natural, 'language features to accomplish a particular 
task. The result  of 'this is frequently inefficiency' in the object 
program and, as a consequence, dissatisfaction w i t h  the language. 

For many years people believed that PL/I was  the sole province of 
I .  PL/I code interchange w i t h  non-IBM instal lat ions was out of 
the question. Well, i n  '19 75 PL/I has come a long way. A proposed 
international ANSI-ECMA standard .for PL/I is on "final approach" 
and l ikely to  be accepted in 1976. Honeywell, Univac, and Burroughs 
have viable PJ.,/I compilers which'have been aimed a t  the proposed 
standard (a moving target) during thei r  development. Even Cont.ro1 
Data, which abandoned' i ts  early efforts  i n  PL/I years ago, appears 
t o  be reviving lits iliterest ill the lmguage (perhaps thoy thought 
it wouldn't 'catch on--and guessed wrong)'. 

Thus, a second goal of the course is to prepare you for the day in  
the not too distant future when you may be writing programs that 
have portabil i ty requirements extending to other PL/I' systems and 
other hardware. This is done i n  two ways. F i r s t ,  we w i l l  point 
u u t  some significant differences between the IBM imple~nentations of 
PL/I and the proposed standard. Second, we w i l l  make a clear dis- 
tinction betw;?en- o f f ic ia l  language and~current implementation. 
Unfortunately, many programmers believe PL/I is whatever our compilers 
l e t  them do; that  is, they write t e chn ica l l y~ l l ena l  l a n m n e  which - - 
happens to  give them a convenient and usefuf ef fec i  on our system. 
They may fee l  just if ied i n  doing this because they have no intention 
of exporting thei r  programs to other installations with different 
cmipilers. The hidden danger, though, is that they may have to  
export t h e i r  programs to themselves someday. There is no guarantee 
that  we w i l l  always have IW equipment! We have already experienced 
solne the problems that  can be encountered with i l l ega l  language 
belause 1J.M has changcd tho implementation af rertai.n language 
features within thei r  own progression of compilers over the years. 
(They have a1 so chan ed- -improved--the language i t s e l f  several times. 
Unfortunately, this g as made trouble even for  honest proglmmers. 
One more round of "incompatible changes" must be expected w i t h  the 
introduction of the ANSI standard, a f te r  which we should enter an era 
of relat ive s tab i l i ty  of the language.) So, on the theory that  it is 
preferable to  learn how t o  do it legally from the beginning and avoid 
possible problems la ter ,  we w i l l  emphasize language purity. 



0.3. Topics to  be covered. 

The following is a broad outline fo r  the f i f teen lessons (class sessions). 

.Variahl,es , attr ibutes,  and declarations : 

.arithmetic data types, arithmetic expressions, precision rules. 
String data. types'; s tr ing and logical expressions. 
Aggregates. 
Block structure and scope of names. 
Storage classes and block invocations. 
(a) Control constructs . 
(b) Conditions. 
Introduction t o  I/O; stream I /O .  
Introduction t o  record I/O; consecutive datasets. 
Indexed and regional datasets. 
(a) Builtin functions and pseudo-variables . 
(b) Interlanguage communication. 
L i s t  proces'sing and locate mode I/O.  
(a) Miscellaneous features. 
(b) Preprocessor. 
(a) Advanced JCL and compiler options. 
(h) Program development and debugging. 
Mu1 t i tasking and asynchronous I /O Cop tional) . 
Checker/TSO demonstration. 

0.4. Class notes. 

You a re .  re.ading Chapter 0 of the class notes. A s e t  of fa i r ly  extensive 
not'es w i l l  be handed' out i n  each class. The notes w i l l  make it generally 
unnecessary to take notes i n  class, and they w i l l  make it easy 'to review 
the material la ter .  The notes, however, are not a substitute for  the 
lectures. The lectures w i l l  provide more motivation than the notes and 
different examples, though perhaps less detai l .  Some blank space is 
provided for  you to take extra notes, doodle, etc.  

0.5. Manuals and outside reading. 

Five manuals are being distributed with this introduction fo r  your use 
during and a f t e r  the course. There are frequent references i n  the 
class notes to passages i n  the manuals. Each manual is codified by an 
abbreviation i n  the refcrence, as  follows: 

LRM - Language Reference Manual 
CPG - Checkout Compiler Programmel-'s Guide 
OPG - Optimizing Compiler Programmer's Guide' 

. CTUG - Checkout .Compiler TSO User's Guide 
OTUG - Optimizing Compiler TSO User's Guide 

The number that follows a manual code, as in LRM 57, is not a page 
number but rather an entry number i n  a reference list which is being 
supplied separ;ctely. The entries i n  the referbncc list give page 
numbers and text  to identify the beginning and end of each passage. 



M a n u a l  references are made for  two reasons: i n  a few cases, t o  
point you towel1  documented deta i ls  that it would be s i l l y  t o  copy 
i n  the class notes;..more often, t o  point you to.materia1 you can 
use for  review, and for  a different perspective, a f te r  it is covered 
i n  the notes.. You are urged' t o  read a l l  the' references, though time 
may not permit you to.  read the longer passages' during the course. 

Unfortunately, you w i l l  find that  the passages do not always correspond 
in scope to the material t rea ted ' in  the notes; they w i l l  frequently 
reference related' topics that we won't cover un t i l  l a te r ,  and they may 
mention detai ls  that  we don't cover a t  a l l .  Be a l e r t  for  terms we 
haven't covered; t r y  t o  skip, on the f i r s t  reading, anything that looks 
foreign. . . 

If you do pursue most of the references, you w i l l  acquire a great deal 
of familiarity with the manuals and w i t h  thei r  organization. You wo~i't 
be afraid l a te r '  to  look something up, because you w i l l  have a pret ty 
good idea' of where t o  look. Actually, that .  is another goal of the 
course. 

I t  would be a good idea for you t o  browse through the tables of 
contents of the manuals now. You w i l l  notice 'a great deal of duplica- 
t ion i n  the two programmer's guides, and in  the two TSO user's guides. 

There is also a Messages Manual available for  each compiler, though 
these aren't  essential t o  own. And if,' somehow, th i s  course leaves 
you gasping for  more, go out and get the Execution Logic Manuals for  
each compiler. 

There are a few reasons why we don't generally recommend books on PL/I. 
We haven't evaluated many. Those we have seen have been disappointingly 
jncomplete, erroneous, or obsolete more often than not. Several books 
are i n  preparation by authors hown personally by the instructor; it is 
expected that  these w i l l  be commendable. 

Each s e t  of notes has several homework problems based on the material 
taught i n  that  class. The purposes of the homework are to  allow you to  
t e s t  your understanding of the material, to give you some experience 
w i t h  the language concepts, and t o  lead you through a discovery of 
some reveaiing insights that w i l l ,  hopefully, influence your program 
design and coding 'style. For th is  reason you are strongly urged t o  
attempt the homework problems i n  a timely manner. You w i l l  not be 
required t o  turn in completed homework; hawver, i f  you do, *' 
instructor w i l l  go over your work, make comments, and return it t o  you. 



0.7 .. Running programs. 

You are not generally asked to  run programs as  part  of the homework; 
for  about half the' course you a re  not even' asked t o  write whole 
programs. However, once you have learned' enough t o  write a program, 
you may find it' instructive. to. run it: Follow these guidelines. 

Use the Checkout Compiler i n  batch. I t  w i l l  be preferable for  you to 
punch your program and data.on cards, for  now. 

Source programs can be free form. You can s t a r t  a statement i n  any 
column within the' source margins (see' below). You can put as many 
blanks as you want between' 'language keywords, identif iers  , constants, 
and special symbols. A semicolon marks the end of a statement, which 
may continue over as many cards as necessary. A comment, which is 
any text  surrounded by /* and */, can be written wherever arbitrary 
blanks are permitted, as described above., 

Standard (default) source margins .. are columns 2. and 72. Leave column 1 
blank, ' and do not .wi te source text  beyond column 72. 

Use the following JCL i f  your program consists of a single "external 
procedure, " i . e. ? a main program that  doesn ' t need to  be link-edited 
with arw subroutines. 

//. job. card - - express limits are adequate 
account card 

// MEC PLCCG (Note: - not PLCCLG) 
//SYSCIN DD * (Note: - not ,SYSIN) 

source program (column 1 blank) 

Can .be'. omitted' 
data i f  no data. 

/ * 
External procedures aren' t  mentioned un t i l  Lesson 4. 

I f  your program has several external procedures, i .e . ,  a main program 
and subroutines' to. be' link-edited' together, use the following JCL. 



// job card 
account card 

// EXEC PLCCLG , (different cataloged procedure) 
//SYSCIN DD * 

main program 

*PROCESS ; This 

subroutine 

*PROCESS ; 

subroutine 

* 

/* 

data 

s t a r t s .  in column 1 ! 

I Optional 

0.8. After the course. 

let. ILS hear from you! We want to  ' h o w  how you are doing. The 
consultant can provide help w i t h  particular problems. 

For FORTRAN-type computations, PL/I - can be about as eff icient  a t  
nm time as FORTRAN. Certain features, because of their  power and 
generality, are inevitably and inherently less eFLicient, but then 
many have no direct counterparts i n  FORTRAN. I f  you are unsatisfied 
with the performance of your programs, the consultant might be able 
t o  help you find some simple adjustments to  make to  tune it. There 
are a variety of optimizatian features you have to  ask fo r  explicitly. 
The compilers themselves can be made more eff icient  i f  f u tu r e  use 
warrants it. 

I f  you encounter bugs in. the compiler, report them to  the consultant! 
IBM wants t o  find 'them and f i x  them, because it strongly supports 
PL/I. Anyway, chances'are we have a l a te r  version of the compiler 
around which we are checking before releasing it. We can t e l l  .you 
how to  STEPLIR t o  it. 



Finally, a f te r  h a l f  a year or a year of experience, you may find it 
useful to  reread the"notes. You w i l l  be i n  a better  position to  
appreciate and ut i l ize :  some of the advanced features of the language. . . 



i 
1. V a r i a b l e s ,  a t t r i b u t e s ,  a n d  d e c l a r a t i o n s ;  a r i t h m e t i c  d a t a  t y p e s ,  

a r i t h m e t i c  e x p r e s s i o n s ,  p r e c i s i o n  r u l e s .  

1.1. V a r i a b l e s  

A v a r i a b l e  h a s  a gqfig, w h i c h  i s  a n  i d e n t i f i e g .  It i s  l o c a t e d  
s o m e w h e r e  i n  s t o r a g e ,  a n d  i t  h a s  a pp&ge., 

B a s i c a l l y ,  i d e n t i f i e r s  may b e  u p  t o  31 c h a r a c t e r s  l o n g .  E x a m p l e s  
are:  

T I  ME-OF-FLIGHT 
CHANNEL# 
COEFFICIENT-OF-EXPANSIOP 
X21 

R u l e s  f o r  i d e n t i f i e r s  a re  g i v e n  a t  LRF 1.  A l a n g u a g e  k e y w o r d  ( s u c h  
a s  D O )  may b e  u s e d  a s  ' an  i d e n t i q i e r ;  l a n q u a g o  k e y w o r d s  a r e  n o t  
" r e s e r v e d . "  

Puch  more  w i l l  b e  s a i d  a b o u t  v a r i a b l e s  l a t e r .  We w i l l  l o o k  a g a i n  a t  
v a r i a b l e  n a m e s  i n  L e s s o n  4 a n d  a t  t h e i r  l o c a t i o n s  i n  L e s s o n  5 .  

I n  a d d i t i o n  t o  a name,  a l o c a t i o n ,  a n d  a v a l u e ,  e v e r y  v a r i a b l e  h a s  
s o m e  a t t r i b u t e s ,  w h i c h  a r e  c h a r a c t e r i s t i c s  t h a t  t e l l  t h e  s y s t e m  
e x a c t l y  how t h e  b i t s  s t o r e d  i n  i ts  l o c a t i o n  r e p r e s e n t  i t s  v a l u e .  

S e e  LRM 2 a n d  LRM 3 .  

1.3. D e c l a r a t i o n s  

'Vames a n d  a t t r i b u t e s  a r e  a s s o c i a t e d  w i t h  v a r i a b l e s  b y  t h e  p r o c e s s  o f  
d e c l a r a t i o n .  T h e  DECLARE s t a t e m g a t  may h e  u s e d  t o  I 1 d e e l a r e w  o n e  or  --------- ------- '---- 
i l lore v a r i a b l e s .  S i m p l e  f o r m s  o f  t h e  DECLARE s t a t e m e n t  u s e f u l  f o r  



p r e s e n t  p u r p o s e s  a r e  a s  f o l l o w s :  

DECLARE i d  a t t t l i b u t u ;  
DECLARE idl a t t h i b L L t u J ,  ..., 

id, attrtibu;tef, ; 
DECLARE (.*dl,. . , .id,? a t t h i b d u ;  

I n  t h e  a b o v e ,  i d  is t h e  name of  t h e  v a r i a b l e  a n d  a t t h i b u R u  i s  a l is t  
o f  a t t r i b u t e  k e y w o r d s .  T h e . f i r s t  f o r m  d e c l a r e s  a s i n g l e  v a r i a b l e .  
T h e  s e c o n d  dec l a r e s  s e v e r a l ,  w i . t h  p o t e n t i a l l y  d i f f e r e n t  a t t r i b u t e s ,  
i n  o n e  DECLARE s t a t e m e n t .  T h e  t h i r d  d e c l a r e s  s e v e r a l  w i t h  a  common 
s e t  n f  a t t r i b u t e s .  DECLARE may be a b b r e v i a t e d  DCL, a s  i n  ' t h e  
f o l l o w i n g  e x a m p l e s :  

DCL X FLOAT B I N A R Y ;  
CCL Y FIXED DECJMAL, 

. b FLOAT B I N A R Y ;  
DCI. ( U , V , W )  CONPLEX FLOAT B I N A R Y ;  

T h e  d e f i n i t i v e  r u l e s  f o r  t h e  D E C L A R E  s t a t e m e n t ,  w h i c h  g o  f a r  b e y o n d  
w h a t  we n e e 4  now, a r e  a t  1,I?i? 4. 

1 . 4 .  T y p e s  o f  d e c l a r a t i o n s  

E x e l i c i t :  By u s e  o f  DECLARE s t a t e m e n t .  -- ---- 
C o n t e x t u a l :  C e r t a i n  u s e s  o f  i d e n t i f i e r s ,  i n  t h e  a b s e n c e  o f  a n  --------- 
e x p l i c i t  d e c l a r a t i o n ,  r e s u l t  i n  a c o n t e x t u a l  d e c l a r a t i o n  o f  a 
v a r i a b l e  w i t h  t h a t  name a n d  a t t r i b u t e s  d e d u c e d  f r o m  c o n t e x t .  T h e  
c o n t e x t s  f o r  w h i c h  t h i s  i s  p o s s i b l e  a r e  those t h a t  r e q u i r e  p a r t i c u l a r  
a t t r i b u t e s  a n d  c a n n o t  t o l e r a t e  o t h e r  a l + e r n a t i v e s .  A r i t h m e t i c  
a t t r i b u t e s  a r e  n e v e r  d e d u c e d  f r o m  c o n t e x t ;  t h e r e  a r e  many a 1 L e 1 n a t i v . e  
a r i t h m e t i c  a t t r i b u t e s ,  a n y  of vhluh cau Lve ' u s e d  i n  a n y  a r i t h m e t i c  
C O n t  ex t .  
Tm l i c i 2 :  9n i d e n t i f i e r  wh ich  i s  n e i t h e r  e x p l i c i t l y  d e c l a r e d .  n o r  A,,,, 
u s e d  i n  a c o n t e x t  r e s u l t i n g  i n  a  c o n t e x t u a l  d e c l a r a t i o n  i s  i m p l i c i t l y  ' 

d e c l a r e d  a s  t h e  name o f  a v a r i a b l e ,  w h i c h  is g i v e n  c e r t a i n  d e f a u l t  
a t t r i b u t e s .  T h e  l a n g u a g e  s p e c i f i e s  a s e t  of d e f a u l t s  wh ich  a r e ,  i n  
f a c t ,  p a r t i c u l a r  a r i t h m e t i c  a t t r i b u t e s .  T h e  p r o g r a m m e r  c a n  c h a n g e  
t h e  d e f  i u l t s  w i t h  t h e  DEFAU?.,? s t a t e m e n t ,  w h i c h  i s  c o n s i d e r e d  i n  
~ e s > o n  4.  

See LRM 5 a n d  L!ZM 6 .  T h e  l a t t e r  t e x t  u s e s  many terms a n d  c o n c e p t s  
t h a t  we w i l l  n o t  c o n s i d e r  u n t i l  T.,esson 4; t r y  t c  i g n o r e  t h e m  f o r  now. 



1.5. A r i t h m e t i c  d a t a  t y p e s  

A s  i n  FORTRAN, t h e r e  a r e  many a r i t h m e t i c  d a t a  t y p e s  a n d  c o r r e s p o n d i n g .  
a t t r i b u t e s  (many more ,  i n  f a c t ) .  A l l  a r i t h m e t i c  v a r i a b l e s  h a v e  f o u r  
c h a r a c t e r i s t i c s ,  c h o s e n  from f o u r  s e t s  o f  a l t e r n a t i v e s .  T h e  s e t s  a r e  
a s  f o l l o w s :  

Vode: T h e  c h o i c e s  a r e  REAL a n d  COYPLEX. Note t h a t ,  i n  FL/I ,  PEAL --- 
o n l y  m e a n s  n o t  COMPLEX: i t  d o e s  n o t  mean f l o a t i n g - p o i n t ,  a s  i t  d o e s  
i n  FORTDAV. 
S c a l e :  T h e  c h o i c e s  a r e  FLOAT a n d  FIXED. FIXED m e a n s  t h e  d e c i m a l  --- 
p o i n t  i s  a s s u m e d  t o  b e  i n  a f i x e d  p o s i t i o n  r e l a t i v e  t o  t h e  i n t e r n a l  
r e p r e s e n t a t i t i o n  o f  t h e  v a r i a b l e ' s  v a l u e .  H o u e v e r ,  t h a t  p o s i t i o n  
n e e d  n o t  a e  t h e  r i g h t - h a n d  e d g e ;  it gag b e ,  i n  which c a s e  y o u  h a v e  
r o u g h l y  t h e  e q u i v a l e n t  o f  FORTRAN's TNTEGER, b u t  i t  may b e  s p e c i f i e d  
t o  b e  e l s e w h e r e .  FLOAT m e a n s  t h e  a s s u m e d  p o s i t i o n  o f  t h e  d e c i m a l  
p o i n t  is n o t  i n  a f i x e d  p l a c e ;  it f l o a t s  f r o m  p l a c e  t o  p l a c e  w i t h  t h e  
g r o s s  m a g n i t u d e  o f  t h e  v a r i a b l e ' s  v a l u e  ( f  l o a t i n g - ~ o i n t  h a r d w a r e  i s  
u s e d )  . 
Base: T h e  c h o i c e s  a r e  B I N A R Y  a n d  DECIMAL. Any r e f e r e n c e  t o  d i g i t s  ---- 
r e f e r s  t o  e i t h e r  b i t s ,  i f  b i n a r y ,  o r  d e c i m a l  d i g i t s ,  i f  d e c i m a l .  
P r e c i s i o n :  T h i s  i s  a n u m h ~ r  s p e c i f y i n g  t h e  n u m b e r  p i  dlgigs t o  b e  --------- 
u s e d  f o r  t h e  i n t e r n a l  r e p r e s e n t a t i o n  of t h e  v a r i a b l e ' s  v a l u e .  F o r  
f  i x e d - p o i n t  v a r i a b l e s  i t  s p e c i f i e s  t h e  e x a c t  n u m b e r  o f  d i g i t s  t h a t  
p a r t i c i p a t e  i n  o p e r a t i o n s  on t h e  v a r i a b l e  a c c o r d i n g  t o  t h e  r u l e s  o f  
t h e  l a n g u a g e .  F o r  f l o a t i n g - p o i n t  v a r i a b l e s  i t  s p e c i f i e s  t h e  m i n i m u 2  
n u m b e r  o f  d i g i t s  t h a t  p a r t i c i p a t e  i n  o p e r a t i o n s  o n  t h e  v a r i a b l e  
a c c o r d i n g  t o  t h e  r u l e s  of t h e  l a n g u a g e .  F o r  f i x e d - p o i n t  v a r i a b l e s  
( o n l y ) ,  p r e c i s i o n  i n c l u d e s ,  i n  a d d i t i o n  t o  t h e  n u m b e r  of d i g i t s ,  

a n o t h e r  n u m b e r  c a l l e d  t h e  scale f a c t o r .  T h i s  e s s e n t i a l l y  d e n o t e s  how 
many o f  t h e  d i g i t s  a re  t o  t h e  r i a h t  o f  t h e  a s s u m e d  d e c i m a l  p o i n t .  A 
s ca l e  f a c t o r  o f  0 m e a n s  t h e  v a l u e  of t h e  v a r i a b l e  i s  a l w a y s  a n  
i n t e g e r  a n d  t h a t  t h e  smal les t  d i f f e r e n c e  i n  t w o  d i f f e r e n t  v a l u e s  t h a t  
t h e  v a r i a b l e  c a n  h a v e  i s  1. A p o s i t i v e  s ca l e  f a c t o r  means  t h e  
decimal p o i n t  i s  a s s u m e d  t o  b e  s o  many d i g i t s  l e f t  o f  t h e  l e a s t  
s i g n i f i c a n t  d i g i t  p o s i t i o n .  F o r  i n s t a n c e ,  a sca le  f a c t o r  of  1 m e a n s  
t h e  v a l u e  0 5  t h e  v a r i a b l e  a l w a y s  h a s  o n e  f r a c t i o n a l  d i g i t :  t h e  
l l r e s o l u t i o n w  o f  s u c h  a v a r i a b l e  is t h u s  o n e - h a l f ,  i f  t h e  b a s e  i s  
b i n a r y ,  o r  o n e - t e n t h ,  i f  d e c i m a l .  A p o s i t i v e  sca le  f a c t o r  may e v e n  
e x c e e d  t h e  number  of d i g i t s  s p e c i f i e d  f o r  t h e  v a r i a b l e ,  i n  w h i c h  case 
a l l  o f  t h e  d i g i t  p o s i t i o n s  b e t w e e n  t h e  h i q h - o r d e r  o n e  ( l e f t m o s t )  a n d  
t h e  a s s u m e d  p o s i t i o n  o f  t h e  d e c i m a l  p o i n t ,  w h i c h  i s  e v e n  f a r t h e r  t o  
t h e  l e f t ,  a r e  a s s u m e d  a l w a y s  t o  c o n t a i n  z e r o e s .  A n e g a t i v e  s c a l e  
f a c t o r  m e a n s  t h e  decimal p o i n t  is a s s u m e d  t o  be s o  many d i g i t s  t o  t h e  
r i g h t  o f  t h e  l e a s t  s i g n i f i c a n t  d i g i t  p o s i t i o n ,  w i t h  t h e  i n t e r v e n i n g  
d i g i t s  a s s u m e d  a l w a y s  t o  c o n t a i n  z e r o e s .  T h u s ,  w i t h  a s c a l e  f a c t o r  
o f  -1, t h e  r e s o l u t i o n  i s  two, f o r  b i n a r y  b a s e ,  o r  t e n ,  f o r  d e c i m a l ;  
t h e  v a l u e  r e p r e s e n t e d  is  a l w a y s  a n  i n t e g e r .  A b e t t e r  way o f  t h i n k i n g  
a b o u t  t h e  scale  f a c t o r  i s  a s  f o l l o w s .  S u p p o s e  t h e  p r e c i s i o n  i s  
( p , )  , i . . ,  t h e  n u m b e r  o f  d i g i t s  i s  p  a n d  t h e  scale  f a c t o r  is q .  

T h e n  f i r s t  c o n s i d e r  t h o s e  p  d i g i t s  t o  r e p r e s e n t  a p - d i g i t  i n t e g e r ,  
s a y  U. Tte v a l u e  o f  t h e  v a r i a b l e  i s  t h e n  a c t u a l l y  u - b - 9 ,  w h e r e  b  is  
e i t h e r  2 o r  10 ,  a c c o r d i n g  t o  +he h a s e .  



B e w a r e  of  t h e  f o l l o w i n g  d i f f e r e n c e s  from FORTPA'N: 
( a )  I n  FORTRAN, REAL m e a n s  f l o a t i n g - p o i n t  a n d  n o t  c o m p l e x .  Tn 

PL/ I  i t  o n l y  m e a n s  n o t  c o m p l e x ;  t h e  v a r i a b l e . m a y  b e  e i t h e r  
f i x e d - p o i n t  o r  f l o a t i n g - p o i n t .  

( b )  I n  FORTRAN, COMDLEX m e a n s  f l o a t i n g - p o i n t  a n d  i n  t h e  
c o m p l e x ,  a s  o p p o s e d  t o  r ea l ,  d o m a i n .  I n  P L / I  ' i t  d o e s  n o t  
i m p l y  f l o a t i n g - p o i n t .  

( c )  I n  FORTRAN, INTEGER m e a n s  f i x e d - p o i n t  i n t e g e r  i n  t h e  r e a l  
d o m a i n .  I n  PL/T y o u  c a n  h a v e  f i x e d - p o i n t  i n t e g e r s  i n  t h e  
c o m p l e x  d o m a i n .  

R e f e r e n c e s  w i l l  b e  g i v e n  l a t e r .  

1 .6 .  A t t r i b u t e s  a n d  d e c l a r a t i o n s  f o r  a r i t h m e t i c  d a t a .  

Ey e x a m p l e :  

DCL X REAL FIXED BINARY (15,O) ; 
T h e  v a l u e  o f  X i s  a r e a l  b i n a r y  i n t e g e r .  The  number  o f  d i g i f ?  
is l 5 i 5 t h e  s ca l e  f a c t o r ,  0 .  T h e  r a n g e  o f  t h e  v a r i a b l e  i s  - 2  
t o  + 2  -1, w i t h  a r e s o l u t i o n  o f  1 .  

DCL X REAL FIXED B I N A R Y  ( 1 5 )  ; 
Same a s  a b o v e .  I f  o m i t t e d ,  t h e  s ca l e  f a c t o r  i s  a s s u m e d  t o  b e  0 .  

DCL Y COMPLEX F I X E D  BINARY ( 1 5 )  ; 
Y h a s  , b o t h  a r e a l  a n d  a n  i m a g i n a r y  p a r t ,  e a c h  w i t h  t h e  
p r o p e r t i e s  o f  X ,  a b o v e .  

DCL Z FIXED DECIMAL(S,2) REAL; 
T h e  v a l u e  o f  Z i s  a r e a l  d e c i m a l  n u m b e r  w i t h  two f r a c t i o n a l  
d e c i m a l  d i g i t s  a n d 5  t h r e e  iq t h e  i n t e g r a l  p a r t .  T h e  r a p g e  o f  t$e 
v a r i a b l e  is - ( l o  -1)  ~ 1 0 -  , i . e . ,  - 9 9 9 . 9 9 .  t o  + ( I 0  - 1 ) . 1 0 -  , 
i .e . ,  + 9 9 9 . 9 9 ,  w i t h  a r e s o l u t i o n  of 1 0 -  . 

DCL tl FIXED DECIMAL(2,S) RE9L: 
U h a s  a r a n g e  of - ( I 0  - 1 ) . 1 0 - * ~  t o  + ( 1 @ ' - 1 ) - 1 0 - ~ ,  i . e . ,  - . 0 0 0 9 9  
t o  t . 0 0 0 9 9 ,  w i t h  a k w s u l u b i u n  of l n - 5 .  

DCI. T  REAL DECIMAL FIXED ( 2  5- 5 )  ; 
5 

T h a s  a r a n g e  of - ( I 0  - l ) - l ~ ~  t o  1 - I  1  , 1 . e . .  - 9 9 0 0 0 0 0  t o  
+ Y Y U U U U U ,  w i t h  a r e s o l u t i o n  of 1 9  . 

DCL R REAL FLOAT B I N A R Y  (21)  : 
T h e  v a l u c l  o f  R i s a r e a l  n u m b e r  r e p r e s e n t e d  i n  f l o a t i n g - p o i n t .  
T h e  r a n g e  of t h e  r e p r e s e n t a b l e  v a l u e s  i s  n o t  a p r o p e r t y  of t h i s  
d e c l a r a t i o n ;  i t  i s  a p r o p e r t y  o f  t h e  i m p l e m e n t a t i o n ,  i. e.,  t 'he  
u n d e r l y i n g  h a r d w a r e .  F o r  I B V  36P/370  h a r d w a r e  t h i s  is  
a p p r o x i m a t e l y  - 2 2 5 2  t o  + 2 2 5 2 .  The  r e s o l u t i o n  i s  n o t  u n i f o r m  
o v e r  t h i s  r a n g e .  T h e  a b s o l u t e  v a l u e  of t h e  s m a l l e c t  n o n - z e r o  
n u m b e r  t h a t  c a n  b e  r e p r e s e n t e d  i s  a p p r c x f m a t e l y  2  --7 6 0 . T h e  
p r e c i s i o n  s p e c i f i c a t i o n  of 2 1  d i g i t s  ( b i t s )  m e a n s  t h a t  t h e  most 
s i g n i f i c a n t  2 1  b i t s  ( a n d  m a y h e  m o r e )  o f  t h e  v a l u e  a r e  r e t a i n e d ;  
w h e r e  t h e  d e c i m a l  p o i n t  i s  i n  r e l a t i o n  t c  t h e s e  i s  c a r r i e d  i n  
t h e  i n f o r m a t i o n  c o n t a i n e d  i n  t h e  e x p o n e n t  f i e l d  i n  t h e  h a r d w a r e  
r e a l i z a t i o n  o f  t h e  v a l u e .  



DCL R1 REAL FLOAT BINARY ( 3 1 )  ; 
R1 c a n n o t  b e  . less p r e c i s e  t h a n  R s i n c e  t h e  3 1  m o s t  s i g n i f i c a n t  
b i t s  ( a n d  maybe  more )  a r e  r e t a i n e d .  

DCL S  R E A L  FLOAT DECIMAL ( 6 )  ; 
T h e  v a l u e  o f  S i s  a l s o  a r e a l  n u m b e r  r e p r e s e n t e d  i n  
f l o a t i n g - p o i n t .  On I B M  36@/370 ,  t h e  r a n g e ,  e x p r e s s e d  i n  d e c i m a l  
terms, i s  a p p r o x i m a t e l y  t o  The  a b s o l u t e  v a l u e  o f  
t h e  smallest n o n - z e r o  n u m b e r  t h a t  c a n  b e  r e p r e s e n t e d  i s  
a p p r o x i m a t e l y  1 0 - ~ a .  A t  l e a s t  t h e  6 most s i g n i f i c a n t  d e c i m a l  
d i g i t s  a r e  r e t a i n e d .  

DCL C COMPLEX DECIMAL FZOAT(6);  
T h e  v a l u e  o f  ' C i s  a c o m p l e x  n u m b e r  r e p r e s e n t e d  i n  
f l o a t i n g - p o i n t .  T h e  r e a l  a n d  i m a g i n a r y  parts  e a c h  h a v e  t h e  
p r o p e r t i e s  o f  S ,  a b o v e .  

1 . 7 .  . H a r d w a r e  i m p l e m e n t a t i o n  o f  a r i t h m e t i c  d a t a  

T h e  i n t e n t  o f  P L / I  is t c  f r e e  t h e  p r o q r a m m e r  f r o m  t h e  n e e d  t o  
c o n s i d e r  t h e  h a r d w a r e  r e p r e s e n t a t  i o n s  o f  d a t a .  I d e a l l y ,  p r e c i s i o n s  
s h o u l d  b e  c h o s e n  b a s e d  o n  t h e  r e q u i r e m e n t s  o f  t h e  p r o b l e m .  The  
p r e c i s i o n s  s p e c i f i e d  w i l l  t h e n  h a v e  t h e  same i m p l i c a t i o n s  o n .  t h e  
b e h a v i o r  o f  t h e  d a t a .  o n  a l l  i . m p l e m e n t a t i o n s  ( ~ r o v i d i n g  no ma ximum 
p r e c i s i o n s  a r e  v i o l a t e d ) .  O f t e n ,  h o w e v e r ,  t h e  p r o g r a m m e r  is  
i n t e r e s t e d  i n  e c o n o m y  ( ' s t o r a g e  o r  t i m e )  w i t h  r e s p e c t  t o  o n e  
i m p l e m e n t a t i o n ,  a n d  p r e c i s i o n s  a r e  c h o s e n  b a s e d  o n  k n o w l e d g e  o f  t h e  
a m o u n t  o f  s t o r a g e  w h i c h  t h a t  i m p l i e s  f o r  t h a t  h a r d w a r e .  S u c h  
p r o g r a m s  a r e  s t i l l  p o r t a b l e ,  o f  c o u r s e ,  h u t  t h e  e f f i c i e n c y  
c o n s i d e r a t i o n s  may n o t  m a t c h  t h e  " o t h e r q v  h a r d w a r e  v e r y  we l l .  

F o r  m a c h i n e  e , q u i v a l e n t s  b e t w e e n  FORTPAN a n d  FL/T a r i t h m e t i c  d a t a  
t y p e s ,  see  LRM 7. F o r  a summary  o f  s t o r a g e  r e q u i r e m e n t s ,  see LFM 20. 

1.8. L a n g u a g e  Clef a u l t ~  f o r  a r i t h i ~ ~ e t i c  a t t r i b u t e s  

If a v a r i a b l e  is n o t  d e c l a r e d  e x p l i c i t l y .  o r  c o n t e x t u a l l y ,  i t  a c q u i r e s  
t h e  f o l l o w i n g  a t t r i b u t e s  i m p l i c i t l y .  

F i r s t  l e t t e r  of I d e n t i f i e r  ---- ------ - D s a u l .  ---- t ---------- Attributes 
I- N REAL FIXED B I N A R Y  (151 
O t h e r  REAL FLCAT D E C I M A L  (6) 

I f  some, b u t  n o t  a l l  f o u r ,  o f  t h e  a r i t h m e t i c  a t t r i b u t e s  (mode,  sca le ,  
b a s e ,  p r e c i s i o n )  a r e  e x p l i c i t l y  d e c l a r e d ,  t h e  r e m a i n d e r  are c h o s e n  
f e o m  c o m p l i c a t e d  d e f a u l t s .  T h e  o n l y  o n e  t h a t  may s a f e l y  b e  o m i t t e d  



i s  mode: REAL is  a l w a y s  assumed.,  

~ e 5 a u l t  p r e c i s i o n s  a r e  d e f i n e d  by  t h e  i m p l e m e n t a t i o n ,  p o t  t h e  
l a n g u a g e :  t h e y  may d i f f e r  a m o n g s t  i m p l e m e n t a t i o n s .  

F o r  a l l  t h e  g o r y  d e t a i l s ,  see LRM 8 - LRM 1 2 .  

1 .9 .  I m p l e m e n t a t i o n  maximum p r e c i s i o n s  

See LRN 1 2 .  

1.10. U s e  of a r i t h m e t i c  d a t a  

N e w  a r i t h m e t i c  v a l u e s  are l 9 g e n e r a t e d 1 *  by: 
(a)  R e f e r e n c e  t o  a r i t h m e t i c  c o n s t a n t s .  
(b) I n p u t  o p e r a t i o r i s .  
(c) A r i t h m e t i c  o p e r a t i o n s  o n  o t h e r :  a r i t h m e t i c  v a l u e s .  
(d) C e r t a i n  o p e r a t i o n s  o n  o t h e r  t h i n g s .  

They  a r e  p r o p a g a t e d  by a s s i g . n m e n t .  
They  may b e  u s e d  i n  d i v e r s e  ways,  some o f  w h i c h  a r e :  

(a) A r i t h m e t i c  o p e r a t i o n s .  
(b) C o m p a r i s o n  o p e r a t i o n s  ( L e s s o n  2 ) .  
(c) ~ u t p u t ' o p e r a t i o n s  ( L e s s o n s  7-9) . 
(dl S u b s c r i p t i n g  ( L e s s o n  3 ) .  

1.11. . A r i t h m e t i c  c o n s t a n t s  

A r i t h m e t i c  c o n s t a n t s  d e n b t e ,  hy t h e  way t h e y  are w r i t t c n ,  o b j e c t s  
t h a t  h a v e  ( a l w a y s )  t h e  i l ~ l l i c a t t d  a r i t h m e t i c  valuo 2s well ~ t ;  
i n d i c a t e d  a t t r i b u t e s ,  It is i m p o r t a n t  t o  r e a l i z e  t h a t  a l l  ------- ------- 
a r i t h m ~ t i c  c n n s t a n t s  h a v e  a t t r i b u t e s  o f  mode, b a s e ,  scale,  a n d  
p r e c i s i o n  w.hich a r e  d e t e r m i n e d  by  how t h e  c o n s t a ~ ~ t s :  a r e  written. 

REAL F I X E D  DECIMAL c o n s t a n t s  a r e  c o m p r i s e d  o f  t h e  d e c i m a l  d i g i t s ,  a n  
o p t i o n a l  s i g n ,  a n d  a n  o p t i o n a l  aecimal p o i n k .  The  number o f  d i g i t s  
o f  p r e c i s i o n  is t h e  number  o f  d e c i m a l  d i g i t s  w r i t t e n ;  t h e  s c a l e  
f a c t o r  i s  t h e  number  o f  them which  a r e  t o  t h e  r i g h t  o f  t h e  d e c i m a l  
p o i n t .  Examples :  

C o n s t a n t  ------- ------- P r e c i s i o n  
1 ( 1 , O )  , 



R E A L  F I X E D  B I N A R Y  c o n s t a n t s  a r e  s im i l a r ,  e x c e p t  , t h a t  o n e  u s e s  o n l y  
t h e  b i n a t y  d i g i t s  a n d  fo l lows t h e m  w i t h  a 'B. Examples :  

C o n s t a n t  ------ 
1 B 

101 .11R 
- . 0 1 0 1 8  

P r e c i s i o n  -------- 
( 1 , Q )  

\ 

REAL FLOAT DECIMAL c o n s t a n t s  a r e  w r i t t e n  a s  REAL FIXED DECIMAL 
c o n s t a n t s  f o l l o w e d  b y  a n  E  a n d  a n  o p t i o n a l l y  s i g n e d - e x p o n e n t .  T h e  
n u m b e r  a f  d i g i t s  o f  p r e c i s i o n  is t h e  n u m b e r  o f  d i g i t s  w r i t t e n .  
E x a m p l e s :  

C o n s t a n t  ------ 
1 EO 

1 . 6 4 8 ~ + 2 4  
- . 0 0 S l E - 3 7  

P r e c i s i o n  ------ 
( 1) 

REAL FLOAT BINARY c o n s t a n t s  a r e  s i m i l a r ,  e x c e p t  t h a t  o n l y  t h e  b i n a r y  
d i g i t s  a r e  u s e d  t o .  t h e  l e f t  o f  t h e  e x p o n e n t  a n d  t h e  e x p o n e n t  i s  
f o l l o w e d  b y  a B. T h e  e x p o n e n t  i s  w r i t t e n  w i t h  d e c i m a l  d i g i t s  b u t  i s  
i n t e r p r e t e d  a s  a p o w e r  o f  2. E x a m p l e s :  .. 

C o n s t a n t  ------- 
1EOB 

P r e c i s i o n  ------- 
(11 

T h e r e  a r e  n o  c o m p l e x  c o n s t a n t s  i n  P L / I ,  b u t  t h e r e  a r e  i m a g i ~ a r y  
c o n s t a n t s .  An i m a g i n a r y  c o n s t a n t  i s  a n y  r e a l  c o n s t a n t  f o l l o w e d  b y  
a n  I. E x a m p l e s :  



C o n s t a n t  c o m p l e x  v a l u e s  c a n  b e  w r i t t e n  a s  e x ~ r e s s i o n s ,  a s  i n  t h e  . 
. . 

f o l l o w i n g :  . . 

A r e v i e w  o f  t h i s  m a t e r i a l  c a n  b e  f o u n d  a t  LRM 1 3 .  T h i s  r e f e r e n c e ,  
a s  well  a s  LRM 1 2 ,  c o v e r s  d e f a u l t  a n d  maximum ~ r e c i s i o n s .  . . 

B e  a w a r e  o f  s e v e r a l  d i f f e r e n c e s  f rom FORTRAN: 
(a)  A c o n s t a n t  s u c h  a s  5 d e n o t e s  a b i n a r y  i n t e g e r  i n  FORTRAN 

a n d  a  d e c i m a l  i n t e g e r  i n  P L / I .  However,  i L  is n o t  
n e c e s s a r y  ' t o  wr i te  t h i s  c o n s t , a n t  a s  lOle i n  P L / I  i ' f  t h e  
compilel: can t e l l  t h a t  a b i n a r y  i .n teger  i s  n c e d e g  (which  
it almost a l w a y s  c a n )  ; i t  w i l l  s u b s t i t i r t e  . t h e  e q u i v a l e n t  
b i n a r y  i n t e g e r .  

(b) A d e c i m a l  p o i n t  i s  s i i f f t c i e ~ ~ t  Cu d e n o t e  f l ~ a t i n ~ - ~ o i & t  i..n 
FORTRAN. 5 . 0  i s  a f i x e d - p o i n t  c o n s t a n t  i n  PL/1 ;  it h a s  a  
s c a l e  f a c t o r  o f  1  ( remember ,  f i x e d - ~ o i n t  d a t a  c a n  h a v e  
f r a c t i o n a l  p a r t s )  . P.gain ,  i f  . t h e  c o m p i l e r  c a n  t e l l  t h a t  a  
f l o a t i n g - p o i n t  c o n s t a n t  i s  r e q u i r e d ,  i t  w i l l  s u b s t i t u t e  
t h e  e q u i v a l e n t  ' f l o a t i n g - p o i n t  c o n s t a n t .  

( c )  T o  g e t  a d o u b l e - p r e c i s i o n  f l o a t i n g - p o i n t  c o n s t a n t  you 
m e r e l y  w r i t e  t h e  r e q u i r e d  number  o f  d i g i t s ;  t h e r e  is  n o  D 
e x p o n e n t  c h a r a c t e r  a s  i n  FORTFAR. I f  you  h a v e  w r , i t . t e n  'a' 
s i n g l e -  p r e c i s i o n  f l o a t i n g - p o i n t  c o n ~ t a n t  where  
d o u b l e - p r e c i s i o n  i s  r e q u i r e d ,  t h e  c o m p i l e r  s u b s t i t u t e s  a  
d o u b l e - p r e c i s i o n  c o n s t a n t  o b t a i n e d  by s u p p l y i n g  l o w - o r d e r  
z e r o e s .  T h u s ,  t h e  n e a r e s t  e q u i v a l e n t  t o  FORTRAN's 0.1DQ 
i.s 0 . 1 0 ~ 0 0 0 ~ 0  ( o n  o u r  i m p l e m e n t a t i o n ) .  (The f a c t  t h a t  you 
o n l y  n e e d  7 d i g i t s ,  a n d  n o t  16 ,  t h e  m a x i ~ ~ ~ u r n  for d o u b l e -  

. p r e c i s i o n ,  i s  a  c o n s e q u e n c e  o f  o u r  i m p l e m e n t a t i o n  a n d  n o t  
t h e  l a n g u a g e  r u l e s . )  

Do n o t  become p a r a n o i d . o v e r  t h i s !  I f  y o u  i n i t i a l l y  d o  what  Seems 
n a t u r a l ,  y o u  w i l l  m o s t  o f t e n  b e  r i g h t .  Some k n o w l e d g e  o f ,  a n d  
e x p e r i e n c e  wi . th ,  t h e  p r e c i s i o n  , a n d  c o n v e r s i o n  r1.ll.e~. a s  w e l l  a s  o u r  
c o m p i l e r s .  w i l l  p r e p a r e  y o u  f o r  t h e  f e w  c a s e s  ,where  wha t  seems 
n a t u r a l  is n o t  r i g h t ' .  

1 .12 .  S c a l a r  a r i t h m e t i c  a s s i g n m e n t s  \. 

A s s i g n m e n t  o f  a n  a r i t h m e t i c  v a l u e  t o  a n  a r i t h m e t i c  v a r i a b l e  may 
r e q u i r e  s g n v e r s i o n  o f  t h a t  v a l u e  t o  an " e q u i v a l e n t w  o n e  h a v i n g  the 
a t t r i b u t e s  o f  t h e  t a r g e t .  T h e  c o n v e r s i o n  o c c u r s  a u t o m a t i c a l l y  a n d  
i s  d e t e r m i n e d  b y  c o n v e r s i o n  r u l e s .  



F o r m s  o f  t h e  a s s i q q m g q t  s t a t e m e n t  a re :  
vahiabLe = expxab ion;  
vahiabLe I , . . . , vahiabte,. = e x p k a d i o n ;  

The  l e t t e r  form d e n o t e s  m u l t i p l e  a s s i g n m e n t  cf t h e  v a l u e  o f  t h e  
e x p r e s s i o n  ( w h i c h  i s  o n l y  e v a l u a t e d  o n c e )  t o  e a c h  of t h e  v a r i a b l e s  
( w h i c h  may h a v e  d i f f e r e n t  a t t r i b u t e s )  . S e e  LRM 1 4 .  

1 .13 .  C o n v e r s i o n  r u l e s  f o r  a r i t h m e t i c  a s s i g n m e n t s  

I n  c o n v e r t i n g  REAL t o  COMPLEX, a z e r o  i m a g i n a r y  p a r t  i s  s u p p l i e d .  
G o i n g  t h e  o t h e r  way,  . t h e  i m a g i n a r y  p a r t  i s  j u s t  d r o p p e d .  

O t h e r  c o n v e r s i o n s  a r e  m o r e  o r  less  o b v i o u s :  t h e y  t r y  t o  p r e s e r v e  
t h e  v a l u e  b e i n g  a s s i g n e d ,  i f  p o s s i b l e .  I f  c h a n g e  o f  b a s e  i s  
r e q u i r e d ,  l o w - o r d e r  a c c u r a c y  may h e  l o s t  i n  q c i n g  f r o m  d e c i m a l  t o  
b i n a r y  b e c a u s e  some d e c i m a l  f r a c t i o n s  w i t h  f i n i t e  r e p r e s e n t a t i o n s  d o  
n o t  h a v e  f i n i t e  b i n a r y  r e p r e s e n t a t i o n s .  I n  g e n e r a l ,  w i t h  c h a n g e  o f  
base ,  o n e  d e c i m a l  d i g i t  c o r r e s p o n d s  t o  a b o u t  3 . 3 2  h i n a r y  d i g i t s  
( b i t s ) .  T h e '  c o n s e q u e n c e s  o f  i n s u f f i c i e n t  p r e c i s i o n . i n  t h e  t a r g e t  
d e p e n d  o n  w h e t h e r  t h e  t a r g e t  i s  f l o a t i n g - p o i n t  o r  f i x e d - p o i n t .  I f  
it i s  f l o a t i n g - p o i n t ,  l o w - o r d e r  a c c u r a c y  may h e  l o s t .  E x a m p l e s  o f  
t h i s  s i t u a t i c n  a r e :  

FLOAT DECI HAL ( 1  6 )  t o  FLOAT DECIMAL (6)  . 
'FLOAT DECIMAL ( 1 6 )  t o  FLOAT BINARY ( 2 1 )  . 
FIXED DECIMAL (8 ,  x )  t o  FLOAT DECIVAL (6)  

f o r  a n y  s c a l e  f a c t o r  x. 
FIXED B I N A R Y  ( 3 1 )  t o  FLOAT DECIPAL (6)  . 

T h a t  is, a s  l o n g  as t h e  t a r g e t  is f l o a t i n g - p c i n t ,  t h e  c o n s e q u e n c e s  
o f  i n s u f f i c i e n t  p r e c i s i o n  i n  t h e  t a r g e t  a r e  n c t  i n f l u e n c e d  b y  b a s e  

" o r  s c a l e  c o n v e r s i o n .  I f  t h e  t a r g e t  i s  f i x e d - p o i n t ,  t h e r e  . a r e  t w o  
p o s s i b l e  c o n s e q u e n c e s  ( w h i c h  a l s o  a r e  n o t  influences b y  base  o r  
s c a l e  c o n v e r s i o n ) .  L o s s  o f  l o w - o r d e r  a c c u r a c y  i s  p o s s i b l e  d u e  t o  . 

t h e  l i m i t e d  r e s o l u t i o n  i m p l i e d  b y  t h e  scale f a c t o r  o f  t h e  t a r g e t .  
F o r  i n s t a n c e ,  i n  a s s i g n i n g  t o  a n  i n t e g e r ,  i .e . ,  a f i x e d - p o i n t  
v a r i a b l e  w i t h  a s c a l e  f ac to r  o f  0, a n y  f r a c t i o n a l  p a r t  i s  l o s t ;  t h i s  
is  common i n  FLOAT t o  FIXED ( i n t e g e r )  c c n v e r s i o n s .  A worse 
s i t u a t i o n ~ o c c u r s  when t h e  t a r g e t  d o e s  n o t  h a v e  e n c u g h  h i g h - o r d e r  
d i g i t  p o s i t i o n s  t o  a c c o m m o d a t e  a l ' l  t h e  n o n - z e r o  h i g h - o r d e r  d i g i t s  of 
t h e  v a l u e  b e i n g  a s s i g n e d .  E x a c t l y  w h a t  h a p p e n s  i n  t h i s  c a s e  w i l l  b e  
c o v e r e d  l a t e r  ( L e s s o n  6 ) .  T h i s  s i t u a t i o n  c o u l d  e a s i l y  o c c u r  i n  
FLOAT t o  FIXED c o n v e r s i o n s ,  r e g a r d l e s s  o f  t h e  p r e c i s i o n s  i n v o l v e d , .  
b e c a u s e  o f  t h e  v e r y  l a r g e  v a l u e s  t h a t  c a n  be  r e p r e s e n t e d  i n  
f  1 0 , a t i n g - p o i n t .  

The, a s s i g n m e n t  o f  a c o n s t a n t  t o  a v a r i a b l e '  is c n e  case i n  w h i c h  t h e  



c o m p i l e r  t l c o n v e r t s v  c o n s t a n t s  a t  c o m p i l e  time. 

3 . 1 4 .  A r i t h m e t i c  o p e r a t i o n s  

A s  i n  FORTRAN, t h e y  a r e  p r e f i x  a n d  i n f i x  g g d i t i o n  (+) . a n d  
subtraction (-1 , ---- m u l t i ~ l i c a t i o n  -------- ' (*I , -------- d i v i s i o n  I  a n d  
e x e o n e n t i a t i o n  (**) . -- ---------- 

A few d i f f e r e n c e s  from FORTRAN: 
(a) P r e f i x  + a n d  - h a v e  t h e  h i g h e s t  p r i o r i t y  ( e q u a l  t o  t h a t  o f  

**) i n s t e a d  of t h e  lowest ( e q u a l ;  i n  FORTRAV, t o  t h a t  o f  
i n £  i x  + a n d '  -) . 

E&?!!Q~ ----- I n t e r p r e t a t i o n  - = - - ~  i n :  
FORTR ATJ P r ~ z  

A=- B*C A=- (B*C) A =  (-5) * C  
Az-R-C Am (-D) -C a= (-El) -C 

(b)  A p r e f i x  o p e r a t o r  may f o l l o w  a n o t h e r  o p e r a t o r ,  e . g . ,  t h e  
f o l l o w i n g  a r e  a l l o w e d  i n  PL/T b u t  n o t  FOFTEAN:  

A+-B R*a-R 
A/- B -- B 

( c )  I n  e x p o n e n t i a t i o n  of a c o m p l e x  v a l u e ,  t h e  e x p o n e n t  ( s e c o n d  
o p e r a n d )  may be c o m p l e x .  I n  FOFTRAN it. m u s t  h e  n o t  o n l y  
n o t  c o m p l e x  b u t  a l s o  a n  i n t e g e r .  

( d )  ~ i v i s i o n  o f  f i x e ' d - p o i n t  i n t e g e r s  ( i . e . ,  v a l u e s  w i t h  a  s c a l e  
f a c t o r  o f  0) d o e s  not n e c e s s a r i l y  y i e l d  a n  i n t e g e r ,  a s  i t  
d o e s  i n  FORTRAN. ( S e e  b e l o w . )  T h i s  o f t e n  c a u s e s  p e o p l e  
t r o u b l e .  

1.1 5. C o n v e r s i o n  r u l e s  f o r  a r i t h m e t i c  o p e r a t i o n s  

T h e  two o p e r a n d s  of a n  i n f i x  o p e r a t o r  ( e x c e p t  e x p o n e n t i a t i o n )  m u s t  
h a v e  t h e  same mode,  s c a l e ,  a n d  base.  I f  mcde,  b a s e ,  o r  s c a l e  
d i f f e r s ,  c o n v e r s i o n  o c c u r s  a s  f o l l o w s :  

( a )  I f  t h e  m o d e s  o f  t h e  operands rlicfer, t h e  REAL operand is 
c o n v e r t e d  t o  COMPLEX b y  s u p p l y i n q  a zero i m a g i n a r y  p a r t .  

( b )  I f  t h e  bases  d i f f e r ,  t h e  DECIMAL o p e r a n d  i s  c o n v e r t e d  t o  
BINARY ( i t s  p r e c i s i o n  h e l n g  Increased b y  d L a u t u ~  uf 3.32,  
a p p r o x i m a t e l y ,  b e c a u s e  it w i l l  h a v e  t o  r e p r o s e n t  b i t s  
i n s t e a d  of ?eci.rnal. d i g i t s ) .  Caution: if B i s  F I X E D  
BINARY i n  . l*B,  t h e  FIXFD DPCIMAL c o n s t a n t  .I w i l l  b e  
c o n v e r t e d  ( a t  c o m ~ i l e  t i m e )  t o  a F I X E D  B I N A R Y  c o n s t a n t  
w i t h  a v a l u e  of o n e - s i x t e e n t h ,  n o t  c n e - t e n t h ,  s i n c e  i ts  
p r e c i s i o n  w i l l  be  (5,4). A v a l u e  c l o s e r  t o  o n e - t e n t h  i s  
o b t a i n e d  i f  y o u  w r i t e  . 1 0  o r  .100, etc.  

( c )  I f  t h e  sca les  d i f f e r ,  t h e  F f t E B  o p e r a n d  1s c o n v e r t e d  t o  
FLCAT h a v i n g  t h e  same n u m b e r  o f  d i g i t s .  

By t h e  a b o v e  r u l e s  we w i l l  h a v e  o b t a i n e d  o p e r a n t l s  t h a t  (may) d i f f e r  



i n  p r e c i s i o n  o n l y .  T h e  r e s u l t  w i l l  h a v e  t h e  s a m e  mode,  b a s e ,  a n d  
s c a l e ,  a n d  a p r e c i s i o n  d e f i n e d  b y  , t h e  p r e c i s i o n  r u l e s  f o r  a r i t h m e t i c  
o p e r a t i o ~ s  ( s e e  b e l o w )  . 

F o r  e x p o n e n t i a t i o n ,  see LRN 1 5 .  

T h e  u s e  o f  a c o n s t a n t  a s  a n  a r i t h m e t i c  o p e r a n d  i s  a n c t h e r  c a s e  i n  
w h i c h  t h e  c o m p i l e r  w c o n v e r t s a a  c o n s t a n t s  , a t  c c m ~ i l e  time. 

1.16.  P r e c i s i o n  r u l e s  f o r  a r i t h m e t i c  o p e r a t i o n s  

T h e s e  r ,  l e s  a re  c o n c e r n e d  w i t h  t h e  p r e c i s i o n  o f  t h e  r e s u l t  o f  
a d d i t i o n .  s u b t r a c t i o n ,  m u l t i p l i c a t i o n ,  or  d i v i s i o n ,  when t h e  
o p e r a n d s  h a v e  t h e  same mode, b a s e ,  a n d  scale .  

FLOAT s c a l e  . i s  e a s y :  t h e  p r e c i s i o n  of t h e  resul t  i s  t h e  l a r g e r  o f  
t h o s e  o f  t h e  o p e r a n d s  ( f o r  a l l  t h e  o p e r a t i o n s ) .  P r o m o t i o n  o f  t h e  
l t s h o r t e r "  o p e r a n d  f r o m  . s i n g l e  t o  d o u b l e  p r e c i s i o n ,  o r  , d o u b l e  t o  
e x t e n d e d ,  is d o n e  by s u p p l y i n g  l o w - o r d e r  z e r o e s .  

T h e  f o r m u l a s  f o r  t h e  f i x e d - p o i n t  p r e c i s i o n  r u l e s  seem c o m p l i c a t e d ,  
b u t  t h e y  d e r i v e  from s i m p l e  p r i n c i p l e s .  B a s i c a l l y ,  t h e  g o a l  is t o  
r e t a i n  a s  much p r e c i s i o n  a s  p o s s i b l e ,  b o t h  h i g h - o r d e r  a n d  l o w - o r d e r ,  
w i t h o u t  2 x c e s s  p r ~ c l s i o n .  

117 w h a t  f o l l o w s ,  l e t  t h e  o p e r a n d s  h a v e  p r e c i s i o n s  ( ~ 1 ,  g l )  a n d  
( p 2 , q 2 )  r e s p e c t i v e l y ,  a n d  denote t h e  p r e c i s i o n  o f  the r e s u l t  by  
( ~ , q ) .  F o r  a l l  se ts  o f  i n d i c e s ,  l e t  r = p - q  ( t h e  n u m b e r  o f  d i q i t s  . t o  
t h e  --- l e f t  o f  t h e  d e c i m a l  p o i n t )  - 

A d d i t i o n  a n d  s u b t r a c t i o n :  I f  you were t o  write a p a i r  o f  o p e r a n d s  
o n e  a b o v e  t h e  o t h e r ,  w i t h  d e c i m a l  p o i n t s  a l i g n e d ,  y o u  w o u l d  see t h a t  
n o  p r e c i s i o n  is l o s t  If t h e  number  o f  f r a c t i o n a l  d i g i t s  o f  t h e  
r e s u l t  i s  t h e  g r e a t e r  o f  t h e  n u m b e r s  o f  f r a c t i c n a l  d i g i t s  o f  t h e  
operands (i.e., q = m a x ( q l , q 2 ) )  a n d  i f  t h e  n u m b e r  o f  i n t e g r a l  d i s i t s  
of the r e s u l t  i s  o n e  m o r e  t h a n  t h e  g r e a t e r  o f  t h e  n u m b e r s  o f  
i n t e g r a l  d i g i t s  o f  t h e  . o p e r a n d s  ( t h e  a d d i t i o n a l  d i g i t  a l l o w s  f o r  a 
c a r r y )  ( i . e . ,  r = l + m a x ( r l , r 2 ) ) .  



Example : XX. XXXX 
XXX.XX 

XXXX . XXXX 
Substituting for the r ' sf we get p=l+max (pl-u.,p2-q2)+max(ql ,q2) .  
If this formula yields a value of p in excess 'of'the 
maximum permitted by the implementation, for the given 
base, that maximum is used instead. 

Multiplication: Playing the same game, you see that the 
number of fractional digits of the result needs to be the 
sum of the numbers of fractional digits of the operands, 
and likewise for the integral digits. Example: 

XX . XXXX 
* XXX .XX 
XXXXX.XXXXXX 

However, when you consider what happens in comple'x multi- 
plication, you will see that one more digit is needed on 
the high-order end. Thus, q=ql+q2, r=l+rl+r2. Therefore, 
p=l+pl+p2, subject to the limitation on the implementation 
maximum number of digits. 

Division: This is the weird one.. Clearly, the fractional 
part of the quotient could go on forever. So, to retain 
as much precision as possible.the result must have the 
maximum number of digits. As many as necessary for the 
worst. case are used far the inteqral digits with the rest 
assigned to the. fractional digits (thus determining the 
scale factor). The worst case occurs with a maximum 
dividend'and minimum non-zero divisor, yielding r=rl+q2. 
The final result is p=N (the maximum for the given base) . 
and q=N-((pl-ql)+q2). Notice the consequences of this. 
A/2.  in PL/I may have a fractional part, unlike FORTRAN. 
.(It. will if A is FIXED BINARY(lS), for example.) Further-,, 
more, the fractiona'l part will be exactly represented so 
that A/2*2 will equal A and not A-1 (as it does in FORTRAN 
when 4 i .s  odd). Clearly, you can see that the PL/I rule 
gives a more accurate result than the F O R T W  rule. 

Note that the precision rule for division introduces a ' 

weak implementation dependence into the actual numerical 
results that may be obtained, in fixed-point division, 
although most realistic programs will not be affected by 
it. 

The resultant precision of exponentiation is given at 
LRM 15. 



For additional information, see LRM 16, OTHER 1, and 
OTHER 2. 

1.17. Arithmetic builtin functions 

PL/I has a large set of builtin functions which are akin, 
generally, to the FORTRAN "intrinsic functions." The . 
general treatment of builtin functions is in Lesson 10; 
however, those applicable to arithmetic and mathematics 
are initially covered now. 

The arithmetic builtin functions perform certain basic 
operations or conversions on arithmetic values. -They are 
"generic" in the sense that a wide-variety of attributes 
are permitted for the arguments. The attributes of the 
result are, in many cases, derived from the attributes of 
the arguments. 

Detailed information can be found at LRM 19 and rele&nt 
portions of LRM 18. The funct,ions are listed below, with 
brief indications of their use. See also LN.1 29. 

ABS 

MAX 
Fl IN 
REAL 
INAG 

MOD 
SIGN 
COMPLEX 
CONJG 
FLOOR 

CEIL 

TRUNC 

ROUND 

BINARY, 
DECIMAL , 
FIXED, 
FLOAT 

Absolute value of real quantity; modulus of 
complex quantity. 
Maximum of several real quantities. 
Minimum of several real quantities. 
Real part of complex quantity. 
Imaginary part of a complex quantity (the 
result is real). 
Remainder on division of real quantities. 
Sign of a real quantity (as +1,0, or -1); 
a+bi for real quantities a and b. 
Complex conjugate of a complex quantity. 
Largest integer less than or equal to a real 
quantity (result has same scale as argument). 
Smallest integer greater than or equal to a 
real quantity. 
Truncation of a real quantity to an integer. 
Truncation is towards zero, so TRUNC=FLOOR 
for positive arguments and TRUNC=CEIL for 
negative ones. 
A real value rounded in the specified digit 
position (not useful for floating-point). 

\ ' 

Conversion to the indicated base.or' scale 
with an optionally specified precision.. 
'If not specified, the conversion rules 
determine the precision. Other attrih~i~es 
remain unchanged.. 



PRECISION Conversion to the given precision. Other 
attributes remain unchanged. 

ADD, Operations carried out in the given precision 
MULTIPLY, instead of that determined by the precision 
DIVIDE rules. See LWI 28. 

Note that the DIVIDE builtin function can be used to over- 
come the (weak) dependency of fixed-point division on the 
implementation maximum precision. 

Arithmetic pseudo-variables . 

Some builtin functions .can be used,'with suitably restricted 
arguments, on left-hand side of an assignment statement. 
In that form they are known as pseudo-variables. The 
restrict.i,ons on the argument (or arguments, in some cases) 
guarantee that,some portion of the storage belonging to a' 
variable is being addressed. 

Three of the arithmetic builtin functiorle call also be used 
as pseudo-variables : 

REAL For assignment to the real part (only) of a 
complex variable, e .g. , REAL (5) =1EO; 

IMAG As for REAL, but the ir~~ayinal-y part c .g . , 
IMAG (5)=5E-01; 

COMPLEX For assignment of the real part of a oomplex 
value to one real variable and the imaginary 

. . part to another real. variable, e .q. , 
COMPLEX (X ,Y) =5. 
Note: the proposed ANSI standard does not 
include the COMPLEX pseudo-variable. 

Guidelines on choice of arithmetic attributes 

Use FLOAT when a variable has a very widc range of values, 
and "enough" pree9sion. T 1 1 e ~ e  are no aignifisant d i f f e r -  
ences between FLOAT BINARY and FLOAT DECIMAL i-n our 
irr~ylea~entat i o n  ni-nae both are implemented with the 360/7 0 
"float hexadecimal" hardware. 

There is both binary and decimal fixed-point hardware, 
but binary is generally more "efficient" and is to be 
preferred. Certain uses of arithmetic values, such as 
for subscripting, require binary base (conversion is per- 
formed, if necessary). Operations involving powers of ten 
may indicate the use of decimal base. 



1.20. Mathematical builtin functions 

The following, mathematical builtin functions, some of 
which have counterparts' among the intrinsic functions 
of FORTRAN, are available in PL/I: 

ACOS ERF 
ASIN ERFC 
AT AN EXP 
ATALV D LOG 
ATANH LOG2 
COS LOG10 
COSD SIN 
COSH SIND 

SINH 
SORT 
TAN 
'TAND 
TANH 

All operate on floating-point arguments (conversion is 
'performed, if necessary) and yield floating-point results. 
These functions are generic in the sense that either base 
or mode is allowed for the argument,'the result.having 
the same base and mode; likewise, any precision is 
allowed. (Certain of these require REAL arguments; 
example: ERF.) 

Caution: As of September 19, 1975, the following mathe- 
matical builtin functions are not in the proposed ANSI 
standard for PL/I: ACOS, ASIN, ATAVH, COSH, ERF, ERFC, 
SINH, and TANH. There has been some effort to restore 
them. If they are not restored, they will be available 
in a particular implementation, as an extension, only if 
the vendor sees fit to provide them. 

See LWJI 17 and relevant parts of LN4 18. 

1.21. 'unanswered questions 

We have already posed the question "What happens-when a 
fixed-point assignment target has insufficient, precision 
to receive the high-order non-zero digits of a value being 
assigned?" Other questions to be answered in.Lesson 6 
are : 

What happens when you try to compute a fixed-point value 
that is too "5ig" for the hardware? 

Similarly, for a floating-point value. 

Similarly, for a too-"small" floating-point value. 

What happens when the argument of a mathematical builtin. 
function is "bad"? Example: a real (not, complex) -1 for. 
S QRT . 



1.22. Homework problems 

(#1~) What are the attributes (including precision) of 
the following arithmetic constants? 

1 I 

(#1B) What are the ranges and resolutions of variables 
having khc following st.t.ributes? 

REAL FIXED DECIMAT, (3) 
REAL FIXED DECIMAL (3,2) 
REAL FIXED DECIMAL (3,4 ) 
REAL FIXED DECIMAL (3, -1) 
REAL FIXED BINARY (4) 
REAL FIXED BINARY (4,3) 
REAL FIXED BINARY (4,7) 
REAL FIXED BINARY (4, -2) 

.(#lC) In the following, what are the attributes of the 
constants, as written, and to what attributes 
will they be converted according to the conversion 
rules? What are the values of the converted 
constants? . . 

N+l . (N is FIXED BINARY (15)) 
X+1 (X is FLOAT'BINARY (21) ) 
.5*X 

. . .5 *N 
l.l*N 
5E-1*Y (Y is FLOAT DECIMAL(6) ) 
5E-l*B (53 i s  FLOAT DECIMAL(16) ) 

(#ID) what arithmetic builtin functions could you use in 
a modifiaation of J/2*2, for J FIXED BINARY (15) , 
that would give t ,he  same results as FORTRAN (i.e., 
how can you force the division to behave like 
FORTRAN's integer division)? Write the modified 
expression. Note that there are ~ e v e r a l  po3ai- 
bilities . 



2. String data types; s tr ing . . and logical expressions. 

2.1.  - .Character s tr ing values. 

Character string.values are elementary values l ike arithmetic values 
'(i .  e . , they can be the operands. or  results of certain operations) . 
A character s tr ing value is a sequence of characters. In addition 
to  i ts identity '(the sequence i t se l f )  , a ha rac t e r  s tr ing value has 
another.property: the length of a character s t r ing value is the 
number of characters i n  the sequence. ABC is ' a  character s t r ing 
value of length 3. 

2.2.  B i t  s t r ing values. 

Like character s tr ing values except that the sequence is a sequence 
of 0 or  1 bits.. 1010 is a b i t  s tr ing value of length 4. 

2'. 3. String variables. 

Character (bit) s tr ing variables are variables that can acquire 
character (bit) s tr ihg values. 

When str ing variables are declared, w i t h  the CHARACTER (abbreviation: 
CHAR) or BIT at tr ibute,  the length of the s t r ing values to  be stored 
in the variables must be specified. Examples:' 

E L  C CHAR (20) ; 
E L  J CHAR (5) ; 
DCL Q BIT (1) ; 
DCL F BIT (33) ; 

The maximum length of a str ing value in our implementations is 32767. 

Another at tr ibute applicable to  s t r ing variables w i l l  be given la ter .  

2.4. Use of character s t r ing data. 

New character s tr ing values are "generated" by: 

(a) Reference to  character s t r ing constants., 
(b) Input operatioiis. 
(c) String op.erations on other character s tr ing values. 
(d) Certain operations on other things. 



They are propagated by assignment. 
They may be: used' i n  diverse ways, some of which are: 

(a) String operations. 
(b) Coq'arison operations. 
(c) Output operations. (Lessons 7-9) 

2.5. Character string constants . 
The string value is enclosed in  single quotes. I f . .a  single quote 
is to be a character in  the sequence constituting the string value, 
it must be written twice. Examples,: 

Constant Character string value 
I 1 ABC 
'5  l .t, f i j i s a b l d . )  
'IT1 IS' IT'S 
I I I A I I I  'A' 

A. Long constant which is the.repetition of a shorter constant may .. 

be written with a repetition factor, as iii tke following examples: 

Constant 
(31 'XY1 

'Character string value 
XYXYXY 

2.6. Fixed-length scalar character string assignments. 

The kinds of string variables' described above are teme'd fixed-length 
string variables, because their values always have exactly the length - 
specifi.ed. In Gsigmnent of a character string value to a fixed-' - 
length character s'tring variable, using the a~sigm11eilL statement , the 
character string val& being a.ssj.gned i s  either tnmcated on the right, 
or  ~xtended on the right with bianks , . i f  necessary, to  make it. conform 
tn  t h e  l e n g a  of the target. Example: . . 

. . .  

E L  C €HAR ( 6 ) ;  
C = 'AEu=D1 ; The value of C ~ f t c r  ,assignment i s  t.he 

6 -character sequence ABCB5.  
C = 'ABCDEFG1; Here, it i s  ABCDEF. 

To review, see LRM 21. 



. . 

2.7. Use of b i t  s t r ing data. 

New b i t  s tr ing values are "generated" by: 

(a) Reference to  b i t  s tr ing constants. 
(b) Input operations. 
(c) String operations on other b i t  s t r ing values. 
(d) Logical operations on other b i t  s t r ing values. 
(e) Comparison operations. 
(f) Certain operations on other things. 

They are propagated by assignment. 
They may b e  used' i n  diverse ways, so111e of which are : 

(a) String operations. 
(b) Logical operations. 
(c) Comparison operations. 
(d) Output operations. (Lessons 7-9) 

2.8. B i t  s t r ing constants. 

The str ing value, written with 0's and l l s ,  is  enclosed i n  quotes 
and followed by a B. Repetition factors are allowed. Examples: 

Constant B i t  s t r ing value . 
' 1 ' B  1 
'00110'B 00110 
(2) ' 1 l l 1 B  111111 

2.9. Fixed-length scalar b i t  s tr ing assignments. 

By analogy with fixed-length character s t r ing assignments, a b i t  
s t r ing value being assigned is ei thcr t m e a t e l l  ur extended on 
the 'right, i f  necessary, t o  make it conform to' the length of the 
target. Extension is w i t h  0-bits . Example: 

DCL B BIT (5) ; 
R = (2) ' l l B ;  The value of B a f t e r  assignment is 

the 5-bit sequence 11000. 
B = (2)'11001B; Here, it is 11001. 

To review, see T,RM 22 and LRM 23. 



2.10. Conversions between b i t  s t r ing and character s tr ing.  

This conversion is required, for  example, when a s s i p ~ l e n t  of a b i t  
s t r ing value is made t o  a character s t r ing variable, or when 
assigning a character' s t r ing value t o  a b i t  s t r ing variable. 

Bit-to-character conversion results i n  a str ing of the same 
length w i t h  0-bits becoming the character 0 and 1-bits  becoming 
the character 1. 

Character-ro-bit curlveisiol~ proceeds as above, but in  reverse. 
Only th.e characters 0. and 1 are permitted i n  the character s tr ing 
value being converted. In Lesson 6 we w i l l  see what happens when 
th i s  ru le  is violated, and what the program can do about it: 

2.11, Conversions between s t r ing and arithmetic data. 

. If conversion from s t r ing to  arithmetic is  required, it proceeds I .  

as follows: 

B i t  s t r ing values are interpreted as unsigned binary integers. 

Character s t r ing values must represent valid arithmetic constants 
(possibly surrounded by blanks). The arithmetic constant represented 
by the character s t r ing value w i l l  have a self-denoting mode, base, 
scale, and precisiori.' In a context where the target 'arithmetic 
at tr ibutes are independent (such as i n  assignment), the conversiorl 
occurs (interpretively) according to  the rules o f .  arithmetic conver- 
sions for the specific source arithmetic type represented by the 
character s t r ing value. Hawever, i n  a context where any arithmetic 
at tr ibutes would be permissible (such as. the operand of an arithmetic 
operation), the arithlrlelic coilstant reprcscnted i n  the character 
s t r ing  value is f i r s t  converted to  DECIMAL FIXED (15,0), interpretively; 
tha t  intermediate target may require further conversion, depeilding on 
the operarion and iis other qerand.  

Wen arithmetic v a l ~ ~ e s  are t o  be converted t o  str ing,  the context may 
o r  may not determine whether character strings or b i t  strings result  
(some contexts permit ei ther) .  In this case conversion is to  b i t  
s t r ing i f  the base is binary and character s t r ing i f  it is decimal. 

Conversion from arithmetic to .  b i t  s t r ing proceeds by' obtaining first- . ' . ' 

a binary 'integer from the arithmetic value (ignoring both. the' sign 
and any fractional part) .  The precision of the bi iary integer depends . . 

on the precision of the source. That integer is then considered' t o  
be a b i t  s t r ing value. 



Conversion from arithmetic to  character s tr ing proceeds by obtaining 
an equivalent decimal value (with the same mode and scale and the 
'derived precision). The decimal value is then expressed i n  the form 
of a decimal arithmetic constant of the mode, scale, and derived 
precision, w i t h  leading zeroes' replaced' by .blanks. This constant is 
then embedded in a character s t r ing of a length. determined from the 
precision. 

These rules, especially those for  arithmetic to  character s tr ing,  are 
very complicated (see LRM 16 for  a l l  the detai ls) .  A common case i s  
conversion 01 a fixed-point value with zero scale factor i i .e . ,  a 
binary or  decimal integer value) t o  character. I f  the decimal precision 
of the arithmetic value 5s (p,O), the resulting character. s tr ing w i l l  
have a length of p+3. The arithmetic value w i l l  be assembled'as the 
equivalent decimal constant i n  the law-order (rightmost) p d igi ts  
(with leading zeroes replaced by blanks). The next character to  their  
l e f t  w i l l  e i ther  be a minus sign or  a blank, and the remaining charac- 
ters  w i l l  be blanks. 

The important thing to realize is 'that there are defined conversions 
between a l l  types of arithmetic and str ing data. (This generality can 
be a convenience or the cause of unexpected results.) Both- types are 
often lumped together under a category called problem data because - 

. 

these are the only kinds of data 'that can be manipulated, or  operated- 
upon, i n  expressions; sometimes it seems the name is due t o  the problems 
the conversion rules cause. 

2.12. String operations. 

There is only one, concatenation. The inf ix  operator is [ [ .  .(two 
vert ical  bars). Concatenation may be applied' t o  either b i t  strings 
or character strings, yielding a result  of the same str ing type.' 
(If one operand is b i t  s tr ing,  and the other character s t r ing,  the 
b i t  s t r ing is cuklverted to  'character s tr ing .) 

Concatenation juxtaposes the two s t r ing values, yieldirlg a str ing 
value whose length is the sum of the 'lengths of the operands.. 'Examples: 

DCL A CHAR (3 ) ,  B CHAR (4) ; 
DCL C .BIT (6), D BIT (2)'; . . 

A = 'ABC' ; 
B = "DEFG' ; 
C = '011011'B; 
D ' =  'OO'B; 
DCL AB C I M  (7), CD BIT (8) ; 

. Al3, = A I I B; The value of AB af te r  the assignment is the 
7-character s t r ing ABCDEFG. 

CD = D 1 1 .  C; The value 01 CD 'is the 8-bit s tr ing UUO11011. 

see LRM 26. 



2.13. Logical operations. 

The logical operations - and (6) ,. or ( I ) ,  and - not (-I) operate on b i t  
s t r ing  values and produce a b i t  s t r ing  result.  Strings of any length 
may be used, and the operation proceeds bit-wise on 'the operands. I f  
the operands of 6 or  I are of unequal length, the shorter is extended 
on the right to  the length of the longer, w i t h  0-bits.  Examples: 

Value of f i r s t  operand . Operation Value of second operand Value of result  
011001 G 111100 011000 

Note: 7 is a prefix operator. See LRM 27. 

2.14. Comparison operations 

The comparison operations =, t=, <, , , <=, >=, 7 <, -I> may be applied 
t o  any pair  of operands of "compatible" data type. I f  both operands 
are arithmetic, the comparison is algebraic (only = and I= are allowed 
for  complex operands) . I f  both operands, are . str ing,  the shorter is 
extended on the r ight  t o  the length. of the longer, i f  necessary, using . ' 

0-bits i f  they are b i t  'strings and blanks i f  they are character strings ; 
the comparison then proceeds l e f t  to right i n  the strings using the 
character collating sequence of the hardware for  character strings and 
the obvious comparison rules for  b i t  strings. I f  the operands 'are not 
immediately compatible, conversion occurs according to the rules given 
a t  LRM 24 and LRM 25. 

The result  of a comparison operation (for any type of operand) is a 
one-bit s tr ing whose value is the single b i t  1 i f  the comparison is 
true and 0 i f  it is false.  (See LRM 24.) This definition permits 
comparison operations to  be intennixed w i t h  other logical operations . 

i n  an assignment statenlent. 'l'he most common use of comparison opera- 
tions, however, is i n  the IF statement, as we shal l  see inLesson 6.  
In that  ca.se, the one-bit b i t  s t r ing m y  not actually be generated i n  
st.orage but my be represented i n  the s t a t e  of the "condition' code" 
of the harctware as it- executes comparison ins tnictions and curl& t io i~a l  
branches. 

We have nuw seen a l l  of the operations that  may be used i n  operational 
ressions , i . e . , computational expressions involving problem data. 
i n  FORTRAN, any of the operations and any data types  ray be in ter-  * 

mixed in any expression. For a discussion of the priori ty,  or  prece- 
dence, of operations i n  such mixtures, see LRM 30 and LRM 31.. 



One difference from FORTRAN should be noted: the "not" operator ,(i) 
i n  PL/I has a different position i n  the hierarchy than its counter- 
part ( .NOT. ) . In PL/I it has the highest precedence '(equal t o  that 
of ** and prefix + and -) placing it, i n  particular,  above the com- 
parison operators. In FORTRAN 'it is below the corr@arison operators. 
The PL/I equivalent of .NOT. A . LT.. B is not -t A<B , which means 

A) < B, but -I (A<B) . Of course, this may be written instead as ' .  

A i < B or  A >= B (in FORTRAN it could have been written as A . GE . B 1 . 

2.15. Vaiying-length str ing variables. 

An additional at tr ibute,  VARYING (abbreviation: VAR) , may. be specified 
i n  declarations of character s tr ing and b i t  s tr ing variables. String 
variables which have been declared w i t h  the VARYING at tr ibute are 
called varying-length str ing variables because the str ing values they 
may acquire are not restr icted to  have always the length specified i n  
thei r  declaration. They may acquire any str ing values of the declared 
length or  less (hence, the declared length of a varying-length str ing 
variable is called i ts maximum length)'. 

.; 

2.16. Varying-1ength.scalar character and b i t  s tr ing assignments. 

On assignment of a str ing value t o  a Varying-length str ing variable, 
padding (with blanks or 0-bits) does - not occur (as it does i n  fixed- 
length str ing assignments) i f  the str ing value being assigned i s  of 
shorter length than that declared for  'the target variable; ' the target 
variable receives the str ing value unpadded, and that  is the value 
that w i l l  be used on any subsequent reference t o  the variable. Note, 
however, that i f  a string,value lon e r  than the declared ( i .e . ,  
maximum) length of the 'target varia -f- l e  is assigned, truncation to  
that length occurs on the right,  as irl fixed-length str ing assignments. 
Examples : 

DCL A CHAR (5) , B CHAR (8) ' VAR; 
- 1STRu'; 

B = A; The value of B is now the 5-character s tr ing STRSA. 
B = B I I N ' '  ; Now it is the 7-character s tr ing STRSAND ; 
B = B 1 I A ;  Now it is the 8-character s tr ing STRSANDS . 

2.17. The null  s tr ing value and null s tr ing constant. 

Remember that s tr ing values are sequences of characters or  bi.ts. 
The sequence of 16ngth 0 is allowed; it is called the null  s tr ing 
(note that the null character s tr ing value and the null  bi.t s tr ing 
value have clifferent data types). ' 



The character s t r ing constant representing the null  character s tr ing 
value is written as 1 I .  . The b i t  s tr ing constant representing the null  
b i t  s t r ing value is written' .as tB . Examples ': 

DCL A CHAR (5) , B CHAR (8) VAR; 
B = 1 1 .  , B now has the null  character s tr ing value. 
A = B; The value of A is the 5-character s tr ing %MI%. Why? 
B = A I I , . "  [ [ . A ;  B's value is now the 8-character s tr ing I3bb66bbl5. 

I t  is important t o  note that  VARYING is a property of str ing variables 
. and' not s t r ing values ( i .  e . , not expressions) . A str ing expression 

involving str ing variables, some 'of which may be VARYING, has, for  any 
part icular  evaluation, a value which has a particular length. VARYING 
addresses the fact  that  variables may take on values of 'different 
lengths a t  different times. 

Whereas fixed-length s t r ing variables with declared length n require n 
bytes (or b i t s )  'of storage, varying-length str ing variables with 
declared (maximum) length n require n bytes (or b i ts )  plus two more . 

bytes. Storage is always reserved for  the maximum length of the 
.variable:'s value, and the additional halfword is used to  record the 
length of the variable's current value. There is no legal way i n  
PL/I to  get access to  bytes reserved for  the value of a varying-length 
s t r ing  variable, but not actually part  of ( i  .e. , needed for) i ts  
current value (there are lo ts  of i l l ega l  ways!). I t  is. entirely 
imaginable that  some other implementation of PL/I may use an entirely 
different  representation for varying- length str ing variables. 

For additional infornation, see LRM 32 - LRM 36 (ignoring par[ s ~ J E  
LRM 36 involving things we haven' t covered yet) . 

2.18. String-handling hu i l t in  functions. 

One large group of bui l t in  fmct io~ls  is concerned with str ing handling, 
Certain of these extend, i n  an essential way, the rather meager capa- 
b i l i t i e s  afforded by assignment and concatenation. Others could be 
programmed hy the user (using loops and other things we haven't seen), 
so the i r  existence is properly viewed as a matter of corlvenience and 
efficiency [the l a t t e r  because sf thc t igh t  in-line codc usually 
generated by the compiler). 

F1.1l.l detai ls  are given a t  LRM 37 and LRM 18, but essential features 
are described here. 



The LENGTH bui l t in  function returns the length of the value of the 
string-valued expression which is its. argument.. When i ts argument 
is a Eixed-length str ing var5able , ' the 'result is the variable's 
declared length. In the case of a varying-length. s tr ing variable, 
LENGTH returns the of i ts  current value. Fixan@les : 

DCL U CHAR (10). v&, B BIT (6) VAR; 
DCL I FIXED BINARY;, 
u = 'ABCDE ' ; 
I = LENGTH (u) ; Value of I is 5. 
I = LENGTHOJ 1 1 .  . I . ' ) ; '  Value is 6. 
J3 = '101'B; 
I = LENGTH (B) ; Value is 3. 
B = "B; 
I = LENGTH(B) ; Value i s  0. 

The SUBSTR bui l t in  function is one of the most essential. I t  allows 
you to  select  a contiguous portion ("substring") of a larger str ing.  
One form of SUBSTR is 

SUBSTR(4;trLing- expk, ' m y  exp-  1 an i th -  exp-  2 ) 
Let ~ X n g - e x p k  have a value of leig& n. Let the values of a&L&~$exp- 7 
and akith-expk-2 be i and j respeitively. Then the result  is the ,' 
s t r ing of length j' start ing a t  the i - t h  character (or b i t )  of '~Mng-exph . 
(The f i r s t  character or  b'it of a s tr ing value has position 1.) Con- , 

s t ra ints  on i and j are as follows: 

i must be >= l . and  <= n+l. 
j must be >=' 0 and <= n. 
i + j  must be <= n+l, i n  addition. 

These. constraints guarantee that  the substring l t e s  within the.bounds 
of the str ing i t s e l f  (the case i = n+l, j = 0 is a degenerate, limiting . 

case) . I t  i s  i l l ega l  t o  reference outside the bounds of a str ing using 
SUBSTR . 

Note th.e following identities: 

sUBSTR(~, I, LENGTH(x)) = x f o r a n y x .  
SUBSTR(x, i, 0) = the null  s tr ing fo r  any x and any i 

between 1 and LENGTH(x) + 1. 
SUBSTR(x, 1, 1) is the ' f i r s t  character (or b i t )  of angT x 

whose length is not 0. 
SUBSTRCx, LENGTH(x) , 1) 'is the l a s t  character (or b i t )  

of any such x .  



Examples : 

DCL U CHAR (:lo) VAR, T CHAR (4) VAR; 
U = ,'ABCDEF1 ; 
T = SUBSTR(U, LENGTH (u) , 1) ; value bf T i s  F . 
T = SUBSTR'W, 1 ,. 4) ; Value of T is ABCD . . 
T = SlJBSTR(U I 1.. T; LENGTH(T) - 1, LENGTH(U) - 1) ; 
The above statement has the same effect  as: 
T = SUBSTR('ABCDEFABCD , 3, 5) ; which assigns the 5-character 

s tr ing CDEFA t o  T. 

Another form .of SUBSIX is 
SUBSTR(bRning-expa, ani;th-exptr) 

The substring s t a r t s  a t  the position given by the second argument 
but i n  this' case exterlrls t o  the end 'of the st.ri.ng . Therefore, 

SIJBSWCx, p) = SUBSTR ( X  , . p , LENGTH(x) - p '+ 1) . 
Thus, while SUBSTR(x, 1, 1) p ~ c k s  off the first  character (or bit.) 
of a str ing,  SURSTR(x, 2)  returns everything a f te r  that .  

1 %  

The remaining functions are: 

TRANSLATE 

REPEAT 

HIGH 

LOW 
CHAR 
BIT 
WOL 

S ' r n I N G  
UNSPEC 

Find the location of a pattern i n  a str ing.  
Find the location of the f i r s t  character (or b i t )  
i n  a s t r ing which is not among a s e t  of "acceptable" 
characters (or b i t s ) .  
Map the characters (or b i ts )  of a str ing as 
specified. Useful i n  ter&nal-orien tea  prograrlls 
to  translate input from lower to  upper case. 
Concatenate a s t r ing w i t h  i t s e l f  a given number 
of times. 
Return a s t r ing of the specified length consj qting 
of repetitions of the highest character i n  the 
collating sequence. 
Same for  lowest character. 
Convert t o  character s tr ing.  
Convert tu bit str ing.  
Used t o  ohtain any of the 16 boolean functions of 
two bit -itrings ( e , ~ .  , "implies ," "exclusive or," 
etc.) . 
See Lesson 10. 
See Lesson 1 U .  

In the proposed ANSI standard, the. function of REPEAT is taken over 
by a new'builtin function, COPY. Other new $unctions are: 

BEFORE Return the portion of a str ing before the f i r s t  
occurrence of a specified pattern. 

AFTER Same, but the portion a f te r  its occurrence. 
DECAT Sort of generalized BEFORE and AFTER. 
REVERSE Return 'the reverse of a string. 



SUBSTR, UNSPEC, and STRING can be used as pseudo-variables. UNSPEC 
and STRING w i l l  be described' i n  Lesson 1 0 .  

SUBSTR(sMing-vakiable, U h - e x p h -  1, ahith-ex h-2) , when used as a 
ti target i n  assignment, allows a s t r ing value '( e right-hand side of . 

the assignment statement). to  be assigned t o  the substring of b&g- 
"&able beginning a t  the position given by the value of 4hi;th-exph-1 
and extending for a number of characters (or bits)' given by the 
value of &h-exph-2. The designated substring must be within the 
bounds of the sMing-vakiabte (and i f  that is 'a varying-length s t r ing 
variable, w i t h i n  the bounds implied by its current length)'. The 
SUBSTR pseudo-variable may also he ~rsed. i n  the two-argument form. 
Examples : 

DCL S CHAR (10) VAR; 
S = 'ABCDEF ' ; 
SUBSTR(S, 3, 23 = 'XY1; Value of S is  now the 6-character 

. ' string.ABXYEF. . . 
SUBSTR(S, 5) = ' Z ' ; Now it i s  ABXYZ5'. Why? 

Note that  the SUBSTR pseudo-variable cannot change the length of its 
f i r s t  argument, even when that  is a varying-length s t r ing variable.. 

2.20. Pictured data. 

Pictured data i s  a special form of character s tr ing data. There are 
two varieties,  character pictured data and numeric pictured data. 
Which of these two is specified depends on detai ls  and contents of 
the PICTURE attr ibute used t o  declare pictured data. See LRM 38. 

2 . 2 1 .  Charact.er pi ctured da ta .  

Character pictured data is specified when the picture specification 
given with the PICTURE attr ibute contains a t  l e a s t  one A or X and 

' no other picture characters except A, X ,  and 9. A l l  of this is 
exp1ained.b~ an example, which w i l l  also serve to  show.the use,and . 
meaning of character pictured data. 

DCL CP PICTURE 'AXXX9'; 

In this declaration of the variable CP, the PICI'URE attr ibute is 
used. The keyword PICTURE (abbreviated PIC) is always followed by 
a picture specification, which looks l ike a character s tr ing constant. 
The picture specification here is 'AXXX9'. I t  uses the picture 
characters A, X, and 9. 



This declaration says: 

(a)' CP is stored as a fixed-length character string 
of length 5. 

( b )  I t  may be used' in the' same ways as any character' 
string variable.' Its value is indeed a 5-character 
string . 

.(c) The picture character A says that the f i r s t  
character of the value of CP w i l l  always be an ' 

alphabetic character. 
(d) The picture character 9 says ' that the las t  

character of the value of CP w i l l  always be a 
aunei-ic character or a blank. 

(e) The three picture characters X say-that the 
11uddle (flree dlaiacters of the value sf  CP w i l l  
be any characters (no restrictions) . 

(f) Whenever a va.lue j.s a.sj.gned t o  CP , . it is con- 
verted, i f  necessary, to a character string of 
length 5. The individual characters are then 
checked for conformance to the picture as 
specified above. I t  i s  an error to violate the 
conformance requirements . '. 

See LRM 39 - LRM 42. 

2.22. Numeric pictured data. 

Numeric pictured data is specified when the picture specification 
given with the PICTURE attribute does not contain the picture 
character- A or X. Thcrc arc an incrodiblo number of picture 
characters that may be specified, and we w i l l  not go in to  them 
here. The important things to  note for numeric pictured data are 
as follows: 

(a) Tlle data is stored as a fixed- length character 
whose length i s  a function of the picture 

speci ication (same as character pictured data 
so Tar) . 

(b) When a reference is made t o  a numcric picturod 
variable in  a context where a character string 
value i s requi red, the character string value 
(exactly as stored) i s  used. 

(c) The character string value stored w i l l  always 
be capable of being interpreted as a numeric 
(i .e. ,  arithmetic) value, the interpretation 
( i  . e . ,. the mapping from character representati on 
to  arithmetic value) being carried out according 
to  the picture specification.' 

(d) When a reference i s  made to  a numeric pictured 
variable i n  a context where an arithmetic value 
is required, the arithmetic value is obtained 
from the stored character string value by a 
corlversion that proceeds, as implied above, 
according to  the picture specification. 



(e) In addition t o  directing the mapping from 
character' form to. arithmetic form,' the picture 
specification always implies'certain arithmetic 
attributes'. . These attributes'  are 'the' attributes 
used. for  the arithmetic value bbtained' by, the 
above conversion. The a t t r ibu tes  implied' by 
the picture specification include scale and 
precision; the ,base is always decimal. 

(f) What guarantees that  the character s tr ing value 
stored'wil l  always be capable of being ' inter- 

. preted as a numeric value is the foilwing:  
on assignment of a value t o  a numeric pictured 
variab'le, the value (whether arithmetic or 
string) is converted, i f  necessary, to  an 
arithmetic value having the at tr ibutes implied 
by *e picture specification. The arithmetic 
value is then converted to  character form and 
"edited" (mapped) according to  the picture 
specification (the mapping it implies 'is thus 
bidirectional) . 

As you can see, the picture specification is used i n  quite a few ways. 

One simple example w i l l  i l lus t ra te  the above rules. The numeric 
picture specification '9999', as i n  DCL NP PIC '999g1, means 
the following: 

(a) NP is stored as a fixed-length s t r ing of length 4. 
(b) The arithmetic at tr ibutes 'implied by PIC "9999' are 

REAL FIXED DECIMAL (4, 0). 
. (c) On assignment of any value to  NP, the value is 

converted to  REAL FIXED DECIMAL (4, 0) i f  it 
does not already have those attributes. I t  is 
an error i f  this  conversion cannot occur. That 
would bc the  case, Ior ira.tance, i f  the character 
s tr ing value ABC were being assigned. 

(d) The REAL FIXED DECIMAL (4, 0)' value is then 
converted t o  a 4-character s tr ing and "edited" 
as follows: The character representing the 
leas t  significant d ig i t  w i l l  be aligned on the 
right-hand edge. Any leading blanks are changed 
e'o t l ~ e  d ~ a r i c t e r  0. (The picture character 9 
allows, during this editing process, only the 
dccimal .numeric d luac te rs  0 through 9,  and not 
a blank.) If the .arithmetic value is negative, 
the minus sign w i l l  not appear i n  the edited 
character representation (other numeric picture 
characters can be used for  that) .  For example, 
i f  the arithmetic value is 1 2 ,  it is stored i n  
NP as 0012. Note that  the 'usual coriversion rules 
for  REAL, ' FIXED DECIMAL (4, 0) t o  CHARACTER 
would yield a str ing of length 7 containing,in 
this case, BbMbl.2. 



(e) If NP is referenced in  character'context, the 
value used is the 4-character'string 0012. 

(f) If NP is ,  referenced' in  arithmetic 'context, 
its stored character' value is converted' to.; 
and interpreted' as, REAL FIXED DECIMAL (4', 0) 
having value 1 2 .  . . 

Some of the numeric picture characters specify the insertion of 
particular characters, like commas, periods, dollar signs, etc. , 
into the character form during the editing that occurs on assign- 
ment to  a numeric pictured variable. These characters are part 
of the character' value used in  .character context, but they are 
"edited out," or ignored, when the ar:i.thmetic value is obtained 
for use in arithmetic context. 

Relevant references are LRM 43 - LRM 46 and LRM 16. 

2 . 2 3 .  Guidelines on choice of string attributes. 

Use b i t  strings for logical ( i .e. ,  boolean-valued) data., This 
includes program switches, binary s tate  ("truet1 or "false" , 0011" 
or "off ') variables, etc. A length of. one is most common. . . B i t  
strings of greater length can conveniently represent f ini te  ordered 
se ts  of boolean objects. 

Use character strings to  spruce up your output (page headers, a l l  
sorts of explanatory or descriptive fields, etc.)'. Of course, 
character strings itmially varying - 1e1lg 1.l I)  ale illus t useful , in non- . 
numeric applications such as text processors, compiler's, symbolic 
formula manipulators, etc. 

Because of the editing behavior of numeric pictured' &La, that is 
lllvst useful in  conumircial applications. Simple form?, ~ .uch as the 
editing of leading blanks into leading zeroes'shown earlier', are 
useful elsewhere. 

2.24. Unuwwel~d questions. 

In Lesson 6 we w i l l  answer these questions: 

What happens when an i l legal conversion is attempted ( i  . e . ', 
character t o  arithmetic, where the character value i s  not the 
image of an arithmetic constant; character to  b i t ,  where the 
characters are other than 0 ' s  and l ' s ) ?  



What happens when a character s t r ing value being assigned 
t o  a character' pictured item' does' not conform 'to the 
picture specification? . . 

What happens when the arguments of SUBSTR define a sub- 
str ing outside the bonds of the string? 

2.2 5. Homework problems . 
\ 

(#2A) What values are assigned t o  B in the two assignments 
to B , below? 

DCL B BIT (1) ; 
DCL S W (5) VAR; 
s = ' 6 ' .  
B = LEN~TH(S) = 0;) Note that the second = 
B = . s  = ' 1 .  is a comparison operator. 

What can you co&lude about the 'proper" ( i  .e. , "safe") 
way to  determine whether or  not the value of a varying- 
length str ing variable is the null  s tr ing? 

. a. 

(#2B) What is the value of eacll ,of the following'? 
INDEX('ABCDE1, 'CD') 
INDEX('ABCDE1, 'CF') 
VERIFY('CD1, 'ABCDE') 
VERIFY ('I CF , ABCDE ) 
TRANSLATE('ABCDE1, ' 2 4 ' ,  'BD') 
REPEAT ( '5 ' , 5) 

Read about the.se. bui l t in  functions a t  LRM 18. 

(#2C) Assume you have entered a section of code i n  which' a 
variable S has already been declared as CHAR (100) VAR 
and has already been given a value. Write a section 
of program that  wi 11.' "squeeze out" a l l  the bl;u.lks ill 
.S, leaving the result  in S. Declare as many additional 
variables as necessary. You w i l l  need t o  code a loop. , 

Code your 10.0~ i n  the following way: . 

DO WHILE (expt- 1 ? e x p -  2) ; 

where "?" is a comparison operator, such as =, i= ,, >, etc.  . ' . 
On arriving a t  the DO statement, the iridicated comparison 
is performed. I f  the comparison holds, or is true ,' the 
body of the loop is executed.; on arriving a t  the END s ta te-  
ment, control is  sent,back to  the DO statement where the 
process repeats by doing the comparison again. When the 



comparison is false,  or  doesn't hold, the body of the 
loop is skipped and control passes to. the statement 
af ter '  the' END statement. If you think you need IF  or 
GO TO statements, look them up ; however, by employing 
the proper buil t in.  functions, you should need only 
DECLARE statements,assignment statements, and the DO 
loop construction shown above. 



3. Aggregates . .  . 

3.1. Element variables and aggregate variables. 
. . 

A l l  of the variables we have seen so f a r  have been element variables, 
i . e . ,  scalar variables. An aggregate is a collection (aggregation) 
of related eleme111: variables. An aggregate variable has identity as 
a whole; i n  addition, one may focus-& the constituent elements .' 

There are two kinds of . .  aggregate . variables i n  PL/I: arrays and structures. 

3.2. Arrays. 

Arra s are mt~ltidimensionol ordered collections of elements a l l  having ' 

&e attributes. The collection as a whole has a name. The whole 
may be referred to  by that name or an element may be designated by 
giving its order i n  each dimension. For th is  purpose, a l is t  of subscript 

, ' expressions enclosed in  parentheses is written a f t e r  the variable name 
just as i n  FORTRAN. For example, i f  A is a two-dimensional array having 
5 elements i n  the f i r s t  dimension (numbered, say, 1 through 5) and 3 ih 
the second (numbered 1 through 3 ) ,  then we may refer  to the whole 5x3 
array by the name A; the element a t  the intersection of the 4th "row" 
and 2nd "column1' is designated A (4,Z) . 

There are no restrictions on subscript expressions in  PL/I . They may be 
of arbitrary complexity. The value of a subscript expression is con- 
verted, i f  necessary, to a binary integer of default precision. 

In PL/I, it i s  i l l ega l  to reference outside the bounds of an array. For 
example, . a reference to A (4,4) is i l l ega l .  What happens when th is  is  
attempted i s  deferred to  Lesson 6. 

3.3. The dimension at tr ibute and declarations of arrays. 

The.dimension a t t r ibute  is used i n . a  declaration t o  specify an array. 
The - attr ibute must +ediately follow the variable name, i..e. , it must 
precede other at tr ibutes.  By "other attributes" is meant the data type 
at tr ibutes specifying the common data type of the elements. 

The dimension at tr ibute is written as 
(bound 9 . .  , ~ o u M & ~ )  

where each dun& is ei ther  bound or bound: bound. In the first form, 
bound is taken as the upper4 bound of the dimension, with 1 being assumed 
for the lower bound. In the second form, the two bound's are respectively 
the lower and upper bounds for  the dimension. For now, a bound must be 
specified as a decimal integer corfitant. 



Example4 ; . . 

DCL. A (5) FIXED BIN (20) ; 
A is a one-dimensional array of elements having the 
a t t r ibutes  FIXED BIN (20). The lower and upper bounds 
of the f i r s t  (and only) dimension are 1 and 5. 

DCL B ( - 1 ~ 1 ,  3, 0 2 )  BIT (2); 
B is a three-dimensional array of 2-bit b i t  'strings. 
The lower and upper bounds of the three diniensions 
are, respectively, -1 and 1, 1 and 3, and 0 and 2 
fo r  a t o t a l  .of 27 elements. 

Caution: Thc current implementation limits the bounds and the values 
of subscript expressiolls to  the range -32768 t o  32767. This may be a 
serious res t r ic t ion t o  some. 

There is generally no need t o  be concerned with liow 'arrays are mapped 
i n  storage. However, i n  our implementation, two-dimensional arrays ' 
are  stored "by I-w," i .e : ,  i n  general the right-most subscript is the 
one that  varies most rapidly 'as we proceed :to successive elements i n  
storage. (This is just  the apposite of FORTRAN.) 

In our implementation, the maximum number of dimensions is 15. 

For review, see LHM 47 and LRM 48 (skipping parts of the l a t t e r  that  
don ' t look familiar) . 

3.4. Array assignments . 
.One array can be assigned t o  another. An assignment statement is  an 
array assignment i f  'the target variable is an array. The right-hand 
side need not be merely an array variable; as we w i l l  see shortly', it 
may be an expression. 

In array assignment, the dimensions and bounds of the array, value on. 
the right mist. exactly match those of the target variable. The assign- 
ment 'is carried out by i terat ing over the range of subscript values 
(insome cases the compilermay gemrate a loop, i r i  u,l.lrers i t m y  . 
generate a "ulk move," but the effect  is the same in  ei ther  case). 

3.5. Arrays a s  nperands in  expressions. 

The right-hand side of an array assignment statement may be an array 
Essentially, any of t h e  operands may be arrays (having 

and bounds as the target variable) . The ' array 
assignment is interpreted as  an i terat ion over the (common) bounds ,of 



a l l  the arrays. Scalar operands are also permitted, the value of 
a scalar operand being used i n  each implied iteration. (In fact ,  
the ent i re  right-hand side may be a scalar expression, i n  which 
case i ts  value is assigned' to  a l l  elements of the array target.) 

See LRM 52. 
Examples : 

DCL A (3) FLOAT, 
B (3) FLOAT; 

A(l) = 1 ;  A(2) = 0; A(3) = 1; 
B(1) = 3; B(2) = 4; R(3) = 5; 
DCL C (3) FLOAT; 
C = A + B; The elements of C have values 4,  4, and 6. 
C = 0; A l l  th.e elements of C have value 0. 
C = B + 1;  The elements of C have vafues'4, 5 ,  and 6. - - 
C = C * A; C is now 4, 0, 6. Observe that corresponding 

elements are multiplied, i .e. , matrix mult<plication 
is not used. 

C = C/C (1) ; C is now 1, 0, 6. This statement ' is equivalent to  : 
C(1) = C(l)/C(l); Sets C(1) to  1. 
C (2) = C (2) /C (1) ; Divides by 1 ! 
C(3) =. ~ ( 3 ) / ~ ( 1 )  ; Ditto! 

The ANSI standard w i l l  make this behave a s  
TEMP = C(1); 
c (1) = c (I)/TEMP; 
C(2) = C(Z]/TEMP; 
C(3) =.C(3)/TEMP; 

By the way, the declarations of A and B may be written in ei ther of 
the following ways: 

DCL (A (3) , B (3) ) FLOAT; 
and DCL (A, B) (3) FLOAT; 
(See LRM 49 .) 

Array expressions can appear i n  contexts other than assignment s ta te-  
ments. In a subroutine cal l ,  an actual argument may be an array 
expression, as we w i l l  see. i n  Lesson 5. Certain buil t in f~mctions 
take only array arguments (Lesson 10). 

The bui l t in  functions and pseudo-variables shown so f a r  can be given 
array arguments; they return similarly structured array results ,  the 
operation being performed on an element-by-element basis. Their use 
i n  more complicated array expressions and assignments is consistent. 
with th.i.s . 'For instance, i f  A and B are congruent arrays, A = SIN(B) 
assigns the sine of each element of B to  .the corresponding element of 
A, 'and B = SIN (A)**2 + COS (A) **2 is an expensive way of assigning 1 
to each element of B (the individual elements of A are sined and 
squared, then added t o  the sqila.ses of thei r  cosines). Similarly, if 
Z i s  an array of COMPLEX elements, IMAG(Z) = 0 sets  a l l  of . thei r  
imaginary parts to  0. See LRM 50. 



3 . 6 .  Array cross sections. 

A special notation can be used t o  denote a generalized "slice" through 
an array. The cross section notation A(*,'I) means the Ith column of A. 
This is a one-dhensional array with bounds equal t o  those of A i n  the 
f i r s t  dimension. Another example : ' B (* , 2  ,*) means the plane coincident 
with the 2nd column of B. This is a two-dimensional.array with bounds 
i n  the f i r s t  dimension equal 'to those of B in the f i r s t  dimension and 
bounds in the second equal to  those,of B i n  the third. 

Note that A(*,...,*). denotes the array i t s e l f .  Whenever a reference t o  
an entire array is written, it Is usually gvud documentary practicc t o  

. '  write it as an identi ty cross section, l .e . ,  the whole array. This 
practice w i l l  be followed subsequently i n  these notes. 

The following statement assigns the Ith row' of A t o  the J'th column of B: 
B(",J) = A(I,*).; 

For this statement to be legal, the bounds of A in its second dimension 
must be identical to  the bounds of B in i ts  f i r s t .  

Since arrays are stored by row in PL/I , A(I ,*) occupies contiguous ' I  

storage locations. A(1, *) is said to  be a connected reference. B (* ,J) , 
on the other hand, does not occupy contiguous storage locations.., I t  is 
said to  be an unconnected reference. Only connected references are 
permitted'in certain contexts, as we shall  see la ter .  See LRM 51. 

3 . 7 .  Structures. 

A structure, l ike  an array, is a collection of related data items which 
is assigned a name. Unlike an array, each constituent item also has a 
name, and the constituent items 6 a l l  have different attributes. 

In fact ,  a structure is, i n  general, a hierarchical collection of "things." 
The things riuy be thought of as organized in a "tree." The elements a t  
the ends of the "branches" have ranas a1111 data type attributes. Other 
"nodes" in  the t ree  represent intermediate levels of the hierarchy; they 
lliive names, but not &ta types. 

Consider the following .pictorial  representation of a structure: 



LENGTH WIDTH HEIGHT 

A/ 

PROPERTIES IS SECURE 
., .-.------ 

The base elements of th is  structure, and typical attributes they 
m y  have, are as follows: 

IDENTIFICATION 
BUILDING 
ROOM 
LENGTH 
WIIYrH 
HEIGHT 
WEIGHT 
COLOR 
IS - SECURE 

CHAR (50) VAR 
CHAR (3) 
CHAR (4) 
FLOAT DECIMAL (3) 
FLOAT DECIMAL (3) 
FLOAT DECIMAL (3j 
FLOAT DECIMAL (5) 
CHAR (10) VAR 
BIT (1) 

This entire collection may be referred t o  with the name SAMPLE: 
SAMPLE is called a major ktructure name. Subsets of the collec- 
tion forming subtrees may also be referred to  by thei r  names. viz. 
LOCATION, SIZE, and PROP~RTIES. These are name's of minor sti-uctures . 
Minor stnlc.tures are indeed structures, but they are not independent; 
they belong to a major structure. 

Suppose wc have anotl~er s.tructure, cailed EXPERIMENT. An experiment 
can have a location ( i .e . ,  a building and a room), too, so we might 
l ike  to have a substructure (minor 'structure) of EXPERIMENT cailed 
LOCATION having, i n  turn, the same constituents as the LOCATION in 
SAMPLE. How 'do we distinguish between references to SAMPLE'S 
LOCATION and EXPERIMENT1's LOWTION, i f  we should need to? 
writing a qualified name. The name SAMPLE.LOCATION refers to  t h e  
LOCATION i n  SAMPLE, while WERIMENT.LOCATION refers to  that i n  
EXPERIMENT. Similarly, SAMPLE.LOCATION.ROOM and EXPERIMENT.LOCATION.ROC7M 
distinguish be~weei-I the two element variables called ROOM. 

One need not always write a l l  levels of structure qualification i n  .a 
qualified name. The only requirement is t o  avoid ambiguity. Thus, 
SAMPLE.ROOM and EXPERIMENT.ROCJM are sufficient,  but ROOM alone is' not. 
I f  the above two uses of ROOM were the only ones appearing i n  a program, 
the compiler would t e l l  you that ROOM (unqualified) is ambiguous. 
However, i f  you declared a scalar variable ROOM as well, then ROOM 



unambiguously denotes that  and there w i l l  be no message from the 
compiler. 

I t  is good practice t o  write out qualified names' in f u l l ,  even when 
not necessary. 

Structure declarations. 

A declaration of SAMPLE might look like: 
DCL 1 SAMPLE, 

2 IDENTIFPCATION CHAK (SO) V R ,  
2 LOCATION, 

3 BUILDING CHAR (31, 
3 ROOM CHAR (4), 

2 PROPERTIES, 
3 SIZE, 

4 LENGTH FLOAT DEC (3) ,  
4 WIDTH FLOAT DEC (31, 
4 HEIGHT FLOAT DEC (31, 

3 WEIGHT FLOAT DEC (5) , 
3 COLOR CHAR (10) VAR, 

2 IS SECURE BIT (1) ; 
The numbers in Front of the names are called level numbers. The 
indentation is purely documentary; what is subordinate to  what e lse  
is uniquely determined by the sequence of level numbers. 

Factoring of at tr ibutes can be used here. A part s f  th is  declaration 
could have been written 

3 SIZE, 
4 (LENGTH, WIDTH, HEIGHT) 

FLOAT DEC (3) , 
z described a t  LRM 49. 

For a review of structures so fa r ,  see L W  53. 

3.9. . 'l'he LIKE at tr ibute.  , . 

A convenience feature that  saves writing when similar structures are 
declared is the LIKE attr ibute.  In the declaration of EXPERIMENT, 
one need not write out the detai ls  of the minor structure LOCATION. . . 

I f  it is just l ike the one i n  SAMPLE, one could write . 

DCL 1 E X P E R r n ,  

2 . LOCATION LIKE SAMPLE. LOCATION, , . . . 

- .  . 
9 

. The structuring and at tr ibutes are copied from the declaration of ,WE. 
. . 



Although LIKE is a great convenience, ' it does' have many restr ict ions.  
And certain a t t r ibutes 'are  not copied. Its use is not generally 
recommended, primarily because it tends to  obscure facts .  (That's 
the same reason for  ful ly qualifying a l l  names'.) 

LIKE is further described a t  LRM 54 and LRM 55. 

3.10. Structure mapping. 

Structure base elements are mapped consecutively i n  storage. However, 
since consecutive elements may have differing alignment 'requirements 
(due to  having different at tr ibutes) ,  a small amount of padding, which 
is unused space, may be aliocated between cunskcutive base elements. 
The padding is not accessible t o  the program, and its existence does 
not cause a structure reference to  be an unconnected reference. 

Since alignment requirements are a property of the hardware ( i .e . ,  the . I 

implementation), the amount of padding may vary from one implementation 
to  another. But so does 'the amount 'of storage al,l.ocated to  element 
variables, as we have seen. The only time'this is likely to  be of 
concern to  the programmer is when he is trying t o  figure out record 
lengths for  certain kinds of 1/0 (Lessons 8-'9). A compiler option, 
AG', which is "on" by default i n  our batch compilers and "off" i n  our 
conversational ones, can be used t o  show how each aggregate is mapped. 
The l i s t ing  is part of the compilation l i s t ing.  See CPG 1 and CPG 2 ,  
CI'UG 1, OPG 1 and OPG 2,  and OTUG 1. 

The algorithm our compilers use for  structure mapping is described a t  
LRM 56. 

3.11. ALIGNED and UNALIGNED attributes. 

Reference has beyen made above to  alignment of data. I t  is possible 
t o  t e l l  the compiler not t o  worry about alignment requkrernents during 
mapping or  allocation of data. When so told, it assigns most things 
to  the next available byte boundary (bi t  boundary i n  the case of b i t  
strings) . The main purpose of this is to achieve greater data packing 
i n  aggi-ega~es; it.may also be of use i n  certain 1/0 situations. ' To 
avoid machine errors i n  addressing data which is not known to  be on a 
"natural" bouiidary, the compiler generates extra code to  move i t .  to  or 
from a properly aligned boundary. This can increase program size and 
.execution time, so the feature shouldn't be used indiscriminately. 



Two mutually exclusive at tr ibutes,  ALIGNED and UNALIGNED, select  
these options. These.attributes'may be specif ied 'for  any variable. 
They apply to. every variable,'  and, when' not specified, language 
defaults are taken. All '  of the variables we have talked 'about so 
f a r  are  subject to . ' th is  default, though we have had no reason t o  
concern ourselves w i t h  it yet.  

Basically, the default is UNALIGNED for  s t r ing data and ALIGNED for  
everything else. Alignment of character s tr ing variables is a moot . 

point; they begin on the next available byte boundary i n  ei ther  case 
(fixed- length str ings do, a t  least) . UNALIGNED b i t  s tr ings begin on 
the next. ami.l.ahle b i t  boundary, while ALIGNED b i t  strings begin on 
the next available byte boundary. Because of th is ,  arrays of, say, 
BIT (1) variables w i l l  occupy only one-eightli of the storage under 
the default (UNALIGNED) as . they would were AL1,GNED specified, but 
addressing elements of the array w i l l  be much slower (in general, 
most unaligned b i t  references or  operations are perfolmed by library 
routines ,' while aligned references and operations are done by ' in-  l ine 
LO&). 

The alignment at tr ibutes may be specified a t  any level i n  a structure 
declaration. They apply t o  a l l  of the constituent element variables 
subordinate t o  that  level except those which are subordinate to  an 
intermediate level which also specifies alignment, i n  which case the 
l a t t e r  specification is used. For example, i n  

WL 1 S T R U W  ALIGNED, 
2 A UNALIGNED, 

3 B ALIGNED, 
3 c, 

2 D, 
3 E UNALIW, 
3 F; 

the base elements are B,  C ,  E,  and F. B and E are clearly ALIGNED 
and UNALIGNED, respectively. C is UNALIGNED (inherited from A). F 
is  ALIGNED (inherited from D,  which inherited ALIGNED from STRUCI'URE). 

For reference, see LRM 57 and LKM 58. 

3.12.. Structure assigiments. 

One structure may be assigned to another. The hierarchical structuring 
of the two structures &t match a t  a l l  levels. ( I t  is not sufficient 
t o  have just the same number and types of base elements.) However, 
the names of matching levels of the hierarchy need not match, 11or need 
the at tr ibutes of corresponding base elements match. The assignment 
statement is "expanded" into a sequence of scalar assignment' statements. 



~xarnpie: ' ' 

DCL '1 Sl , '  
. 2  A FIXED BIN, 
2 B , '  

3 C FLOAT DEC, 
3 D a-Wi (5) , 

2 E BIT ( I ) ,  
1 S2, 

2 V FLOAT BIN, 
2 W, 

3 x CI-IAR (81, 
3 Y BIT (20), 

2 Z FIXED DEC; 
S1 = S2; This is equivalent t o  

S1.A = S2.V; 
S1.B.C = S2.W.X; 
S1.B.D = S2.W.Y; 
S1.E = S2.Z; 

In each of these sca lar  assignments, 
different conversions w i l l  occur. 

DCL 1 S3, 
2 A FIXED BIN, 
2 C FLOAT DEC, 
2 . D  CHAR (5), 
2 E BIT (1) : . < ,  

S1. = S3; This is  i l l ega l .  
E L  1 S4. 

2 M FLOAT BIN, 
2 N CHAR (6) VAR; 

S1.B = S4; This s tructure assignment is equivalent t o  
S1.B.C = S4.M: 
S1.B.D = S ~ . N ;  

In other words, a substructure (minor structure) 
is a structure i n  i ts  own r ight .  

3.13. Stnictilres as opcrands i i i  expressions. 

By analogy with array expressions, structure expressions are eqress ions  
whose operands are  congruent structures (congruent in  the sense of 
s tructure assignments') . Using, the declarations o f  the previous section, 
one could write S1 = S1 - SZ, f o r  instance. This i s  equivalent t o  

S1.A = S1.A - S2.V; 
S1.B.C = S1.B.C - S2.W.X; 
S1.B.D = Sl.B..D - S2.W.Y; 
S1.E = S1.E - 52.2; 

Also, S4 = 0 is equivalent t o  
S4.M = 0; 
S4.N = 0; 

and S4 = 3 * S2.W is equivalent t o  . 

S4.M = 3 * S2.W.X; . , 

S4.N = 3 * S2.W.Y; 



Structure expressions may also be actual arguments i n  subroutine 
ca l l s  (Lesson 5). The bui l t in  functions described so f a r  cannot, 
however, take structure arguments . - 

See LRM 59. 

3.14. Structures of arrays .and arrays of structures. 

The two kinds of aggregation can be compounded. The following 
is an example of a structure of arrays, i .e., a structure with 
some arrays a t  the deepest level., 

DCL 1 T1, 
2 A (10) FLOAT, 
2 B, 

3-C (-1:3) CHAR (6) VAR, 
3 D (2,4) BIT (7) ALIGNED; 

. A  structure of arrays such as  
. DCL 1 '1'2, 

2 B (31, 
2 c (4) ; 

is  mapped i n  storage as follows: 

An 'example of an array of structures is: 
DCL 1 '1'3 (41 . 

An array of-st*ctures ca i  be thought of as a stnlct.11re , w i t h  the 
dimension at tr ibute ur. (~liat is ,  of course, the same thing) an 
array whose co~nponents are not element vari.ables but s'tructures . 
T.3 is  mapped, and its components; named, as shown beluw. 

. . .  . . . . . . .  



A reference to T3.U (i.e. ,  T3(*)..U) is a l l d d .   his designates 
the one-dimensional array whose four elements are T3(1) .U, T3(2) .U, 
T3(3).U, and T3(4).U. Note that  th is  i s  another example of uncon- 
nected storage. There are,'however, some apparently poorly docu- 
mented restrictions on the use of cross sections of arrays of 
structures . 

Since T3.U is an array, as described above, you might ask whether 
it is p o s s i ~ e  to  write T3.U(1), T3.U(2), T3.U(3)', T3.U(4) instead 
of T3(1) .U, etc: The answer is yes, and they mean the same thing. 
This seems to be an ill-advised f lexibi l i ty  becauke it tends t o  
obscure the real structure of T3 (again: when things "ain ' t  what 
they seem," i t ' s  bad). 

Compounding of aggregation can be carried t o  ridiculous, seldom 
needed, extremes', as i n  

DCL 1 T5 (5) , 
2 A (31, , 

3 B, 
3 c ,  
3 D. (31, 

2 E,  
3 F, 
3 G (8) ; 

for  which TS(3) .A(l) .D(2) is a legal reference, and the same as 
T5.A.D(3,1,2). 

See LRM 60 and LRM 61. 

3.15. BY NAME assignment. 

Another type of structure assignment, BY NAME assignment, is  obtained 
by adding the BY NAME option 'to an assignment statement, as in 
watLiabCe = exptreba.ion, BY NAME ; The structure o~erands i n  a BY NAME 
assignment statement need not be congruent, as i.; a regular structure 
ass'ignment. Basically, the statement is expanded into a sequence 
(ultimately) of scalar assignment statements, with the expansion 

. proceeding deeper and deeper. in the structure only as long as a l l  
structure operands. have items w i t h  the same names a t  the level being 
considered. For example: 

DCL 1 A, . 

2 B, 
3 c, 
3 D, 

2 E,  
3 F, 

4 G ,  
4 H, 

2 1, 
3 J, 
3 K; 

DCL 1 M, : DCL 1 U , ,  
2 I ,  . . 2 E ,  

3 K,  3 F, 
3 J, : 4 G ,  

2 F, j 2 T ,  
3 G ,  i 3' J ,  
3 H, ! 3 .  2 B,  

. . 
2 B, 3 C ,  

3 Q 9 .  3 Z; 
3 C ,  ; 

2 E, 
i 3 G; : 

I 
. - 8  



A = M * U, BY NAME; is expanded as follows: 
A.B = M.B * U.B, BY NAME; (1) 

(2) A.E = M.E * U.E, BY NAME; 
(1) is  further expanded to  

A.B.C = M.B.C * U.B.C; (3) 
(2) is further expanded into nothing, since while both A.E and U .E 
have.a component called F, M.E does not. Thus, the original s ta te-  
ment , is equivalent t o  (3) . 

See LRM 62 and those parts of LRM 63 that  look familiar. 

3.16. Equivalencing of data. 

PL/I provides f ac i l i t i e s  comparable to  FORTRAN's EQUIVALENCE sta te-  
' 

ment for  equivalencing data. Before proceedhg to  specifics, we 
should take a good lobk a t  some very mportarit ,fimiLunental differellces 
i n  the concept between the two languages. 

The FORTRAN EQUIVALENCE statement is provided to  allow storage to  be 
shared amongst several variables. In standard FORTRAN the ' k e r  is 
not supposed to  rely on two equivalenced variables always having the 
same values by vir tue of occupying the same storage. Some optimizing 
compilers, i n  fact ,  may omit store .instructions 'in certain cirnrm- 
stances, actually destroying value-equivalence between storage- 
equivalenced variables. Because it need not guarantee value-equivalence , 
FORTRAN permits equivalenced variables to  have different data types. 

The PL/I DEFINED at t r ibute  allows several variables t o  share the same 
storage. >'ln--this.  ease, rhe language gki~iuitees value -equivalcncc , . 
i . e .', the equivalenced variabies become fully interchangeable. 
Because of th is ,  PL/I does - not permit variables having different data 
types to be equivalenced. This i s  an important point t o  understand 
because it makes the PL/I analogs of several common FORTRAN construc- 
tions i l legal .  Other facilitiks are provided i n  PL/I fo r  loolting a t  
storage i n  different ways - -legally, less conveniently, and by rules 
that  are inevitably implementation-dependent (Lesson 10). 

Because 'PL/I guarantees value-equi'valence as well as storage-eyuivulexlce, 
the use of the DEFINED attr ibute can inhibit  certain optimizations that.  ; 
might otherwise occur. . . 

There are three different types of defining ( i  .e., equivalencing) in 
PL/I , depending on what .else is written with the DEFINED attr ibute.  
Each serves a unique purpose. You w i l l  see that defining is actually 
much more powerful than FORTRAN equivalencing. 



3.17. Simple defining. 

Simple defining merely allows storage belonging to  one variable t o  
be referred to by another name. However. several f l ex ib i l i t i e s  are 
permitted' ~ impie  defining is i l lustratkd by several exagles .  

DCL A FLOAT BIN (21) ; 
DCL B FLQAT BIN (21) DEFINED (A) ; 
B is "defined on" A. Note that  the data type 
at tr ibutes '  of A are repeated i n  the declaration 
of B. A and B are variableswith the same 
location and value (recall Lesson 1) but 
different names. 

DCL C (0 : 9) FIXED DEC (5) ; 
DCL D FIXED DEC (5) DEFINED (C (1+3*J)) ; 
The defined variable is  D. The base- variable, 
i .e . .  the variable on which it is defined. is  
an eiement of the array C. Both defined ' 
variable and base variable are thus scalars. 
The element of C to  which U corresponds is 
determined dynamically; on each reference t o  
D, .I+3*J is evaluated to  determine the proper 
element of C. 

DCL E (10,lO) FLOAT; 
DCL F (10,lO) FLOAT DEFINED (E) ; 
This nee& no comment. Note, however, that  the 
dimension at tr ibute for  F may not have been 
written as (loo), because defined arrays must 
have the same dimensionality as thei r  base 
array. One of the other kinds of defining 
permits "remapping" of arrays. 

DCL G (2:6, 3:8) FLOAT DEFINED (E); 
Though the dimensionality of defined and base 
item mt be. identical,  the extent of a dimen- 
sion of the defined variable may be less than 
the extent- of the corresponding dimension of the 

' 

base array ( i t  cannot be greater). A reference 
to  C ( i , j )  is identical t o  a reference t o  E ( i , j ) .  
A reference t o  G (1,s) is i l l ega l ,  even though E 
has a (1,s) element, because G doesn't. Note 
that G is an unconnected array, although E is 
connected. 



DCL H (10) FLOAT DEFINED (E (* , I )  ) ; 
The base array is the Ith column of E,  which 
is an array of one dimension w i t h  bounds 
(1: lO) H has identical structuring and is, 
i n  fact ,  synonymous with the I t h  column of E. 
A rezerence t o  H(i) is the same as a reference, 
t o  E(i,  I ) .  

, <;. 

3.18. ISUB defining. 

ISUB defining allows an array (the base array), or part  of an array, 
t o  be addressed through another array (the defined array). The 
dimensions may d i f fe r  because, i n  fact ,  an arbitrary mapping from 
elements of the defined array to  elements of the base array is 
specified. ISUB defining is also best explained with examples. 

DCL A (4) CHAR (1) ; 
DCL B (3) CHAR (1) DEFINED (A (1SUl3+1) ) ; , 

In the subscript l i s t  f o r  the base array, the "1SUBW 
is a funny kind of variable; it stands for  the value 
of the 1st subscript expression i n  any reference to  
the defined array. That is, B(K) is .the same as 
A (K+l) . : Pictorial ly,  

DCL C (2,3)' BIT (3) UNALIGNED; 
DCL D (6) BIT' (3) UNIU, , . 

DEF (C((lSUB+2)/3,MOD(ISUB-1,3)+1)) ; 
Note the abbreviations. D is mapped into C as shown below. 

E L  E (lo, lo) FLOAT; 
BCL F (2,2) FLUAI' UEE E(I+lSUB-1,1+2SUB-1); 
N6te thar the purcnt9lct;ct; s u i ~ ~ l u i c l i f i g  tile base variable 'may 
be omitted. F is' a 2 x 2 submatrix of E, whose upper l e f t -  
hand element (F (1,l) ) is  coincident w i t h  E ( I ,  I )  . I r m . t  
have a value between 1 and 9 for  a reference t o  F (*, *) , 

' i . e . ,  the whole array F ,  t o  be legal. 



DCL G (6) BIT (1) ALIGNED; 
DCL H (2,3) BIT (1) ALIGNED 

. . 
DEF G (10 - 3* SUB-- SUB)) ; 

. . . . . . . . . . . . .  

DCL I (2,3) BIT (1) ALIGNED DEF (G (1SUB)) ; 
.Note that although I has two dimensions, the subscript 
l is t  for  the base variable does not use 2SUB. Thus, 
I (1,l) , I .(I, 2) , and I (1,3) are a.11 synonymous w i t h  
G(1), and I(2,1), I(2,2),  1 ( 2 , 3 c r e  - a l l  synonymous 
w i t h  G (2) . Is I connected? Actually, because isub- 
defined variables can have.non-linear subscripting 
functions, tfie concept is inapp1.i.cabl.e. Since they 
cannot always be determined t o  be connected, they 
may not be used where unconnected variables are pro- 
hibited (as we shal l .  see later)  . 

G ( 1  
H(2),3) 

3.19. String overlay defining . -.  

. . 

String overlay.definillg alluws strings, or aggregates of s tr ings,  
to  be overlayed on other element or aggregate str ing variables of 
the same str ing type (i .e.  ? character or  b i t ) .  If the base 
variable is  an aggregate, it must be connected and unaligned. 
This guarantees 'that consecutive elements of the'base variable 
w i l i  be mapped consecutively. Therefore, the defined variable, 
which w i l l  also have contiguous elements because it, too, may not 
be aligned, need not have the same structuring as the base variable. 
-'les follow. 

G (2 
H(212) 

DCL A CHAR. (10) ; 
DCL B (10) CHAR (1) DEFINED (A) ; 
The i t.h element of B, which is a CHAR (11 item, is 
synonymous w i t h  the ith character of A, , i .e . ,  
B(i) = SUBSTR(A,i,l). 

DCL C CHAR (10) ; 
DCL D (5) CHAR (2) DEF C ; 
D(i) is equivalent t o  SUBSTR(C,2*i.-l,2). 

G 3 
Ht211) 

G(4) 
H(1,3) 

G ( 5 )  
H(1,2) 

ti (b) 
H(1,l 



DCL 1 S, 
2 A BIT (1) , 
2 B, 

3 C BIT (2), 
3 D BIT (2) ; 

DCL 1 T DEF S, 
2 u, 

3 V BIT (2), 
3 W BIT (2), 

2 X BIT (1) ; 

DCL E CHAR (8) ; 
DCL F CHAR (6) DEF (E) POSITION (3) ; 
The POSITION attr ibute may be used i n  str ing 
overlay defining t o  denote the o f f s e t  of ,the 
f i r s t  character (or b i t )  of the .defined item 
from the f i r s t  character (or b i t )  of the base 
item. . I f  it is omitted,, POSITION (1) is 
assumed (no offset) .  F is the l a s t  s i x  
characters of E. 

DCL F CHAR (6) DEF (E) POS (1+1)'; 
'l'he YUSl'l ' iON a t  tribute (note t h e  abbrevia Liuli) 
may contain an expression. I must have a 
value bcfiln?r.n n n.nd.'2j ot.honiise a reference 
to  F would yield equivalent reference t o  E 
outside of i ts  bounds, i .e . ,  F is the same as 
SUBSTR(E, I+1,6). 

3.20. Determination of type of defining. 

If isub variables are iised, fs& definirig is irl e I I e ~ t .  I T  tile ' , 

POSITION at t r ibute  is used, s tr ing overlay defining is i n  effect .  
Otl~erwisc, e i ther  simplc dcfining o r  s t r ing overiay defining i s  
i n  effect,  depending on whether or not the at tr ibutes of the 
defined item match those of the base item ( i f  they don't, they 
must sa t is fy  the constraints for  s tr ing overlay defining, of 
course) . These rules are summarized a t  LRM 64 and LRM 65. 

' Defining i n  general is summarized and complctcly described a t  
LRM 66 and LRM 67, respectively. 



3.21. Homework problems. 
. . 

(#a) Consider the following declarations, which may legally 
appear together. 

DCL 1 A, ' 

2 B, 
3 C ,  
3 A, 

2 'D, 
3 C,  

. . 
4 A, 

3 E,  
2 A; 

DCL 1 D, 
2 c ,  " 

2 , F , .  . .  

3 G , ,  
4 A; 

To what does each of the following references refer? 
Which are ambiguous? For those 'that are ambiguous, 
which items. could they refer  to, and how would you 
write unambiguous references to those items? 

A 
A. C 
A.C.A 
A. A 

. . 

. . 
D 
D.C 
D. A (tricky) 

Try to  s ta te  a ni le  for  determining whether a reference 
is ambiguous or  not (difficult) . 

(# 3B) Consider the declarations 
DCL 1 S (3), 

2 u, 
2 v; 

DCL 1 T, 
2 w (31, 
2 X (3 ) ;  

Is  S.U = T.W legal? If so, what does it mean? If not, 
why not? Answer the same questions for  the assignment 
S = T. 



(#X) Consider the declarations 

.. . 
DCL 1 A, 

2 B ,  
2 C,  ' 

3 D ,  
3 5 
4 F, 

5. G; 
DCL 1 M, 

2 c,  . . 

3 N, 
4 D, . . 

, . . . ,  5 C, 
2 X; . , 

Determine the expansion of 
A = M, BY NAME; 

(#3D) Let A be a 10 x 10 array. Write a single assif lent  
statement t ha t -w i l l  assign 0 t o  a l l  the elements of 
A. Write a single assigrlment statement that w i l l .  
assign 1 t o  the diagonal elements (only) of A. 
Hint: figure out how to  use isub defining t o  
declare a one-dimensional array synonymous w i t h  the 
diagonal of A. Show the declaration. . . 

. . 

. . 
(#.3E) Let U be a 3 x 3 array. Show how you can use isub 

defining to  declare an array V which is synonymoui 
with the transpose of U. 

(#3F) Let A have the at tr ibutes CHAR (10). Show how you 
can reverse the value of A (leaving the result  i n  A) 
using only assignment statements. You w i l l  need to  
declare some auxiliary variables using isub defining 
and str ing overlay defining. Note that the base 
variablo i n  a DEFINE) at tr ibute may not be declared 
with the DEFTNET) a t t r i h l ~ t e ,  i . e., you can't define 
X on Y and Y on Z .  



4 .  Bloclc s t r u c t u r e  and scope  of  names. 

4 . 1 .  E x t e r n a l  p r o c e d u r e s .  

A PL/I e x t e r n a l  p r o c e d u r e  i s  a.  s e g m e n t . o f  a  program t h a t  
nay  b e  s e p a r a t e l y  compi led .  I t  i s  e n t i r e l y  ana loqous  t o  a  
FORTRAN "program- un i t :  " A FORTRAN program- c o n s i s t s  of  one 
program u n i t  which i s  a  "main program" and p o s s i b l y  o t h e r  
program u n i t s  which a r e  "subprograms."  I n  t h e  same way, 
a  PL/I program c o n s i s t s  of  one e x t e r n a l  p r o c e d u r e  which .is. 
a  "main p r o c e d u r e "  and p o s s i b l y  o t h e r  e x t e r n a l  p r o c e d u r e s .  
I n  FORTRAN, subprograms ( o t h e r  t h a n  BLOCK DATA subprograms) 
r e p r e s e n t  common sequences  o f  code  t h a t  need t o  be e x e c u t e d  
l o g i c a l l y  ak  s e v e r a l  d i f f e r e n t  p o i n t s  i n  t h e  o v e r a l l  program. 
By packag ing  them s e p a r a t e l y ,  t h e y  need o n l y  be w r i t t e n  
once .  C o n t r o l  can  be  t r a n s f e r r e d  t o  them from e a c h  p o i n t  
a t  which t h e y  a r e  needed.  The e x t e r n a l  p r o c e d u r e s  o f  a  
PL/I program, o t h e r  t h a n  t h e  main p r o c e d u r e ,  s e r v e  t h e  same 
purpose .  

A s  i n  t h e i r  FORTRAN a n a l o g s ,  e x t e r n a l  p r o c e d u r e s  can  e i t h e r  
b e  e x e c u t e d  f o r  t h e i r  e f f e c t  o r  f o r  t h e i r  r e t u r n e d  v a l u e .  
T h i s  u s e  c o r r e s p o n d s  t o  t h e  two k i n d s  of  e x e c u t a b l e  FORTRAN 
subprograin, s u b r o u t i n e  subprogram and f u n c t i o n  subprogr'am. 
A s  i n  FORTRAN, when t h e y  a r e  e x e c u t e d  f o r  t h e i r  e f f e c t  t h e y  
a r e  invoked by a  CALL s t a t e m e n t ,  and.'when t h e y  a r e  e x e c u t e d  
f o r  t h e i r  r e t u r n e d  v a l u e  t h e y  a r e  invoked by a  " f u n c t i o n  
r e f e r e n c e "  i n  a n  e x p r e s s i o n .  The dynamic a s p e c t s  of PL/I 
, p r o c e d u r e s  w i l l  b e  covered  i n  Lesson 5 .  

A PL/T e x t e r n a l  ~ r o c e d u r e  s t a r t s  w i t h  a  PROCEDURE s t a t e m e n t '  
and e n d s  w i t h   END s t a t e m e n t .  I n  between comes t h e  body 
of  t h e  p r o c e d u r e ,  i . e . ,  e x e c u t a b l e  and d e c l a r a t i v e  s t a t e -  
ments .  - T h e  minimum c o n t e n t  of  a  PROCEDURE s t a t e m e n t  i s  a n  
e n t r y  l a b e l  ( i . e . ,  a  p r o c e d u r e  name) ,  a  c o l o n ,  t h e  keyword 
PROCEDURE ( a b b r e v i a t i o n :  PROC) , a n d ,  of  c o u r s e ,  a  semico lon .  
Example : 

MYPROG: PROC; 

L o t s  of  o t h e r  t h i n g s  c a n  be  hung o n t o  a PROCEDURE s t a t e m e n t .  
I f  t h e  p r o c e d u r e  i s  t o  be  invoked w i t h  some a rguments ,  a  
p a r a m e t e r  l i s t  must immedia te ly  f o l l o w  t h e  PROCEDURE keyword. 
( W e  w i l l  s a v e  arguments  and p a r a m e t e r s  f o r  Lesson 5 . )  
S e v e r a l  o t h e r  o p t i o n s  may t o l l o w  it ( o r  t h e  PROCEDURE keyword, 
i f  t h e r e  i s  no p a r a m e t e r  l i s t ) . .  The RETURNS o p t i o n  i n d i c a t e s  



that the procedure will return a value and must be invoked 
as a function reference; thus, a PROCEDURE statement with 
the RETURNS option is the equivalent of a FORTRAN FUNCTION 
statement. If the RETURNS option is .omitted, the procedure 
will not return a value back to the point of invocation and 
must therefore be invoked by a CALL.statement. Thus, a 
PROCEDURE statement without the RETURNS option is akin to a 
FORTRAN SUBROUTINE statement. 

Another option is the OPTIONS option. This is the keyword 
OPTIONS followed by a.parenthesized list of keywords for 
options. The function of the OPTIONS option is to provide 
a language-defined (i.e., standardizable) way 05 supplying 
implementation-defined options to your particular system. 
(Thus, exactly what can. appear inside the parentheses, and 
the meaning of what appears there, is implementation-defined, 
not language-defined.) One of the options that can be used 
in our system is MAIN. It designates that the external 
procedure is a main procedure. Example: 

MYPROG : PROC OPTIONS (MAIN) ; 

N0t.e that a FORTRAN main program does not start with any 
particular kind of statement; the absence of a FUNCTION or 
SUBROUTINE statment as the first statement implies the 
program unit is a,main proqram. In PL/I, one and only one 
of the external procedures of a program can have, and must 
have, UP'YIUNS (MAIN). 

Other items that can appear on a PROCEDURE statement will 
be introduced at relevant places. 

We will catch up with references for thel.above material a 
little later. 

4.2. Internal procedures. 

An internal procedure is a procedure nested inside another 
procedure. Internal procedures may bgnested inside external 
procedures or other internal procedures. A procedure nested 
inside another procedure (the "containing procedure") has 
its matching PROCEDURE and END statements, and the body of 
code between them, contained within the body of code 
delimited by the containing procedure's matching PROCEDURE 



and END statements. Example: 

MAIN : PROC OPTIONS (MAIN) ; 

SUBR: PROC; 

.. 
m u ;  /* OF PROCEDURE 'SUBR'*/ 

END; / *  OF PROCEDURE 'MAIN' */ 

Like an external procedure, an internal procedure is used 
to package common code that needs to be executed at many 
places (within the containing procedure). Like an external 
procedure, it may be invoked for its effect, with a CALL 
statement, or invoked for its returned value, via a function . . 
reference in an expression. (The one shown above, because 
it does not use the RETURNS option, presumably is invoked by - 
CALL.) An internal procedure may not be a main procedure. 

Internal procedures can be used in simple ways analogous to 
FORTRAN "arithmetic statement functions." However, they 
are far more general and their generality has no counterpart 
in FORTRAN. Differences between internal procedures and 
arithmetic statement functions may'be summarized (at least 
partly) as follows: 

(a) Internal procedures may be invoked by a CALL statement 
or a function reference. An ASF is only invoked by a 
func . t i u r r  ref ererice. 

(b) In either case, they may or may not take arguments. 
An ASF (like all FORTRAN functions) must take at least 
one argument. 

(c) They may embody arbitrary code, using arbitrary logic. 
An ASE' is restricted to a single expression. 

(d) They may invoke themselves recursively. 
(e) They need not be placed, in their containing procedure, 

ahead of executable statements or after declarations. 

. An overview of procedures (going a little beyond the above 
material) is at LRM 68 and.Lm4 69. 



4.3. Scope of a declaration. 

We saw in Lesson 1 that a declaration associates a name and 
some attributes with a variable. We will soon see that 
declarations can associate names and attributes with certain 
kinds of constants, too, called named constants. So we will 
just be general and say that declarations associate names 
and attributes with objects. And when we say "declare a 
name..." we mean "declare an object named...". 

A DECLARE statement, i.e., an explicit declaration, is'said 
to belon to the procedure in whose body it.appears (or "to 
whic T+ ~t 1 s  internalii) . Note that if .a-procedure named 
INNER is nested inside a procedure named- OUTER, and a DECLARE 
statement is written between the PROCEDURE and END statements 
of INNER, then the.declaration'.belongs to INNER and not to 
OUTER. That is, an explicit declaration belongs to the ' 

"nearest" containing procedure. 

The.scope of such a declaration is the procedure to'which 
it belongs, including any contained (i.e., nested or internal) 
procedures, excluding any nested procedures (no matter how 
deeply nested) containing another explicit declaration for an 
object with the same name. The object declared is known 
(by its name) in the scope of its declaration, that is, any 
reference to the name in that scope is a reference to the 
object. As we will see soon, a reference to the'same name , 

in the scope of a different explicit declaration may or may 
not be a reference to the same object. 

See LRY '7U. 

Contextual or implicit declarations (recall Lesson 1) , 
i.e., those resulting from uses of names not explicitly 
declared, belong to the containing exLernal prucedure. In 
other words, the scope of a contextual or' implicit declara- 
tion is the whole external procedure in which the name is 
used, excluding any internal procedure. (and its descendants) 
where the name is explicitly declared. See LRM 71 and 
L&Y 72. 

Although we will not be considering arguments and parameters 
of a procedure in detail until the next lesson, there are 
some things to be noted with respect to the scope of a 



parameter declarati,on. (A parameter in PL/I is what is . 
called aWdumxiy argument" in FORTRAN. The names appearing 
in the parameter 1is.t of a PROCEDURE statement are the names 
of parameters'.) . . . 

A parameter name may or may not appear in a DECLARE state- 
ment in 'the procedure of which it is parameter (that is, 
it is,not required to appear in a DECLARE statement). If 
it does appear in a..DECLARE statement there, it is explicitly 
declared 'with the qiven attributes. If it does not. it is - ~ 

as if it had appea;ed there in a DECLARE statement kith no 
attributes. This is sufficient to establish an explicit 
declaration, with, all of the attributes taken from the 
applicable defaults. Thus, parameters can never be contex- 
'tually declared, that is, they never acquire attributes 
based on the context of their use. See LRM 7 3  and LRM 7 4 .  

. . 

4.4.  INTERNAL and EXTERNAL, attributes,; scope of a name. 

There is another pair of alternative attributes which may 
be given to any variable. Like the ALIGNED and UNALIGNED 
attributes, they apply to every variable and if they are 
not given to it explicitly one or the other will be acquired 
by default. These are the INTERNAL attribute and EXTERNAL 
attribute, collectively called scope attributes. Their 
abbreviations are INT and EXT. Unlike the alianment 
attributes, the scope attributes apply to named constants 
as well as variables. 

An object declared with the INTERNAL attribute (explicitly 
or by default) is associated with its name in the scope of 
the declaration and nowhere else. Thus, .two different 
declarations of the same internal name, in different scopes., 
establish different objects which happen to be known by the 

. . 

same name. 

The effect of the EXTERNAL attribute is as follows. All 
declarations of a given name (say E) having the EXTERNAL 
attribute, i.e., of an external name, are linked together -- 
so that they refer to the same object, rather than to 
different objects. It is then required that all such 
declarations (of E in this case) specify identical attributes. 
The linking occurs at link-edit time. 



The scope of a name (say N) can now be defined, as follows. 
If a declaration for N includes INTERNAL, the scope of the 
name is the scope of the declaration. The scope of an 
EXTERNAL name N is the'union of the scopes of its declara- 
tions (all of which must be identical). See LRLV 75 and 
LrZM 76. 

Consider the following example. The,nesting of procedures 
and the occurrences of declarations is shown first. we' 
then show nested areas representing the nested procedures, 
using different shadings to show the different scopes of 
declarations. Off to the s.ide we show the distinct vari- 
ables, each one shaded to show the,scope of its name. 

EXTPRC1: PROC; 
DCL N FLOAT EXT; 
INTPRC1 : PROC; 
DCL N FLOAT INT; 
INTPRCZ: PROC; 
DcL N FLOAT EXT; 

END; 
INTPRC3 : PROC; 
END; 
INTPRC4: PROC; 
DCL N FLOAT INT; 

END; 
END; 
INTPRCS : PROC; 
END; 

END ; 

EXTPRC2 : PROC; 
DCL N FLOAT INT; 
INTPRC6 t PROC j 

PCL M FLOAT EXTj 
END ; 

END; 



N declared 

. . -. 1______ . . , , ." . .  



'Note that there are six declarations (in EXTPRC1, INTPRC~, 
INTPRC2, INTPRC4, EXTPRC2, and INTPRCG) . ' Hence there are 
six distinct scopes of declarations, each shaded di'fferently. 
The scope of the declaration in EXTPRCl includes INTPRC5. 
The scope of the declaration in INTPRCl includes INTPRC3. 

,Three of the six.declarations (in EXTPRCl, INTPRC2, and 
INTPRCG) use the EXTERNAL attribute. Hence their declara- 
tions are linked, i.e., they all declare the same variable, 
the scope of whose name is the union'of the scopes of the, 
three declarations. The other three declarations all use 
INTERNAL. They thus declare three different variables, the 
scope of whose names are the scopes of their respective , : . .  

dcclarationp. 

Language default's for the scope attribute call 'essentially 
for INTERNAL for all variables. As we shall see soon, the 
default scope attribute for certain named constants is 
EXTERNAL while that for others .is INTERNAL. 

Note that if a structure'is EXTERNAL, the structuring and . 
attributes'of its components must be the same in all of 
its declarations, but the names of its components may differ. 
Within the scopes of different declarations, references ,to 
correspondinq components of the structure are references to' ' 
the same storage, even though the names may differ. The 
scope attribute may not be applied to the names of components 
of a structure; their names are always of INTERNAL scope, 
even when the major structure is EXTERNAL. See LRM 77. 

Also note that parameters.may not Be declared EXTERNAL. 
Defined variables (recall Lesson 3) may not be declared 
EXTERNAL, even if the, base variab'le is external'. Names of 
parameters and defined variables can only have internal 
scope. 

4.5. Use of external variables. 

External variables permit communication via "global variables" 
.amongst several separately compiled procedures.   he same 
communication can always be achieved by passing arguments, 
but external variables are cleaner in many situations. For 
instance, one procedure may initiate a chain of calls say 
ten levels deep. It may need to pass a particular argument 
all the way through this chain to the procedure at its end., 
Even if the intermediate procedures had no use for the data 



i t e m ,  t h e y  would a t  l e a s t  have t o  p a s s  it on t o  t h e  n e x t  
p rocedu re .  They t h u s  a l l  have  t o  be  aware of  i t s  e x i s t -  
ence ;  a l l  t h e . d e c l a r a t i o n s  would .have  t o  be j u s t  r i g h t ,  
and s o  on.  By u s i n g  e x t e r n a l  v a r i a b l e s ,  o n l y  t h e  f i r s t  
and l a s t  p rocedu re s  i n  t h e  c h a i n  would have t o  b e  aware of  
t h e  d a t a ' s  e x i s t e n c e ,  and d e c l a r e  it. 

I t  shou ld  be n o t e d  t h a t  e ach  e x t e r n a l  s t r u c t u r e  d e c l a r a t i o n  
behaves  l i k e  a  complete  FORTRAN "named common" s p e c i ' f i c a t i o n .  
Even e x t e r n a l  s c a l a r s  behave l i k e  "named common" blocks--wi th  
j u s t  one  i t e m  i n  them. 

Procedure  names; e n t r y  c o n s t a n t s .  

L e t  u s  now look  a t  p rocedu re  names i n  more d e t a i l . .  W e  have 
n o t  y e t  acknowledged t h e  f a c t  t h a t  t h e y  c o n s t i t u t e  t h e : ' f i r s t  
u s e  o f  names t h a t  w e  have  seen  o t h e r  t h a n  f o r  v a r i a b l e s . .  

P : PROC OPTIONS ( M A I N )  ; 
Q: PROC; 

' END; 
CALL Q ;  

END; 

L e t  u s  l ook  f i r s t  a t  t h e  p rocedure  name Q. I t  a p p e a r s  a s  
a  l a b e l  on a  PROCEDURE s t a t e m e n t ,  and a s  t h e  name of a  
p rocedu re  t o  b e  c a l l e d ' o n  a  CALL s t a t e m e n t .  Q is  s a i d  t o  be, 
t h e  name of  a n  e n t r y  c o n s t a n t .  The v a l u e  o f  t h i s  c o n s t a n t  
i s  t h e  p rocedure  which it names (nr, more p r e a i s e l y ,  t h e  
p a r t i c u l a r  e n t r y  p o i n t  i n t o  i t ,  s i n c e  t h e r e  may be  o t h e r s ) .  

So t h a t  w e  may t a l k  abou t  t h a t  c o n s t a n t ,  w e  gave' it a  name, 
Q ( j u s t  as t h e  FIXED DECIMAI, (1) c o n s t a n t  w i t h  v a l u e  "one" 
i s  deno ted  by 1) .  The appearance  o f  Q i n  

Q: PROC; 
i s  a  r e f e r e n c e  o f  t h e  c o n s t a n t  which s e r v e s  t o  e s t a b l i s h  ' 

i t s  v a l u e .  The appearance  - .  of  Q i n  
CALL Q; 

i s  a  r e f e r e n c e  o f  t h e  c o n s t a n t  which does  something w i t h  
i t s  v a l u e ,  i . e . ,  it invokes  t h e  p rocedu re  which i s  t h e  con- 
s t a n t ' s  v a l u e .  



4.7. ~eclaration of entry constants. 

We have tallted about entry values (values which represent 
entry points) and entry constants (objects 'whose permanent 
value is an entry value). Indeed,,we will see later that 
there are entry variables (objects whose changeable value is 
an entry value). Thus, "entry" is a legitimate data type. 
In fact, the attribute used for declaring entry variables 
i.s the ENTRY attribute, but more about that later.. unlike, 
say, chnrnctcr strings, we cannot manufacture new values 
of type "entry" by operating on old ones. Thus, the number 
of different entry,values that can exist at any moment during 
the execution of a program is exactly the number of different 
entry points of procedures that there. are in it--each one 
named by an entry constant. Recall that we earlier called 
data that can be operated upon in expressions "problem data." 
In contrast to tha,t, entry values constitute the first of 
many types of program control data that we will see. 

We have seen'how declarations associate a name with an object 
(and also associate some attributes'with it). - We have at 
hand a kind of constant that has a name, which is an identi- 
fier like a variable name. In fact, the association of that 
name with the constant, named is also an act of declaration. 
In this regard, Q: PROC; constitutes an explicit declaration 
of an entry constant named Q. The scope of the declaration 
is the procedure containing the declaration, i.e., P. 
Attributes furnished by this declaration are ENTRY (the data 
type of. the value) and fNTEFWAL (the scope of the namc) --the 
latter because the procedure Q is an internal procedure. By 
the same logic, P: PROC OPTIONS (MAIN); explicitly declares 
P to be nn EXTEPNAL ENTRY constant, EXTERNAL because P is 
an external procedure. 

Carrying this discussion a little further, we may ask how 
we may know that CALL P; appe'aring in some other external 
procedure (say 5) refers to .this external procedure P. Fun 
that to be the ease,  P rnusL be known, iri 8, Lo be An cut.r.rnal 
entry constant. How is that achieved? Answer: by the 
declaration, in 0 ,  DCL P ENTRY EXTERNAL;. Note that this 
establishes P as an external entry constant; looking ahead, 
we may have external entry variables, but you have to do 
something extra to declare them. The scope of this declara- 

. tion is the procedure.5 (and, of course, descendants in which 
the name'is not redeclared). The scope of. the name is the 
union of the scopes of all its declarations, including the 



one r e s u l t i n g  from i t s  u s e  as a l a b e l  on a PROCEDURE s t a t e -  
ment. A l l  t h e s e  d e c l a r a t i o n s  a s s o c i a t e  t h e  name w i t h  t h e  
same o b j e c t ,  an  e n t r y  c o n s t a n t .  

4 . 8 .  Begin b locks .  

P r o c e d u r e s ' a r e  one k ind  of b lock .  Anther  k ind  i s  t h e  ' beg in  
b lock .  A beg in  b lock  i s  d e l i m i t e d  by a matching BEGIN s t a t e -  
ment and END s t a t e m e n t ,  a s  i n  

BEGIN ; 

. . 
body o f  b e g i n ' b l o c k  

END ; 

A beg in  b lock  i s  s o r t  o f  an  unnamed procedure  t h a t  t a k e s  'no 
arguments and d o e s n ' t  r e t u r n  a v a l u e .  I t s  body i s  t h u s  

' execu t ed  f o r  i t s  e f f e c t .  I f  it i s  " l i k e  a  p rocedu re"  t h e n  
presumably it g e t s  execu t ed  by b e i n g  invoked.  I f  it d o e s n , ' t  
have a name,, .by what do w e  c a l l  it t o  invoke i t ?  The answer 
i s  w e  d o n ' t  need t o  c a l l  i t ,  be,cause w e  d o n ' t  do  any th ing  
s p e c i a l  t o  invoke  it. It , i s  "invoked" ( l e t  u s  j u s t  s a y  
execu t ed )  when c o n t r o l  r e a c h e s  it i n  t h e  normal way, f o r  
example,  a f t e r  e x e c u t i n g  t h e  p r eced ing  s t a t e m e n t .  Thus, 
t h e  BEGIN s t a t e m e n t  i s  e x e c u t a b l e ,  u n l i k e  a  PROCEDURE s t a t e -  
ment ( i f  c o n t r o l  shou ld  r e a c h . a  PROCEDURE s t a t e m e n t  from. 
above,  i . e . , '  a f t e r  e x e c u t i n g  t h e  p r eced ing  s t a t e m e n t ,  t h e  
p rocedure  i s  n o t  invoked;  c o n t r o l  s k i p s  t o  t h e  f i r s t  execu t -  
a b l e  s ta tem'ent  a f t e r  t h e  p rocedu re )  .. 

Why t h e n  have beg in  b locks?  Wouldn' t  t h e  e f f e c t  be  e x a c t l y  
. t h e  same i f  w e  d e l e t e d  a BEGIN s t a t e m e n t  and i t s  matching 

END s t a t e m e n t ?  

One r e a s o n  f o r  beg in  b locks  i s  t h a t  t h e y  d e l i m i t  scopes  j u s t  
' l i k e  p rocedure  b l o c k s  do.  I n  f a c t ,  everywhere w e  have used 
the word "proocdu~rc ' '  i n  t e r i~~s  01 ,tile concep t  of scope of  - a 
d e c l a r a t i o n ,  w e  shou ld  .have used " b l o c k . "  N o t e . t h a t  beg in  
b l o c k s  may be' n e s t e d  i n s i d e  beg in  b locks  o r  p rocedure  b l o c k s ,  
and i n t e r n a l  p rocedu re  b locks  may be  n e s t e d  i n s i d e  beg in  
b l o c k s  a s  w e l l  as o t h e r  p rocedure  b locks .  A t '  t h e  ou te rmos t  



level we still have external procedure blocks; there are 
no "external begin blocks." We will see another signifi- 
cant use of begin blocks in Lesson 5. 

See Lm1 78,  and LRM 79. 

4.9. . The DEFAULT statement. 

In Lesson 1 we said that the programmer can change the stand- 
ard system defaults used to furnish attributes in implicit 
declarations or to complete partial declarations. The 
DEFAULT statement provides this facility. We will illustrate 
it by examples. (The abbreviation for DEFAULT is DFT.) 

DFT RANGE ( * )  FIXED BINARY; . 

RANGE ( * )  says this DEFAULT statement applies to all 
' ' variables. If they have no data - type attributes they. get 

FIXED BINARY (irrespective of the first letter of their 
name). If they already have a scale or a base attribute,. . 
but not both, the other is FIXED or BINARY as needed. 
This default is inapplicable to any variable that already 
has both scale and base attributes. 

DPT WINCE (B:D) BINARY VAR'I'ING; 
This specification is only applicable tu variables whose 
names begin with B, C, or D. The attributes shown may 
.seem to be in conflict with each other. They'are just 
a list from which is taken, in order, any ,attributes that 
don't conflict with what the variable already has. If 
BINARY is taken, VARYING won't be. If the variable 
already has CHARACTER, BINARY won't be taken, but VARYING 
wi,J , , l .  he" 

DFT KANGE (XYZ) VALUE (BIT(8)); 
This specification only applies to variables whose names 
begin with XYB. If the variable has BIT but no length 
specification, the length specification acquired is the 
value 8. Though we didn't say so in Lesson 2, one can 
write DCL XYBAB BIT;. The system detault for string 
length is 1. 

The order. in which DEFAULT statements are processed is 
significant. If a variable belonging to a particular block 

.... . . 
. . 



needs more attributes to complete its description, the 
DEFAULT statements of that block are examined, in top to 
bottom order, first. If its description is still incomplete, 
the block, if any, that .contains that block'has its DEFAULT 
statements examined, and so on out to the external procedure 
block. Thus, we may say that DEFAULT statements have a 
scope of applicability related to the block structure, i.e., 
the nesting properties of blocks., 
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Considerably more can be done with DEFAULT statements. See 
LRM 80 .through LFU4 82. 

In the ANSI standard, the syntax and capabilities of the 
DEFAULT statement are almost totally changed--for the better. 
The applicability of DEFAULT statements may depend on the 
attributes a name already has or doesn't have. Additi%orial 
attributes, such as DIMENSION, NONVARYING, STRUCTURE, , 

CONSTANT, etc., are also provided for use in defining the 
universe of.applicability of a given DEFAULT statement. 
It is also possible to default attributes of NONE, which 
will make it necessary to explicitly declare all required 
attributes, thus eliminating the danger of misspelling a 
name. And there are other useful and exotic things that. 
can be done with it. 

4.10. Unanswered questions. 

How do we declare entry variables? 'How may they be used 
(other than in assignments)? (We know how entry constantc 
are used.) See Lesson 5. 

What are the requirements for argument/parameter matching? 
Also in Lesson 5. 

4.11. Homework problems. 

(.#4A) Multiple declarations are not allowed. (For a 
definition of multiple declaration, see LRM 83.) 
If there are multiple declarations in any of the 
following, identify them. 



P i  PROC; 
DCL X F I X E D  B I N ;  
Q: PROC; 

DCL X FLOAT B I N ;  
END; 

END; 
P :  PROC; 

DCL X F I X E D  B I N ;  
Q: PROC; 

DCL X FTtOAT B I N  EXT;  
END; 

END ; 
P :  PROC; 

DCL X F I X E D  B I N  EXT; 
0: PROC; 

DCL X FLOAT B I N  EXT; 
E19B ; 

END; 
Same as (a), but with the addition of DFT RANGE 
( * )  EXT; just after the PROCEDURE statement for P. 
Same as (d), but with the DEFAULT statement 
added just after the PROCEDURE statement for Q. 
S: PROC; 

T: PROC; 
7': PHOC; 
END; 

END; 
END ; 
S: PROC; 

T :  PROC; 
END ; 
T :  PROC; 
END; 

END; 

(#4B) Suppose two different external procedures, El and E2, 
needed to call a third external procedure, E 3 .  They 
would each, of course, contain a declaration such as 

DCL E3 17N81'l<~ EXT: 
What do you think would happen if you forgot to write 
E 3  and link-edit it in with E l  and E 2 ?  If you have 
Linkage editor experience, describe what you think 
the linkage editor would have to say. Also see if you 
can give an answer purely in P L / I  terms (hint: WilaL 
kind of object is E 3 ?  What is its value?). 



: ( # 4 C )  Write a DEFAULT statement that will cause all vari- 
ables not'explicitly declared with a scale attribute, 
and all variables declared ,with FLOAT but no pre- 
cision attribute, to default to double precision 
floating-point. Make sure that double precision will 
be used, even for variables .explicitly declared wi.th 
one of the base attributes. In.the case where neither ' . 

base attribute'is explicitly declared, make BINARY . . 

the default. What is the effect of your DEFAULT 

. . statement on the following? 
DCL J;  
DCL X ;  
DCL U BINARY; 
DCL V DECIMAL; 
DCL F' FLOAT; 



J 

5. Storage class and block invocations. 

- 5.1. Storage allocation and initialization. 

Storage allocation means the process of acquiring storage 
for a variable. There are several ways this may be carried 

. .out in PL/I, depending on choices made by the programmer. 
.The choices range from having the compiler "assign" storage 
essentially at compile time (like in FORTRAN) to taking on 
full responsibility for saying when, during execution, 
storage should be acquired for a variable (and when it 
should be released). The latter extreme is an example of 
dynamic storage allocation. See LRM 84. 

So far we have not been concerned with the process of storage 
allocation. It is sufficient to have thought in FORTRAN 
terms up to now. 

Initialization is the process of assigning initial values to 
variables. In FORTRAN this is.carried out with the DATA 
statement and BLOCK DATA subprogr.ams. There are facilities 

. for initialization in PL/I which are a little more general. 
To handle the requirements for initialization when .storage 
is allocated dynamically, initialization occurs when (and 
each time) storage is allocated. 

5.2. Storage class attributes. 

The storage allocation technique to be used for a specific 
variable is selec'ted by declaring one of four alternative 
storage class attributes for it. Storage class is a property 
of all (or essentially all) variables. With its studv we 
will complete the analysis of properties (data type, iggre- 
gate type, alignment, scope, storage class) that all vari- 
ables have. 

The four storage class attributes are STATIC, AUTOMATIC 
(abbreviation: AUTO), CONTROLLED (abbreviation: CTL), and 
BASED. The last three designate different types of dynamic 
storage allocation. BASED will not be considered until 
Lesson 11. Static, automatic, and controlled storage are 
described separakely below. 



5.3. INITIAL attribute. 

First we will consider the common aspects of initialization, 
since it will be appropriate to consider certain aspects of 
it which differ with the storage class as the individual 
storage' classes are studied. 

Initial values are specified by the INITIAL attribute. The 
attribute may be used for scalars, arrays, and structure base 
elements. fts abbreviation is INIT. . '  - 

For a scalar or si-.rl~at.ure base element, the form is 
. INIT (initiaz-value) . znitial-0alii.e may be any corista~~t, 

in some cases it may be a variable reference or function 
reference or-even an arbitrary expression (if it is 
expression it must be surrounded by 'parentheses). 

Examples : 
DCL N FIXED BIN (31) INIT (0) ; 
DCL X FLOAT INIT (1) ; 
DCL 1 STRUC, 

2 PART1 CHAR (3) INIT ( 'ABC ' ) , 
2 PART2, 
3 PART2A BIT (2) INIT ('01'B) , 
3 PART3B CHAR (4) VAR INIT ( " ) ;  

#) DCL Y FIXED DEC (7,2) INIT (X) ; 
DCL 0 PIC '9999' INIT ( (Nk*2-14) ) ; 

For an array one form is 
INIT (initial-value , . . . , initial-value) 

i.e., a list of initial values, one for each array element. 
The order corresponds to successive elements of the array 
"by row," i . ~ .  wikh thc right-most subscript varying most 
rapidly. For example, to initialize a 3x2 array A to 

I 0  
-3 3 
8 -1 

we would write 
DCL A (3,2) INIT (1,0,-3,3,8,-1);' 

The number of initial values given may be less than the 
number of elements in the array (in which case elements at 
the end remain unitialized), but it may never be greater 



(excess values are ignored). To denote that.a particular 
element is not to be initialized, an asterisk may be used 
instead of an initial value. For instance, if we did .not 
need to, or care to, initialize the second row of A we could 
have written 

DCL A (3,2) INIT (1,0,*,*,8,-1); 

A sequence of similar initial values may be "factored out" 
and preceded by a parenthesized iteration factor, which 
denotes how many times the followinq item or list of items - 
is to be iterated. Examples: 

DCL A (10) INIT ( 3 ,  (910) ; 
A(1) is initialized to 3 and the remaining elements 

are initialized to 0. 
DCL B (3,3) INIT ((3) (0,1,2)) ; 

Each row of B is initialized to 0,1,2. 
DCL C (3,3) INIT ((3) (0,(.2)1)); . 

Each row'of C is initialized to O,1,1. 
DCL D (10) INIT (0, (8) * ,0) ; 

The first and last values of D are initialized 
to 0; the middle eight values are uninitialized. 

.The INITIAL attribute may be specified in a DEFAULT statement. 
Note that standard system defaults do not cause-initialization 
of any variables. It is illegal to use a variable in a con- 
text where its value is required before it is assigned a 
value (either by initialization, by assignment, or by an 
input'operation). Under the optimizing compiler, reference, 
to an uninitialized'variable will access garbage, and un re- P dictable errors may result. Thecheckout compi er, however, 
is able to detect and report use of uninitialized variables 
.(wh i ,ch i s a very cnmmnn errnr) . 

See LRM 85 and LRM 86. 

Note that if A and B are.similar arrays, it is not legal to 
write, say, 

DCL A (3,2) INIT (B); 
even though it may seem intuitively clear. Any references 
in the INITIAL attribute must be references to element vari- 
ables (scalars), and expressions must be element expressions 
(those that evaluate to scalar quantities). 



5.4. Adjustable extents. 

All of the array.bounds and string lengths we have shown . 

so far have been expressed as unsigned decimal integer con- 
stants. ~yntact'icall'y , they may, in general, be expressions 
(element expressions), but this is permitted only with certain 
storage classes,. as we will see below. An array bound or 
string length'which is not constant is called an adjustable 
extent. In Lesson 11 we will see another type of variable 
which can have an adjustable extent. 

5.5. Static variables. 

Variables declared with the STATIC storage class attribute 
dre fully mapped and Logically allocated a place in storage 
at compile time. In fact, this storage is just a part of 
the "load module" containing the program itself. Initial 
values are assembled right into this storage. 

When a program is loaded, static storage--already initialized, 
if required--is brought in'with it. Static variab1e.s retain 
their assigned locations ,throughout execution. 

In order to permit full mapping and initialization at compile 
time, static variables cannot have adjustable exten ts ,  and 
initial values and iteration factors in any INITIAL attribute 
must all be constants. See LRM 87. 

Example : 
P: PHOC; 

DCL #CALLS FIXED BIN STATIC INIT (0); 
#CALLS = #CALLS + 11 

END; 
In this example, the static internal variable #CALLS is used 
to record the number of times P is invoked. Because #CALLS 
has internal scope (by default), it is not accessible to 
the program outside of the procedure P. However, it con- 
tinues to occupy its storage location, and its value, even 
when control leaves P. It still has the same location and 
value when control re-enters P at a later time. Thus, static 
variables may be used to maintain a "history" across procedur 
calls. 



5.6. Automatic variables. 

Variables declared with the AUTOMATIC storage class attribute 
are allocated, and initialized, whenever control enters the 
block that declares them. The storage is freed when that 
block terminates. 

This is one of the types of dynamic'storage allocation. 
.Since storage for an automatic variable is not allocated and 
initialized until a certain point during execution, it may 
have adjustable extents as well as expressions in .the INITIAL 
attribute. 

Example : 
P: PROC; 

DCL (L,M,N) FIXED BIN; 
L = 3; 
M = 8; 
N = 6; 
BEGIN; 

DCL C CHAR (L) AUTO; 
DCL B BIT (L+l) VARYING AUTO; 
DCL A ( M , N )  BIT (L**2) AUTO; 
DCL X (N) INIT ( (N) 0) AUTO; 
DCL Y (L,M) 

INIT ( (L) (1, (M-I) 0) ) AUTO; 
END; 

END; 
When the begin block is entered, C is established as a char- 
acter string variable of length 3 (the value of L). B is 
established as a varying- lengL11 bit string of maximum length 
4. A is established as an 8x6 array of bit strings of 
length 9. X is a 6-element array all of whose elements are 
initialized to 0. (Note that if we had written 

DCL X (N) INIT (0) AUTO; 
only the first element would have been initialized.) Y is 
a 3x8 array whose first column is initialized to 1 and whose 
remaining elements are initialized to 0. 

Note that the determination of adjustable extents and initial 
values is determined exactly at block entry time, before any 
statements are executed in the block. Also, even though the 
variables used in extent ,expressions may have new values 
assigned to them in the block, the bounds and string lengths 
won't change. 



Note that, since storage for automatic variables is freed 
when their containing block terminates, they may not be 
used to retain a history across block invocations. The next 
time their declaring block is entered they will be assigned 
fresh storage, which may be ,in a different location.' See 
LRM 88. . . 

. . 

Automatic storage is primarily used for local (i.e., in.ternal) 
variables with adjustable extents. It is also essential in 
recursive procedures, as we shall see later in this lesson, 
,and re-entrant procedures (Lesson 14). 

Initialization of autw~~~atic variables is carried o11t by 
generated code. If they have adjustable extents, storage 
allocation is also carried out by generated code. However, 
if they have fixed extents they come essentially for free: 
since the compiler knows their extents, it assigns them 
consecutive locations in one contiguous area which is not 
allocated until the declaring block is ente~ed. The alloca- 
tions are "free" since each block will need such an area any- 
way, for housekeeping, even if it has no automatic variables. 

5.7. Controlled variables. 

Variables declared with the CONTROLLED storage class attribute 
are allocated, and initialized, upon execution of an ALLOCATE 
statement naming them, and they are released upon execution 
of a FREE statement naming them. The allocation and freeing 
need not occur in the same block. 

Controlled.variables can have several'simultaneous~ generations 
of storage. If a controlled variable beilly allocated already 
has an alfocation. (called a cjeneratiul~), L k a t  formcr ablaca- 
tion is placed.on a stack. All subsequcnt references tn'the 
variable are references t.n the newly allocated generation of 
it, until a FREE statement is executed. At that time the 
"current" generation is released and the one on top of the 
stack replaces it'. 

Example : 



DCL X CTL; 
ALLOCATE X; 
x = 1; 
ALLOCATE X; Stacks previous X (having value 1). 
x = 2; 
Y = X; Stores the value 2. 
FREE X; Unstacks previous X. 
Y = X; Stores the value 1. 
FREE X; There are now no allocations of X. 

It is an error to refer to a controlled variable for which 
no allocations exist. 

Controlled variables are the thing to use, obviously, whenever 
you need a real "pushdown" stack, or LIFO ('last-in-f irst-out) 
stack. 

Since the controlled storage class is one of the dynamic 
storage classes, controlled variables can have adjustable 
extents and variable initializations. An ALLOCATE statement 
for a controlled variable may well appear in a block different 
from the one containing its declaration. There may also. 
appear in that block declarations of variables having' the 
same names as ones used, for instance, in extent expressions 
in the declaration of the controlled variable. Upon alloca- 
tion, the variables accessed during the evaluation of extent 
expressions are the ones "known" in the block containing the 
controlled declaration; the values used, however, are their 
current values, i.e., not necessarily the ones in effect when 
the declaring block was entered,. A homework problem will 
illustrate this. 

In reading L&V 89, you will see that it is possible to over- ' 

ride extent expressions, etc., given in the declaration, by 
using different ones in the ALLOCATE statement (for this 
purpose you have to write out the attributes in the ALLOCATE 
statement). When extents are given in the ALLOCATE statement 
they may be omitted (replaced by asterisks) in the declaration. 
Use of the features described in this paragraph is not recom- 
mended because they are not carried over to the ANSI standard. 

c 

5.8. Combinations of storage class and scope attributes. . . 

Static variables may have either internal or external scope. 



Automatic variables can have only internal scope. Since 
automatic\variables only "exist" while the declaring block 
is active, it is not meaningful to link the scopes of 
different declarations so that they refer to,.the same auto- 
matic variable. Of course, automatic variables may be refer- 
enced in blocks contained within the declaring block (because 
the scope of the declaration contains the nested block). 
There is no way for the declaring block not to be active 
when such a reference is made. 

Controlled variables can kavc cithor internal nr external 
scope. With controlled external, the whole stack of alloca- 
tions is "shared" amongst the scopes of the various external 
declarations of the variable. 

In Lesson 4 we stated that external' variables can conveniently 
be used for communication amongst several external procedures. 
Now consider that external variables can have either static 
or .controlled storage class, but not automatic. Since static 
variables can not have adjustable extents, if a variable com- 
municated amongst external procedures by giving it external 
scope (as opposed to passing it as an argument) needs to have. 
extents determined during execution, it will obviously have 
to be controlled. Note that there may be no need for the . 
.general stacking capability in this case, i.e., only.one 
generation of the controlled variable is ever allocated. 
T h j . s ,  .i.n addition to LIFO stacks, is an "appropriate" use of 
controlled variables. 

If the storage class attribute i..s omitted from a'declaration, 
sta.n.dard defaults will supply AUTO for internal variables and 
STATIC for external ones. since INTERNAL is the standard 
default when the scope attribute is omitted, most variables 
w.ill.probably ond up being au.tomatic. Since additional execu- 
tion time is incurred for certain uses of automatic variables, 
it may well be worthwhile to say DFT RLVGE ( * )  STATIC; to . 

change the default. 

For a review, see LRM 90 ignoring (for now) all discussivn 
of the BASED attribute. 

. 5 . 9 .  Parameters. 

Names appearing in a parameter list in a procedure statement 
are names of formal parameters ("dummy arguments" in FORTRAN). 



The process of invoking a procedure makes the kormai.param- 
eters synonymous with the actual arguments in a CALL state- 
ment or function reference. By synonymous is meant that. 
they designate the same storage and the same"value, as with 
defined variables (Lesson 3). Hence, an assignment to a 
formal'parameter may be instantly perceived as a change in 
the value of the actual argument, assuming it is a variable. 
And there are no restrictions on that variable (the actual 
argument) like those of FORT~AN; specifically, the variable 
may be another argument, as in 

CALL F (AIAIB) ; 
or it may be an external variable to which the invoked 
procedure has direct access. The price of this flexibility 
is inhibited optimization. For instance, suppose in F an 
assignment is made to the first formal parameter. The com- 
piler must be aware that the second parameter, which is a 
different variable in F, can have its value changed by that 
assignment. 

Note that formal parameters do not denote local variables 
- .  

which are assigned the value of the actual argument on entry 
and which are assigned back to the argument on return, as in 
FORTRAN (for scalar arguments). This has consequences that 
will be seen when we consider multiple entry points, later. 

Ther.e is also no restriction against assigning to a formal 
parameter whose actual argument is a constant. In this case 
the constant is protected because the calling procedure makes 
a copy of it just before the call and passes the copy instead. 

Parameters generally cannot be declared with a storage class 
attribute. They don't have storage of their own; th,ey share 
the storage of ,the actual argument. In this sense, "parameter" 
may be considered an alternative to the other storage classes! 
An' exception is discussed immediately below. 

When a controlled variable is passed as an argument, either 
the current generation of the variable or the whole stack of 
generations may be conside~ed passed, depending on whether 
the formal parameter does not, or does, have the CONTROLLED 
attribute, respectively. This is the one exception to the 
above prohibition of storage class for parameters. It is an 
error to pass a non-controlled variable to a controlled 
parameter. Note that controlled parameters are not permitted 
in the ANSI standard. 



5.10. Review and extension of DEFINED attribute. 

Before proceeding with the study of parameters we shall look 
again at defined variables, first introduced in Lesson 3. 

The first point to be made is occasioned by the comment 
above that parameters don't have storage class. Neither 
do defined variables. They share,the storage of their base 
variable. .DEFINED, like "parameter," may be thought of as 
an alternative to storage class. 

The second point to be made is that defined variables, like 
variables of any of the clyl~ai i l ic  storage claoocc, oan have 
adjustable extents. The extent expressions, like those.for 
automatic variables, q ~ e  evaluated on cntry to the declaring 
block. Consider the following example: ' 

J = 3;' Note: In the ANSI standard, 
I< - 5; declarations of defined and 
L .= 7; auto variables may not refer- 
BEGIN; ence other defined or auto 

DCL A (J,K,L) FLOAT; variables declared in the 
DCL B (K,J) FLOAT same block. . Hence, the 

DEF A (2SUF3,ISUB ,I) ; declaration of B is in error. 

END; . , 

It is corrected by enclosing 
it in another begin 'block. 

In the begin block, A is a 3x5~7 array. B is a 5x3 array 
made coincident with the transpose of the.1-th plane of A. 
While the values of K and J are determined for purposes of 
ascertaining B's extents once, on entry to the begin block, 
the extents not subsequently tracking any changes in the 
values of K and J, I is not evaluated at block entry but - 
rather on,every reference to B. See LRM.91. 

,, 

5.11. Argument/parameter matching r eyu i remen , t s .  

As you might expect by now, arguments and parameters must 
have the same data type, i.e., it is illegal to pass a 
floating-point argument to a fixed-point parameter, illegal 
to pass a CHAR (4) argument to a BIT (32) parameter, and 
so forth. You should expect this because of the matching 
requirements we have seen for defined variables and 
external variables. In all cases, the reason is to guarantee 
identical semantics for all implementations of PL/I; it just 
cannot be done when 'one is allowed to relax these rules. 



.Suppose a parameter is declared FIXED BIN (15). If one.wants 
to pass the constant "one" to this parameter, can one write 
"1" f'orthe actual argument? After all, "1" as written is 

. .  FIXED DEC (1) . The aqswer is yes, if. If you tell the 
. compiler what kind of value the invoked procedure expects. 

If you don't, it w.ill just pass a FIXED DEC (1) constant 
and errors surely will result. 

Actually, it is necessary to provide the compiler with 
information about the invoked procedure's parameters, in the 
calling procedure, only when the procedure being called is 
an. external procedure. An entry declaration is used for 
t k ~ i s  purpose. The reason it is not necessary (in £act, not 
allowed) for internal procedures is'because in this case the 
compiler can look inside the procedure to be invoked while 
it is compiling the calling procedure, and it can thus find 
.out what' attributes are required. 

One essential freedom permittcd in these otherwise stringent 
matching requirements in that array bounds and string lengths 
of parameters need not be specified as unsigned decimal integer 
constants. (They may be, however, and then they must agree 
exactly with the array bounds or string lengths of their 
actual arguments.) These extents can be expressed as 
asterisks, which means that the extent of the formal parameter 
is inherited from the actual argument. This permits arrays 
with different bounds (but the same number of dimensions), 
or strings with different lengths, to be passed as arguments, 
at different times, to the same formal parameter. 

For example: 
DCL S1 CHAR (5) INIT ( 'AAAAA') ; 
DCL S2 CHAR (3) INIT ('BBB'); 
CALL INTPROC) S1) ; 

' . CALL INTPROC (S2) ; 
INTPROC: PROC (S.) ; 

DCL' S CHAR ( * )  ; 
I = LENGTH (S ) ; 

END; 
The first time INTPROC is called, its parameter, Sf behaves 
like a CHAR (5) variable; in particular, 5 is assigned to I. 
On the second invocation, S behaves like a CHAR (3) variable 
and 3 is assigned to I. 

Suppose we pass arrays with different extents to an array 
parameter with asterisk extents. How are we to ascertain 



the bounds of the parameter (i.e.,.those of the actual argu- 
ment), if we should need:to (for instance, to iterate over 
all elements of the array)? Certain builtin functions, in 
the category called "array-handling builtin .functions," serve 

. this need. 

If A is an array, HBOUND(A,i) is the upper bound ("high 
bound") of A in the i-th dimension. i may, in general, be 
an expression, but it is usually a constant like 1 or 2. 
Similarly, LBOUND(A,i) is the lower bound of A in the i-th 
dimension. DIM (A,i ) 'is equal to HBOUND (A,i) -LBOUND (A,;) 
+ 1, i.e., it is the number of elements in the i-th dimension 
of A. 

Example : 
. P: PROC (A) ; 

DCL A (* ,  * )  FLOAT; 
DCL B (LBOUND(A,~): HBOUND(A,2)) 

FLOAT DEF A(I,*) ; 

. . 
END; . 

A is a two-dimensional array with bounds in both'dimensions 
inheri.ted.from the sctual.argument. B is defined on the I-th 
row of A; in its one and only dimension, it has bounds equal 
to those of the second dimension of A. 

Note .that "asterisk extents" are a type of adjustable extent. 
It is the only type permitted in:parameter declar.ations, 
i.e., it is illegal to write 

P: PROC (A,I,J); 
DCL A (1,J.); 

The FORTRAN programmer converting to PL/I must make a con- 
scious effort not to think about array parameters in terms 
of the address of the first element. Array parameters can 
,only be associated with array argiimetlts; they. must h a v e  Lhe 
same number of dimensions and the same bounds in each dimen- 
sion.' It is never necessary to pass the bounds separately. 
It is just. as illegal to refer outside the bounds of 'a 
parameter array as it is to reference outside.the bounds of 
any array. 

,5.12. Entry declarations. I 

In Lesson 4 we saw that the ENTRY attribute can be used in 
a declaration.to declare a name as that of an external 



procedure (i.e., an external entry constant). The declara- 
tion may also describe the attributes of the formal parameters 
of the external pracedure. 

Example: 
DCL F ENTRY (FIXED BIN (15) ) EXT; 

This says that F is an external 'entry constant, and that the 
procedure F has one parameter, which in E' is declared as 
FIXED. BIN (15) . Having written the above declaration, you 
can now write CALL F(1); without fear of having the wrong 
data type'for the actual argument. The compiler has the 
information it needs to substitute a FIXED BIN (15) constant 
with value "one. " 

The conversion of argument type to parameter type occurs when-, 
ever it is necessary. For instance, in 

DCL J FLOAT BIN (10); 
CALL F (J) ; 

. J is converked from FLOAT BIN (10) to FIXED BIN (15) . The 
result is placed in a "temporary," sometimes called a "dummy" 
in PL/I, and it is the temporary which is passed as an argu- 
ment. In this case, assignment of a value to the parameter 
of F will not cause the. value of J to change, because the - 
parameter is not associated with J but rather with an auxili- 
ary variable containing the cpnverted value of J. The compiler 
tells you whenever it creates a "dummy" for an argument in 
order to get the matching required. 

. . As you read LRM 92 and LRM 93, you will see that the descrip- 
tions for individual parameters may be omitted (replaced by 
asterisks), in which case it is assumed that the argument as 
passed is correct for the parameter (it is an error if it 
isn't).. Indeed, the whole list of parameter descriptions, 
and their enclosing parentheses, may be omitted (with the 
same assumptions). However, it is good practice to dec.lare 
the parameter attributes of external procedures always, and 
the ANSI version requires this. ' 

External ent.ry constants,must be declared in an entry 
declaration,, even if there are no parameters to describe. 
You might well ask why.' If a name appears in a CALL state- 
ment, as in CALL SUBR, or in function reference context, as 
in A=B+SIZE(C), why is not that name assumed to be an external 
entry, as in FORTRALY, when no array declaration (in the 
latter case) or internal. procedure (in either. case) (in 
FORTRAN thiswould be an arithmetic statement function) were 
observed by the compiler? The answer is: to permit growth 



of the 1anguage.h the area of builtin procedures. (In 
Lesson 12 we will see that there are some implementation- 
defined builtin procedures that are. subroutines, i.e., to be 
invoked by CALL statements.) What would happen if SIZE (as 
in the above example) were to be added to the language as a 
builtin function tomorrow? If SIZE could be an external entry 
without declaration, then the meaning of the program would 
change after SIZE is added as a builtin function. (Though 
it has not been emphasized, builtin functions generally do 
not have to be declared. Exceptions to this rule are treated 
in Lesson 10.) By declaring SIZE as an external entry, you 
are prutecled even if SIZE i s  added as a builtin function 
tomorrow. 

5.13. The CONNECTED attribute. 

The CONNECTED attribute may be specified for aggregate 
parameters. In general, the compiler may not assume that 
a parameter which is an aggregate is connected. For example, 
since arrays are stored by row in PL/I, passing a column, 
such as A(*,I) to a one-dimensional array results in the 
parameter being associated with unconnected storage. Even 
if the parameter is a structure, it can refer to unconnected 
storage! A case in point is the passing of an element of a n .  
array of structures. The CONNECTED attribute tells the com- 
piler that the associated aggregate argument actually is in 
connected storage. Besides leading to certain efficiencies, 
this information confirms a condition which is a prerequisite 
for certain kinds of 1/0 involving aggregate parameters 
(Lessons 8-9) and for string overlay defining (Lesson 3) on 
a parameter base. 

When the CONNECTED attribute is specified in a parameter 
description in an ENTRY attribute, for instance 

DCL P ENTRY ( ( * )  FLOAT CONNECTED) ; 
which says that P expects a one-dimensional connected array 
of FLOAT elements, a copy uL the argumcnt is made in 
connected temporary storage if the argument, as supplied, 
is not connected. See LRM 94. 

CONNECTED is not a part of the A N S l  standard. If you use 
the features cited above as requiring connected references, 
it is assumed that the connected condition is met; other- 
wise, the program is in error. 



5.14. Function references and the RETURN statement. 

When a procedure is invoked as a subroutine reference, it 
may return to the point of invocation either by executing 
a RETURN statement that does not include an expression for 
the returned value, or by executing (i.e., reaching) the END 
statement of the procedure. 

When a procedure is invoked as a function reference, the 
latter mechanism is not available to it. It must execute a 
RETURN statement that includes an expression giving the 
returned value, as in 

RETURN (B**2-4*A*C) ; 
Note that the mechanism for specifying a returned value is 
rather different from FORTaJ. Instead of assigning to a 
variable which has the name of the function, then executing 
a RETURN statement later, we carry out both functions in a 
single statement. 

Returned values have data types. Both the calling and the 
invoked procedure must agree on the data type of the returned 
value. The rule is that the data type is inferred from the 
first letter of the procedure's name (more precisely, the 
name of the entry point), in the same way as for undeclared 
variables and using the same defaults, unless specified 
otherwise. There are two places where other attributes may 
be specified .. 

The first place is on the PROCEDURE statement, in the RETURNS 
option. 

P: PROC (X) RETURNS (CHAR (40) ) ; 
specifies, for example, that P returns a value of type 
CHAR (40) . If you happen to write RETURN ( 'NONE') the given 
value will be converted from CHAR (4) to CHAR (40)) in the 
invoked procedure, to conform to the CHAR (40) that you 
have said must be returned. 

The second place is'in an entry declaration (for an external 
, entry) on the calling side. The difference between 

DCL P ENTRY (FIXED) EXT: 
and 

DCL P ENTRY (FIXED) RETURVS (CHAR (40) ) EXT; 
when P is invoked in function reference context, as in 

S = T 1 1  P(5); 
is that in the former case the attributes assumed for the 
value returned depend on the first letter of the name (and 
will be FLOAT DEC (6) in this case), whereas in the lattez. 
Case they are known to be CHAR (40). 



.In the ANSI version,-the RETURNS option and RETURNS attri- 
bute can be 'used if and only if the procedure is invoked in 
function reference context, and they must be used then. 

In the current language a returned value must be.a scalar. 
Furthermore, if it is a string it.must have a non-adjustable 
length (or maximum length, in the case of varying-length 
strings). In the ANSI language, a returned value may be 
an array or a structure and it can be specified to have 
ad justable extents (using the asterisk notation 'only.) . 

See LRM 95. 

5.15. Recursive procedures. 

Recursive procedures are allowed. They must be identified 
as recursive by the RECURSIVE option on the PROCEDURE state- 
ment'. The familiar example of FACTORIAL is given below. 
(It uses an IF statement, which we will encounter in 
Lesson 6.) 

FACTORIAL: PROC (N) RETURNS (FIXED BIN (31) ) RECURSIVE; 
DCL N FIXED BIN (31); 
IF N > .  1 THEN FU3TURN (FACTORIAL (N-1) ) ; 
ELSE RETURN (1) ; 

END; 

If a recursive procedure needs any local variables, it is 
ess,ential that the automatic storage class be used for them. 
The essentia.1 feature of a recursive procedure is that' 
several invocations of it are active simultaneously. If 
STATIC is used for local variables, all invocations would, 
share the one "generation" of the static variable. With 
AUTO, each active invocation has its own "generation'" of 
the local variable. 

5.16. Multiple entry points and the.ENTRY statement. 

Like FOHTKAN, PL/I provides for multiple entry points into 
a procedure. The ENTRY statement is used to designate a 
secondary entry point. The ENTRY statement looks basically 
just like a PROCEDURE statement except that the ENTRY key- 
word replaces the PROCEDURE keyword and certain options are 
not allowed. 



The d i f f e r e n t ' e n t r y  p o i n t s  of  a  p rocedure  can have d i f f e r e n t  
pa r ame te r  l i s t s .  I t  i s  i n c o r r e c t  t o  r e f e r ,  i n  t h e  body of  
a  p rocedu re ,  t o  a  pa ramete r  a p p e a r i n g  i n  some parameter  l i s t  
b u t '  n o t '  t h e  one  a t  t h e  e n t r y  p o i n t  th rough  which e n t r y  was 
made. Example: 

P:  PROC ( A , B , C )  ; 

Q: ENTRY ( B , C , D ) ;  
DCL ( A , B , C , D )  . . .; 
body o f  p rocedu re  

END; 
I f  e n t r y  i s  made a t  P ,  r e f e r e n c e s  t o  A ,  B ,  and C a r e  l e g a l ;  
r e f e r e n c e s  t o  D a r e  i l l e g a l .  I f  e n t r y  i s  made a.t Q ,  r e f e r -  

, e n c e s  t o  B ,  C ,  and D a r e  l e g a l ;  r e f e r e n c e s  t o  A a r e  i l l e g a l .  
Note  t h a t  t h i s  i s  i n  c o n t r a s t  t o  t h e  FORTRAN t e c h n i q u e  o f  
e s t a b l i s h i n g  v a r i o u s  v a l u e s  i n  pa r ame te r s  o f - t h e  p rocedure  
by e n t e r i n g  once th rough  a n  " i n i t i a l i z a t i o n "  e n t r y  p o i n t  w i t h  
a  l ong  pa r ame te r  l i s t ,  and t h e n  making subsequen t  "high-speed" 
e n t r i e s  th rough  a  d i f f e r e n t  e n t r y  p o i n t  hav ing  a  much s h o r t e r  
p a r a m e t e r . l i s t ,  w i t h  subsequen t  r e f e r e n c e s  t o  t h e  e a r l i e r  2.' 

pa rame te r s .  

The d i f f e r e n t  e n t r y  p o i n t s  may r e t u r n  v a l u e s  w i t h  d i f f e r e n t  
a t t r i b u t e s .  When a  RETURN s t a t e m e n t  i s  e x e c u t e d ,  a  " s w i t c h "  
i s  t e s t e d  by t h e  compiled code t o  de t e rmine  which e n t r y  p o i n t  
was used ;  t h e  code may need t o  b ranch  on t h e  outcome of  t h i s  
t e s t  t o  d i f f e r . e n t  s e c t i o n s  o f  code t h a t  c o n v e r t . t h e  r e t u r n e d  
v a l u e  t o  t h e  a p p r o p r i a t e  a t t r i b u t e s .  Example: 

P :  PROC ( X )  RETURNS (FIXED).; 
Q: ENTRY (X) RETURNS (FLOAT) ; 

RETURN jx/3-1 Y) ; 
END;  

The v a l u e  o f  t h e  e x p r e s s i o n  X/3+Y, which ha s  c e r t a i n  
a t t r i b u t e s ,  w i l l  be conve r t ed  t o  FIXED o r  FLOAT depending 
on whether  e n t r y  was made a t  P o r  a t  Q .  

See Lmq 96.  

5.17.  Gener ic  p rocedu re s .  

R e c a l l  i n  Lesson 1 w e  s a i d  t h a t  t h e  mathemat ica l  b u i l t i n  
f u n c t i o n s  w e r e  " g e n e r i c "  i n  t h e  s e n s e  t h a t  t h e y  cou ld  

- a c c e p t ,  under  one  name, arguments w i t h  a  wide range  of 
d i f f e r e n t  a t t r i b u t e s .  



I t . i s  p o s s i b l e  t o  g i v e  t h e  appearance  o f  c a l l i n g  a u s e r -  
d e f i n e d  p rocedu re  w i t h  d i f f e r e n t  t y p e s  of  arguments (maybe 
even d i f f e r e n t  numbers of  arguments)  i n  t h e  d i f f e r e n t  c a l l s .  
The name c a l l e d  i s  n o t . i t s e l f  an  e n t r y  c o n s t a n t ,  t h a t  i s ,  
a l a b e l  on  some procedure .  . I t  w i l l  be r e p l a c e d  by an  e n t r y  
c o n s t a n t  s e l e c t e d  from a l i s t ,  based on t h e  numbers and 
t y p e s  of  t h e  arguments.  The GENERIC a t t r i b u t e  i s  used f o r  
t h i s .  

Example : I 

DCL E GENERIC 
( E l  WHEN ( * )  , 
E2 WHEN ( * , * ) ) ;  

DCL EI EN'.~*HY (FJ.XEU) EXIT; 
DCL E2 ENTRY (FIXED, FLOAT) EXT; 
A r e f e r e n c e  t o  E w i t h  one argument,  a s  i n  CALL E ( A + B ) ;  

r e s o l v e s  t o  E l ,  i . e . ,  t h e  s t a t e m e n t  i s  t h e  same a s  
CALL E l ( A + B ) .  A r e f e r e n c e  t o  E w i t h  two arguments ,  
as i n  CALL E ( A , B ) ;  r e s o l v e s  t o  E 2 , i . e . ,  t h e  s t a t e -  
ment i s  t h e  same a s  CALL E2(A,B).  

DCL F GENERIC 
(F1 WHEN (FIXED B I N ) ,  
F2 WHEN (FLOAT B I N ) ,  
F2 WHEN (FLOAT DEC) ) ; 

DCL F1  ENTRY (FIXED B I N  ( 1 5 ) )  EXT; 
DCL F2 ENTRY (FLOAT DEC ( 6 )  ) EXT; 
CALL F ( N + l )  r e s o l v e s  t o  F1 ( i f  N i s  FIXED B I N ) .  
CALL F ( X + l )  r e s o l v e s  t o  F2 i f  X i s  e i t h e r  FLOAT B I N  

o r  FLOAT DEC; conve r s ion  of  t h e  argument from FLOAT 
B I N  t o  FLOAT DEC o c c u r s  i n  t h e  former  c a s e .  

Note t h a t  g e n e r i c  s e l e c t i o n  i s  c a r r i e d  o u t  s t a t i c a l l y ,  i . e . ,  
t h e  r e s o l u t i o n  o c c u r s  a t  compi le  t i m e .  See LRM 9 7 .  

5.18. Review o f . . p r o c e d u r e  i n v o c a t i o n s .  

For  a complete  review o f  t h e  dynamic a s p e c t s  of  procedures ' ,  
see LRM 98  (which c o v e r s  some m a t e r i a l  we w i l l  see l a t e r ) .  
and Lwq 9 9 .  



5.19. Homework problems. 

(#5A) Assume S is a square array of CHAR (1) elements with 
N rows and columns (N > I).. Write a declaration for 
S that initializes the elements on the perimeter.of 
the array to I*' and those in the interior to 'PI. 

, (#5B) what value is assigned to I? 
DCL (1,N) FIXED BIN; 
N = 3; 
BEG 1.N ; 

DCL A (N) FLOAT AUTO; 
N = 7; 
I = HBOUND(A,l); 

END; 
Would the result be the. same if the first two state- 

'. ' ments after BEGIN were interchanged? 

(#5C) What values are assigned to I? 
DCL (1,N) FIXED BIN; 
DCL A (N) FLOAT CTL; 
N. = 3; 
BEGIN ; 

DCL N FIXED BIN; 
N = 4; 
ALLOCATE A; 
I = HBOUND(A,l); 
N = 5; 
I = HBOUND(A ,1) ; 

END ; 
N = 6; 
I = HBOUND(A,l); 
ALLOCATE A; 
I = HBOUND(A,l) ; .  
N = 7; 
FREE A; 
I = HBOUND(A,l); 

#5D) Write a procedure, to be called as a subroutine, 
which accepts a square array of any size and sets all 
the diagonal elements to 0. You won't need to code 
any loops. 

( # 5 ~ )  Suppose you are designing a procedure to carry out 
some transformation on an array. Suppose this trans- 



formation requires ."workspace" which is a function of 
the size of the array. Discuss how.you -would solve 
this problem in FORTRAN (if you have FORTRAN experi- 
ence) and in PL/ I .  

( # 5 F )  Write a procedure, to be cal'led as a subroutine, which 
accepts a square array of.any size and assigns to that 
array' its own transpose'. Do it without coding any 
loops. 

(#5G) Can you guess why the expression for the returned 
value in a RETURN statement must be surrounded by 
~arerltheses? Thst is, why is PdTURN (A+B) required? 
Why not just RETURN A+B? Hint: Suppose the outer 
parentheses could be omitted in RETURN ((A+B)=l). 
What problems would be encountered? . 



6 .  ( a )  C o n t r o l  c o n s t r u c t s  
( b )  C o n d i t i o n s .  

6 .1 .  IF S t a t e m e n t  

T h e  21 s ta tement  may b e  u s e 3  t o  a c h i e v e  c o n d i t i o n a l  e x e c u t i o n  o f  a 
s t a t e m e n t  o r  g r o u p  o f  s t a t e m e n t s .  

T h e r e  a r e  t w o  f o r m s :  
( 1 )  I F  e x r ~ ~ ~ b ~ a ~  THEW &e-p&; 
( 2) I P P . X ~ & Q ~ A ~ . O M  .. THEN . tue-putt;  

ELSE d & e - p a ;  

h e - p a k t  a n d  , j&e-pant  a r e  e i t h e r  s i n g l e  s t a t e m e n t s  o r  g r o u p s  o f  
s t a t e m e n t s ,  a s  we s h a l l  see b e l o w .  T h e y  may b e  o t h e r  I F  s t a t e m e n t s ,  
h e g i n  b l o c k s ,  etc.  

e x p t r u n i o ' n  . is e v a l u a t e d  a n d  c o n v e r t e d ,  i f  n e c e s s a r y ,  t o  a b i t  s t r i n g  
v a l u e .  I f  g n y  b i t  i n  t h e  b i t  s t r i n g  i s  a 1 ,  t h e  &ueFpcuLA: i s  
e x e c u t e d ,  a f t e r  w h i c h  c o n t r o l  g o e s  t o  t h e  n e x t  s t a t e m e n t  (case 1) o r  
t h e  s t a t e m e n t  a f t e r  t h e  da4ne-pan;t ( c a s e  2 ) .  I f  11-0 b i t  is a  1 ,  t h e  
sue-paht i s  n o t  e x e c u t e d .  I n  case 1,. c o n t r o l  a r r i v e s  a t  t h e  n e x t  
s t a t e m e n t  w i t h o u t  e x e c u t i n g  t h e  h e - p & .  I n  case  2 ,  t h e  . d & e - p W  
i s  e x e c u t ~ d ,  t h e n  c o n t r o l  g o e s  t o  t h o  s t a t e m e n t  a f t e r  t h a t .  

T h e  m o s t  common f o r m  f o r  e x p k u s i o n  i s  a c o m p a r i s o n  o p e r a t i o r ! ,  w h i c h  
y i e l d s  a B I T ( 1 )  r e s u l t .  E x a m p l e :  

I F  A < B TIIEN A = A + I; 
O f t e n ,  e x p & u d i o n  i s  a l o y i c a l  e x p r e s s i o n  r e p r e s e n t i n g  l o g i c a l  
o p e r a t i o n s  o n  b i t  s t r i r i g s  ( u s u a l l y  o b t a i n e d  f r o m  c o m p a r i s o n s )  . 
E x a m p l e :  

I F  I < 1Q 1 J = I TFEN CALL FOU%; 
ELSZ RETURV ( (5+2) ;  

A n o t h e r  u s e f u l  f o r m  i s  i l l u s t r a t e d  i n  
IF L THEN .. .: 

where L i s  a b i t  s t r i n g  v a r i a b l e  f R I T ( 1 )  p r o b a b l y )  g i v e n  a v a l u e  i n  a 
p r e v i o u s  a s s i g n m e n t .  

Tn L e s s o n  2 we saw b i t  s t r i n g  e x p r e s s i o n s  i n  t h e  c o n t e x t  o f  
a s s i g n m e n t  s t a t e m e n t s .  A l t h o u g h  t h e  same k i n d s  o f  e x p r e s s i o n s .  a re  
e m p l o y e d  i n  a n  I F  s t a t e m e n t ,  t h e  c o d e  g e n e r a t e d  may b e  q u i t e  



d i f f e r e n t  s i n c e  h e r e  i t  h a s  a s  i t s  g o a l  a c o n d i t i o n a l  b r a n c h .  An 
o p t i n i z i n g  c o m p i l e r  .may n o t  i n  "fact n e e d  t o  e v a l u a t e  t h o  w h o l e  
e x p r e s s i o n  i n  o r d e r  t o  d e t e r m i n e  t h e  e n d .  r e s u l t .  However,  t h a t  is 
n o t  s o m e t h ' i n g  y o u  s h o u l d  c o u n t  o n ,  b e c a u s e  t h e  l a n g u a g e  d e f i n i t i o n  

. d . o e s  n o t  i n s i s t  t h a t  t h e  c o d e  s t o p  e v a l u a t i n g  a n  e x p r e s s i o n  a s  s o o n  
a s  t h e  r e s u l t  i s  known;  i t  m e r e l y  p e r m i t s  it. H e n c e ,  t h e  g t a t e m e n t  

IF I <= HBOUND ( X ,  1 ) E X (I) = Y THEY . . . ; 
is a t  b e s t  r i s k y ;  t h e  p r o p e r  way t o .  c o d e  t h i s  i s  

I F  I <= H B O U N D  (X. ,  1 )  THEN 
IF X (I) = Y THE??. . .; 

I t  s h o u l d  b e  n o t e d  t h a t  t h e  e x p r e s s i o n  i n  t h e  I F  c l a u s e  m u s t  b e  a n  
e l e m e n t  e x p r e s s i o n  (i. e . ,  a  scalar  - v a l u e d  e x p r e s s i o n )  . T h a t  m e a n s  
t h a t  i f  A a n d  B a r e  c o n g r u e n t  a r r a y s ,  i t  i s  n o t  p o s s i b l e  t o  write IF 
A = B CREN . . .: ( R e c a l l  t h e  d i s c u s s i o n  o f  a g . g r e g a t e  e x p r e s s , i o n s  f r o m  
L e s s o n  3 . )  T h e  r e s u l t  of A = R is a  c o n g r u e n t  a r r a y  o f  B I T  (1) 
e l e m e n t s ,  e a c h  e l e m e n t  h a v i n g  t h e  b i t  v a l u e  1 o r  0 d e p e n d i n g  o n  
w h e t h e r  o r  n o t  t h e  c o r r e s p o n d i n g  e l e m e n t s  o f  A a n d  B a re  e q u a l . )  
C e r t a i n  b u i l t i n  f u n c t i o n s ,  w h i c h  we s h a l l  see i n  ~ e s s o n  10, c a n  b e  
e m p l o y e d  t o  a c h i e v e  w h a t  i s  p r o b a b l y  d e s i r e d  h e r e .  

When I F  s t a t e m e n t s  a r e  n e s t e d ,  a n  ELSE c l a u s e  is a s s u m e d  t o  b e l o n q  t o  
t h e  n e a r e s t  lQunmatched"l T H E N  c l a u s e .  T h a t  is, i n  

I F  B THEN 
I F  C THEN action-.].; 
E L S E  action-2; 

ac t ion-2  i s  e x e c u t e d  when R i s  " t r u e v  a n d  C i s  " f a l s e u ; '  ( N , e i t h e r  
a c t i o n  is e x e c u t e d  i f  B i s  wfa l s e l l . )  I f  i t  i s . i n t e n d e d  t h a t  t h e  ELSE 
c l a u s e  m a t c h  t h e  o t h e r  THEN c l a u s e  i n  t h i s  e x a m p l e ,  o n e  s o l u t i o n  is 
t o  m a t c h  t h e  i n n e r  THEN c l a u s e  wit:h a n u l l  s t a t e m e n t ,  w h i c h  is  j u s t  a 
s e m i c o l o n .  (You w o u l d n ' t  b e l i e v e  how , f a s t  t h e  g e n e r a t e d  c o d e  f o r  a 
n u l l  s t a t e m e n t  is! ) . Example :  

I F  B THEN 
I F  C T HEN. action-]; 
ELSE; . . .  

ELSE a d o n - 2 ;  
Now aoCiofi-2 is e x e c u t e d  If B is I1falaeu.  I f  B i s  " t r u e 1 '  a n d  C i s  
l * f a l s e " ,  n o t h i n g  i s  e x e c u t e d .  

S e e  LRM 100 a n d  LRM 101.  

6.2.  Non- i t e r a  t i v e  DO g r o u p s .  

I f  e i t h e r  t h e  Rnue-pmA. o r  . da8.6erpM of  a n  I F  s t a t e m e n t  m u s t '  b e  m o r e  
t h a n  a s i n g l e  s t a t e m e n t ,  a  m g - i t e r a t . i v e  grmu_E may b e  e m p l o y e d , '  as 

.. . . 



i n  
IF A > B THEN DO; 

TEMP = A ;  
A = B; 
B = TEMP; 

E N D ;  
T h e  l i s t  o f  s t a t e m e n t s  b r a c k e t e d  b y  D O . . . E N D  b e c o m e s  a  s i n g l e  
s y n t a c t i c a l  u n i t  t h a t  may b e  u s e d  w h e r e v e r  a s i n g l e  s t a t e m e n t  i s  
a l l o w e d .  

' 

T h e  p r b b l e .  s o l v e d  e a r l i e r  w i t h  t h e  n u l l  s t a t e m e n t  ' may e q u a l l y  w e l l  
h a v e  b e e n  ' s o l v e d  w i t h  a n o n - i t e r a t i v e  DO g r o u p  a s  f o l l o w s :  

I F  B .  THEN DO; 
IF C THEN a d o n - 1 ;  

E N D ;  . , 

. ELSE &n-2; 

T h e  d i f f e r e n c e  b e t w e e n  a non- i t e r a t i v e  DO g r o u p  a n d  a b e g i n  - b l o c k  
( w h i c h  c o u l d  a l s o  h a v e  b e e n  u s e d  t o  a c h i e v e  t h e  d e s i r e d  s t a t e m e n t  
g r o u p i n g )  i s  t h a t  a D O  g r o u p  d o e s  n o t  a l t e r  t h e  " b l o c k  s t r ~ c t u r e , ~  
i . e . ,  d o e s  n o t  i n t r o d u c e  a n e s t e d  b l o c k  i n s i d e  wh ich  d e c l a r a t i o n s  may 

-, 
h a v e  t h e i r  own l o c a l  s c o p e .  T h e  l i m i t e d  p u r p o s e  i t  . s e r v e s  is 
i m p l e m e n t e d  much more e f f i c i e n t l y  t h a n  w o u l d  b e  t h e  case w i t h  a b e g i n  
b l o c k ,  e v e n  o n e  d e v o i d  o f  l o c a l  d e c l a r a t i o n s  a n d  o t h e r  t h i n g s  t h a t  
r e q u i r e  s p e c i a l  h o u s e k e e p i n g  a c t i o n s  d u r i n g  e x e c u t i o n .  

S e e  LRN 102 .  

6 .3 .  f t e r a t i v e  DO g r o u p s .  

T h e r e  a r e  t w o  k i n d s  o f  DO g r o u p s  t h a t  p r o v i d e  f o r  r e p e t i t i v e  
e x e c u t i o n  o f  a g r o u p  o f  s t a t e m e n t s . ,  t h e  WHILE-only DO g r o u p  a n d  t h e  
c o n t r o l l e d  ( o c  i n d e x e d )  DO g r o u p .  

. . 

.6.4, KHILE-only  DC! g r o u p s .  

T h i s  form o f  DO g r o u p  i s  as '  f o l l o w s :  
DO WHILE (,&%x@u~.&M); 

b o d y  o f  g r o u p  , . 

E N D ;  
T h e  body  o f  t h e  g r o u p  ( a  s t a t e m e n t  list) i s  e x e c u t e d '  a s  l o n g  as t h e  
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T h e  i n i t i a l  a n d  f i n a l  v a l u e s ,  a n d  t h e  i n c r e m e n t ,  may b e  s p e c i f i e d  by 
a r b i t r a r y  e l e m e n t  e x p r e s s i o n s ;  t h e y  n e e d  n o t  b e  r e s t r i c t e d  t o  
c o n s t a n t s  o r  v a r i a b l e s . .  The  e x p r e s s i o n s  .are e v a l u a t e d  o n c e  a n d  t h e  
s a v e d  v a l u e s  a r e  u s e d  i n  t h e ' t e s t  e a c h  t'ime t h r o u g h  t h e '  l o o p .  

A n o t h e r  u s e f u l  f o r m  is  t o  e m p l o y  t h e  B Y  c l a u s e  b u t  n o t  t h e  T O  c l a u s e .  
T h i s  d e s i g n a t e s  a n  i n f i n i t e  l o o p  w h i c h  m u s t  , b e  b r o k e n  by a R E T U R N  
s t a t e m e n t  o r  a b r a n c h  t o  a p o i n t .  o u t s i d e  t h e  l o o p  (as  i n  DO 
!G.f31LE(a 1' B) ;) . 

T o  a n y  o f  t h e  a b o v e  f o r m s  may b e  a d d e d  a WHILE c l a u s e  ( w h i c h  h a s  t h e  same 
m e a n i n g  a s  i n  a SJHILE-only DO g r o u p )  . T h e  w h i l e - t e s t  i s  p e r f o r m e d  
a t e r  t h s  c o m p a r i s o n  o f  t h e  c o n t r o l  v a r i a b l e  w i t h  t h e  f i n a l  v a l u e ,  
a n d  o f  c o u r s e  o n l y  i f  t h e  f i n a l  v a l u e  h a s  n o t  b e e n  e x c e e d e d .  I f  t h e  
w h i l e - t e s t  f a i l s ,  t h e  l o o p  is t e r m i n a t e d .  E x a m p l e :  

D O .  I = 1  TO HBOUBD ( ~ , ' 1 )  WHILE (X ( I)  = Y )  ; 
END; 

T h i s  l o o p ,  w h i c h  h a s  a n  e m p t y  b o d y ,  t e r m i n a t e s  e i t h e r  when I e x c e e d s  
t h e  u p p e r  b o u n d  o f  X ( w i t h  a l l  e l e m e n t s  o f  X e q u a l  to  Y )  o r  when a n  
e l e m e n t  o f  X n o t  e q u a l  t o  Y i s  f o u n d .  By t h e  way,  t h e  c o n t r o l '  
v a r i a b l e  may b e  u s e d  b e l o w  t h e  l o o p ,  a f t e r  its t e r m i n a t i o n ;  i t  h a s  
t h e  v a l u e  i t  h a d  when t h e  l o o p  t e r m i n a t e d  ( e . g . ,  i n  t h i s  case e i t h e r  
H B O U N D  ( X , l )  +I o r  t h e  s m a l l e s t  v a l u e  i b e t w e e n  1  a n d  HBOUND (X, 1 )  . s u c h  
t h a t  X( i ) i s . n o t  e q u a l -  t o  Y ) .  

T h e  d i f f e r e n t  - f o r m s  shown a b o v e  f o r  w h a t  c a n  come  a f t e r  t h e  
a s s i g n m e n t  s y m b o l  i n  t h e  DO s t a t e m e n t  a.re a l l  r e f e r r e d  t o  a s  f o r m s  of  
a s i n g l e  12 ~pec i f i c a t i oq .  I n  g e n e r a l ,  a n y  n u m b e r  o f  s e p a r a t e  DO 
s p e c i f i c a t i o n s  may b e  w r i t t e n .  When o n e  is  t t e x . h a u s t e d , l @  t h e  n e x t  o n e  
i s  b e g u n .  F o r  e x a m p l e :  

. D O  I = 1 TO J - 1 ,  J+1 TO K: 

. . 

END; 
Here w e  h a v e  t w o  s p e c i f i c a t i o n s ,  e a c h  of t h e  f o r m  a t o  6. T h e  e f f e c t  
o f  t h e  a b o v e  is t o  e x e c u t e  t h e  b o d y .  of t h e  l o o p  f o r  a l l  v a l u e s  o f  I 
f r o m  1  to K, e x c e p t  f o r  t h e  s i n g l e  v a l u e  J. 

One f i n a l  f o r m  f o r  a DO s p e c i f i c a t i o n  i s  p e r m i t t e d .  I t  is t h e  f o r m  
w i t h o u t  a TO c l a u s e  _o_r a BY c l a u s e  ( 2; a WHILE c l a u s e ) .  T h i s  s a y s  



e x e c u t e  t h e  body e x a c t l y  o n c e ,  n a m e l y  w i t h  t h e  c o n t r o l  v a r i a b l e  
t a k i n g  on t h e  i n i t i a l  v a l u e .  T h i s  f o r m  i s  o f  u s e  when s e v e r a l  s u c h  
DO s p e c i f i c a t i o n s  a r e  w r i t t e n .  F o r  e x a m p l e ,  

DO I = 1 , 1 0 , 2 ;  

. . 
E N D ;  

T h e  b o d y  o f  t h e  l o o p  i s  e x e c u t e d  e x a c t l y  t h r e e  times, w i t h  I. t a k i n g  
o n  t h e  t h r e e  v a l u e s  shown d u r i n g  s u c c e s s i v e  i t e r a t i o n s .  D o  222 
c o n f u s e  t h i s  w i t h  t h e  FORTRAN DO l o o p !  

K o t e  t h a t  t h e  c o n t r o l  v a r i a b l e  c a n  b e  a n y  k i n d  o f  e l e m e n t  v a r i a b l e ;  
i t  i s  n o t  r e s t r i c t e d  t-o b e i n g  a n  ' ' f i n t e q e r  v a r i a b l e m  (and  
u n s u b s c r i p t e d )  a s  i n  FORTRAN. 

See LRN 194. 

An a d d i t i o n a l  f o r m  
DO uaniable = ini; t ide-vdue REPEAT (exp/re?lsion);. 

i s  p r o v i d e d  i n  t h e  ANSI 1 a n g u a . g e . .  exp/re?ls&n i s  e v a l u a t e d  e a c h ' . t i m e  ' 

t h r o u g h  t h e  l o o p ,  a f t e r '  t h e  f i r s t ,  a n d '  a s s i g n e d .  t o  v a r i a b l e .  
~ e r m i n a t i o n  w o u l d  b e  c o n t r o l l e d  b y  a  WHILE c l a u s e  ( n o t  s h o w n ) .  An 
e x a m p l e  i s  DO I = A (1)  REPEAT ( A  ( I ) )  WHILE (I -= 0 ) ;  

6.  6. G O '  TO,  s t a t e m e , n t  a n d  s t a t e m e n t  l a b e l s .  

A s t a t e m e n t  l a b e l  i s  an i d e n t i f i e r  p r e f i x e d  t o  a  s t a t e m e n t  ( o t h e r  
t h a n  a  PROCEDURE or  ENTRY s t a t e m e n t )  w i t h  a c o l o n ,  a s  i n  

LAB3: A = B - 2 ;  
A s t a t e m e n t  l a b e l  may b e  u s e d  i n  a  GQ %Q ~_tg_tem_enf t o  e f f ec t  a n  
u n c o n d i t i o n a l  b r a n c h ,  a s  i n  G O  T O  LAB3; S t a t e m e n t  l a b e l s  a n d  G O  ?'Q 
s t a t e m e n t s  s h o u l d  b e  a v o i d e d  i n  p r e f e r e n c e  t o  t h e  o t h e r  c o n t r o l  
c o n s t r u c t s  s i n c e  t h e i r  u n d i s c i p l i n e d  u s e  r e s u l t s  i n  p r o g r a m s  t h a t  a r e  
h a r d e r  t o  u n d e r s t a n d ,  h a r d e r  t o  p r o v e  c o r r e c t ,  a n d  h a r d e r  t o  m o d i f y .  

6 .7 .  . L . a b e l  v a l u e s ;  t h e  LABEL a t t r i b u t e .  

I n  L e s s o n  4 w e  . c a s u a l l y  h i n t e d  a t  a data  . t y p e  ca l l ed  " e l l t ~ . ~ " ,  

e x p l a i n i n g  t h a t  p r o c e d u r e  l a b e l s  . were. e n t r y  ' c o n s t a n t s ,  i. e. ,  
c o n s t a n t s  of t h a t  d a t a  t y p e .  We w i l l  e x p l o r e  t h a t  more  f u l l y  below.  



We h a v e  a t  h a n d  a n o t h e r  k i n d  o f  p r o g r a m  c o n t r o l  ( a s  o p p o s e d  t o  
p r o b l e m ,  o r  c o m p u t a t i o n a l )  d a t a  t y p e :  l l l a b e l l * .  A s t a t e m e n t  l a b e l  is 
a c t u a l l y  a l a b e l  c o n _ s t a n t .  ( L i k e  a n  e n t r y  c o n s t a n t ,  a l a b e l  c o n s t a n t  
i s  a k i n d  o f  l1named c o n s t a n t . l l )  L a b e l  . v a l u e s  o r i g i n a t e  w i t h  l a b e l  
c o n s t a n t s  a n d  may b e  p r o p a g a t e d  by a s s i g n m e n t  t o  Jabel  _variables .  
1 , a h e l  v a r i a b l e s  a r e .  v a r i a b l e s  d e c l a r e d  w i t h  t h e  LABEL d a t a  t y p e  
a t t r i b u t e .  T h i s  i n f o r m a t i o n  is e s s e n t i a l l y  r e p e a t e d  i n  t h e  n e x t  
p a r a g r a p h  i n  t h e  f o r m  u s e d  i n  L e s s o n s  1  a n d  2 t o  i n t r o d u c e  v a r i o u s  
c o m p u t a t i o n a l  d a t a  t y p e s .  ' 

New l a b e l  v a l u e s  a r e  l l g e n e r a t e d l '  by: 
( a )  . R e f e r e n c e  t o  a l a b e l  c o n s t a n t .  

They may b e  p r o p a g a t e d  by a s s i g n m e n t .  
T h e y  may b e  u s e d  i n  t h e  f o l l o w i n g  ways :  

(a) I n  G O  TO s t a t e m e n t s .  
(b )  I n  c o m p a r i s o n  o p e r a t i o n s .  
( c )  I n  r e m o t e  f o r m a t  items ( L e s s o n  7) . 

: T h e  a p p e a r a n c e  o f  a  s t a t e m e n t  l a b e l  c o n s t i t u t e s  . an'  e x p l i c . i t  
d e c l a r a t i o n  o f  t h e  name a s  a l a b e l  c o n s t a n t ,  w i t h  s c o p e  r u l e s  t h a t  
s h o u l d  b e  f a m i l i a r  b y  no+.  C o n s i d e r  t h r e e  e x a m p l e s :  . , 

P: PROC; 

BEGIN; 

E N D ;  

END; 
H e r e ,  t h e  s c o p e  o f  t h e  name L 1  is a l l  o f  P ,  i n c l u d - i n g  t h e  b e g i n  b l o c k  
( a s s u m i n g  L1 is n o t  r e d e c l a r e d  t h e r e i n ) .  T h e  GO: T O  t r a n s f e r s  c o n t r o l  

o u t s i d e  t h e  b e g i n  b l o c k  t o  t h e  s t a t e m e n t '  l a b e l e d  L1 ( w h a t  h a p p e n s  in 
d e t a i l  i s  d e s c r i b e d  l a t e r )  . 



P: PROC; 

B E G  IF; 

END; 
P 

GO TO La; 

END; ~. 
Here, t h e r e .  a r e  two  d i f f e r e n t  l a b e l  c o n s t a n t s  ' d e n o t i n g  d i f f e r e n t  
s t a t e m e n t s .  T h e  s c o p e  o f  ' t h e  f i rs t  i s  a l l  o f  P  e x c e p t  t h e  b e g i n  
h l o c k .  T h e  s c o p e  of t h e  s e c o n d  i s  t h e .  b e g i n  b l o c k .  T h e  f i r s t  G O  TO 
i s  w i t h i n  t h e  s c o p e  o f  t h e  s e c o n d  a n d  t r a n s f e r s  t o  t h e  s t a t e m e n t  
l a b e l e d .  b y  it. T h e  s e c o n d  i s  w i t h i n  t h e  s c o p e  o f .  . t h e  f i r s t  a n d ,  
t r a n s f e r s  c o n t r o l  , t o  t h e  s t a t e m e n t  l a b e l e d  by &A. 

P: PROC; 
,. . 

END; 
T h e  s c o p e  o f  t h e  l a b e l  c o n s t a n t '  L 3 ' i s  t h e  b e g i n  b l o c k .  T h e  G O  TO 
s t a t e m e n t  i s  n o t  w i t h i n  t h a t  s c o p e ,  s o  t h e  name  L 3  is unknown t h e r e .  
T h e  p r o g r a m  is i n  e r r o r .  

. . 

1t g o e s  ' w i t h o u t  s a y i n g  that :  e v e r y t h i n g  t h a t  h a s  b e e n  s a i d  a b o u t  
v a r i a b l e s  i n  g e n e r a l  a p p l i ' e s  t o  l a b e l  v a r i a b l e s , .  t o o .  T h e y  , h a v e  



a l i g n m e n t ,  . s c o p e ,  . s t o r a g e  ' c lass ;  you c a n  h a v e  a r r a y s  o f  l a b e l  
v a r i a b l e s ;  t h e y  may b e  b a s e  e l . 6 m e n t s  o f  s t r u c t u r e s ;  t h e y  c a n  b e  
i n i t i a l i z e d .  I n  c o m p a r i s o n  o p e r a t i o n s ,  o n l y  = a n d  -= a re  a l l o o ~ e d ,  f o r  
l a b e l  d a t a .  ( T h i s  i s  t r u e  o f  a l l  t y p e s  of p rogr , am c o n t r o l  d a t a ' ,  
i . e . ,  a l g e b r a i c  c o m p a r i s o n s  - a r e  n o t  d e f i n e d  f o r  t h e m . )  T h e  c o n t r o l  
v a r i a b l e  of a c o n t r o l l e d  DO g r o . u p  may b e  a l a b e l  v a r i a b l e ,  b u t  t h e  TO 
a n d  9 Y ' c l a u . s e s  may n o t  b e  u s e d  ( b e c a u s e  no '  a l g e b r a i c  c o m p a r i s o n s  a r e  
d e f i n e d )  . An e x a m p l e  w h e r e  t h i s  i s  u s e f u l  is: 

DCL L LABEL; Declares a l a b e l ' v a r i a b l e .  
DO L = L l ; L 2 , L 3 ;  . T h e s e  a r e  l a b e l  c o n s t a n t s .  

:GO TO L; Goes t o  e i t h e r  L 1  o r  L2 o r  L 3 .  
L1: ... 

G O  TO COMMON; 
L2: .. . 

GO TO COMMON; 
L3: . . . 

COMMON: ... 
T h i s  c o d e  e x e c n t e d  a l l  t h r e e  times. 

E N D ;  
L a b e l  v a l u e s  may be a r g u m e n t s ,  a n d  o b v i o u s l y  p a r a m e t e r s  c a n  
v a r i a b l e s .  P r ~ c e d u r e s  c a n  r e t u r n  v a l u e s  o f  t y p e  f 8 1 a b e l f f ,  
w h a t  f o l l o w s  GO TO may b e  a  f u n c t i o n  r e f e r e n c e .  

h e  l a b e l  
so t h a t  

Care m u s t  b e  e x e r c i s e d  t o  e n s u r e  t h a t  a l a b e l  v a r i a b l e ,  when u s e d  i n  
a G O  TO s t a t e m e n t ,  d o e s  n o t  d e s i g n a t e  a s t a t e m e n t  i n  a n  i n a c t i v e  
b l o c k .  ' 1 . t  i s  i l l e g a l  t o  t r a n s f e r  c o n t r o l  i n t o  a n  i n a c t i v e  b l o c k .  ---- 
F o r  e x a m p l e ,  t h e  G O  TO s t a t e m e n t  i n  ' t h e  f o l l o w i n g ,  i f  . e x e c u t e d ,  w o u l d  
b e  i l l e g a l :  

DCL L LABEL; ' 

B E G 1  N ;  

END;  T h e  b e g i n  b l o c k  b e c o m e s  i n a c t i v e  h e r e .  

G O  TO L ;  The  v a l u e  of L ,  i . e . ,  t h e  s t a t e m e n t  l a b e l e d  by L 1 ,  i s  i n  
a n  a c t i v e  b l o c k .  



A c t u a l l y ,  t h e  s e m a n t i c s  o f  l a b e l  v a l u e s  a r e  a  l i t t l e  m o r e  s u b t l e  t h a n  
t h e y  a p p e a r .  T h e y  a r e  c o m p o s e d  d f  tw_o ~ a r t s :  o n e  is t h e  s t a t e m e n t  
l a b e l e d  ( r e p r e s e n t e d  b y  i t s  a d d r e s s ) ,  a n d  t h e  o t h e r  is a n  i n d i c a t i o n  
o f  t h e  a _ c _ t i v a t i o n  ( o r  i n v o c a t i o n )  o f  t h e  b l o c k  c o n t a i n i n g  t h e  
s t a t e m e n t  l a b e l e d .  C o n s i d e r  t h e  f o l l o w i n g .  

DCL .L LABEL S T A T I C ;  
DO I = 1 TO 2; 

BEGIN; 
6 

IF I = 1 THEN L = T,1; 
ELSE GO TO L ;  

L1 :  ... 

END; 
END; 

T h e  b e g i n  b l o c k  i s  i n v o k e d  twice. T h e  f i rs t  time t h r o u g h ,  t h e  1 d L e l  
c o n s t a n t  L1 i s  a s s i g n e d  t o  t h e  l a b e l  v a r i a b l e  L .  T h e  v a l u e  o f  t h e  
l a b e l  v a r i a b l e  L now r e p f  esents rhe s t a t e m e u t  l a b e l e d  Ly L I  t h e  
f i r s t  i n v o c a t i o n  o f  t h e  h e g i n  b l o c k .  The s e c o n d  time t h r o u g h  a new ----- 
v a l u e  is n o t  a s s i g n e d  t o  L .  Its f o r m e r  v a l u e  i s  u s e d  i n  t h e  G O  TO 
s t a t ~ m e n t .  B e c a u s e  t h a t  d e s i g n a t e s  a s t a t e m e n t  i n  a n  i n a c t i v e  b l o c k ,  
i t  i s  i l l e g a l .  T h i s  may n o t  seem i n t u i t i v e l y  n e c e s s a r y ,  b u t  
h o p e f u l l y  t h e  r e a s o n  why ' w i l l  b ecome  c l e a r  s h o r t l y .  . (We w i l l  l a t e r  
r e c a l l  t h i s  e x a m p l e  a s  "Example  Z " . )  

c 0 n s i d e . r  t h e  f o l l o w i n g  : 
P: PROC; 

BEGIP ; 

END; 

END; 
T h e  l a b e l  c o n s t a n t  L  i n  t h e  G O  TO s t a t e m e n t  r e p r e s e n t s  a l a b e l  v a , l u e  
d e s i g n a t i n g  t h e  s t a t e m e n t  l a b e l e d  by  L t o g e t h e r  w i t h  t h e  c u r r e n t  
i n v o c a t i o n  o f  P .  When t h e  GO T O  i s  e x e c u t e d ,  .two t h i n g s  a c t u a l l y  
h a p p e n .  A l l  b l o c k  i n v o c a t i o n s  f r o m  t h e  c u r r e n t  one ( t h e  b e y i n  b l o c k )  
u p  t o ,  . b u t  ' n o t  i n c l u d i n g ,  t h e  o n e  c o n t a i n e d .  i n  t h e  l a b e l  v a l u e  ( i . e . ,  
t h e  c u r r e n t  i n v o c a t i o n  o f  P) a r e  t e r m i n a t e d .  T h e r e  is n o  p o s s i b i l i t y  
o f  r e - e n t e r i n g  t h e  t e r m i n a t e d  b l o c k s  w i t h o u t  r e - i n v o k i n g  t h e m .  . N o t e  



t h a t  i f  t h e  b e g i n  b l o c k  h a d  i n s t e a d  b e e n  a p r o c e d u r e  i n v o k e d  f r o m  a  
f u n c t i o n  r e f e r e n c e ,  c o n t r o l  does no.t g o  b a c k  t o .  t h e  e x p r e s s i o n  
c o n t a i n i n g  t h e  f u n c t i o n  r e f e r e n c e  ( a s  it w o u l d  o n  a . n o r m a 1  r e t u r n )  ; 
e v a l u a t i o n  o f  ' t h a t  e x p r e s s i o n  i s  d i s c o n t i n u e d ,  a n d  c o c t r o l  is 
t r a n s f e r r e d  t o  t h e  l a b e l e d  s t a t e m e n t "  i n s t e a d .  

T h e  s i g n i f i c a n c e  o f  b l o c k  i n v o c a t i o n s  a n d  p a r t i c u l a r l y  t h e i r  
t e r m i n a t i o n  b y  s u c h  a '!GO T O  o u t  o f  b l o c k v v  ( r e f e r r e d  t o  a s  a v l ~ O O ~ l l )  
r e l a t e s  t o  t h e  f ac t  t h a t  s t o r a g e  f o r  a u t o m a t i c  v a r i a b l e s  is r e l e a s e d  
a s  t h e  b 1 0 c k s . a r e  t e r m i n a t e d .  When we. a r r i v e  b a c k  a t  t h e  t a r g e t  
b l o c k ,  t h e  a . u t o m a t i c  v a r i a b l e s  I f in  e f fec t f f  w i l l  b e  t h e  o n e s  "in 
e f f e c t v v  when c o n t r o l  f i r s t  d e s c e n d e d  o u t  o f  t h a t  b l o c k  i n t o  a n o t h e r  
o n e  ( a s  b y  a p r o c e d u r e  c a l l  o r  e x e c u t i o n  o f  a REGIN s t a t e m e n t ) .  
A c t u a l l y ,  i n  t h e  l a s t  few s e n t e n c e s  we s h o u l d  h a v e  b e e n  s a y i n g  @ ! b l o c k  
i n v o c a t i o n "  i n s t . e a d  o f  " b l o c k v v  a s  t h e  f o l l o w i n g  e x a m p l e  , i n v o l v i n g  
r e c u r s i o n  s h o u l d  p o i n t  o u t  ( t h e  d i s t i n c t i o n  is o n l y  a p p a r e n t  when ., 
r . e c u r s i o n  i s  i n v o l v e d ,  i. e . ,  when a b l o c k  c a n  h a v e  s e v e r a l  
s i m u l t a n e o u s l y  a c t i v e  i n v o c a t i o n s )  . 

P: PHOC RECURSIVE; 
DCL N STATIC I N I T  (0) ; 
DCL A (!!+I) FLOAT, AUTO; 
D C L  L' LABEL STATIC'; . . 

. . N = N + l ;  
I F  N = 2 THEN L = LX; 
I F  H = 4 THEN G O  TO L; 
ELSE CALL P; 

L X :  I = H B O U N D ( A , I ) :  
Y = A(1); 
R E T U R N ;  

EN'D; 

L e t ' s  t r a c e  t h r o u g h  w h a t  h a p p e n s .  I n i t i a l l y  P is i n v o k e d  from 
o u t s i d e .  On entry, 17 h a s  i n i t i a l  V a l u e  I). An a u t o m a t i c  a r r a y  A w i t h  
o n e  e l e m e n t  i s  a l l o c a t e d .  N i s  i n c r e a s e d  t o  1 .  S i n c e  N d o e s  n o t  
e q u a l  2 ,  LX i s  g p t  a s s i g n e d  t o  L. S i n c e  N d o e s  n o t  e q u a l  4 ,  wte s k i p  
t h e  G O  TO. P i s  t h e n  c a l l e d  r e c u r s i v e l y .  

As P is  e n t e r e d  t h e  s e c o n d  time, N ( w h i c h ,  s i g n i f i c a n t l y ,  is a s t a t i c  
v a r i a b l e )  h a s  t h e  v a l u e  1 .  A new g e n e r a t i o n  o f  A i s  a l loca ted  w i t h  
u p p e r  b o u n d  2. T h r o u g h o u t  t h i s  s e c o n t !  i n v o c a t i o n  of  P, it i s  t h . i . s  
g e n e r a t i o n  o f  A wh.ich i s  a d d r e s s e d  when A i s  r e f e r r e d  t o .  N e x t ,  N i s  
i n c r e a s e d  t o  2.  AS a r e s u l t ,  I , X  i s  a s s i g n e d  . t o  t h e  s t a t i c  l a b e l  
v a r i ' a b l e  L .  T h e  v a l u e  . a s s i g n e d  r e p r e s e n t s  t h e  s t a t e m e n t  l a b e l e d  LX 
a n d  t . h i s  c u r r e n t  ( i . e . ,  s e c o n d )  i n v o c a t i o n .  o f  P. S i n c e  N d o e s  n o t ,  --- 
e q u a l  4, t h e  GO TO is a g a i n  s k i p p e d  a n d  P' i s  c a l l e d  r e c u r s i v e l y .  



We g o  t h r o u g h  y e t  a n o t h e r  i n v o c a t i o n  o f  P,  e v e n t u a l l y  ( t h e  f o u r t h ) ,  
w h e r e u p o n  when we a r r i v e  a t  t h e  ' s t a t e m e n t  I F  N = 4..  . t h i n g s  l o o k  
l i k e  t h e  f o l l o w i n g .  Each l a r g e  b o x  r e p r e s e n t s  a n  i n v o c a t i o n  o f  P. 
F o x e s  i n s i d e  t h e s e '  r e p r e s e n t  g e n e r a t i o n s  of a u t o m a t i c  v a r i a b l e s  
b e l o n g i n g  t o  t h e  r e s p e c t i v e  i n v o c a t i o n s .  T h e  smal l  b o x e s  a t  t h e  
b o t t o m  r e p r e s e n t  t h e  s t a t i c  v a r i a b l e s .  

T h e  s ta tement  G O  '1'U la, w h i c h  i s  e x e c u t e d  . n e x t ,  c a u s e s  t h e  t h i r d  a n d  
f o u r t h  i n v o c a t i o n s  of  P  t -o  b e  d i s c a r d e d ,  s i n c e  t h e  g n v i r o n m e n t  p a r t  
o f  t h e  v a l u e  o f  L i n d i c a t e s  t h e  s e c o n d  i n v o c a t i o n  o f  P .  C o n t r o l  i s  
t r a n s f e r r e d  t o  LX, T h e  c u r r e n t  e n v i r o n m e n t  i s  now t h a t  o f  t h e  s e c o n d  
i n v o c a t i o n  of P ,  n o  l o n q e r  t h a t  o f  t h e  f o u r t h ,  s o  I i s  a s s i g n e d  t h e  
v a l u e  2 a n d  Y is a s s i g n e d '  t h e  v a l u e  of A ( 2 ) .  The R . E T U R N  s t a t e m e n t  
r e t u r n s  c o n t r o l  t o  t h e  p o i n t .  o f  t h e  s e c o n d  i n v o c a t i o n  o f  P, i. e.,  t h e  

I 

,CALL s t a t e m e n t  i n  t h e  f i r s t .  T h e  n e x t  s t a t e m e n t .  e x e c u t e d  t h e r e  is 
t . h e  o n e  l a b e l e d  by  L X  ( a s  a r e s u l t  of n o r m a l  s t a t e m e n t  s e q u e n c e ,  n o t  
b e c a u s e  of a t iy  G O  TO) . I i s  a s s i g n e d  t h e  v a l u e  1 a n d  Y is a s s i g n e d  
t h e  v a l u e  o f  A t l ) .  C o n t r o l  t h e n  r e t u r n s  t o  t h e  o u t s i d e ,  o r i q i n a l ,  
, p o i n t  o f  c a l l  of P .  

cALLp;-ar-rip: E L S E . C A L L  P; 
LX : 

' .- ~(13  * I - .  - 

T h o u g h  t h e  a b o v e  e x a m p l e  is c o n t r i v e d  a n d  n o t  r e a l i s t i c ,  i t  d o e s  
i l l u s t r a t e  t h e  m e a n i n g  o f  t h e  e n v i r o n m e n t .  p a r t  o f  a  l a b e l  v a l u e .  

Nov r e c a l l  "Example  Z N .  T h e  r e a s o n  e x e c u t i o n  o f  t h e  GO TO s t a t e m e n t  
t h e r e  is i l l e g a l  i s  b e c a u s e  it w o u l d  r e q u i r e  u s  t o  r e t r i e v e ,  or make 
c u r r e n t ,  a n  e n v i r o n m e n t  c o n t a i n i n g  p o s s i b l y  s o m e  a u t o m a t i c  v a r i a b l e s  
t h a t  h a v e  l o n g  s i n c e  b e e n  released. When t h e y ' r e  g o n e ,  t h e y ' r e  gone !  

. , rrr'p: ELSE CALL P: ELSE CALL P:' 
LX:  LX: 

. . ., . ...,. .--. 
(I):A(~II IA ( 1 ) 1 ~ . ( 2 ) 1 ~  (3)1 

A s  y o u  read LRPI 1 0 5 ,  y o u  w i l l  see t h a t  s t a t i c  l a b e l  v a r i ' a b l e s  c a n n o t  
be i n i t i a l i z e d .  T h i s  i s  b e c a u s e  s t a t i c  ' v a r i a b l e s  a r e  i n i t i a l i z e d  a t  
c o m p i l e  t ime, w h i l e  l a b e l  v a l u e s ,  b e c a u s e  t h e y  c a r r y  a n  i n d i c a t i o n  o f  
an environmeiit, d o n g t  e x i s t  u n t i l  r u n  time. A S  y o u  r e a d  t h a t  a n d  LRM 
1 0 6 ,  you w i l l  see t h a t  s t a t e m e n t  l a b e l s  c a n  b e  s u b s c r i p t e d  w i t h  
c o n s t a n t s ,  a s  i n  

L ( 4 , 7 ) :  Y = O ;  

ELSE CALI, P; 
LX: 

. 
(A (1 1111 (2111 ( 3 ) [ ~  (4)J  

\ - ... :.,. , -. 
.-.-./-, 



I n .  t h e  c u r r e n t  implementation, t h i s  d o e s  n o t  r e p r e s e n t  . a  s u b s c r i p t e d  
l a b e l  c o n s t a n t . :  i t  d e n o t e s  a.n a l t @ r n a t e  form o f  i n i t i a l i z a t i o n  o f  an  
e l e m e n t  o f  a n  a r r a y  o f  l a b e l  v a r i a b l e s  ( i n  t h i s  case,  t h e  (4,7) 
e l e m e n t  o f  t h e  a r r a y  L ) .  T h e  e1 ,ement  b e i n g  i n i t i a l i z e d  may of c o u r s e  
h a v e  i ts  v a l u e  c h a n g e d  s u b s e , q u e n t l y  b'y a s s i g n m e n t ,  s o  t h a t  i n  t h i s  
examp3.e L (4,7) may d e n o t e  a d i f f e r e n t  ' s t a t e m e n t  l a t e r !  T h e  ANSI 
l a n g r i a g e  t r e a t s  L a s  a n  a r r a y  o f  l a b e l  c o n s t a n t s ,  w h i c h  is d i f f e r e n t .  

S e e  Ll?M 108.  

6 .8 .  E n t r y  v a r i a b l e s .  

.Ke h a v e  s e e n  i n  L e s s o n  4 how t h e  EYTRY a t t r i b u t e  c a n  be u s e d  i n  a '  
d . e c l a r a t i o n  of a n : e x t e r r i a l  e n t r y  c o n s t a n t ,  a n d ,  i n  ~ e s s o n  5 ,  how 
p a r a m e t e r  d e s c r i p t i o n s  a n d  r e t u r n e d  v a l u e  d e s c r i p t i o n s  c a n  a l s o  be 
g i v e n  i n  s u c h  a d e c l a r a t i o n .  We w i l l  now c o n s i d e r  e n t r y  v a l u e s  i n  

' e g e n e r a l ,  a n d  e n t r y  v a r i a b l e s .  " E n t r y M  i s  a l e g i t i m a t e  d a t . a  t y p e ,  r. 
l i k e  " l a b e l " .  

. . 

N e w  e n t r y  v a l u e s  a r e  " g e n e r a t e d g 1  by: 
( a )  R e f e r e n c e  t o  a n  e n t r y  c o n s t a n t .  

T h e y  a r e  p r o p a g a t e d  by a s s i g n m e n t .  
T h e y  may b e  u s e a  i n  t h e  f o l l o w i n g  ways :  

( a )  I n  a  CALL s t a t e m e n t  o r  f u n c t i o n  r e f e r e n c e ,  t o  d e n o t e  t h e  
p r o c e d u r e  t o  b e  i n v o k e d .  

( b )  I n  c o m p a r i s o n  o p e r a t i o n s .  

An e n t r y  v a r i a b l e  i s  d e c l a r e d  b y  a d d i n g  t h e  VARIABLE a t t r i b u + e  t o  t h e  
t y p e s  o f  e n t r y  d e c l a r a t i o r k s  a l r e a d y  d e m o n s t r a t e d  (wit.hni1.t t h i s  
a t t r i b u t e  t i l e  d e c l a r a t i o n  1s t h a t  o f  a n  e n t r y  c o n s t a n t )  . E x a m p l e :  

DCL E ENTRY ( C H A R  (+) ) RETURNS ( R I T  (1)  ) 
VARIABLE EXT : 

E is  a n  e n t r y  v a r i a b l e  w h o s e  name h a s  e x t e r n a l  s c o p e .  Any e n t r y  
v a l u e  w h i c h  it may h a v e  m u s t  d e s i g n a t e  a p r o c e d u r e  t h a t  a c c e p t s  a 
f i x e d - l e n g t h  c h a r a c t e r  a r q u m e n t  o f  a n y  l e n g t h  a n d  r e t u r n s  a o n e - b i t  
b i t  s t r i n g .  E n t r y  v a r i a b l e s  may h a v e  a n y  o f  t h e  p r o p e r t i e s  ( s t o r a g e  
c l a s s ,  e t c . )  a t t r i h l ~ t e d  t o  v a r i a h l c s  i n  g e n e r a l .  

E n t r y  v a l u e s ,  l i k e  l a b e l  v a l u e s ,  c o n s i s t  o f  t w o  p a r t s :  a n  e n t r y  
p o i n t  ( r a p r e s e n t e d  by i ts  a d d r e s s ) ,  a n d  a n  e n v i r o n m e n t .  T h e  
e n v i r o n m e n t  i s  a n  i n d i c a t i o n  o f  t h e  a c t i v a t i o n  ( i n v o c a t i o n )  o f  t h e  
b l o c k  c o n t a i n i n g  t h e  e n t r y - c o n s t a n t  w h o s e  . r e f e r e n c e  g a v e  r i s e  t o  t h e  
e n t r y  v a l u e :  t h i s  a p p l i e s ,  ' - o f  c o u r s e ,  o n l y  t o ,  i n t e r n a l  e n t r y  

. . 



c o n s t a n t s ,  s i n c e  e x t e r n a l  e n t r y  c o n s t a n t s  h a v e  n o  c o n t a i n i n g  b l o c k ,  
i . e . ,  no  e n v i r o n m e n t .  

C o n s i d e r  t h e  f o l l o w i n g  : 
F: PROC(J) ; 

. .  DCL A (J) A U ' T O ; .  

Q :  PROC; 

Y = A ( T ) ;  

E N D ;  

CALL Q;  

E N D ;  
No r e c u r s i o n  i s  i n v o l v e d .  When t h e  i n t e r n a l ' p r o c e d u r e  Q 1s i n v o k e d ,  
t h e  e n t r y  c o n s t a n t  Q i s  r e f e r e n c e d .  T h a t  e n t r y  c o n s t a n t  Q i n h e r i t s  
t h e  e n v i r o n m e n t  o f  i t s  c o n t a i n i n g  b l o c k ,  P .  T h u s ,  a r e f e r e n c e  i n s i d e  
Q t o  A ( I )  is  a r e f e r e n c e  ' to  a n  e l e m e n t  o f  , t h e  a u . t o m a t i c  a r r a y  A 
b e l o n g i n g  t o  t h e  o n e  i n v o c a t i o n  o f  P i n  q u e s t i o n  ( w h i c h  i s  o b v i o u s l y  
t h e  o n e  t h a t  was " c u r r e n t w  when.  Q was r e f e r e n c e d  i n  t h e  CALL 
s t a t e m e n t ) .  

O b s e r v e  i n  t h e  f o l l o w i n g  example  t h e  r o l e  o f  Chc  e n v i r o n m e n t  o f  a n  
e n t r y  v a l u e  when r e c u r s i o n  i s .  i n v o l v e d .  

P: PROC (J) RECURSIVE; 
DCL A (J) A U T O ;  
DCL N FIXED B I N  STATIC I N I T  (0); 
DCL E ENTRY VARIAELE STATIC; 
N = N + 1 ;  . ., 
I F  N ' Z THEN E - Q; 
IF N = 4 THEN CALL E ;  
ELSE CALL Q;  
I F  N < 5 THEN CALL P ( N ) ;  
RETURN; 
Q: PRCIC; 

Y = A ( I )  ; 

E N D :  
E N D ;  

N o t i c e  t h a t  P c a l l s  i t s e l f  r e c u r s i v e 1 . y  u n t i l  . f i v e  i n v o c a t i o n s  o f  i t  
a r e  a c t i v e .  T h e n  N w i l l  e q u a l  5 a n d  t h e  c h a i n . o f  ' c a l l s  . w i l l  s t a r t  



r e t u r n i n g .  E a c h  i n v o c a t i o n  o f  P h a s  a g e n e r a t i o n  o f  a n  a u t o m a t i c  
- a r r a y  w i t h  a d i f f e r e n t  b o u n d .  I n  t h e  s e c o n d  i n v o c a t i o n  o f  P (N=2) , 
t h e  s t a t i c  e n t r y  v a r i a b l e  E i s  a s s i g n e d  t h e  v a l u e  o f  t h e  i n t e r n a l  
e n t r y . c o n s t a n t  Q. T h e  e n v i r o n m e n t  w h i c h  is p a r t  o f  t h i s  v a l u e  is 
t h a t  . o f  t h e  s e c o n d .  i n v o c a t i o n  o f  P. I n  a l l  f i v e  i n v o c a t i o n s  o f  P ,  Q 
i s  c a l l e d ;  i t  r e f e r e n c e s  a n  e l e m e n t  of A a n d  r e t u r n s  t o  t h e  p o i n t  o f  
c a l l .  I n  a l l  i n v o c a t i o n s  o f  P  e x c e p t  t h e  f o u r t h ,  Q i s  c a l l e d  by  
r e f e r r i n g  . d i r e c t l y  t o  t h e  e n t r y  c o n s t a n t  Q ,  a n d  t h e  e n v i r o n m e n t  o f  Q 
u s e d  i n  t h e  r e f e r e n c e  t o  A i n s i d e  Q i s  t h u s  t h e  p g g ~ t  i n v o c a t i o n  o f  
Q a s  c o n t a i n i n g  b l o c k ,  ,P. However ,  i n  t h e  f o u r t h  i n v o c a t i o n  o f  P, Q 

. i s  c a l l e d  b y '  r e f e r e n c i n g  t h e  e n t r y  v a r i a b l e  E. B e c a u S e  t h e  
e n v i r o n m e n t  p a r t  o f  t h e  e n t r y  v a l u e  d e n o t e s  t h e  s e c o n d  i n v o c a t i o n  o f  
P ,  t h e  r e f e r e n c e  t o  A i n s i d e  Q is a r e f e r e n c e  t o  t h e  g e n e r a t i o n  o f  A 
a l l o c a t e d  . a t  t h e  time o f  t h e  s e c o n d  i n v o c a ' t i o n  o f  P .  

S e e  L B N  1 0 7 .  

T h e r e  a r e  s o m e w h a t  m e s s y  r u l e s  f o r  d e t e r m i n i n g  when ( e x c e p t  i n  
o b v i o u s  c a s e s )  a, r e f e r e n c e  t o  . a n  e n t r y  c o n s t a n t  o r  a n  e n t r y  v a r i a b l e  
d e n o t e s  t h e  p r o c e d u r e  i t se l f  a n d  when it d e n o t e s  t h e  v a l u e  r e t u r n e d  
b y  i n v o k i n g  t h e  p r o c e d u r e .  S e e  LRM 1 0 9  a n d  LRM 1 1 0 .  T h e  A N S I  
s t a n d a r d  u s e s  d i f f e r e n t ,  b u t  much s i m p l e r ,  r u l e s  . f o r  ' t h i s  
d e t e r m i n a t i o n .  

F o r  a  c o m p l e t e  r e v i e w  o f  t h e  ENTRY a t t r i b u t e ,  see LRM 1 1 1 .  

. , 

6 . 9 .  P r o g r a m  t e r m i n a t i o n .  

A p r o g r a m  e n d s  by  e x e c u t i n g  a R E T U R N  s t a t e m e n t  i n  t h e  m a i n  p r o c e d u r e  
o r  by  r e a r h i n g  t h e  E N D  , z t n t e n e n  t ol: t h e  main p r o c e d u r e .  It may a l s o  
e n d  b y  e x e c u t i n g  a SrQg s t a t e m e n t  i n  a n y  p r o c e d u r e .  The  l a t t e r  
m e c h a n i s m  is  c o n s i d e r e d  t o  b e  an a b n o r m a l  t e r m i n a t i o n  o f  t h e ,  p r o g r a m ;  
i n  o u r  s y s t e m  it c a u s e s  a s t e p  c o n d i t i o n  c o d e ,  w h i c h  may b e  t e s t e d  i n  
J C L ,  o f  1 0 0 0  t o  b e  s e t .  I n f o r m a t i o n  g o i n g  b e y o n d  t h e  a b o v e  i s  i n  t w o  
p l a c e s :  LRM 1 1 2  a n d  LRM 1 1 3 .  

6 . 1 0 .  ' E x c e p t i o n a l  c o n d i t i o n s .  

I n  s e v e r a l  o f  t h e  e a r l i e r  l e s s o n s  we l e f t  f o r  l a t e r  c o n s i d e r a t i o n  a n  
e x a m i n a t i o n  o f  w h a t  h a p p e n s  when a n  e x c e p t i o n a l  c o n d i t i o n  o c c u r s .  
An e ~ c g p t & o n a l  c o n d i t i o n  i s  a p o s s i b l e ,  t h o u g h  n o t  . u s u a l l y  l i k e l y  



( i n  t h e  s e n s e  o f  b e i n g  f r e q u e n t ) ,  u n u s u a l  o u t c o m e  cf some o p e r a t i o n  
o r  r e q u e s t e d  a c t i o n .  PL / I  d o e s  " n o t  r e q u i r e  t h e  p r o g r a m m e r  t o  t e s t  
c o n s t a n t l y  f o r  u n u s u a l  o u t c o m e s  o f  o p e r a t i o n s .  I t  p r o v i d e s  you a 
way o f  b e i n g  i n f o r m e d ,  i n  t h e  p r o g r a m ,  when  o n e  c c c u r s  i n  s u c h  a way 
t h a t  you a r e  n o t  b o t h e r e d  when it d o e s n ' t .  S e e  LRN 1 1 4 .  

P L / I  d e f i n e s  a n d  n a m e s  a w h o l e  s e t  o f  p o s s i b l e  c o n d i t i o n s ,  i . e . ,  
u n u s u a l  o u t c o m e s  o f  o p e r a t i o n s .  It a l s o  d e f i n e s  w h a t  c o n s t i t u t e s  a n  
o c c u r r e n c e  o d  e a c h  c o n d i t i o n .  T h e  l i s t  of c o n d i t i o n s  i s  g i v e n  i n  --------- 
L R N  1 1 5 ,  a n d  i n d i v i d u a l  c o n d i t i o n s  a r e  d e s c r i b e d  i n  LRN 1 1 6 .  
C e r t a i n  o f  t h e  c o n d i t i o n s  w i l l  be  s a v e d  f o ~  l a t e r .  , A b r i e f  
d e f i n i t i o n  o f  w h a t  c o n s t i t u t e s  a n  o c c u r r e n c e  o f  t h o s e  c o n s i d q r e d  
h e r e  f a l l o w s .  

C o m ~ u t a t i o n a l  c o n d i t i o n s  --- -------- ---------- 
FIXEDOVERFLOW ( a b b r e v .  FOFL) . T h i s  o c c u r s  wh'en a f i x e d  - p o i n t  

o p e r a t i o n  p r o d u c e s  a  r e s u l t  t h a t  c a n n o t  b e  e x p r e s s e d  i n  t h e  
maximum n u m b e r  o f  d i g i t s  of t h e  i m p l e m e n t a t i o n .  F o r  e x a m p l e ,  
n o t e  t h a t  t h e  p r e c i s i o n  r u l e  f o r  a d d i t i o n  ( L e s s o n  1 )  o f  two  
FIXED B I N A R Y  (31 ,O)  v a l u e s  w o u l d  s p e c i f y  F I X E D  B I N A R Y  (32 ,O)  
f o r  t h e  r e s u l t ,  were i t  n o t  f o r  t h e  i m p l e m e n t a t i o n  maximum 
n u m b e r  o f  d i g i t s  . o f  31, f o r  b i n a r y  b a s e .  T h e  s u b s t i t u t i o n  of 
31 f o r  32 is a h i n t  t h a t  FOFL c a n  o c c u r  ' o n  a d d i t i o n  o f  . two 
FIXED B I N A R Y  3 1 , 0 )  n u m b e r s ;  i n d e e d ,  it ' ' w i l l  c c c u r  when 230 is 
a d d e d  t o  2  ( f o r  e x a m p l e )  . T h e  r e s u l t ,  2 3 1 ,  r e q u i r e s  a 
n o n - z e r o  d i g i t  i n  t h e  3 2 n d  p o s i t i o n  . f r o m  t h e  right e n d .  
o b s e r v e  t h a t  FOFL c a n n o t  o c c u r . o n  t h e  a d d i t i o n  of two FIXED 
B I N A R Y  (15 ,D)  v a l u e s  b e c a u s e  t h e  r e s u l t  p r e c i s i o n ,  ( 1 6 , @ )  , i s  
wel l  w i t h i n  t h e  i m p l e m e n t a t i o n  maximum p r e c i s i o n .  

OVERFLOW ( a b h r e v .  OFL) . T h i s  o c c u r s  when a f l o a t i n g - p o i n t  o p e r a t i o n  
p r o d u c e s  a r e s u l t  w i t h  a m a g n i t u d e  i n  e x c e s s  o f  w h a t  t h e  
h a r d w a r e  can r e p r e s e n t .  

UNDERFLOW ( abbrev .  UFL).  UFL o c c u r s  when a f l o a t i n g - p o i n t  o p e r a t i o n  
p r o d u c e s  a r e s u l t  w i t h  a m a g n i t u d e  t o o  sma l l  . f o r  t h e  - h a r d w a r e  
t o  r e p r e s e n t .  

Z E K U L I I V I D E  (abbrev .  zurv)  I  his occurs on an attempt ' to Q i v i d e  by 
z e r o .  . . 

S I Z E .  T h i s  occnrs when a.n a t . t e m p t  i s  mafie t.0 a . s s i g n  a va l .ue  t.o a. 
f i x e d - p o i n t  t a r g e t  v a r i a b l e  t h a t  d o e s  n c t  h a v e  e n o u g h  
h i g h - o r d e r  d i g i t  p o s i t i o n s  t o  a c c o m m o d a t e  n o n - z e r o  h i g h - o r d e r  . 
d i g i t s  o f  t h e  v a l u e  b e i n g  a s s i g n e d .  

CONVERSION ( a b b r e v .  C O N V ) .  CONV i s  r a i s e d  i f  a c h a r a c t e r  s t r i n g  
v a l u e ,  w h i c h  i s  t h e  s o u r c e  v a l u e  i n  a c o n v e r s i o n  o p e r a t i o n ,  
c o n t a i n s  a n  i l l e g a l  c h a r a c t e r .  . C O N V  . a l s o  o c c u r s  o n  a s s i g n m e n t  
t o  a c h a r a c t e r  p i c t u r e d  v a r i a b l e  ( L e s s o n  2)  i f  t h e  s o u r c e  v a l u e  
d o e s  n o t  c o n f o r m  t o  t h e  p i c t u r e  s p e c i f i c a t i o n ,  a n d  i t  may o c c u r  

. , o n  c e r t a i n  k i n d s  o f  i n p u t  o p e r a t i o n s  ( L e s s o n ,  7 ) .  



P r o y r a m  c h e c k o u t  c o n d i t i o n s  --- --- -------- --------- 
SUBSCRIPTRANGE ( a b b r e v .  SU-BRG) . " T h i s  o c c u r s  when a  r e f e r e n c e  i s  

made t o  a n  e l e m e n t  o f  a n  a r r a y . o u t s i d e  t h e  b c u n d s  o f  a r?y  o f  i t s  
d i m e n s i o n s .  

STRINGRANGE ( a b b r e v .  S T R G ) ' .  T h i s  o c c u r s  w h e n e v e r  a r e f e r e n c e  t o  t h e  . ' 

SUBSTR b u i l t i n  f u n c t i o n  o r  p s e u d o - v a r i a b l e  d e s c r i b e s  a 
s u b s t r i n g  w h i c h  d o e s  n o t  l i e  e n t i r e l y  w i t h i n  t h e  b o u n d s  o f  t h e  
s t r i n g  v a l u e  w h i c h  i s  i t s  f i r s t  a r g u m e n t .  S e e  L e s s o n  2.  

STRINGSIZE ( a b b r e v .  STRZ).  T h i s  o c c u r s  w h e n e v e r  a  s t r i n g  v a l u e  
h a v i n g  a 1 e n g t h . i . n  e x c e . s s  of  t h e  l e n g t h  ( o r  maximum l e n g t h )  o f  
a s t r i n g  v a r i a b l e  i s  a b o u t .  t o  b e  a s s i g n e d  t o  t h a t  v a r i a b l e .  

S y S t e m  a c t i o n  c o n d i t i o n s  - --- ------ ---------- 
FINISH.  T h i s  c o n d i t i o n  o c c u r s  a s  t h e  r e s u l t  o f  a n y  a c t i o n  t h a t  

wou ld  t e r m i n a t e  t h e  p r o g r a m .  E x a m p l e s  a re :  e x e c u t i o n  o f  STOP 
s t a t e m e n t ;  e x e c u t i o n  o f  FETURnl o r  E N D  s t a t e m e n t  o f  m a i n  
p r o c e d u r e .  O t h e r s  w i l l  f o l l o w  . 

E R R O R .  E R R O R  o c c u r s  i n  many c i r c u m s t a n c e s .  One c a t e g c r y  o f  
c i r c u m s t a n c e s  i s  d e t e c t i o n  o f  a n  i l l e g a l  a r g u m e n t  t o  a 
m a t h e m a t i c a l  b u i l t i n  f u n c t i o n  ( e . g . ,  t h e  r e a l  v a l u e  -1 t o  
SQRT) . A n o t h e r  i s  a n y  e r r o r  t h a t  a n  i m p l e m e n t a t i o n  may care  t o  
d e t e c t  f o r  w h i c h  n o  s p e c i f i c  c o n d i t i o n  is p r o v i d e d .  . O t h e r s  
w i l l  f o l l o w .  

6 .12 .  E n a b l e m e n t / d i s a b l e m e n t  o f  c o n d i t i o n s .  

N o t  a l l  o c c u r r e n c e s  o f  c o n d i t i o n s  n e e d  be  d e t e c t e d  a n d  r e p o r t e d .  
F o r  c e r t a i n  c o n d i t i o n s ,  t h e  p r o g r a m m e r  may c h o o s e  t o  i g n o r e  a n  
o c c u r r e n c e .  I n  s u c h  a c a s e  i t  is  i m p o r t a n t  t o  n o t e  t h a t  t h e  
c o n d i t i o n  h a s  o c c u r r e d  ( b e c a u s e  t h a t  may h a v e  c o n s e q u e n c e s  o n  t h e  
m e a n i n g  o f  t h e  p r o g r a m ' s  e x e c u t i o n  a s  d e f i n e d  by  PL/ I )  e v e n  i f  t h e  
p r o g r a m m e r  e l e c t s  n o t  t o  h e  n o t i f i e d .  

O c c u r r e n c e s  o f  c e r t a i n  c o n d i t i o n s  a r e  d e t e c t e d  b y  t h e  h a r d w a r e ;  
o t h e r s ,  b y  c o m p i l e d  c o d e .  

W h e t h e r  t h e  o c c u r r e n c e  o f  a  c o n d i t i o n  i s  ' d e t e c t e d  c r  n c t  d e ~ e n d s  o n  
w h e t h e r  t h e  c o n d i t i o n  i s  e n a b l e d  o r  d i s a b l e d  a t  t h e  p o i n t  i n  t h e  
p r o g r a m  w h e r e  it o c c u r s .  T h i s  p r o p s r t y  o f  a c o n d i t i c n  i s  c a l l e d  i t s  
s t a t u s .  ----- 

C e r t a i n  c o n d i t i o n s  a r e  e n a b l e d  b y  d e f a u l t .  O t h e r s  a r e  d i s a b l e d  b y  
d e f a u l t .  A p r o g r a m m e r  may s p e c i f y  a p a r t i c u l a r  s t a t u s  f o r  a  



c o n d i t i o n  t o  h o l d  d u r i n g  t h e  e x e c u t i o n  o f  a s t a t e m e n t  o r  o f  a  w h o l e  
b l o c k ,  t h u s  o v e r r i d i n g  t h e  d e f a u l t . .  T h e r e  a re  a  f e w  c o n d i t i o n s  
w h o s e  d e f a u l t  . s t a t u s  may n o t  b e  o v e r r i d d e n .  

An e x p l i c i t  s t a t u s  may b e  s p e c i f i e d  b y  a c o n d i t i o q  ~ ~ e f j x .  Z x a m p l e s  
f o l l o w .  

( S I Z E ) :  I = 3*J;  S I Z E  is  e n a b l e d  d u r i n g  t h e  e x e c u t i o n  
o f  t h i s  s t a t e m e n t .  

(NOSIZE) : B = C ;  S I Z E  is d ' i s a b l e d  f o r  t h i s  o n e .  
(OFL, NOUFL) : X = Y * Z ;  CFL i s  e n a b l e d ,  UFL d i s a b l e d .  
(OFL) : (NOUFL): X = Y*Z;  Same a s  a b o v e .  
(OFL) : L :  Y = 2**X; T h i s  s t a t e m e n t  h a s  a  l a b e l . ,  t oo .  (it. 

must fo l low a n y  c o r i d i t i ~ n  p r e t l x e s . ) '  

Whcn a c o n d i t i o n  p r e f i x  i s  a t t a c h e d  t o  a B E G I N  o r  PROCEDURE 
s t a t e m e n t ,  i t  a p p l i e s  t o  a l l  s t a t e m e n t s  i n  t h e  . b l c c k  e x c e p t  t h o s e  t o  
w h i c h  a c o m p l e m e n t a r y  c o n d i t i o n  p r e f i x  i s  a t t a c h e d .  , I t  a p p l i e s  t o  
(l.e., 1s l n h e r l t . e d  b y )  a n y  n e s t e d  b l o c k s .  

N o t e  t h a t  s t a t u s  o f  a c o n d i t i o n  i s  a s t a t i c  p r o p e r t y  o f .  a s + . a t e m e n t  
t h a t  c a n  b e  d e t e r m i n e d  ' ( l i k e  s c o p e  o f  a  d e c l a r a t i o n )  by  t h e  
c o m p i l e r .  The s t a t u s  o f  a c o n d i t i o n  i n  a n  . e x t e r n a l  p r o c e d u r e  Q 
c a l l e d  by p r o c e d u r e  P, f o r  e x a m p l e ,  h a s  n o t h i n g  t o  ' d o  w i t h  i t s  
s t a t u s  i n  P .  

T h c r ' f o l l o w i n g  t a b l e  i n d i c a t e 3  thc d e f a u l t  status f o r  t h e  c o n d i t i o n s :  
c o n s i d e r e d  s c  f a r ,  a n 3  w h e t h e r  ' t h e y  c a n  b e  d i s a b l e d .  . 

C o n d i t i o n  --------- 
' FOFL 

OFL , 

U FL 
. Z D I V  
sEze 
C O N V  : ,. - . . - . . . . . . . 
SiJBRG 
STRG 
STRZ . . . - , .--. . . . . . 
FINISH 
E R R  OR 

: : _______ D e f a u l t  ______ s t a t u s  Cgq L t b f g A ~ a b l e d ?  
E n a b l e d  Yes 
E n a b l e d  Yes ! , . 
E n a b l e d  Yes 
E n a b l e d  Yes 
u i s a b l e d  

Yes - . . .. .. . . - .. . . 

D i s a b l e d  . I 

D i s a b l e d  . - . . . . . -. . . - - . . . . . 
~ n  a b . l e  d 1 N o  
E n a b l e d  No 

! 

S e e  LRM 117 t h r o u g h  Lily 120 .  



6 .13 .  E s t a b l i s h m e n t  o f  c o n d i t i o n s .  

What h a p p e n s  when a c o n d i t i o n  o c c u r s  d e p e n d s  f i r s t  c f  a l l  o n  w h e t h e r  
i t  i s  e n a b l e d  o r  d i s a b l e d .  

Bhen a n y  o f  t h e  a b o v e .  c o n d i t i o n s  o c c u r s  w h i l e  d i s a b l e d ,  t h e  r e s u l t  
o f  t h e  o p e r a t i o n  t h a t  c a u s e d  t h e  c o n d i t i o n  t o  o c c . u r  i s  u n d e f i n e d ,  
w i t h  two  e x c e p t i o n s .  T h e  e x c e p t - i o n s  a re  a s  f o l l o w s .  When UFL i s  
a i s a b l e a ,  t h e  r e s u l t  of  a n  o p e r a t i o n  t h a t  c a u s e s  i t  t o  o c c u r  i s  
t a k e n  t o  b e  z e r o .  When S T R Z  i s  d i s a b l e d , .  t h e  s o u r c e  s t r i n g  is' 
t r u n c a t e d  o n  t h e  r i g h t  t o  make i t  f i t  t h e  t a r g e t  v a r i a b l e ,  as 'we saw 
i n  L e s s o n  2.  

When we s a y  t h a t  t h e  r e s u l t  i s  u n d e f i n e d ,  -we mean t h a t  t h e  l a n g u a g e  
d o e s  n o t  d e f i n e . a  r e s u l t .  T h e  r e s u l t  i s . e n t i r e l y  d e t e r m i n e d  b y  t h e  
i m p l e m e n t a t i o n ;  i t  may b e  u s e l e s s  ( g a r b a g e )  o r  u s e f u l ,  h u t  it is n o t  
g u a r a n t e e d  t o  b e  t h e  same i n  a n o t h e r  i m p l e m e n t a t i o n .  N o t e  t h a t  
s i m p l e ,  u s e f u l  r a n d o m  n u m b e r  g e n e r a t o r s  a r e .  f r e q u e n t l y  d e s i g n e d  
a r o u n d  the o c c u r r e n c e  o f  a d i s a b l e d  FOFL c o n d i t i o n :  

When a c o n d i t i o n  o c c u r s  w h i l e  e n a b l e d , .  t h e  c o n d i t i o n  i s  s a i d  t o  b e  
r a i s e d .  T h e  p r o g r a m m e r  c a n  s p e c i f y  a n  a c t i o n  t o  b e  t a k e n  when a' ------ 
c o n d i t i o n  i s  r a i s e d  o r  h e  c a n  r e l y  o n  s y s t e m  d e f a u l t  a c t i o n s  , ( c a l l e d  
s t a n d a r d  system a c t i o n )  . -------- 

T h e  p r o g r a m m e r  s p e c i f i e s  a n  a c t i o n  t o  b e  t a k e n  when a c o n d i t i o n  i s  
r a i s e d  b y  e s t a b l i s h i n q  a n  oq u n i t  f o r  t h ' e  c o n d i t i o n .  T h i s  i s  
a c c o m p l i s h e d  by e x e c u t i n g  a n  s t a t e m e n t  p r i o r  t o  t h e  r a i s i n g  o f  
t h e  c o n d i t i o n .  

! 

. . 

An O N  s t a t e m e n t  h a s  t h e  t y p i c a l  form 
ON condition o n - u d ;  

cond&on is t h e  k e y w o r d  n a m i n g  t h e  c o , n d i t i o n . ' .  . on,u& . is  e i t h e r  a 
s i n g l e  s t a t e m e n t  o r  a , b e g i n  b l o c k .  E x a m p l e s :  

ON FOFL GO TO L; 
. ON UFL N = N + 1 ;  
ON S I Z E  EEGIN; 

GO TO DONE; 
END ; 



O n c e  a n  o n  u n i t  h a s  b e e n  e s t a b l i s h e d  f o r  a  c o n d i t i o n ,  i n  a b l o c k ,  
i . e . ,  o n c e  a n  O N  s t a t e m e n t . f o r  t ' h a t  c o n d i t i o n  h a s  b e e n  e x e c u t e d  i n  
t h e  b l o c k ,  s u b s e q u e n t  r a i s i n g  of t h e  c o n d i t i o n  i n  t h a t  b l o c k ,  o r  a n y  
b l o c k  i , n v o k e d  f r o m  if i n  w h i c h  a n o t h e r  c n  u n i t  f o r  t h e  same , , '  

c o n d i t i o n  . h a s  n o t  b e e n  e s t a b l i s h e d ,  c a u s e s  t h e  on  u n i t  t o  b e  
e x e c u t e d .  l l S u b s e q u e n t l t  i s  i n  t h e  s e n s e  o f  l a t e r  i n  time. 

A n o t h e r  way o f  d e s c r i b i n g .  w h i c h  o n  u n i t  g e t s  c o n t r o l  when a 
c o n d i t i o n ,  i s  r a i s e d  i s  a s  f o l l o w s .  I f  a n  o n  u n i t  f o r  t h e  c o n d i t i o n  
h a s  b e e n  e s t a b l i s h e d  i n  t h e  c u r r e n t ,  b l o c k ,  i t  i s  e x e c u t e d .  I f  n o n e  
h a s  b e e n  e s t a b l i s h e d  t h e r e ,  t h e  b l o c k  t h a t  i n v o k e d  t h e  c u r r e n t  b l o c k  
is  e x a m i n e d  f o r  a n  e s t a b l i s h e d  o n  u n i t .  T h e  s e a r c h  f o r  a n  on  u11it  
p r o c e e d s  i n  t h i s  way a l l  t h e  way o u t  t o  t h e  m a i n  p r 0 c e d u r . e .  

S u p p o s e  t h a t  a p r o c e d u r e  has all e s t . a h 1  I s h e %  on unat; P call3 Q ;  
a n d  Q e s t a b i i s h e s  a n  on  u n i t  f o r  t h e  same c o n d i t i c n .  The  on  u n i t  
e s t a b l i s h e d  b y  P i s  l1s t acked1 l .  I f  t h e  c o n d i t i o n  o c c u r s  s u b s e q u e n t . l y  
i n  0, t h e  on u n i t  e s t a b l i s h e d  i n  Q i s  e x e c u t e d .  Once  Q returns t o  
P,  h o w e v e r ,  t h e  o n  u n i t  i n  Q i s  n o  l o n g e r  i n  e f f e c t .  Tf t h e  
c o n d i t i o n  s u b s e q u e n t l y  o c c u r s  i n  P, P t s  e s t a b l i s h e d  c n  u n i t  g e t s  
c o n t r o l .  

I f  a n o t h e r  ON s tatement  i s  e x e c u t e d  i n  t h e  same b l o c k  i n  wh ich  a n  o n  
u n i t  ( f o r  t h e  same c o n d i t i o n )  i s  a l r e a B y  i n  ' e f f e c t ,  t h e  on u n i t  
s p e c i L i e d  i n  t h e  new O N  s t a t e m e n t  s u p p l a n t s  t h a t  s ~ e c i f i e d  e a r l i e r ,  
i. e. , it b e c o m e s  t h e  e s t a b l i s h e d  o n  u n i t  i n  t h e  b l o c k .  T h a t  is,  t h e  
new o n  u n i t  is n o t  s t a c k e d .  

T h e  o n  u n i t  i t s e l f  may h e  t h o u g h t  of a s  a p a r a m e t e r l e s s  i n t e r n a l  
p r o c e d u r e .  When a  c o n d i t i o n  i s  r a i s e d ,  t h e  c u r r e n t  o p e r a t i o n  is 
i d e n t i f i e d  a s  t h e  ~ g i g i  of . i n t e r r ~ ~ p f ,  a n d  i t  i c  j u s t  a s  i f  the 
i n t e r n a l  p r o c s d u r e  r e p r e s e n t e d  by t h e  o n  u n i t  were iqr~kd, t h e  
p o i n t  o f  i n v o c a t i o n  b e i l l y  t h e  p o i n t  o f  i n t e r r u p t .  T h e  on  u n i t  may 
o r  may n o t  r s a c h  i t s  n o r m a l  e n d .  I f  i t  d o e s ,  c o n t r o l  r e t u r n s  t o  t h e  
p o i n t  o f  i n t e r r u p t  a n d  t h ;  p r o g r a m  ( u s u a l l y )  c o n t i n u e s  f r o m  t h e r e .  
T h i s  i s  c a l l e d  q o r u a l  r e t u r n  o f  t h e  o n  u n i t .  T h e  c t h e r  c h o i c e  i s  t o  
e x e c u t e  a  G O  TO o u t  o f  b l o c k ,  t r a n s f e r r i n g  c o n t r c l  f r o m  t h e  on u n i t  
t o  s o m e  l a b e b e d  s t a t e m e n t  o u t s i d e  t h e  o n  u n i t .  8 2  i n  a l l  GObB*c, 
t h e r e  i s  n o  p o s s i b i l i t y  o f  g o i n g  b a c k  t o  t h e  p o i n t  o f  i n v o c a t i o n  o f  
t h e  b l o c k  ( i . e .  , t h e  p o i n t  o f  i n t e r r u p t )  . 

T h e  view of on  u n i t s '  a s  i n t e r n a l  p r o c e d . u r e s  l l i n v a k e d l t  f r o m  t h e  p o i n t  
o f  i n t e r r u p t  i s  c o m p l e t e d  b y  n o t i n g  t h a t  t h e  e n v i r o n m e n t  p a r t  o f  t h e  
e n t r y  v a l u e  r e p r e s e n t i n g  s u c h  a p r o c e d u r e  i s  t h a t  d e n o t i n g  t h e  
i n v o c a t i o n  of  t h e  b l o c k  c o n t a i n i n g  t h e  CN s t a t e m e n t  when i t  , ' w a s  



e x e c u t e d .  T h u s ,  r e f e r e n c e s  t o  a u t o m a t i c  v a r i a b l e s  of t h e  b l o c k  
c o n t a i n i n g  t h e  O N  s t a t e m e n t ,  f r o m  w i t h i n  t h e  c n  u n i t ,  a r e  r e f e r e n c e s  
t o  t h e  g e n e r a t i o n s  c o r r e s p o n d i n g  t o  t h e  i n v o c a t i o n  o f  t h e  c o n t a i n i n g  
b l o c k  w h i c h  e x e c u t e d  t h e  CV s t a t e m e n t .  

I n  s o m e  c a s e s  t h e  i n t e r r u p t e d  o p e r a t i o n  d c e s  n o t  c c n t i n u e  from . t h e  
p c i n t  o f  i n t e r r u p t  o n  n o r m a l  r e t u r n  f r o m  t h e  o n  u n i t .  T h e  
e x c e p t i o n s  a r e  a s  f o l l . o w s :  
STRINGRANGE: T h e  SUBSTR r e f e r e n c e  i s  a m e n d e d  t o  y i e l d  a  v a l i d  ----------- 

s u b s t r i n g ,  t h e n  t h e  p r o g r a m  c o n t i n u e s .  
CCYVERSION: . It is  a s s u m e d  t h e  o n  u n i t  h a s  mad'e a n  a t t e m p t  t o  ---------- 

correct  t h e  c o n d i t i o n  u s i n g  f a c i l i t i e s  d e s c r i b e d  i n  L e s s o n  10 .  
I f  t h e  a t t e m p t  , h a s  b e e n  m a d e , .  t h e  c c n v e r s i c n  o p e r a t i o n  i s  
r e t r i e d  ( t h i s  c o u l d  r a i s e  C O Y V  a g a i n  i f  t h e  a t t e m p t  was n o t  
s u c c e s s ' f u l )  . . I f  n o  a t t e m p t  h a s  b e e n  made, ERROR i s  r a i s e d .  

SUBSCRIPTRANGE: EBROR i s  r a i s e d .  -------------- 
ERROR: F I N I S H  is r a i s e d .  F o t e  t h a t  w h e n  ERROR i s  r a i s e d ,  t h e r e  i s  ----- 

n o  way t h e  p r o g r a m  c a n  b e  m a d e  t o  c o n t i n u e  f r o m  t h e  p o i n t  of 
i n t e r r u p t .  

FI-NISH: T h e  p r o g r a m  t e r m i n a t e s . '  ' 

Of t h e  r e m a i n i n g  cases,  o n l y  t w o  (UBDERFLOW a n d  STRINGSIZE) c o n t i n u e  
f r o m  t h e  p c i n t  o f  i n t e r r u p t  w i t h  a d e f i n e d  r e s u l t .  . T h e  o t h e r  f o u r  
(FIXEDOVERFLOW, OVERFLOW, ZERODIVIDE, a n d  S I Z E )  c o n t i n u e  w i t h  a n  
u n d e f i n e d  r e s u l t .  

6 . 1 4 .  S t a n d a r d  s y s t e m  a c t i o n .  

When t h e  s e a r c h  f o r  a n  e s t a b l i s h e d  o n  u n i t  d o e s n ' t  t u r n  u p  a n y ,  
s t a n d a r d  s y s t e m  a c t i o n  is t a k e n .  S t a n d a r d  s y s t e m  a c t l o n  i s  a s  
f o l l o w s :  
STRG: I s s u e  a m e s s a g e ,  t h e n  c o n t i n u e  w i t h  a m e n d e d  SUBSTR r e f e r e n c e  ---- 

a s  d e s c r i b e d  f o r  n o r m a l  r e t u r n  from a STRG o n  u n i t .  
STRZ a n d  !EL:  I s s u e  a m e s s a g e  a n d  c o n t i n u e  w i t h  t h ~  d e f i n e $  r e s u l t ,  ---- 
C O N V ,  l??p&, QI4, SIZE, SUBRG, and ZDIV: I s s u e  a m e s s a g e  a n d  r a i s e  

ERROR. 
E R R O R :  I s s u e  a m e s s a g e  a n d  r a i s e  F I N I S H .  ----- 
F I N I S H :  T e r m i n a t e  t h e  p r o g r a m .  ------ 

S u p p o s e  y o u  a r e  w r i t i n g  a n  e x t e r n a l  p r o c e d u r e  a s  p a r t  of a p r o g r a m  
w h i c h  i s  a team e f f o r t .  H o w  d o  y o u  a r r a n g e  f c r  s t a n d a r d  s y s t e m  
a c t i o n  t o  b e  t a k e n  ( i f  t h a t  i s  w h a t  y o u  w a n t )  w h e n  a c c n d i t i o n  i s  
r a i s e d  i n  y o u r  p r o c e d u r e ,  n o t  k n o w i n g  w h e t h e r  s o m e  c t h e r  b l o c k  a b o v e  
y o u r s  i n  t h e  c h a i n  of a c t i v e  b l o c k s  h a s  e s t a b l i s h e d  a n  o n  u n i t  f o r  
i t ?  You may e s t a b l i s h  a "system a c t i o n  o n  u n i t 1 1  b y  e x e c u t i n g  a n  ON 



s t a t e m e n t  w i t h  t h e  k e y w o r d  SYSTEM i n  p l a c e  o f  a n  o n  u n i t .  E x a m p l e :  
O N  FOFL SYSTEM; 

6 .  15. T h e  REVERT s t a t e m e n t .  

A n o t h e r  p r o b l e m  y o u  may h a v e  i n  d e s i g n i n g  a n  e x t e r n a l  p r o c e d u r e  a s  
p a r t  o f  a team e f f o r t  is' t h e  f o l l o w i n g .  You may ' h a v e  e s t a b l i s h e d  a n  
o n  u n i t  i n  o r d e r  t o  i n t e r c e d e  when a c o n d i t i o n  is r a i s e d  i n  a  
c e r t a i n  p a r t  o f  y o u r  p r o c e d u r e .  H a v i n q  p a s s e d  t h e  p o i n t  a t  w h i c h  
you'  a r e  n o  l c n q e r  interest.eii i n  i n t s r c c d i n g ,  how d.u you llcancell' t h e  
e s t a b l i s h e d  o n  u n i t  . s o  t h a t  s u b s e q u e n t  a c t i o n ,  i f  t h e  , c o n d i t i o ~ i  
s h o u l d  o c c u r  l a t e r  i n  y o u r  procednre, w i l l  b c  g o v e r n e d  e l l t i r e l y  h y  
a n y  on u n i t s  t h a t  may be  e s t a b l i s h e d  i n  t h e  b l o c k s  a b o v e  y o u r s  o n  
t h e  c h a i n  o f  a c t i v e  b l o c k s ?  By e x e c u t i n g  a  ______ R E V E R T  s t a t e m e n t  --------.-,. f o r  t h e  
c u n d i t . i o n  . E x a m p l e :  

H E V E R T  Z E R O D I V I D E ;  
T h e  e f f e c t  of t h i s  i s  t o .  c a n c e l ,  o r  n u l l i , f y ,  any 261V. o n  u n i t  
p r e v i r s u s l y  e s t a b i i s h e d  i n  t h e  c i i r r e n t  b l o c k .  T h e r e  w i l l  t h e n  b e  ng 
Z D I V  o n  u n i t  e s t a b l i s h e d  i n  t h e  c u r r e n t  b l o c k ,  i . e . ,  t h e  s i t u a t i o n  
i s  t h e  same a s  i t  was j u s t  a f t e r  t h e  b l o c k  was ' e n t e r e d  a n d  b e f o r e  
a n y  CN ZDIV,, .; s t - a t s m e n t  waE e x e c u t e d .  

I t  is l e g a l  t o  r e v e r t  a  c o n d i t i o n  w h i c h  h a s n ' t  b e e n  e s t a b l i s h e d  i n  
t h e  . c u r r e n t  b l o c k .  T h i s  h a s  n o  e f f e c t .  S e e  LRH 1 2 1 .  

6 . 1 6 . .  T h e  SIGNAL s t a t e m e n t .  

You c a n  c a u s e  a s i m u l a t e d  o c c u r r e n c e  o f  a c o n d i t i o n  ( u s e f u l  i n  
t e s t i n g )  b y  e x e c u t i n g  a  SL(;KA. s t a t e m e n t  n a m i n g  t h e  c o n d i t i o n .  
After' n o r m a l  r e t u r n  f r o m  a n  o n  u n i t  e n t e r e d . a s  a r e s u l t  o f  r a i s i n g  a 
c o n d i t i o n  i n  t h i s  way, e x e c u t i o n  c o n t i n i l e r .  w i t h  t h e  n e x t  s t a t e m e n t  
( t h i s  i s  t r u e  e v e n  f o r  t h e  FINISH c o n d i t i o n ) .  T h e  o n e  e x c c p t i o n  is 

ERROR; u p o n  n o r m a l  r e t u r n  f r o m  a n  ESFOR o n  u n i t  r a i s e d  h y  s i g n a l i n g  
ERROR, P I H I 3 O  is  ~ a l s e d  a s  u s u a l .  S e e  LRN 1 2 2 .  

6 .  . I ? .  P r o g r a m m e r - n a m e d  c o n d i t i o n s .  

Y o u  c a n  d e f i n e  a n d  name y o u r  own c o n d i t i o n s .  A p r o g r a m m e r - n a m e d  
c o n d i t i o n  is a n  i d e n t i f i e r ;  i t s  u s e  ( d e m o n s t r a t e d  b e l o w )  c o n s t i t u t e s  
a n  e x p l i c i t  d e c l a r a t i o n  o f  t h e  name a s  a c o n d i t i o n  name h a v i n g  
i n t e r n a l  s c o p e .  T h e  name may a l s o  b e  g i v e n  e x t e r n a l  s c o p e  ( s o  t h a t  



t h e  s a m e  name i n  d i f f e r e n t  ' e x t e r n a l  p r o c e d u r e s  d e n o t e s  t h e  s a m e  
p rogrammer -named  c o n d i t i o n , -  a s  o ~ p o s e d  t o  d i . f f e r e n t  p rog rammer -named  
c o n d i t i o n s  t h a t  h a p p e n  t o  h a v e  t h e  same name) by  d e c l a r i n g  i t  w i t h  
t h o  CCNDI'JgN a t t r i b u t e  a n d  EXTEPNAL ( s e e  LRM 1 2 3 ) .  N o t e  t h a t  t h e r e  
a r e  c o n d i t i o n  n a m e s ,  b u t  n o t  c o n d i t i o n  ' c o n s t a n t s ,  v a l u e s ,  o r  
v a r i a b l e s .  

T h e  o n l y  way t o  r a i s e  a p r o g r a m m e r - n a m e d  c o n d i t i o n  is t o  s i g n a l  it. 

A p r o g r a m m e r - n a m e d  c o n d i t i o n ,  ..nume, i s  u s e d  i n  t h e  f o l l o w i n g  way i n  
CN, SIGNAL, a n d  R E V E R T  s t a t e m e n t s  

ON CONDITION (.rime.) . . . ; 
STGNAL CONDITION ( : m e )  ; 
R E V E R T  C O N D I T I O N  ( flame) ; 

i . e . ,  t h e  p r o g r a m m e r - n a m e d  c o n d i t i o n  m a s q u e r a d e s  a s  t h e  C O N D I T I O N  
c o n d i t i o n .  We c a n  t h e n  t a l k  a b o u t  e n a b l e m e n t  s t a t u s ,  s t a n d a r d  --------- 
s y s t s m  a c t i o n ,  e tc . ,  f o r  p r o g r a m m e r - n a m e d  c o n d i t i o n s  by d e s c r i b i n g  
t h e s e  p r o p e r t i e s  f o r  t h e  C O N D I T I O N  c o n d i t i o n .  S ~ e c i f i c a l l y ,  t h e  
CONDITION c o n d i t i o n  i s  e n a b l e d  b y  d e f a u l t  a n d  c a n n o t  b e  d i s a b l e d .  , 9  

S t a n d a r d  s y s t e m  a c t i o n  i s  t o  i s s u e  a  m e s s a g e  a n d  c c n t i n u e .  . , 

6 . 1 8 .  R e v i e w  

S e e  LRM 1 2 4 ,  s k i p p i n g  a n y t h i n g  we h a v e n ' t  c o v e r e d  y e t ,  a n d  I.?R 1 2 5 .  

I n  t h e  ANSI s t a n d a r d  t h e r e  a r e  a 5ew h i g h l y  t e c h n i c a l  d i f f e r e n c e s  i n  
some-  a c , t i o n s  on  n o r m a l  r e t u r n  f r o m  o n  u n i t s  a n d  i n  some s t a n d a r d  
s y s t e m  a c t i o n s .  I n  a d d i t i o n ,  a t t e m p t  t o  c o n t i n u e  w i t h  a n  u n d e f i n e d  
r e su l t  is i n  v i o l a t i o n '  o f  t h e  s t a n d a r d .  - B b r i e f  h a n d o u t  i s  
a v a i l a b l e  t r o m  t h e  i n s t r u c t o r  f o r  t h o s e  who a r e  i n t e r e s t e d .  

6 . 1 9 .  E f f e c t  o f  o p t i m i z a t i o n  o n  c o n d i t i o n s .  

I f  you h a d  t h e  j o b  o f  h a n d - o p t i m i z i n g  a p r o g r a m ,  y c u '  wou ld  d i s c o v e r  - 

w a y s  t o  common e x p r e s s i o n s ,  move i n v a r i a n t  e x p r e s s i o n s  o u t  0.f l o o p s ,  
e t c .  T h e  f i n a l  p r o g r a m ,  h o p e f  u l l y ,  w i l l  p r o d u c e  t h e  s a m e  a n s w e r  a s  
t h e  o r i g i n a l  o n e ,  a t  l e a s t  when y o u  d o  n o t  r e l y  o n  t h e  r a i s i n g  o f  
c o n d i t i o n s  a n d  t h e  e n t e r i n g  o f  o n  u n i t s  t o  i m p l e m e n t  y o u r  l o g i c .  
C l e a r l y ,  m o v i n g  e x p r e s s i o n s  a r o u n d  m i g h t  c h a n g e  t h e  c r d e r  a n d  n u m b e r  
o f  i n t e r r u p t s  a n d  t h u s  c o n d i t i o n  r a i s i n g s .  ~ h e ' s a m e  i s  t r u e  when 
you  r e q u e s t  t h e  c o m p i l e r  t o  o p t i m i z e  y o u r  p r o g r a m .  



A m o r e  s u b t l e  p r o b l e m  o c c u r s  w i t h  c e r t a i n  k i n d s  c f  o p t i m i z a t i o n s .  
T h e  c o m p i l e r  m i g h t  f i n d  i.t a d v a n t a g e o u s  t o  k e e ~  a v a r i a b l e  i n  a  
r e g i s t e r  i n s i d e  a l o o p .  Even i f  you a s s i g n  t o  t h a t  v a r i a b l e  i n  t h e  
l o o p ,  t h ~  c o m p i l e r  m i g h t  n o t  g e n e r a t e  c o d e  t o  s t o r e  t h e  c o n t e n t s  o f  
t h e  r e g i s t e r  i n t o  the  a s s i g n e d  s t o r a g e  l o c a t i o n  f o r  t h e  v a r i a b l e  ( i t  
w o u l d  d o  s o  o n l y  a t  t h e  c o n c l u s i o n  o f  t h e  l o o p ,  i f  t h e  v a l u e  o f  t h e  
v a r i a b l e  is n e e d e d  s u b s e q u e n t l y ) .  T h u s ,  i f  a n  o n  u n i t ' i s  e n t e r e d  a s  
t h e  r e s u l t  o f  a c o n d i t i o n  r a i s e d  i n  t h e  l o o p ,  a n d  t h e  o n  u n i t  
r e f e r e n c e s  s u c h  a r e g i s t e r - h e l d  v a r i a b l e ,  i t  w o u l d  n o t  r e t r i e v e  t h e  
c u r r e n t  v a l u e  o f  t h e  v . a r i a b l e .  

Two o p t i o n s ,  w h i c h  may a p p e a r  on  a BFGIN o r  PROCEDURE s t a t e m e n t ,  c a n  
b e  u s e d  t o  t e l l  t h e  c o m p i l e r  w h e t h e r  y o u r  p r o g r a m  c a n  b e  s a f e l y  
o p t i m i z e d  i n  t h e  way d e s c r i b e d  a b o v e .  T h e  o p t i o n s  a f f e c t  t h e  c o d e  
g e n e r a t e d  i n  t h e  b l o c k ,  a n d  a r e  i n h e r i t e d  b y  c o n t a i n e d  b l o c k s  o n  
w h i c h  t h e y  a r e  n o t  r e s p e c i f i e d .  O R D E R  ( w h i c h  i s  t h e  d e f a u l t  i f  
n e i t h e r  is s t a t e d )  gays t h a t  the c o m p i l e r  i s . n o t .  al. l .nwed t n  p e r f o r m  
t h e  o p t i m i z a t i o n s  d e s c r i b e d  a b o v e  b e c a u s e  . t h e  c r d e r  i n  w h i c h  
v a r i a b l e s  a r e  a s s i g n e d  a n d  r e f e r e n c e d  m u s t  b e  o b s e r v e d ,  even acrnss 
o n  u n i t  b o u n d a r i e s .  REORDER e s s e n t i a l l y  s a y s  ' t h a t  s u c h  o n  u n i t s  
w i l l  n o t  b e  e x e c u t e d ,  o r ,  i f  t h e y  a r e ,  t h e y  w o n ' t  r e f e r e n c e  
v a r i a b l e s  t h a t  may n o t  h a v e  h a d  t h e i r  m o s t  r e c e n t  v a l u e  s t o r e d .  
T h i s  p e r m i t s  g r e a t e r  o p t i m i z a t i o n .  S e e  LRM 1 2 6  t h r c u g h  L R M  1 2 8 .  

O R D E R  a n d  REORDFR a r e  n o t  a v a i l a b l e  i n  t h e  & N S I  s t a n d a r d .  The  
s t a n d a r d  e s s e n t i a l l y  p e r m i t s  i m p l e m e n t a t i o n s  t o  b e h a v e  a s  t h e  
c u r r e n t  o n e  d o e s  u n d e r  R E O R D E R ,  i . e . ,  it a l w a y s  p e r m i t s  maximum 
o p t i m i z a t i o n .  A t  t h e  s a m e  time it p l a c e s  r e s t r i c t i o n s  o n  w h i c h  
v a r i a b l e s  c a n  b e  r e f e r e n c e d  i n  o n  ' u n i t s .  T h e s e  r e s t r i c t i o n s  a r e  
n e c e s s a r y  t o  g u a r a s ~ t e e  t11e saioe b e h a v i o r  cF the p r o g r a m ,  i n  a l l  
s t a n d a r d  i m p l e m e n t a t i o n s ,  e v e n  t h o u g h  t h e  - e x t e n t s  t o  w h i c h  t h e y  
c a r r y  o u t  c e r t a i n  o p t i m i z a t i o n s  may d i f f e r .  

Do n o t  l e t  a l l  o f  t h e  a b o v e  s c a r e  you!  You w i l l  F r o b a b l y  d i s c o v e r  
t h a t  you w i l l  h a v e  v e r y  l i t t l e  n e e d  f o r  o n  u n i t s  f o r  c o m p u t a t i o n a l  
c o n d i t i o n s  i n  most r e a l i s t i c  p r o g r a m s .  

T h e  amnnnt. o f  o r t i m i z a t i o n  attempted h y  +.he c c r n p i l e r  i s  d l a u  
g o v e r n e d  b y  t h e  OPTIMIZE c o m p i l e r  o p t i o n .  S e e  OPG 4 a n d  OTUG 2 .  A 
c o m p l e t e  d i s c u s s i o n  o f  e f f i c i e n c y  c o n s i d e r a t i o n s ,  w i t h  r e g a r d  t o  a l l  
a r e a s  o f  t h e  l a n g u a g e ,  is i n  LRM 129 .  

6 . 2 0 .  U n a n s w e r e d  q u e s t i o n s .  



I n  a n  E R R O R  o n  u n i t ,  how c a n  o n e  o b t a i n  i n f o r m a t i o n  a b o u t  w h a t  
c a u s e d  E R R O R  t o  b e  r a i s e d ? . .  . 

I n  a n y  o n  u n i t ,  how c a n  o n e  d e t e r m i n e  w h e t h e r  t h e  c o n d i t i o n  o c c u r r e d  
n a t u r a l l y  o r  by  b e i n g  s i g n a l e d ?  

T h e s e  q u e s t i o n s  w i l l  b e  a n s w e r e d  i n  L e s s o n  10'. O t h e r  c o n d i t i o n s  
w i l l  b e  c o n s i d e r e d  i n  , a p p r o p r i a t e  1 . s s s o ' n s .  

6 . 2 1 .  Homework p r o b l e m s .  

(#6A) When i s  
I F  exphebbion THEM me-pant;  
E L S E  @be-pant; 

n o t  t h e  same a s  
IF -. (exphenbion) THEN h&e-parr;t; 
E LS E fhr~.e-p~rt;  ? 

H i n t :  E x p l a i n  w h a t  may h a p p e n  when,  f c r  i n s t a n c e ,  exphennion 
i s  a 'EIT(IO) v a r i a b l e .  . . 

(#6B)  S u p p o s e  y o u  h a v e  a n  a r r a y  o f  10'3 e l e m e n t s  ( h c u n d s  1 t o  ' 1 0 0 )  
t h a t  i s  t o  b e  f i l l e d  w i t h  u n i q u e  v a l u e s  i n  t h e  o r d e r  i n  w h i c h  
t h e y  a r e  p r e s e n t e d .  A v a r i a b l e  r e c o r d s  t h e  i n d e x  ( i . e . ,  
s u b s c r i p t  v a l u e )  o f  t h e  l a s t  p o s i t i o n  f i l l e d .  Write a 

' p r o c e d u r e  t o  a c c e p t  a v a l u e ,  a s  a n  a r g u m e n t ,  a n d  i n s e r t  i t  i n  
t h e  n e x t  p o s i t i o n  i n  t h e  a r r a y  i f  i t  is  n o t  a l r e a d y  i n  t h e  
a r r a y .  T h e  p r o c e d u r e  is t o  b e  i n v o k e d . b y  a  C A L L  s t a t e m e n t .  
C o n c e r n  y o u r s e l f  w i t h  t h e  f o l l o p i n g  : 

( a )  A f t e r  t h e  a r r a y  h a s  b e e n  c o m p l e t e l y  f i l l e d ,  a n o t h e r  
p r o c e d u r e  w i l l  p r o b a b l y  r e t r i e v e  i t s  e n t r i e s .  Wake 
s u r e  b o t h  p r o c e d u r e s  h a v e  access t c  t h e  n e c e s s a r y  
v a r i a b l e s .  Be c a r e f u l  w i t h  i n i t i a l  v a l u e s .  . .  

( b ) .  U n l e s s  s p e c i a l  p r e c a u ' t i o n s  a r e  t a k e n ,  y o u r  p r o g r a m  
w i l l  b e  i n  e r r o r  i f  m o r e  t h a n  1 0 0  u n i q u e  v a l u e s  a r e  
p r e s e n t e d  t o  t h e  p r o c e d u r e .  g h a t  w i l l  h a p p e n  i f  n o  
s p e c i a l  p r e c a u t . i o n s  a r e  t a k e n ?  D i s c u s s  s e v e r a l  
w a y s  o f  d e t e c t i n g  t h e  s i t u a t i o n  a n d  o f ,  p r e v e n t i n g  
e r r o r s .  Also d i s c u s s  s e v e r a l  m e t h o d s  c f  i n f o r m i n g  
t h e  c a ' l l i n g  p r o c e d u r e  a b o u t  t h e  c c c u r r e n c e  o f  t h e  
s i t u a t i o n ,  a n d  d i s c u s s  t h e i r  i m p l i c a t i o n s  c n  i t s  
d e s i g n .  H i n t :  c o n s i d e r  . t h e  f o l l o w i n g  m e t h o d s :  
( i )  A r e t u r n e d  v a l u e  t o  i n d i c a t e  s u c c e s s  o r  

f a i l u r e .  
. ( i i )  . . A n  . a d d i t i o n a l  p a r a m e t e r  t h r o u g h  w h i c h  

. . s u c c e s s , o r  f a i l u r e  i s  c o n v e y e d  o u t .  



( i i i )  Use o f  a p p r o p r i a t e  PL1.I c o n d i t i o n s .  
( i v )  Use o f  a  p r o g r a m m e r - n a m e d  c c n d i t i o n .  

(#6C)  S i m u l a t e  b y  h a n d  t h e  e x e c u t i o n  o f  t h e  f c l l o w i n g  c o d e  t o  
. d e t e r m i n e  t h e  v a l u e  a s s i g n e d  t o  I. I f  y o u  s u r v i v e  t h e  t e d i u m  

a n d  g e t  . t h e  a n s w e r  2 5 0 1 ,  y o u  u n d e r s t a n d  e n t r y  v a r i a b l e s ,  
l a b e l  . v a r i a b l e s ,  a n d  t h e i r  b e h a v i o r  , i n  r e c u r s i v e  
e n v i r o n m e n t s .  

I = P ( 1 )  ; 
' , P:  PZOC (X) RETURNS (FIXED BIN) RECURSIVE; 

DCL X FIXED B I N ;  
DCL A FIXED B I N  IUTO; 
DCL (N,S) FIXED BIN STATIC I N I T  ( 0 ) ;  
DCL L L A B E L  S T A T I C ;  
DCL Q ENTRY (FIXED B I N )  

RETURNS (FIXED B I N )  VARIABLE STATIC; ' 

. A , ?  - X + S ;  
N = N + l ;  
I F  N = 2 THEN L = LX; 

\ ' I F  N = 4 THEN Q = Q X ;  
' , I F  N = 5 THEN S =  S  + Q ( A ) :  

ELSE S  = S. + OX(A) ; . . 

IF N - 6 THEN G O  TO L ;  
S  = P (A) ; 

LX: RETURN (A + S) ; 
Q X :  PROC (Y) RETURNS (FIXED EIN) ; . 

DCL Y FIXED BIN; 
RETURN (Y + A )  ; 

END; 
END; 

(#6D)  P r e c i s e l y  w h a t  h a p p e n s  when a FIXED DECIMAL (8,O) v a r i a b l e  
w i t h  v a l u e  1 2 3 4 5 6 7 8  is  a d d e d  t o  a FIXEC DECIMEL (8,8) 
v a r i a b l e  w i t h  v a l u e  z e r o  i n  o u r  i m p l e m e n t a t i c n ?  

(#6E)  Can  FIXEDOVERFLOW c c c u r  d u r i n q  a d i v i s i o n  c f  two f i x e d - p o i n t  
v a r i a b l e s ? .  C a n  y o u  e x p l a i n  y o u r '  a n s w e r ?  

(#hF)  What  i s  t h e  d i f f e r e n c e ,  f o r  a l l  p r a c t i c a l  F u r F o s e s ,  b e t w e e n  
G V  UFL SYSTEM; 

a n d  . . 
O N .  UFL ; ? 

I .  

(#6G)  ( D i f f i c u l t )  S u p p o s e  you h a v e  a ' p r o g r a m  w h i c h  y o u ,  h ' ave  
d e v e l o p e d  t o  s a t i s f y  t h e  ANSI s t a n d a r d  a n d  w h i c h  you w i l l  b e  

. .  . 



s h i p p i n g  t o  o t h e r  i n s t a l l a t i o n s  t h a t  h a v e  d i f f e r e n t  m a c h i n e s  
a n d  d i f f e r e n t  A N S I  s t a n d a r d  c o m p i l e r s .  T h o u g h  y c u  may h a v e  
e n a b l e d  t h e  - S I Z E  c o n d i t i o n  d u r i n g  . t e s t i n g ,  why i s  i t  
q e n e r a l l y  n o t  n e c e s s a r y  o r  u s e f u l  t o  , l e a v e  i t  e n a t l e d '  i n  t h e  
e x p o r t  v e r s i o n  o n c e  y o u  a r e  s a t i s f  i . e d  t h a ' t  S I Z E  c a n n o t  o c c u r ?  
Why i s  i t ,  h o w e v e r ,  d e s i r e a b l e  t o  l e a v e  O F F ,  U F L ,  a n d  POFL 
e n a b l e d ,  e v e n  t h o u g h  y o u  a r e  s a t i s f i e d  t h a t  t h e y  a r e  n o t  
o c c u r r i n g ?  

(t6H) What  a c t i o n  i s  t a k e n  i f  ZDIV is r a i s , e d  i n  e a c h  o f  t h e  l i g h t  
p l a c e s  m a r k e d  "*" i n  t h e  f o l l o w i n g  p rog ram.?  

P: PPOC OPTIONS ( F A I N ) . ;  * 
ON ZDIV X = 1;  * 
BEGIN; * 

ON ZDIV X = 2; * 
ON ZDIV X = 3; * 
ON,  ZDIV SYSTEM; * 

.REVERT ZDIV;  * 
END; * 

END; 

(#61) N h a t  c a n  h a p p e n  i n  t h e  f o l l o w i n g  p r o g r a m  s e g . m e n t ?  

CN ERROR BEGIN; 
T = S Q R T  (Y) ; 
G O  1 0  RESUME; 

END : 
X = s o m e  v a l u e ,  p o s s i b l y  n e g a t i v e ;  
Y = some v a l u e ,  a l s o  p o s s i b l y  n s g a t i v e ;  
T = SQRT (X); 
RESUYE: . . . 

How d o e s  t h i s  i m p r o v e  when t h e  p r o g r a m  . i s '  c h a n g e d , '  a s  
f o l l o w s ?  



O N  ERROR BEGIN; 
ON ERROR SYSTEM; 
T  = SQRT ( Y ) ;  
GO TO RESUME; 

END; 
etc. 

( # 6 J )  Y h a t  P L / I  f a c i l i t i e s  s e r v e  t h e  f u n c t i o n  cf t h e  FORTRAN 
"computed GO TOt1? T h e  " a s s i g n e d  G O  TO'!? 

( # 6 K )  O c c a s i o n a l l y ,  o n e  w a n t s  t o  t a k e  some a c t i o n  w h e n  a c o n d i t i o n ,  
snch as l ? R R n R ,  occurs, then l e t  t h e  n e x t  h i g h e r  l e v e l  block 
t h a t  h a s  a n  e s t a b l i s h e d  o n  u n i t  f o r  t h e  c o n d i t i o n  . t a k e  i t s  
a c t i o n ,  a n d  s o  o n .  A t e c h n i q u e  f r e q u e n t l y  t r i e d  i s  

O N  E R R O R  BEGIN; 
t a k e  s o m e  a c t i o n  
REVERT ERROP; 
SIGNAL ERRCR; 

END; 
Why d o e s  t h i s  n o t  a c h i e v e  t h e  d e s i r e d  r e s u l t ,  a n d  w h a t  d . o e s  
i t  r e a l l y  d o ?  H o w  c a n  t h e  d e s i r e d  r e s u l t ,  b e  a c h i e v e d ?  



7.. Introduction t o  I /O;  stream I /O.  

7.1.  Datasets vs. f i l e s .  

In PL/I, 1/0 is  performed by doing certain things to  abstract objects 
called "files." Files can be as'sociated w i t h  datasets so that the 
operations on f i les 'have useful effects on the associated datasets. 
Several different f i l e s  can be simultaneously associated w i t h  the 
same dataset. A particular f i l e  can be associated w i t h  different 
datasets a t  different times. S'ee.LRM 130. 

7.2. File constants, values, and variables'. 

A f i l e  value is an object referred to above as a f i l e .  We are now 
embarking on a discussion of our third program-control data type: f i l e .  

New f i l e  values are "generated" by: 
(a) Reference to  a f i l e  constant. 

They are propagated by assignment. 
They may b,e used i n  the following ways : 

(a) 111 1/0 s tate~lents. 
(b) In ON, REVERT, and SIGNAL statements dealing w i t h  certain 

conditions pertinent. to  I/O. 
(c) In comparison operations. 

Recall that DECLARE statements can be used to  declare names as entry 
constants or entry variables, and that entry constants were also 
capable of being contextually declared by thei r  appearance as a label 
prefix on a PROCEDURE or ENTRY statement. Similarly,' DECLARE s ta te-  
'ments can be used to  declare names as f i l e  constants or f i l e  variables, 
and f i l e  constants may be contextually declared by their  appearance i n  
1/0 statements or 1/0 condition names. The data type at tr ibute,  not 
surprisingly, is FILE. Fi le  constants, l ike  entry and label constants, 
are "named constants . " Examples : 

DCL F FILE; F is a f i l e  constant. The default scope is external. 
DCL G FILE INTERNAL; G is an internal f i l e  constant. 
DCL H FILE VARIABLE EXT; H is an external f i l e  variable. 

7 . 3 .  File description at tr ibutes,  

There is a very large s e t  of attributes that  describe cer'tain properties 
of f i l e s .  These f i l e  description at tr ibutes (FDA1$, as they are called, 
may be declared for  f i l e  constants but not f i l e  variables. If a f i l e  
constant is assigned to a f i l e  variable, any FDA's declared for  the. f i l e  
constant are inherited by the f i l e  variable i n  the sense that they are 
properties of the current f i l e  value assigned to  it. I f ,  l a te r ,  a 
different f i l e  constant is assigned t o  the f i l e  variable, the f i l e  
variable w i l l  ref lect  possibly different properties represented by the 
FDA's which were declared for  this second f i l e  constant. More on th is  l a te r .  



7.4. Opening a f i l e .  

In order to  do I / O  on a dataset, it is f i r s t  necessary to associate 
the dataset with a f i l e . '  One way of accomplishing th i s  is by 
executing an OPEN statement . (This is called' explici t  opening. ) 
The typical f i r m  is 

OPEN FILE (d.iee) TITLE (ddme)  ; 
Here, d-iee is  a f i l e  constant, or a f i l e  variable, or  a function 
reference returning a f i l e  value; i n  any case it denotes a f i l e  
value originally 'obtained by reference to  some f i l e  constant. Note 
that  it i s  as much an error t o  reference, .in an OPEN statement, a 
f i l e  variable which has not been assigned a value as it is to  reference 
.any variable that  has not been assigned a value. . d d m e  is a character- 
s tr ing valued expression. wh,ase value (truncated t o  8 characters, i f  ': 

necessary) is taken t o  be the "ddname" of the dataset. The actual 
dataset denoted is the one associated with that  "ddname" in  the JCL. 

The TITLE o tion may be omitted from the OPEN statement, i n  which case 
the & ame use is the f i r s t  8 characters of the identif ier  naming the 
f i l e  constant from whose reference the value of d.iee was derived. 
Examples : 

OPEN FILE (X) TITLE ('ABCt ) ; 
The ddname is ABC. 

DCL DEF FILE; 
OPEN FILE (DEF) ; 

The d h a m  is DEF. 
DCL U FILE VARIABLE; 
U = DEF; 
OPEN FILE (U); 

The ddname is DEF. 

I f  a f i l e  is already "open," an attempt t o  explici t ly open it again is 
treated as a "no-op." E.g . , 

DCL H FILE VARIABLE; 
DCL FF FILE; 
H = FF; 
UPEN FILE IFF) : 
OPEN FILE (H) TITLE ('XYZ ' ) ; 

The l a s t  OPEN statement has no effect ,  since the f i l e  denoted equally 
well by the file coristant FF or. the f i l e  variable H is  already "open." 

Several f i l e s  can be opened i n  o n e . 0 ~ ~  statement. Example: 
OPEN FILE . (Fl) , 

FILE' (F2) TITLE ( 'HUHt) ,  
FILE' (F3) ; . . 



The second way a dataset can be associated w i t h  a f i l e  is  by implicit 
o ening. Implicit opening occurs when a f i l e  which is not open i s  9f- re erenced i n  an 1/0 trahsmission statement. The ddname of the dataset 
to be associated with the f i l e  is derived in  exactly the same way as for 
explici t  opening when the TITLE option is omitted. 

7.5. The UNDEFINEDF ILE condition. 

I f  an attempt to open a f i l e  f a i l s ,  the UNDEFINEDFILE condition 
(abbreviation: UNDF) occurs for  that  f i l e .  An on unit for  UNDF may be 
established for  that- f i l e  by executing an ON statement as i n  

ON UNDF (dde) o n - u d ;  
Because the UNDF condition is a qualified condition (like the CONDITION 
condition) , .separate UMlF on units may be established for  each f i l e  i n  
a program. 

An attempt to open a f i l e  may f a i l  for several reasons, including: no 
DD statement in the JCL for  the ddname used; conflicting DCB at tr ibutes;  
etc.  In Lesson 1.0 we w i l l  see'how one may t e l l  w h y  an attempted opening 
was unsuccessful. 

The UNDF condition, l ike the ERROR condition, i s  enabled by default and 
cannot be disabled. Standard system actionj which applies when the 
condition is raised' and no on unit has been" established, is to  issue a 
message and raise ERROR. I f ,  on the other hand, an on unit  is  entered 
and 'the on unit returns normally', subsequent 'action depends on whether 
the attempted opening was explici t  or impxicit. In the fonner case, 
execution continues" from the point of interrupt. In the l a t t e r  case, 
execution continues i f  the f i l e  was (somehow) successfully opened in' 
the on unit, 'e.g., by trying a different ddname); otherwise, the ERROR 
condition is raised. 

See the description.of UNDF in  LRM 116. 

7.6. Closinga f i l e .  

The association between a dataset and a f i l e  is broken by executing a 
CLOSE statement for  the f i l e :  

CLOSE ~1~:(6.iee) ; 
Several f i l e s  can be closed simultaneously: . 

CLOSE FILE (A) , 
FILE (B) , 
FILE (C); 

Closing an already closed f i l e ,  l ike opening an already opened f i l e ,  
has no effect .  



Files l e f t  open when a program terminates are closed by a PL/I 
termination routine. Any output data l e f t  i n  a buffer i s  transmitted 
to  the dataset before'the f i l e  is closed. After a f i l e  has been 
closed, e i ther  the same dataset or a different dataset may be associated 
with it by subsequently executing another OPEN statement for  the f i l e .  
See LRM 131. 

7.7. Overview of transmission statements. 

The 1/0 statements that  cause .data transmission that  we w i l l  examine 
i n  th is  lesson are GET (input) and PUT (output) . In the next two lessons 
we w i l l  study READ (input) , . and three output statements : WRITE, REWRITE 
and DEUnI'E. In Lesson 11 we w i l l  add LKKl'E (output). In Lesson 9 ,  and 

* again i n  Lesson 14,  we w i l l  look a t  the UNLOCK statement. 

7.8. Overview of f i l e  description at tr ibutes.  

As s tated ear l ier ,  FDA's may be used in a declaration of a f i l e  constant. 
I t  is  not necessa , however, to  declare any FDA's for  a f i l e  constant, + even thoug a s e t  of properties for  the f i l e  must have been provided by 
the time it is opened. 

We w i l l  be looking a t  the many different FDA's gradually. Suffice it to 
say that  some are alternatives to others; i . e  .', a conflict arises i f  two 
mutually exclusive a1 ternatives are provided. 

' I f  'the f i l e  properties described by FUArs are not complete when a f i le .  
is opened, additional properties are supplied during the opening process. 
This proceeds as follows. 

I f  the opening is explici t ,  additional FDA's may be written as options 
on the OPEN 'statement. These must not conflict with any declared for  . 

the f i l e  i n  a DECLARE statement. Examples: 
OPEN FILE (F) INPUT; + 
OPEN FILE (G) OUTPUT TITLE ( ' SYSPUNCI-I' ) , 

'FILE (H) INPUT TITLE ('SYSIN'); 

I f  the opening is implicit, additional FDA's are deduced from the 
statement causing the opening. For example, INPUT w i l l  be deduced 
from GET and OUTPUT from PUT. 

I f  the "merging" of FDA's that  occurs during explici t  or implicit 
openings produces any conflicts,  the UNDEFINEDFILE condition is raised. 
If the merging s t i l l  leaves the s e t  of f i l e  properties incomplete, 
others may be supplied by implication ( i  .e. , those. that a f i l e  has may 
imply others that it must also have) and f inal ly  by default. 



When a f i l e  is  closed, any FDA's supplied during the opening process 
are divorced from the f i l e .  I t  continues to have only those w i t h  
which it was declared' (which may be none) '. I f  the f i l e  is again 
opened, it may acquire a different complete s e t  of properties. 

File properties are used, among other things, to  determine which 
operations may legally be carried out for  a f i l e .  For instance, it 
is i l l ega l  to WRITE t o  an INPUT f i l e .  An attempt to  do so w i l l  raise 
the ERROR condition. 

The different FRA1s are briefly described, and the defaults l i s ted ,  
i n  LRM 132. ' Other, detailed, descriptions are scattered throughout 
LRM 133. The opening and closing of f i l e s  may be reviewed a t  LRM 134; 
that  reference also shows the FDA1 s deduced on implicit opening and 
those that may be implied. The OPEN statement is further detailed a t  
LRM 135. Finally, the whole subject of datasets vs. f i l e s  is also 
treated i n  OPG 5 and CPG 4 ,  w i t h  emphasis on device and dataset 
characteristics. 

7.9. Stream vs. recurd I /O.  

Two alternative FDA's which describe properties of a l l  f i l e s  are 
STREAM and RECORD. 

The dataset associated with a stream f i 1 e . i ~  viewed as a continuous 
stream of characters, rather than as a sequence of records. I t s  
processing is inherently sequential. Stream output, which is 
accomplished with the P ~ T  statement , consists of* the issuing of a ' 

stream of characters t o  be written t o  the dataset. Stream input, which 
is accomplished with the GET statement, consists of the acceptance of 
a stream of characters read.from the dataset. Although a l l  datasets - 
are actually organized as records, stream transmission may be oblivious 
to record b0undarie.s; it may, however, also be made cognizant of them. 

The dataset associated with a record f i l e  on the other hand, is viewed 
as a sequence or s e t  of discrete records. Each transmission statement 
transmits exactly one record. The data i n  a record need not be i n  
character form; it can be i n  any of the forms capable of being 
represented internally i n  PL/I . 

For the remainder of this lesson, we w i l l  be concerned with stream 1/0 
only. Hence, we assume that  the STREAM FDA applies to any f i l e  we 
are talking about. The STREAM attr ibute may be acquired: 

(a) By declaration of the f i l e  constant with STREAM.. 
(b) By specification of the STREAM option on an OPEN statement. 
(c) By deduction on implicit opening of a f i l e  by a GET or PUT 

statement . 
(d) By implication from the PRINT attr ibute on an explicit  opening. 
(e) By default on explici t  opening. 



See LRM 136. 

7.10. Fi le  description attributes'applicable t o  stream f i l e s .  

The other FDA's applicable to stream f i l e s  are INPUT, OUTPUT, PRINT, 
and ENVIRONMENT (abbreviation: ENV) . 

INPUT and OUTPUT are two alternatives that h y  f i l e  (whether stream 
or  record) may have. ' A third alternative, applicable only to  record 
f i l e s ,  w i l l  be given i n  Lesson.8. The meaning of INPUT and, OUTPUT 
should be' obvious. Only GET statements may be used for  stream input 
f i l e s ,  ' and only PUT statements for  stream output f i l e s .  See' LKM 137. 

PKIN'I' is  an additive a t t r ibute  that may be specified only for  stream 
output f i l e s .  I t  says that the output dataset is ultimately to  be 
printed. See LRM 138. 

The ENV a t t r ibute  is much l ike the OPTIONS option (Lesson 4) i n  that 
it encloses a list of implementation-defined options. I t  i s  important 
to  note that the contents and meaning of environment options is not 
specified by the language, but by each implementation. The basic 
function of environment options is to provide the implementation with 
extra information it may require, such as the physical organization of 
records in  a dataset. See LRM 1 39. 

ENV is the only FDA that  may not appear on an OPEN statement (except 
in the ANSI version) . We w i l l  have very l i t t l e  to say about the 
individual environment options, although.they are important, so you 
should read LRM 140, OPG 6 and CPG 5.' The ENV at tr ibute w i l l  be i n  
confl ict  with other FDA's i f  it contains options i n  conflict with 
other FDA's. See LRM 141 for  a table of conflicts,  

The PRINT at tr ibute,  being additive, is  never deduced, implied, or 
defaulted. I t  must be specified (either i n  a DECLARE statement or 
OPEN statement), 

. . 
I f  an implicit opening occurs and neither INPUT nor OUTPUT was' declared ' 

f o r t h e  f i l e ,  GETimplies INPUTandPUTimpliesOUTPUT. If explici t  . , 

opening occurs without specifying ei ther ,  thc dcfault uscd is INPUT. . . .. . 



7.11. Further OPEN statement options for  stream f i l e s .  

The LINESIZE option can be used' on an OPEN statement for  any stream 
output f i l e  to  e s t d l i s h  a record length for  the dataset. (This 
information can also be conveyed i n  'the' ENVIRONMENT at tr ibute or in 
JCL; and there is a standard default value i f  none of these sources 
supplies the information. ) 

The PAGESIZE tion can be used on an OPEN statement for  any print  
file-output f i l e  which has the PRINT attr ibute) .  I t  
can be used to  establish the maximum number'of lines to appear on 
each page when it is printed. 

7.12. Overview of stream transmission statements. 

The PUT statement specifies one or more expressions of computational 
data type whose values are to  be converted to  character' representations 
which are then inserted i n  the output dataset. Generally, successive 
characters go into successive positions of the current output l ine 
(record) . When an output l ine is f i l l ed ,  characters continue on the 
next l ine.  Successive PUT statements do not automatically s t a r t  new - 
l ines; the characters transmitted continue where the l a s t  PUT s ta te-  
ment l e f t  off ,  which may be in  the middle of a line. Facil i t ies  are 
also provided for  start ing a new l ine or ,  i n  the case of a pr in t  f i l e ,  
a new page. 

The GET statement specifies one or  more variables of computational data 
type to  be assigned values from an input dataset. The values are 
assumed to be 'represented i n  character form on the dataset and are . . 
converted to  the appropriate internal form. This process consumes a 
number of characters f m m  t he  dataset s t a r t i ng  a t  the place where the l a s t  
GET statement l e f t  off (which may be in the middle of a l ine) .  If a 
l ine i s  exhausted, remaining characters come from the next line. 
Successive GET statements do not automatically s t a r t  new lines . - 
Facil i t ies  are provided, however, for  skipping to  the s t a r t  of the 
next line. 

7.U. Data l i s t s .  

The part of a PUT statement that specifies the expressions whose values 
are to  be disposed of,  and the part of a GET statement that specifies 
the variables whose values are to be acquired, is called a data list 

. ("I/O list" in  FORTRAN) . I t  is surrounded by parentheses. The l i s t  
is .a l is t  of data l i s t .  items separated by cimm'as. A data l is t  item is 
one,of the following: 

(a) An expres'sion. This may be just a constant or variable. 
(b) ' A repetitive specification. This is a parenthesized l i s t  of 

data l is t  items ending w i t h  what looks l ike a controlled DO 
statement without the semicolon. 



Examples of data lists, including their  surrounding parentheses, follow. 
(XI 
(x, y> 
(A+B, 'THIS', 'THAT' 1 )  V, 1) 
gr, Cv(I>, W(I) DO 1 = 1 TO N)) 

Notice the syntax of the repetitive specification 
i n  the above example. If N has the value 3, say, 
the effect  of the data l is t  is the same as would 
be obtained by the following one. 

gr, V(l), W(1) , V(21, W(2). V(3) , W(3) 
(((A(1,J) DO I = 1 TO N) DO J = 1 TO M))  
((A(T), (R(T,.T) J = 1. BY 2 TO 5). C(1) DO I = 1, N)) 

The above is equivalent to: 
, ~3(1,31, ~ ( 1 ~ 5 1 ,  c ( i ) ,  
, B(N,3), B O ) ,  CO\J)) 

I f  a data list i t em ' i s  a structure, it is equivalent to  a sequence of 
scalar i t e m ,  namely, those which are (in order) the base e1.en1ent.s of 
the structure. I f  a data l is t  item is an array, it is equivalent to 
a sequence of scalar  items, namely, a l l  the array elements i n  the order 
having the rightmos t subscript varying most rapidly. Thus, the item 

A(* ,*I 
is equivalent to  the item 

((A(1,J) DO J = LBOUND(A,2) TO HBOUND(A,Z)) 
DO I = LBOUND(A,l) TO HBOUND(A,l)) 

The elementary data.items in  data lists i n  GET statements cannot be . 
. 

arbitrary expressions ; they can only be' variables (although. they' may, 
of course, be subscripted by expressions) because the context is one ' 

. 

of assigning a value t o  them. See LRM142. 

7.14. Modes of stream transmission. 

'Inhere are three modes of strean transmission: l is t-directed,  data- 
directed, and edit-directed, as determined by the form of the 
o r  PUT statement. The different modes may be intermixed on the same 
f i l e  . 

7.15. List-directed transmission. 

In l is t-directed transmission, which is the simplest, the keyword 
LIST precedes the parenthesized data list.  Together they consti t.ute 
a LIST o tion. If 'the option immediately follows the keyword GET or + PUT, the eyword LIST may be omitted. List-directed transmission. , 

provides simple, "free-form" stream I/O. Examples w i l l  be given la ter .  



, O n  input, character representations of values in the input stream 
must be separated'by' one or more blanks, or by a comma and any 
number of surrounding blanks. - Each input stream item' must be written 
as a valid computational constant, i . e . ,  arithmetic constant, 
character' s tr ing constant, o r .  b i t  s t r ing constant. The "attributes" 
of the input s'tream item, deduced from t h e  form in  which it i s  
written i n  the same way that at tr ibutes are deduced for  a constant 
written i n  the program, need not match the attributes of the corre- 
sponding variable i n  the data l ist;  conversion 'between the source 
and target attributes occurs as necessary. The CONVERSION condition 
can occur i.n th is  process (a homework problem w i l l .  deal w i t h  this)  . 

I t  is possible to  omit values from a l is t-directed input stream. . 

Consecutive commas, or commas separated only by blanks, indicate 
that no value is to be assigned to  the variable i n  the input data 
l ist  with which a value i n  that position would be matched; the 
variable thus retains i ts current value. Finally, a semicolon may 
be used i n  the input stream to indicate that  a l l  the remaining 
variables i n  the data l ist  are to  be skipped over. A l l  these features 
are demonstrated i n  the following example. , . 

DCL N FIXED BIN; 
I 

. . 
DCL X FLOAT BIN (21), 

A (3) C M  (10) VAR, 
B (30) FIXED BIN (15) ; 

GET FILE(F) LIST (X,A,,N, (B(1) DO I = 1 TO N BY 2)) ; 
Input stream: 
6.4 'VALll , , 1 1  

15 
6 E2,, 5.1; 

The f i r s t  input stream item, 6.4, is associated with X .  The value, 
expressed as  FIXED DECIMAL (2,1), is converted to FLOAT BIN (21.) 
for assignment to  X. The next input stream item is a character 
s tr ing constant and is associated with A(1) ; A (1) thus acquires 
the '4-character chaiacter s tr ing value VAL1. The next input stream 
itell1 i s  nussing, so A(2) retains i t s  current value. The next one 
results i n  A(3) being assigned the value of the null character. 
string. The next one results i n  N being assigned the value 15; 
during that assig~unent , the value i s  converted from FIXED DECIMAL 
( 2 ,O ' )  t o  FIXED BINARY of default precision. . The repetitive 
specification appearing next i n  the data l ist  would cause successive 
input stream items to  be assigned to  B(l) , B(3)  ,. B(5) , . . . , B(15) . 
The contents of the input stream result  i n  the following assignments 
(only) , however : 

6 to B(1) 
I00 ' t o  B (3) 

5 to B(7). 



On output, the values of the data l is t  items, which may be arbitrary 
expressions, are converted to  character form according to the conver- 
sion rules. Thus, the converted.character form w i l l  ref lect  the 
at tr ibutes of the variables' o r  expressions from whose values they 
were obtained. Note that the conversion rules for  binary arithmetic 
data to character s tr ing c a l l  fo r , an  intermediate conversion to  
decimal, so that the value "three" of a FIXED BINARY variable, for  
instance, ' w i l l  be printed' as 3 instead of 11B.  

Placement of the character representations of the values i n  the 
output f i l e  depends on whether that  f i l e  is  a print  f i l e  or not. 
If it is not, - they' are separated by oiw b1a.k. I T  it is ,  siiccessive 
values are  aligned' on predefined "tab" columns. (The tab columns 
can be changed' as described i n  OPG 7 and CPG 6. In the ANSI language, 
a 'I'M option is provided on the OPEN statement, which w i l l  simplify 
the specification of user-defined tab positions for  pr in t  f i l e s  .) 

Also, foi" non-print f l l e s  the values of character s tr ing variables 
o r  expressions i n  the data l is t  are surrounded by quotes i n  the 
external representation. (If the data being written out with l i s t -  
directed output were to be read back in la te r  wit91 l is t-directed 
input, these quotes w i l l  be needed t o  identify the input stream item 
as a character' s tr ing constant.) For print  f i l e s  they are,not  
surrounded by' quotes ' (remember' what the PRINT a t  tribute says : the 
f i l e  ' i s  t o  be printed, i. e.  , not read back in) . 

See LRM 143 and LRM 144. 

7.16. Dat a-directed transmission. 

Data-directed transmission also permits s h p l e ,  free-form stream 
transmission. The essential difference Irom list-directed traris~irission 
is that values on the external medium are accompmi ed by the names of 
the variables i n  the program from which they were obtained or t o  
which thcy are to be assigned. Because of this, the elementary data 
l is t  i t c m  in  a data edireeted PUT. statement 111us t be variables (possibly 
subscripted by expressions) ; they cannot be arbitrary expressions. The 
keyword DATA precedes the parent.hesi.zed data l i s t ,  forming the DATA 
option. 

On input, since each item in  the input stream has i ts  name associated 
w i t h  it (the form being essentially that of a scalar assignment 
statement without a s'emicolon, and written with constant subscripts 
and fu l l  structure qualification), the items in  the input stream need 
not appear i n  the same order as the items in  the data list.  In fac t ,  
the order of items i n  the data list is to ta l ly  i r re leva~l t .  Not a.11 
of the variables appearing i n  the data l i s t  need appear i n  the input.  
stream, but names appearing i n  the' input stream must appear in the 



data list. Transmission for  a single data-directed GET statement 
is stopped only when a semicolon 'is encountered i n  the 'input stream. 
A data-directed input data. l ist .  item'may not be subscripted or a 
repetitive specification; when'array elements are' to  be received 
from'the input stream, it is sufficient to  have the whole array as 
a data l ist  item. 

Example (using the variables declared i n  the previous example for  
l is t-directed input) : 

GET FILE (F) DATA (B, A, X, N) ;  
Input stream causing the same assignments as i n  the 
previous example : 
X 4 . 4  A(~)='vAL~' A{3)= " e l 5  
B(l)=G B(3).=1E.2 ~ (7 )=5 .1 ;  

Note that items i n  the input stream are separated by a comma and/or 
one or more blanks. 

On output, repetitive specifications, subscripted variables, e tc . ,  
are allowed. The values are accompanied by thei r  variable names 
with subscript expressions evaluated to  a constant value. Items 
are separated as in  l is t-directed output. A semicolon is written 
following the l as t  item. 

In a data-directed transmission statement, the data l is t  following 
the keyword DATA may be entirely omitted. This is equivalent to 
specifying a data l Z s t  containing a l l  variables laown a t  that  point 
i n  the program which are legal i n  a data-directed data list.  

& 

See LRM 145 and LRM 146. 

7.17. Edi L-directed trarlsyussiur~. 

Edit-directed transmission gives the programmer f u l l  control over 
the format of data on the.externa1 medium. Edit-directed transmission 
statements include not only data lists but format lists as well. 
During their  execution, the two lists are matched so that  the value 
being written. out (or read in) is assembled (or decoded, respectively) 
according to  the format item in  the format , l is t .  Values on the 
external medium are not self-delimiting with blanks or  commas as in  
l is t-directed or data-directed transmission; the format item for a ' 

particular val~ie specifies the number of characters to  be used on the 
external medium as well as the format of the contents of that f ie ld .  

In edit-directed GET or PUT statements the parenthesized data list 
is preceded by the keyword EDIT. The format l i s t  is also parenthesized 
and immediately follows the data l ist  ( i .e . ,  no keyword is used). 
A l l  of th is  constitutes the EDIT option. 



7.18. Format lists. 

A .format l ist  is a l is t .  of format it& separated by commas. Each 
format item is one of the following: 

(a) A data format item, control format item, or remote format 
item (described below) . 

(b) One of those preceded by either '  an unsigned decimal integer 
constant or  a parenthesized expression, representing an 
i tera t ion factor. 

(c) A parenthesized format list preceded by an i terat ion factor. 
An i tera t ion factor effectively replicates the,elementary format item 
or l i s t  of items that  fol lows' i t .  

Data f o m t  items describe the format of a f i e ld  on the external 
medium corres~ondinrr to an item from the d a t a . l i s t .  Control format 
items do not korr&spond to  items in the data l i s t  and thns do not 
E i b e  the format of a.value; they indicate. control actions such 
as skipping t o  a new l ine or page, well as others.. Remote format 
itel~ls are described' :l.ar.eY. 

Matching of items between data lists and format lists proceeds as 
follows. The process is "driven" by the data l ist .  Once the next 
scalar item is obtained from the data l ist  (remember that a structure 
item' is equivalent t o  a list of i ts  scalar base itemi, in order', and 
an array item' is equivalent to'  a l is t  of its subscripted elements i n  
row-major order), control advances in the format l is t  unt i l  a data 
format item is encountered, and it is that  data format item which is 
paired with the scalar  data iist item. Any actions specified by 
control format items encountered while looking for  the next data 
format item are taken. An i terat ion factor 'is ,evaluated when it is 
encountered and causes repetition of the following item or list the 
indicated number of times (which may be zero). When the data l is t  
is exhausted, any remaining format items (even i f  the next one is a 
control format item) are 'ignored. IIowever, i f  the format list is 
exhausted f i r s t ,  it i s  rescanned from the beginning (note: from t.he 
beginning of the whole l i s t ) .  

I t  should be remarked that pairs of data lists and their  corresponding 
format lists may be repeated i n  an edit-directed transmission state- 
ment. When one data list is exhausted, the second is begun; the 
second format l is t  is used for  subsequent matching, even i f  the f i r s t  
one was not exhausted. I f  a format list is exhausted before i ts 
corresponding data l is t ,  - that  format l i s t  is  rescanned from the 
beginning. 

See LRM 1 4 7  and LRM 148. 



7.19. Data format items. 

Detailed descriptions of the s ix  data. format items would take many 
pages and w i l l  not be. attempted' here. ' The' flavor of three of them 
w i l l .  be: given. Morc information is in  LRM 149 and LRM 150. 

. . F fo-t i tem. On output, the value is converted to  FIXED DECIMAL 
(the data. l ist  item may have at tr ibutes of any computational data 
type) . The format item specifies a to ta l  f i e ld  width, an optional 
n~rmbcr of fractional positions (taken a s  0 i f  not specified), and 
an optional scale factor. Examples : 

F(5) might produce 'bbl23, bt,b50, or -1003. 
F(6,S)' might produce bl.OOO, -3.012, or 10.640. 

On j.npi~t., t.h& contents of the f i e ld  width specified must be a 
decimal integer constant, positioned anywhere i n  the f ie ld .  I f  a 
decimal point i s  used, it overrides the fractional- art f i e ld  
width in- the format item; i f  it isn '  t , it is assumeh , to  appear i n  
the position specified by the format item. 

E format item. On output, the value is converted to  the form of 
a decimal floating-point constant having the specified to ta l  f i e ld  

'width and number of fractional digits. '  On.input, the f i e ld  must 
contain a valid decimal floating-point or f ixed-point constant . 

A format item. On output, the value is conveqted to  character and 
disposed of i n  the f i e ld  width specified. The f ie ld  width may be 
omitted, in  which case the f i e ld  width i s  the length of the character , 

; value. On input, the f i e ld  width specified ( i t  'cannot be omitted) 
is assumed to  contain a character s tr ing value ( a l l  characters are. 
legal) . 

The remaining data format items are B (bit) , C (complex) , and F' (picture) . 

Field widths, etc. ,  may be given by the values of expressions; they 
need not be constants. 

Note that there is no correspondence of data types required for  data 
items and their  matching format items. Conversions are performed as . . 

necessary. E.g., suppose a data item were a .  CIIAR (50) VAR variable, 
and suppose the format item were F(5). On output, the character 
s tr ing value w i l l  be converted to  fixed decimal, which may cause the 
CONVERSION condition to occur. On input; the 5-character f i e ld  must 
contain a decimal fixed-point constant. If it doesn't, the CONVERSION 
condition w i l l  occur. If it does, i ts  value w i l l  be converted to 
CHAR (8) for  assignment to the target variable. 



7.20. Control format items. 

X format item. X(n) causes the next n positions to  be f i l led 'wi th  
blanks,. on output,. or  skipped, on input. 

SKIP format item. SKIP(n) causes the current l ine to  be terminated 
and the next n - 1  l ines to  be skipped. SKIP is equivalent t o  SKIP(1). 
SKIP(0) is  allowed only fo r  print  f i l e s ;  it suppresses spacing and 
causes the next l ine  t o  be overprinted on the current one. This is 
useful fo r  underscoring. 

COLUMN format itcm. Abbreviation is COL. 
COL(n) causes cursor to  be repositioned forward t o  the given 

' position i n  the l ine .  Intervening positions are f i l l e d  w i t h  blanks 
on output and are skip ed on i n  u t .  I f  the current l ine is already P past the designated co umn,  SKI!(^) is assumed; i .e . ,  the next l ine - 
is  positioned t o  the designated column. 

PAGE format item. Used for  print  f i l e s  only. Succeeding output 
w i l l  continue on the next page.' 

LINE format item. For pr in t  f i l e s  only. Succeeding output w i l l  
continue on the designated line. I f  the current page is already 
past that l ine,  a ~iew page is begurr. 

See LEM 151. 

7.2 1. Remote format item. 

The remote format item has the form R(&b& where is a .  label- 
v a l u ~ e ? s s i o n .  When one is encountered, the FORMAT statement . . 
whose statement label is tlie value ,of Labd is scanned. A FORMAT 
statement merely contains a format l i s t ;  it can be used t o  provide 
several different edit-directed transmission statements with the 
same format l ist .  Example: 

GET FILE (IN) EDIT' (N,X) (R(LAB)); 
PUT FILE (OUT) EDIT (N+2,X-1) (R(LAB)); 
LAB: FORMAT .(F(8) ,X(1), E(15,5)) ; . . 

A FORMAT statement is  not executable i n  the normal sense. In the . . 

ANSI standard, the label on a FORMAT statement is of a new data type,. . 

"format", and there are format variables and a FORMAT attribute. 
I . e . ,  there i s  a clear distinction between format values and label 
values, and they serve different functions. The current language is . ' . . 
a l i t t l e  cloudy in  th is  area. See LRM 152. 



7.22.  . Other stream transmission statement options. 

Any stream transmission statement may contain a SKIP option. The 
syntax and meaning are the same as for  the SKIP format item. The 
skipping takes place before the data l ist  is processed, i . e . ,  f i r s t .  

A PUT statement for  a print  f i l e  may contain a PAGE oution.or LINE - - .- 

option, or both. The 'syntax and rn&ming are as for  the same format 
items', and the action is taken before 'data transmission. 

A statement with one of the above options may omit the LIST, DATA, 
or WIT option. For.exarnple, PUT.FILE (SYSPRINT) PAGE; causes a 
new page .to be positioned on the f i l e  SYSPRINT without data transmission. 

The COPY option i n  a GET statement says that the input stream read 
is t o  be copied, exactly as read, to  the stream output f i l e  specified 
i n  the COPY option. 

The FILE option, which designates the stream input or output f i l e ,  
may be replaced by a STRING option. In a GET statement, the STRING 
option provides a character s tr ing expression which serves as the 
source of input stream data instead of a f i l e .  In a PUT statement, . 

it specifies a character s tr ing variable that serves as a sink of 
output stream data instead of a f i l e .  The STRING option extends the 
fac i l i t i e s  of stream 1/0 to  operations on strings (for instance, 
formatting) performed in core as str ing manipulations (see LRM 153). 

Now review LRM 154 through LRM 157. Certain options of PUT statements 
intended for debugging 'and implemented only by the Checkout compiler 
(and which are not part of the ANSI standard) are described in  Lesson 
13. More review: LkM 159. 

7.23. Standard f i l e s .  

The language recognizes SYSPRINT as a standard print  f i l e  and SYSIN 
as a s'tandard stream input f i l e .  A GET or PUT statement not containing 
ei ther  a FILE option or a STRING option is equivalent to one containing 
FILE (SYSIN) or FILE (SYSPRINT) . Thus : 

GE1' (A,B, C) ; is  an easy way to get input. 
GET DATA; allows any variables hown to be "assigned" 

a value from SYSIN. 
PUT DATA; is an easy way to print  a l l  known computational. 

variables and their  values on SYSPRINT. 
PUT (A,B,C); is a carefree way to  provide output. 
PUT SKIP; conditions SYSPRINT t o  s t a r t  receiving future 

output on a new line. 



See LRM 158, OPG 8, and CPG 7. 

7.24. Conditions applicable to stream I/O. 

The UNDEFINEDFILE'. condition, which is applicable t o  a l l  I / O ,  has 
already been mentioned; so has CONVERSION, which can occur sduring 
stream input o r  output (as well as the situations .mentioned i n  
Lesson 6 ) .  Another'condition from Lesson 6 ,  the SIZE condition, 
occurs i n  edit-directed output i f  the f i e ld  width specified i n  an 
E o r  F format item is not large enough'to contain non-zero high- 
order significant d igi ts  or  a leading minus sign. 

Four new conditions are applicable. The TRANSMIT condition (which 
is a qualified condition, l ike  UNDEFINEDFILE, i - e . ,  it i s  qualified 
by a f i l e  value) occurs i f  a real, 3jue T/O error occurs on any 
input or  output statement. Its default s tatus is enabled and it 
cannot be disabled. Standard system action is to  issue a message 
and raise ERROR. I f  normal return from a TRANSMIT on mi-t occurs, 
execution continues from the point of interrupt, but the effect  of 
the 1/0 operation that  raised TRANSMIT is unpredictable. 

The ENDFILE condition (also qualified) occurs on any input operation 
when no more data is available. In the case of a GET statement, i t  
occurs i f  the physical end of f i l e  is reached before data transmissiorl 
or between two data transmissions associated w i t h  data format items. 
I f  the physical end of f i l e  is encountered duri,ng the processing of 
a data format item o r  X format item, ERROR is raised instead. The 
defa~Lt  status o t  ENUk'lLE is  enabled; it cannot be disabled. Standard 
system action is to  issue a message and raise ERROR; thus, even i f  you 
don1 t l ike  on units,  you pret ty much need an ENDFILE on unit.  On 
normal return from WENDFILE on unit ,  execution continues w i t h  the 
statement following the input statement. 

The ENDPAGE condition (also qualified) occurs when an attempt is  made 
t o  transmit data to  a l ine on a page of a pr in t  f i l e  havim a line 
number i n  excess of the value of PAGESIZE (as specified i n  an OPEN 
statement or defaulted). Status is as for the above conditions. 
Standard system action is to s t a r t  a new page; this uselul acLiurl 
occurs without any specific request! Note, however, that  i f  an ENDPAGE 
on unit is  entered, any further output that it does to  the same f i l e  
w i l l  continue to  appear on the same page, on lines with even higher 
l ine  numbers. This is  useful for  printing page footings..  After printing 
a footing, i f  it desires, the on unit could execute PUT FILE(. . .) PAGE; 
t o  skip t o  the next page. I t  may execute, then, further PUT statements 
to  print  a page heading (column headings, etc.  ) . When normal return 
from the on unit is f inally made, execution continues from the point of 
interrupt i n  the PUT statement that raised the condition. Note that 



execution of;a LINE or  SKIP format item or statement option can 
cause ENDPAGE to  be raised; on normal return, the action specified 
by LINE or SKIP is ignored. 

The f inal  condition, NAME (also qualified), occurs on data~directed 
input i f  a name in  the input stream does not appear i n  the data l ist  
or, i f  no data l i s t  is  .provided, is not known i n  the current block. 
I t  also occurs i n  various cases of ill-formed input. Default status 
is as for the above.' Standard system action is to  ignore the incorrect 
input stream item, issue a message, and continue. On normal return, 
the GET statement continues with the next input stream item. 

See LRM 116 for further detai ls  on the above. 

7.25. Stream 1/0 t o  a terminal. 

. The Optimizing and Checkout compilers modify certain aspects of stream . 
1/0 when a f i l e  i s  associated with a terminal instead of a dataset, 
t h e  goal being better  human engineering. 

Normally, successive PUT statements merely place successive values 
into a l ine buffer'; data transmission does not actually occur unless a 
l ine is completed. In TSO, each PUT statement transmits its data to 
a terminal immediately so that you may see a l l  output generated 
logically before you are required' to  supply input. Nevertheless, 
s'uccessive PUT statements without intervening GET statements continue 
to  write i n  the same line. 

SKIP(0) is implemented by backspacing! This is only useful on an 
IBi 2741 terminal. 

When a GET statement i s  executed, the carriage is returned and you are 
yro~lpted with a colon and another carriage return! However, i f  the 
l a s t  PUT statement directed to the terminal transmitted a colon as the 
l a s t  character, that is taken t o  be a prompt issued by the program and 
the prompting action described above is not taken. End-of - line: is 
taken as a delimiter between items, unlike the usual behavior, so that 
you may type one item per l ine without blanks, I f  a data l i s t  isn't .  
exhausted a t  end-of-[line, you are prompted for  more with a plus sign 
followed by a colon. Finally, i f  end-of-line i s  encountered inside a 
data format item, i . e . ,  besore t he  whole f i e ld  width i s  exhausted, 
sufficient t ra i l ing blanks are assumed t o  match the f i e ld  width. 

These features and others arc described in  CTUG 2 and 3 and OTUG 3 and 4. 



7.26. Comparison to FORTRAN. 

Edit-directed 1/0 corresponds to FORTRAN "formatted 1/01 (but not 
the "direct access" kind). The format list may accompany the GET 
statement or  it may be remote (which is more. l ike FORTRAN). Each 
transmission statement does not automatically s t a r t  a new l ine ,  as 
i n  FORTRAN. For a pr in t  f i l e ,  you do not provide a carriage control 
character as the f i r s t  character of data for  each l ine;  that  is taken 
care of automatically by PAGE., SKIP, or LINE options or format items 
and i f  data just overflows a line. (For a non-print f i l e ,  however, 
SKIP merely causes the output l ine to  be finished'. The system does 
not provide carriage control characters, and i f  you intend t o  print  
a dataset created via a non-print f i l e ,  and you t e l l  ASP via the 
RECM DCB operand that  the dataset'has carriage control characters, 
you w i l l  have t o  generate them in  the output data. Use YKINY for 
datasets to be printed! I f  not declared, SYSPRINT - is a PRINT f i l e . )  

Items i n  an edit-directed output data list can be expressions, while 
i n  FORTRAN formatted 1/0 they cannot be. 

'l'he repetitive data l ist  item is l ike I;OKI'KAL\lls "implied DO," but a 
l i t t l e  more general. 

Formatted 1/0 i n  FORTRAN is driven by the format l is t ,  while edit-  
directed 1/0 i n  PL/I is  driven by the data l ist .  

I f  the format l is t  is  exhausted before the data l ist ,  it is rescanned 
from the beginning i n  PL/I,  even i f  it contains a nested (and iterated) 
format list (what is called a "group format specification" i n  FORTRAN). . 

'l'here is nothing to correspond t o  I ; O K i ' M - ' s  H format item o r  l i t e r a l  
format item;.data can only come from the.data list.  

A given data fomt ieem can be marched w f e h  any rype of 8ara lrem, 
while a specific correspondence of types is required i n  FORTRAN. 

Leading or  t ra i l ing blanks i n  F or E-format input f ields are ignored 
rather than treated as zeroes. Embedded blanks w i l l  cause the 
CONVERSION condition to  occur. 

There is no equivalent to  FORTRAN's format arrays and object - the  
formats. However, much of the f l ex ib i l i ty  that  it p.rovides is avail-. 
able i n  the fac t  that  i terat ion factors and f ie ld  widths can be 
expressions whose values are obtained by reference . t o  input variables. 



List-directed 1/0 is roughly equivalent to the same feature of 
FORTRAN, though the contents -of l is t-directed input data streams 
are different . 

Data-directed 1/0 is ' roughly equivalent to  "NAMELIST I/O" i n  FORTRAN, 
though the details are 'different. 

7.2 7. Unanswered questions . 
The question "1.10~ do we correct a conversion condition?'" f i r s t  asked 
in  Lesson 6 is relevant here, ' too.  I t  is answered i n  Lesson 1 0 .  

We w i l l  learn i n  Lesson 1 0  not vrlly how we can t e l l  what raised ERROR, 
but i f  we find it was caused by standard system action for  one',of the 
1/0 conditions that can do that  when'no on unit  .is established, how 
we can determine what f i l e  is involved. 

We w i l l  also see how we can t e l l  what garbage caused the NAME condition 
t o  occur, and which of the many possibi1ifi .e~ .was the cause of an 
UNDEFINEDFILE condition. 

7.2 8. Homework problems. 
. . 

(# 7A) Suppose F is declared as, FILE. What f i l e  description 
a t t r ibutes 'wi l l  it have i f  it is opened implicitly by . a PUT statement? Suppose the PUT statement says 

PUT FILE (F) LINE (10) LIST ('BEGINNING') ; P 

Why is th is  i l legal?  . . 

(#7B) A 613 ABEND occurs i f  you t ry  to  open a particular 
SYSOUT dataset when it is already open. The error 
messages that are written out when the ERROR condi- 
tion i s  raised are written on f i l e  SYSPRINT (one of 
the standard f i l es ) .  I f  the f i l e i s  not already 
open, it is opened by th is  action. Suppose the Dll 
statement for  SYSPRINT says SYSOUT=A (as it does i n  
our cataloged procedures). Recall that  an explici t  
OPEN for an already opened f i l e  is ignored i n  PL/I . 
Suppose an error message has already been produced 
on SYSPRINT. What happens i f  your program subsequently 
executes 

OPEN FILE (F) TITLE ('SYSPRINT1) OUTPUT; 
(The same can happen i f  the error message is produced 
a f te r  F is opened.) 



(#7C) What happens i f  an attempted opening of f i l e  SYSPRINT 
raises UNDEFINEDFILE and there is no UNDF on unit for  
SYSPRIW? An intel l igent  recovery from th i s  situation 
w i l l  be described i n  Lesson 1 2 .  

(#7D) Write some code that w i l l  associate f i l e  F with the 
dataset identified by t he  DD statement with ddname 
DDO1. I f  the OPEN f a i l s ,  assume no DD statement was 
provided and t r y  DD02. Continue on to  DD99 unt i l  you 
succeed'on one or f a i l  on a l l .  (Though not the main 
point of th is  problem', you should s e e  how a numeric 
pictured variable can be ilssefi.11 in 'generating those 
ddnames . ] 

(#7E) Show some code which in i t i a l i zes  the elements of an - 
array o f  f i l e  wriSics to different f i l e  constants. 
Assume the program w i l l  access a l l  the f i l e s  "in 
parallel" instead of one a f tc r  another, so that they 
must a l l  be open simul.taneously . Open them in  a DO 
group. Be prepared to  write a message for  each one 
whose open f a i l s ,  giving its index. Establish the 
on units i n  the same DO nrom . If vou were to  - - 

establish the on units ifi a 
executed' before the one that 
you have to  . do anything dif f e&nt to.. make sure the 
proper index i s  printed out when a particular f i l e  
can't  be opened'! 

(#7F) Is. it possible to write a u t i l i t y  program in  PL/I 
which is capable of manipulating any number of data- . 
se t s  simultan&ously? Assume the processing required 
is methodical enough to  access the f i l e s  through an 
array (allocated dynamically with adjustable extents 
once the program detepines how many fLles it w i l l  
have t o  deal with). 

[# 7G) I f  the input stream 
3 5 10B 355 WORD 'AGAIN' '16s' '5.1' 

were read by rhe statement 
GET (N, S, M, X, T, U, V, J ) ;  

with the variables declared a s  follows: 
N FIXED BIN 
S CHAR (20) VAR 
M FIXED DEC 
X FLOAT DEC 
T CHAR (20) 
U CHAR (3) 
V FIXED DEC 
J FIXED DEC 



~ for  which input stream items would the CONVERSION 
condition occur? (Assume it is corrected whenever 
it occurs, so that the whole l ist  is processed.) 
In which cases is the raising of the condition 
dependcnt on the attributes of the variable i n  the 
data l ist ,  and in which cases not? 

(# 7H) I f  you have FORTRAN experience, . compare the PL/I 
and FORTRAN format items. 

(#71) Write a portion of a program that  reads two input 
values which are taken to  be the row and column 
dimensions of an array, allocates an array of that 
s ize (use an automatic variable), then reads i n  
values for  the array elements under format control. 
Demonstrate several alternatives: 

(a) A DO group containing'a GET statement 
, . t h a t  reads a single value into the next 

element of the 'array. 
(b) A single GET statement (for the array 

elements) that  uses a repetitive 
specification. 

(c) As  i n  (b) , but without a repetitive 
specification; This is only possible 
i f  the values are presented i n  row- 
maj or  order. 

(# 75) There i s  no 'REWIND statement i n  PL/I . How would 
you accomplish that function? 

(#7K) There is no BACKSPACE statement. Suppose you had 
to read a l ine of input twice, ur~der different 
format controls. How would you do that? ' 

(#7L) Suppose you want to pr in t  the elements of an array 
using F (8 ,3)  fbn~lat. What happens i f  an element 
has the value 10000? O r  -1000? Suppose you want 
the f i e ld  t o  be f i l l ed  with eight asterisks when 
the value won't f i t ,  as i n  FORTRAN. Show a way of 
doing th is  which involves staterrlent 

PUT FILE (OUT) EDIT ((TEST(A(1)) DO I = 1 T0 100)) 
(100 A(8) ; 

TEST is a function procedure. Your job is to  show 
what is i n  TEST. 



(#7M) S is declared a s  a varying length character s t r ing 
variable. I f  ei ther  of the  following statements' i s  
legal,  what does it mean? I f  not, why not?. 

PUT EDIT (S) (A) ; 
GET EDIT (S) (A) ; 

( # 7 N )  What is  the difference between the following three 
statements, i n  terms of thei r  effects? 
X is an array. 

PUT EDIT (X) (E (20,8) , SKIP) ; 
PUT EDIT (X) (SKIP, E (20',8)) 
PIIT EDIT (X) (E (20,8)) SKIP; 

What would be the difference i f  X were a scalar 
va.riah1.e and the PUT statement were executed inside 
a loop? 

(# 70) Read a l i s t  of values into an array using l is t-directed 
input, You do not know i n  advance how 'mny values you 
w i l l  get. The input f i l e  contains only the array 
values. Be prepared t o  receive up to  1000 values, and 
s e t  a variable to indicate how many were read into the 
array. Print  a message i f  more than 1000 values are 
received. . ' 

(X 7 ~ )  In the above problem you may be l e f t  w i t h  an incomplete 
array, i . e . ,  one some of whose elements are unused. 
What could you do subsequently t o  take advantage of 
array assignr~lents , array expressions, e t c  . , which 
operate. on a l l  the elements of an array? 

(#7Q) Suppose you are using an ENDPAGE on unit to  pr in t  a 
page footing a t  the bottom of every page of output on 

. . a pr int  f i l e .  How do. you .get the footing printed a t  
. , the. . bottom . of 'the l a s t  page, :which may be incomplete? 

. . . . . . 

(# 7R) Demonstrate the use of an ENDPAGE on unit fo r  the 
production of page headings. 



8. I n t r o d u c t i o n  t o  record 110; consecut ive  d a t a s e t s .  

I n  record  110, t ransmiss ion  of d a t a  occurs  i n  u n i t s  of  d i s c r e t e  r eco rds ,  
which co r re spond , to  l o g i c a l  r eco rds  i n  a d a t a s e t .  Each record  t r ansmis s ion  
s ta tement  t r ansmi t s  e x a c t l y  one record  i n t o  o r  ou t  of a v a r i a b l e ,  c a l l e d  
a record v a r i a b l e .  (Some record t ransmiss ion  s t a t emen t s  d o n ' t  c ause  any 
d a t a  t ransmiss ion  and don ' t  use  record  v a r i a b l e s ,  b u t  they  s t i l l  do some- 
t h i n g  t o  a record i n  a d a t a s e t . )  

I , . 

Transmission c o n s i s t s  of t h e  mass t r a n s f e r  of so  many cont iguous b y t e s  , . 
of s t o r a g e  between t h e  record on t h e  e x t e r n a l  medium and t h e  record 
v a r i a b l e  i n  core .  It should be  obvious t h a t  t h e  record v a r i a b l e  must 

, r e p r e s e n t  connected s t o r a g e  (Lesson 3 ) .  Beyond t h a t ,  record  v a r i a b l e s  
may be  j u s t  about anyth ing  -- s c a l a r s ,  a r r a y s ,  o r  s t r u c t u r e s .  The d a t a  . 

. . i n  t h e  record  is  a byte-for-byte image of t h e  d a t a  i n  c o r e ,  r e g a r d l e s s  
of t h e  d a t a  type.  Transmission occurs  without  conversion of 'any k ind .  
Recurd v a r i a b l e s  can con ta in  program c o n t r o l  d a t a ,  b u t  va lues  read  from . . 

such  r eco rds  may no t  be v a l i d ,  p a r t i c u l a r l y  i f  t h e  reading  occurs  i n  a 
d i f f e r e n t  execut ion  of t h e  program from i t s  w r i t i n g .  

Record f i l e s  a r e  used f o r  v a r i o u s  purposes.  Because d a t a  t ransmiss ion  
t a k e s  p l ace  wi thout  conversion between i n t e r n a l  machine form and e x t e r n a l  
c h a r a c t e r  form, record  f i l e s  (and t h e  d a t a s e t s  a s soc i a t ed  wi th  them) a r e  
p a r t i c u l a r l y  a p p r o p r i a t e  f o r  i n t e rmed ia t e  s t o r a g e ,  i . e . ,  d a t a  c r e a t e d  by 
t h e  program f o r  reading  back i n  l a t e r  (may be  much l a t e r ) .  By t h e  same 
token,  record f i l e s  (and t h e i r  d a t a s e t s )  a r e  no t  s u i t e d  f o r  human con- 
sumption except  i n  t h e  s p e c i a l  c a s e  t h a t  t h e  record v a r i a b l e s  a r e  
c h a r a c t e r  s t r i n g  v a r i a b l e s .  

A record f i l e  is one which has t h e  WCORU f i l e  d e s c r i p t i o n  a t t r i b u t e  (FDA) 
i n s t e a d  of STREAM. See LRM 136 and LRM 160. 

8 .2 .  Records and keys. 

A l l  d a t a s e t s  are cuupused of a s e t  of records .  Even d a t a s e t s  a s s o c i a t e d  
w i t h  s t ream f i l e s  are composed of a sequence of r eco rds ,  b u t  t h a t  is  n o t  
always of much consequence. 

The records  of some types  of d a t a s e t s  a r e  accompanied by i d e n t i f i c a t i o n  
f i e l d s  c a l l e d . r e c o r d e d  keys. A recorded key con ta ins  a c h a r a c t e r  s t r i n g  
v a l u e ,  c a l l e d  a key, which i d e n t i f i e s  t h e  record wi th  which i t  is 
a s s o c i a t e d .  A recorded key may be phys i ca l ly . . s epa ra t e  from t h e  record  
o r  embedded w i t h i n  i t .  A d a t a s e t  containing.keyed'recdrds is  c a l l e d  a 

keyed d a t a s e t .  



When a program wishes t o  d e s i g n a t e  a p a r t i c u l a r  record  i.n a d a t a s e t ,  i t  
does s o  by computing and p re sen t ing  a key va lue .  Key va lues  i n  t h e  
program a r e  c a l l e d  source  keys. .Thei r  meaning is  de f ined  by t h e  imple- 
mentat ion.  Usual ly they correspond t o  t h e  va lues  i n  recorded keys,  b u t  
t h i s  is  no t  always necessary .  

8 . 3 .  Language vs .  implementation: h i s t o r y  of record  110. 

The language . . f e a t u r e s  f o r  r eco rd  110 seem, more than  any o t h e r  p a r t s  of 
t h e  language,  . . t o  have been s t r o n g l y  inf luenced  by t h e  k inds  of d a t a s e t s  
and p roces s ing  techniques  a v a i l a b l e  i n  I B M 1 s  OS ope ra t ing  - .  system. Perhaps 
what happened went something l i k e  t h i s :  The language des igne r s  used t h e  
c a p a b i l i t i e s  of I B M  hardware and t h e  OS ope ra t ing  system ' t o  s e t  goa l s  
and t a r g e t  c a p a b i l i t i e s .  From a huge a r r a y  of . .poss ihd .k i t ies  they d i s t i l l e d  
ou t  some common f e a t u r e s  and c a l l e d  th i s ' l a r iguage .  The, common f e a t u r e s  
c o n s t i t u t e d  a minimal s e t  of c a p a b i l i t i e s  but could be combined i n  diverse 
ways t o  provide  many v a r i a t i o n s  i n  behavior .  Some of t h e s e  v a r i a t i o n s  
corresponded t o  t h e  hardware c a p a b i l i t i e s  they  had i n  mind w h i l e  o t h e r s  
d i d n ' t .  . . . .  

Other manufacturers  have se l ec t ed ' combina t ions  t h a t  corresponded t o  t h e i r  
hardware and o p e r a t i n g  system c a p a b i l i t i e s .  C e r t a i n  combinations of 
language . . f e a t u r e s  t h a t  I B M  has  found a use f o r  may no t  have a use  i n  another  
system. Even w i t h i n  t h e  IBM implementat ions,  t h e  i n t r o d u c t i o n  of t h e  VS 
o p e r a t i n g  system h a s ' l e d  t o  t h e  a s s ign ing  of meaning t o  c e r t a i n  combina- 
t i o n s  of f e a t u r e s  t h a t  were p rev ious ly  meaningless.  

Our s tudy  o f , r e c o r d  110 w i l l  thus  proceed a s  fo l lows .  We w i l l  look f i r s t  
a t  some of t h e  i n d i v i d u a l  language f e a t u r e s  and what they mean. We w i l l  
t hen  t u r n  our  a t t e n t i o n  t o  one of t h e  k inds  of d a t a s e t s  I B M  suppor t s  and 
w i l l  d i s c u s s  t h e  k inds  of process ing  t h a t  may be  done wi th  i t  and t h e  
language f e a t u r e s  used t o  accomplish it.. I n  Lesson 9 we w i l l  s tudy  
a d d i t i o n a l  language f e a t u r e s  and apply  them t o  o t h e r  k inds  of I B M  d a t a s e t s  
and p roces s ing  techniques .  

PL/I provides  two k inds  of acces s  t o  d a t a s e t s  a s s o c i a t e d  w i t h  record  f i l e s ,  
s e q u e n t i a l  and d i r e c t .  D i r e c t  acces s ,  denoted by t h e  DIRECT FDA, means 
t h a t  r eco rds  w i l l  b e  accessed i n  a n  a r b i t r a r y  sequence. Each record  t o  
be  processed must be i d e n t i f i e d  by a sou rce  key. Sequen t i a l  a c c e s s ,  
denoted by t h e  SEQUENTIAL (abbrev ia t ion :  SEQL) FDA, means t h a t  records  
w i l l  b e  accessed i n  some k ind  of s e q u e n t i a l  o rde r .  What i s  meant by 
s e q u e n t i a l  o r d e r  is up t o  t he  implementation: i t  may be t h e  p h y s i c a l  
o r d e r  of r eco rds  i n  a d a t a s e t  o r  t h e  o rde r  def ined  by ascending o r  descend- 
i n g  key v a l u e s .  (Though w e  haven ' t  s a i d  s o  e x p l i c i t l y ,  keyed r eco rds  may 
have a l o g i c a l  o r d e r  def ined  by t h e i r  keys which i s  no t  i d e n t i c a l  t o  t h e i r  



p h y s i c a l  o rde r  i n  t h e  d a t a s e t . )  An implementation may provide  a choice  
between p h y s i c a l  sequence and key sequence. When key sequence i s  be ing  
used, t h e  program may use sou rce  keys. 

A l l  r eco rd  f i l e s  w i l l . h a v e  e i t h e r  t h e  SEQL o r  t h e  DIRECT a t t r i b u t e .  See 

I LRM 161. A s  f o r  o t h e r  FDA's, t h e s e  may be  s p e c i f i e d  e x p l i c i t l y  o r  they  
may b e  acqui red  a t  open t ime by deduct ion ,  imp l i ca t ion ,  o r  d e f a u l t .  

8.5. The KEYED a t t r i b u t e .  

C e r t a i n  o p t i o n s  of  t ransmiss ion  s t a t emen t s  provide  f o r  t h e  communication 
of key va lues .  For c e r t a i n  types  of o p e r a t i o n s  t h e i r  u se  i s  mandatory; 
i n  o t h e r  c a s e s  they  a r e  n o t  used. I f  t h e y  a r e  t o -  be  used, t h e  f i l e  must 
have the'KEYED FDA. Such a  f i l e  i s  c a l l e d  a ' k e y e d ' f i l e .  T t  i s  n o t  r equ i r ed  t h a t  
keyed f i l e s  and keyed d a t a s e t s  be  a s s o c i a t e d  only  wi th  each o t h e r ;  they  may a l s o  
be  assoc ia t ,ed  w i t h  t h e i r  non-keyed a l t e r n a t i v e s .  We w i l l  s e e  how a keyed f i l e  can: 
b e ' u s e d  w i t h  a  non-keyed d a t a s e t ,  and how a non-keyed f i l e  can  be  used , . 

w i t h  a  keyed d a t a s e t ,  when we look  i n  Lesson 9 a t  c e r t a i n  types  of process ing  
provfded f o r  i n  IBM implementations.  

Keyed f i l e s  may b e  accessed s e q u e n t i a l l y  o r  by d i r e c t  acces s .  Sequen t i a l  
f i l e s  may b e  a c c e s s e d . u s i n g  keys o r  n o t ,  hence a  s e q u e n t i a l  f i l e  may b e  
keyed o r  .non-keyed. The ' a r b i t r a r y  o r d e r  i n  which d i r e c t  f i l e s  are accessed 
r e q u i r e s  t h e . u s e  of keys ,  hence d i r e c t  f i l e s  may n o t  b e  non-keyed.. Thus, 
t h e  DIRECT a t t r i b u t e  imp l i e s  t h e  KEYED a t t r i b u t e .  See LRM 162. The t h r e e  
v a l i d  combinations a r e  SEQL, KEYED SEQL, and KEYED DIRECT. 

8.6.  Record t ransmiss ion  s t a t emen t s .  

I n  t h i s  l e s son  we w i l l  s tudy  t h r e e  record  t ransmiss ion  s t a t emen t s .  

The'READ s ta tement  o b t a i n s  an  e x i s t i n g  record  from a f i l e .  

The REWRITE s ta tement  r e p l a c e s  a n  e x i s t i n g  r eco rd  w i t h  new, o r  updated,  da t a .  

The WRITE s ta tement  adds a  new reco rd  t o  a f i l e .  

I n  Lesson 9 w e  w i l l  s t udy  t h e  DELETE s t a t emen t ,  which d e l e t e s  an e x i s t i n g  
record  from a f i l e .  I n  Lesson 11 we w i l l  s tudy  an  a l t e r n a t i v e  t o  t h e  WRITE 
s t a t emenr  'that can  be  used i n  c e r t a i n  ca ses .  



8 . 7 .  Common o p t i o n s  of record  t r ansmis s ion - s t a t emen t s .  

A l l  r eco rd  t r ansmis s ion  s t a t emen t s  con ta in  t h e  FILE op t ion  which, a s  i n  
s t ream 110, d e s i g n a t e s  t h e  f i l e .  

The READ s ta tement  uses  t h e  INTO op t ion  t o  name t h e  v a r i a b l e  i n t o  which a  
r eco rd  is  t o  b e  read .  A gene ra l  requirement  i s  t h a t  t h e  amount of s t o r a g e  
occupied by t h e  v a r i a b l e ,  i . e . ,  i t s  s i z e  t ak ing  i n t o  account  any a r r a y  
e x t e n t s ,  e t c . ,  must be  equa l  t o  t h e  l eng th  of t h e  record read .  Note, 
however, t h a t  i f  you read i n t o  a  s c a l a r  varying-length s t r i n g  t h e  c u r r e n t  
l e n g t h  of t h e  s t r i n g  v a r i a b l e  is  s e t  by the  reading  of t he  record ,  a s  
on assignment.  I f  you in t end  t o  read  i n t o  d i f f e r e n t  v a r i a b l e s  having 
d i f f e r e n t  s i z e s ,  then  t h e  d a t a s e t  must have V o r  U format r eco rds  (not  F 
format r eco rds )  -- independent of any blocking.  Sce LRM 165. An a l t e r n a -  
t i v e  t o  t h e  INTO op t ion  w i l l  b e  d iscussed  i n  Lesson 11. 

The REWRITE and WRITE s t a t emen t s  u se  t h e  FROM'option t o  name t h e  v a r i a b l e  
from which a  record  i s  t o  b e  w r i t t e n .  The.' same.requirements  f o r  matchinn 
t h e  s i z e  of t h e  r eco rd  atid record v a r i a b l e  e x i s t .  at hat i s ,  i f  d i f f e r e n t -  
v a r i a b l e s ,  having d i f f e r e n t  s i z e s ,  a r e  t o  be  w r i t t e n ,  t h e  d a t a s e t  w i l l  
have t o  have V o r  U format records.  When a s c a l a r  varying-length s t r i n g  
i s  w r i t t e n ,  t h e  l e n g t h  of t h e  record  is determined by the s t r i n g ' s  c u r r e n t  
l eng th .  See LRM 166. 

It i s  f r e q u e n t l y  u s e f u l  t o  use a  s t r u c t u r e  (Lesson 3) f o r  a  record  v a r i a b l e ,  
Thio oerveo t o  group 1-elated da L a  f Leuls llavllig p o c e n r l a l l y  d i t t e r e n t  
a t t r i b u t e s  ( t h e  s t r u c t u r e  base  elements)  t oge the r  as f i e l d a  w i t h i n  one 
record .  

8.8. Data movement d i r e c t i o n  a t t r i b u t e s .  

I n  Lesson 7 we saw the INPUT and OUTPUT FDA's. A t h i r d  a l t e r n a t i v e ,  UPDATE, 
can be used w i t h  record  f i l e s .  It indzca t e s  t h a t  records  may be  both read 
from and w r i t t e n  t o  t h e  f i l e .  These a t t r i b u t e s  hold s i g n i f i c a n c e  f o r  t h e  
types  of r eco rd  t ransmiss ion  s ta tements  that.  r.an be 1.1sed wi th   file^ having 
those  a t t r i b u t e s  a s  fol lows.  

READ 
REWRITE. 
DELETE 
WRITE 

See LRM 137. A t  t h i s  po in t  you should review the  va r ious  d i f f e r e n t  ways 
FDA's may be acqui red .  See LRM 132, LRM 134, and LRM 141. 

INPUT OUTPUT UPDATE 

. . 

J 

J 

J 
v' 
J 
J 



8.9. Minor a t t r i b u t e s  and opt ions .  

The BUFFERED o r  UNBUFFERED (BUF o r  UNBUF) . B e t r i b u t e s  may be used i n  c e r t a i n  
cases .  See t h e i r  d e s c r i p t i o n  a t  LRM 167. For t h e  110 we w i l l  be  dea l inn  - 
w i t h  i n  Lessons 8  and 9 we need n o t  be concerned wi th  t h i s ;  i t  i s  s u f f i c i e n t  
t o  l e t  i t  d e f a u l t .  These a t t r i b u t e s  a r e  n o t  i n  t h e  ANSI s tandard .  I n  , 

Lesson 11 we w i l l  cons ider  a c e r t a i n  type of s e q u e n t i a l  110 t h a t  r e q u i r e s  
t h e  BUFFERED a t t r i b u t e  ( i n  t h e  c u r r e n t  language).  I n  Lesson 1 4  we w i l l  
look a t  another  type  of 110 t h a t  r e q u i r e s  t h e  UNBUFFERED a t t r i b u t e ,  b u t  
t h a t ,  type of 110 i s n ' t  i n  t h e  ANSI s tandard .  

The BACKWARDS'atrtibute may be  used f o r  s e q u e n t i a l  i npu t  ' record f i l e s  asso-  
c i a t e d  w i t h  d a t a s e t s  on magnetic tape.  It s p e c i f i e s  t h a t  t h e  f i l e  i s  t o  
be  read  i n  t h e  r e v e r s e  s e q u e n t i a l  o rde r  of i t s  records.  This  permi ts  g r e a t e r  
e f f i c i e n c y  when making m u l t i p l e  pas ses  over  a t ape  d a t a s e t .  This  a t t r i b u t e  
is  a l s o  no t  i n  t h e  ANSI s tandard .  See LRM 168. 

The IGNORE op t ion  of t h e  READ s ta tement  may be used i n s t e a d  of t h e  INTO . 
op t ion  when t h e  s ta tement  addresses  a s e q u e n t i a l  f i l e  ( e i t h e r  . i n p u t  o r  
update) .  IGNORE(n) causes n  r eco rds  t o  be s k i p p e d , . i . e . ,  read b u t  no t  
ass igned  t o  any record  v a r i a b l e .  See LRM 169. 

8.10. ENVIRONMENT a t t r i b u t e  f o r  record  f i l e s .  

A v a s t  number-of d i f f e r e n t  op t ions  can be  s p e c i f i e d '  i n  the.  ENV FDA f o r  
record  f i l e s .  F u l l  d e t a i l s  a r e  given i n  LRM 163. Although t h i s  implementa- 
t ion-defined m a t e r i a l  i s  very  important ,  and you should read i t  sometime, 
we w i l l  d i s cuss  he re  only c e r t a i n  e s s e n t i a l  ENV op t ions  a p p l i c a b l e  t o  o u r  
implementation. 

8.11. Dataser organ iza t ions .  

I n  Lesson 7  w e  po in ted  o u t  t h a t  t h e  func t ion  of  t h e  ENVIRONMENT FDA i s  t o  
provide a  system wi th  implementation-dependent in format ion  i t  may need t o  
r e l a t e  your s tandard  PL/I 110 s t a t emen t s  t o  t h e  f a c i l i t i e s  a v a i l a b l e  i n  
t h e  system. Some of t h i s  in format ion  i s  o p t i o n a l ;  f o r  i n s t a n c e ,  a  good 
number of t h e  ENV upLions a r e  e s s e n t i a l l y  JCL DCB parameters  moved i n t o  the  
program i t s e l f .  Others  may be  mandatory. 

E a r l i e r  we s a i d  t h a t  an  implementation has  c e r t a i n  "nat ive" 1 / 0  c a p a b i l i t i e s  

around which p a r t i c u l a r  combinations of t ransmiss ion  s t a t emen t s  and o p t i o n s  
are centered .  I n  the IBM systems,  you'must d e s i g n a t e  one of t h e  n a t i v e  
types of record  110 process ing  us ing  p a r t i c u l a r  ENV op t ions . .  The a l t e r n a t i v e s  
we will cons ider  i n  t h i s  course  a r e  c a l l e d '  c d n k e ~ u f i v e ;  . ir idefed, and ' r e g i o n a l  
d a t a s e t  o rgan iza t ions .  The ENV o p t i o n s ,  and t h e i r  b a s i c  meani.ng, a r e  as 

fo l lows  . 



CONSECUTIVE. Consecut ive d a t a s e t s  a r e  non-keyed. Records a r e  s t o r e d  con- 
s e c u t i v e l y  i n  t h e  d a t a s e t .  The "order" implied by s e q u e n t i a l  acces s  i s  
p h y s i c a l  o r d e r .  

INDEXED. Indexed d a t a s e t s  a r e  keyed d a t a s e t s .  Records are s t o r e d ,  w i t h  
t h e i r  keys ,  i n  an  o r d e r  which is  usua l ly  n o t  m a t e r i a l .  The "order" 
implied by s e q u e n t i a l  a c c e s s  i s  l o g i c a l  o r d e r  by i n c r e a s i n g  key va lue .  
Th i s  may n o t  be  t h e  p h y s i c a l  o r d e r  of r eco rds  i n  t he  d a t a s e t .  

REGIONAL. Regional d a t a s e t s  come i n  t h r e e  s u b v a r i e t i e s ,  as we s h a l l  s e e  
i n  Lesson 9 .  One is  non-keyed and two a r e  keyed d a t a s e t s .  Sequen t i a l  o rde r  
is a p e c u l i a r  mixture  o f . b o t h  phys i ca l  and l o g i c a l .  

To r e i t e r a t e  a p o i n t  made e a r l i e r ,  combinations of FDA's ,  t h e  t ransmiss ion  
s t a t emen t s  and t h e i r  op t ions  have v a l i d i t y  only wi th  r e s p e c t  t o  particular 
d a t a s e t  o r g a n i z a t i o n s . .  Combinations v a l i d  f o r  some o rgan iza t ions  may be 
i n v a l i d  f o r  o t h e r s .  Val id combinations a r e  summarized a t  LRM 141. 

Indexed and r e g i o n a l  o rgan iza t ions  w i l l  b e  t h e  s u b j e c t  of t h e  n e x t  l e s s o n .  
The remainder of t h i s  one w i l l  be  devoted t o  consecut ive  o rgan iza t ion .  

8.12. Consecutive d a t a s e t s .  

Tllr CONSECUTIVE opclon of che EhVlKUNMENT a t t r i b u t e  i s  used t o  iden . t i fy  a  
d a t a s e t  a s  be ing  organized consecut ive ly ,  If t h c  ENV a t t r i b u t e  i s  n o t  dec lared  
f o r  a  f i l e ,  o r  i f  'it i s  b u t  doesn' t con ta in  any of t h e  d a t a s e t  organizaXion 
o p t i o n s ,  then  consecut ive  o r g a n i z a t i o n  is  assumed. Though w e  d i d  n o t  say  
so  i n  Lesson 7 ,  consecut ive  organizat4on a p p l i e s  a l s o  t'o d a t a s e t s  asso- 
c i a t e d  w i t h  s t ream f i l e s ;  i t  'is t h e  'drily o rgan iza t ion  a p p l i c a b l e  t o  them. 

Consecutive d a t a s e t s  can only  be accessed  through s e q u e n t i a l  f i l e s .  The 
U Y U J  a t t r i b u t e  i s  n o t  used because t h e r e  i s  no use  f o r  t h e  va r ious  s t a t e -  
ment op t ions  t h a t  have t o  do w i t h  keys s i n c e  t h e r e  a r e  no keys i n  t h e  
dataset .  Do n o t ,  however, e u ~ ~ L u s r  ~ l l e  meanings of consecut ive  and sequential. 
11 Consecutive" i s  an  I B M  implementation concept  t o  d e s c r i b e  a  p a r t i c u l a r  type  
of o r g a n i z a t i o n  and r e p r e s e n t a t i o n  of r e c o r d s  i n  a  d a t a s e t  i n  IBM systems. 
I t  Sequent ia l"  i s  a s t anda rd ized  PL/I concept t o  d e s c r i b e  t h e  f a c t  t h a t  r eco rds  
w i l l  be accessed  i n  some kind of o r d e r .  Sequen t i a l  acces s  a p p l i e s  t o  da ta -  
sets w i t h  o t h e r  o rgan iza t ions  a s  w e l l ,  b u t  consecut ive  o r g a n i z a t i o n  demands 
s e q u e n t i a l  acces s .  

The k inds  of p roces s ing  permi t ted  on consecut ive  d a t a s e t s  a r e  a s  fo l lows .  
You may c r e a t e  one by w r i t i n g  i t s  r eco rds  s e q u e n t i a l l y ;  t h e s e  a r e  p laced  
i n  t h e  d a t a s e t  p h y s i c a l l y  i n  t h e  o r d e r  i n  which they a r e  w r i t t e n .  You may 
read  t h e  r eco rds  of a n  e x i s t i n g  one s e q u e n t i a l l y ,  ob ta in ing  them i n  t h e i r  
phys i ca l  o r d e r  (hence, i n  t h e  o rde r  i n  which they  were w r i t t e n ) .  O r ,  you 



may read  t h e  r eco rds  s e q u e n t i a l l y ,  making changes t o  some and r e p l a c i n g  
them i n  the  d a t a s e t  ( i n  t h e  same p l a c e  from which they  came) be fo re  going 
on t o  read  f u r t h e r  records .  See LRM 170. 

8.13. Crea t ing  a consecut ive  d a t a s e t .  

The a p p l i c a b l e  FDA's are SEQL OUTPUT. The WRITE s ta tement  w i th  t h e  FROM 
o p t i o n  is used. I f  t h e  f i l e  h a s n ' t  been opened e x p l i c i t l y ,  execut ion  of 
t h e  f i r s t  WRITE s ta tement  causes i m p l i c i t  opening wi th  the  a t t r i b u t e s  
RECORD and OUTPUT being  deduced;' i f  a n  access  a t t r i b u t e  wasn ' t  dec l a red ,  
SEQL is  assumed4'by d e f a u l t .  See LRM 132 and LRM 134. An example fol lows.  

DCL F FILE, S CHAR '(80) ; 
OPEN FILE (F) ' SEQL OUTPUT; . . 

DO WHILE (more t o  w r i t e ) ;  t 

WRITE FILE (F) FROM (s) ;  

END ; 
CLOSE FILE (F);  

I n  t h e  above example, t h e  d a t a s e t  w r i t t e n  i s  i d e n t i f i e d  i n  t h e  JCL by 
t h e  DD s t a t emen t  w i t h  ddname F (we d i d n ' t  use t he  TITLE o p t i o n  on the  OPEN 
s t a t emen t ) .  The BU s ta tement  might look l i k e  

/ /F DD DISP= (NEW, CATLG) , DSN=whatever , 
/ /  UNIT=whatever,SPACE=whatever, 
/ /  DCB=(RECFM=f,LRECL=r,BLKSIZE=b) 

The DCB parameters  f ,  r ,  and b could be  j u s t  about  anything.  I f  f  i s  F (o r  
FB o r  FBS), r - must be  80 ( s i n c e  t h e  program, as shown, w r i t e s  r eco rds  of 
l e n g t h  80) and b must b e  80 ( o r  a m u l t i p l e  i f  f  i s  FB o r  FBS). I f  f  i s  V 
( o r  VB o r  VBS), r must be a t  l e a s t  84 and b must be equal  t o  o r  g r e a t e r  than 
r. I f  f  is  U ,  b must b e  a t  least 80 ( r  is n o t  used) .  You can i n t e r m i x  
r eco rds  of o t h e r  l eng ths  ( w r i t t e n  from o t h e r  record  v a r i a b l e s )  i f  and only 
i f  f  is  - .not F, FB, o r  FBS, and r and b a r e  l a r g e  enough. 

Most DCR parameters  can be provided via t h e  ElW a t t r i b u t e  i n  t h e  program, 
which, i f  done, t akes  precedence t o  JCL. A u s e f u l  f e a t u r e  is t h a t  t h e  
LRECL and/or  BLKSIZE may be camputed by t h e  program and s p e c i f i e d  us ing  
v a r i a b l e s ,  e .g . ,  

DCL F' FILE ENV(FB RECSIZE (R) BLKSIZE (B) ) ; 
DCL (R, B) FIXED B I N  (31) STATIC; 
R = some va lue ;  
B = 5*R; 
OPEN FILE (F) SEQL OUTPUT; 
BEGIN; 

DCL S CHAR (R) AUTO; 
e t c .  



Genera l ly ,  w e  w i l l  n o t  go i n t o  s o  much d e t a i l  w i th  JCT., cons ide ra t ions .  The 
guides  have e x t e n s i v e  s e c t i o n s  on JCL wi th  examples. For 

c r e a t i o n  o f  a consecu t ive  d a t a s e t ,  s e e  CPG 8 and OPG 9. 

It should be  po in t ed  ou t  t h a t  when a DISP of OLD i s  used w i t h  an  e x i s t i n g  
d a t a s e t ,  i t  is "recrea ted" ,  i . e . ,  t o t a l l y  overwr i t ten .  I f  DISP=MOD i s  
used,  t h e  r e c o r d s  w r i t t e n  w i l l  be  appended t o  t h e  end of t h e  d a t a s e t ,  a f t e r  
any e x i s t i n g  records .  

8.14. Re t r i ev ing  a consecut ive  d a t a s e t .  

A consecut ive  d a t a s e t  may be  read by opening a s e q u e n t i a l  i n p u t  f i l e  and 
reading  s u c c e s s i v e  r eco rds  w i t h  t h e  .READ s ta tement  us ing  the  INTO opt ion .  
I f  a t  any p o i n t  you can  a n t i c i p a t e  t h a t  you a r e  n o t  i n t e r e s t e d  i n  t h e  
con ten t s  of  t h e  fo l lowing  11 r eco rds ,  you may sk ip  over them by s i lhs t i  t i l t i ng  
t h e  IGNORE o p t i o n  £or t h e  INTO opt ion .  

8.15. A l t e r i n g  a consecu t ive  d a t a s e t .  

By opening a f i l e  a s s o c i a t e d  w i t h  a consecut ive  d a t a s e t  f o r  s e q u e n t i a l  
update  (i. e. , us ing  FDA's SEQL and UPDATE) you can read  t h e  r eco rds  se- 
q u e n t i a l l y  and, for any t h a t  -you choose, a l t e r  t h e i r  c o n t e n t s  and w r i t e  them 
back ou t  ( i n  p l a c e ) .  That i s ,  you use the READ s ta tement  w i t h  INTO op t ion  
and then,  a f t e r  a l t e r i n g  t h e  record by a s s ignmen t s . t o  t h e  record  v a r i a b l e ,  
you use the REWRITE statelue~ll: with the F'KUM opt ion .  If  you do n o t  wish t o  
a l t e r  a r eco rd ,  j u s t  s k i p  the REWR.T..TE statement. Note t h a t  proceaa5ng is 
s t r i c t l y  s e q u e n t i a l :  you cannot r e w r i t e  t h e  n-th record a f t e r  reading  
t h e  n + l s t  r eco rd ,  and you obvious ly  cannot r e w r i t e  a record  b e f o r e  reading  
i t .  See LRM 171. S ince  an  e x i s t i n g  record  i s  be ing  r ep laced ,  i t s  l eng th  
must n o t  be  changed. 

Note t h a t  when a member of a p a r t i t i o n e d  d a t a s e t  ( a s  denoted e n t i r e l y  by 
t h e  DSN JCL parameter)  is w r i t t e n  ( o r  c r e a t e d ) ,  us ing  SEQL OUTPUT, unused 
space  a t  t h e  end of t h e  d a t a s e t  i s  used; t he  newly w r i t t e n  member w i l l  then 
r e p l a c e  any e x i s t i n g  member wi th  the. same name. (The space  occupicd by 
t h e  rep laced  member is no t  a c c e s s i b l e  and no t  a v a i l a b l e  f o r  re-use unless  
t h e  d a t a s e t  is "compressed" w i t h  a u t i l i t y . )  However, a member of a PDS 
may b e  r e w r i t t e n  i n  p l a c e ,  u s i n g  SEQL UPDATE. It i s  p o s s i b l e  t o  do an 
update  i n  p l a c e  because t h e r e  i s  no way of changing t h e  s i z e  of a record  - - 
o; of adding e x t r a  r eco rds  ( t h e  WRITE s t a t emen t  i s  i l l e g a l  f o r  a s e q u e n t i a l  
update  f i l e )  . 

JCL d e t a i l s  f o r  access ing  ( reading  o r  a l t e r i n g )  consecut ive  d a t a s e t s  a r e  
g iven  i n  CPG 9 and OPG 10, complete examples appear i n  CPG 10 and OPG 11 
(however, they  use c e r t a i n  110 f a c i l i t i e s  we won't s e e  u n t i l  Lesson 91). 



8.16. The TOTAL option.  

Normally, record  110 is  accomplished by a c a l l  t o  a l i b r a r y  rou t ine .  Under 
c e r t a i n  cond i t i ons ,  however, i n - l i n e  code may be generated l ead ing  t o  
s u b s t a n t i a l  e f f i c i e n c i e s .  This  is  p o s s i b l e  only f o r  s e q u e n t i a l  ou tpu t  o r  
i npu t  o f  consecut ive  d a t a s e t s ,  and then only when c e r t a i n  o t h e r  cond i t i ons  
a r e  met. You have t o  s p e c i f i c a l l y  r eques t  i n - l i n e  code because t h e  compiler 
cannot  always d e t e c t ,  f o r  a g iven  READ o r  WRITE s ta tement ,  whether or :  n o t  . 

t h e  c o n d i t i o n s  w i l l  be  met when i t  i s  executed. By us ing  t h e  ENV op t ion  . . 
" TOTAL you a r e  promising t o  meet t h e  condi t ions .  See LRM 172 and LRM 17.3. - 

8.17. Condi t ions  a p p l i c a b l e  t o  recard 110 (consecut ive  d a t a s e t s ) .  . . 

. UNDEFINEDFILE, be ing  a p p l i c a b l e  t o  a l l  110, i s  applicabile here .  Likewise 
TRANSMIT. ENDFILE i s  a p p l i c a b l e  t o  s e q u e n t i a l  i n p u t  or update  f i l e s  ( a s  
w e l l  as s t ream i n p u t ' f i l e s )  and is  r a i s e d  when a READ .s ta tement  a t t empt s  t o  
r ead  a r eco rd  beyond t h e  last one i n  t h e  d a t a s e t .  Note t h a t  normal r e t u r n .  
from a n  on u n i t  en t e red  from a READ s ta tement  r e s u l t s  i n  t h e  nex t  s t a t emen t  
be ing  executed wi thout  anyth ing  having been read i n t o  the record  v a r i a b l e .  

One new c o n d i t i o n ,  the.RECORD'~oridition ( a  q u a l i f i e d  cond i t i on )  i s  appl ica-  ' 
b l e .  Th i s  occurs  whenever t h e  s i z e  of a record  does no t  match t h e  s i z e  of 
t h e  r eco rd  v a r i a b l e .  The cond i t i on  cannot occur  i n  most s i t u a t i o n s  w i t h  
varying-length s c a l a r  s t r i n g  record  v a r i a b l e s .  The s t a t u s  is  enabled,  
and i t  cannot be disabled. '  Standard system a c t i o n  i s  t o  i s s u e  a message 
and r a i s e  ERROR. Normal r e t u r n  from an on u n i t  cont inues  execut ion  w i t h  
t h e  nex t  s ta tement ;  i n  t h i s  case ,  t h e  e f f e c t  on t h e  record  (on ou tpu t )  o r  
t h e  record  v a r i a b l e  (on i n p u t )  i s  n o t  def ined  by t h e  language. . . What happens 
i n  ou r  implementation i s  des.cribed i n  LRM 116. 

8.18. Comparision t o  FORTRAN. 

Sequen t i a l  i npu t  and ou tpu t  t o  consecut ive  d a t a s e t s  i s  comparable t o  FORTRAN 
unforluatted hpul:  and output .  FORTRAN h a s  no equ iva l en t  t o  s e q u e n t i a l  
update. 

8.19. Homcwork problems. 

( # 8 ~ )  Suppose you employ a WHILE-only DO group t o  read a s e q u e n t i a l  i n p u t  
f i l e  and .p roces s  i t s  records .  How many d i f f e r e n t  coding techniques  
f o r  breaking  t h e  loop when ENDFILE occurs  can you demonstrate? Which 
do you l i k c  bcst? Lcoo.t? 



(18B) Suppose you have a "data  base" f o r  a n  experiment con ta in ing  d a t a  on 
t h e  number of occurrences of v a r i o u s  responses t o  d i f f e r e n t  s t i m u l i .  
Suppose r e c o r d s  a r e  organized i n  "groups1' w i t h  each group c o n s i s t i n g  
of two k i n d s  of records .  

( a )  One header  record  con ta in ing  a s t imu lus  type ,  a s t imu lus  sub- 
t ype ,  and a count ,  n,  of t h e  number of p o s s i b l e  response types 
(n may b e  zero) .  The record  is descr ibed  by t h e  record 
v a r i a b l e  dec l a red  below. 

DCL 1 HEADER, 
2 STIMULUS TYPE CHAR (20),  
2 STIMULUS-SUBTYPE CHAR ( l o ) ,  
2 //RESPONSZS FIXED BIN (15) ; 

(b)  Following t h e  header  record ,  a detail record f o r  each of t h e  p o s s i b l e  
respons'es ( t h e r e  may be  none of t hese )  con ta in ing  a response type  
and a count  of occurrences  ( h i s t o r i c a l  data. ) .  ' ~ a r h  deta!.l record  
is  desc r ibed  by t h e  record  v a r i a b l e  dec l a red  below. 

DCL 1 DETAIL, 
2 RESPONSE TYPE CHAR (50) ,  
2 #OCCURRE~CES'  FIXED B I N  (15) ; 

Groups, and d e t a i l  r eco rds  w i t h i n  groups, a r e  i n  no p a r t i c u l a r  o rde r .  
Mul t ip l e  s u b t y p ~ s  f o r  a g iven  s t imu lus  type  a r e  p o s s i b l e ,  and d i f f e r e n t  
s r imu lus  types might have t h e  same subtype. 

You have just performed an experi.ment c.h.a.ract,erized by 3 c a r t a i n  
s t'imulus type ,  and you have observed a p a r t i c u l a r  type of response.  
'You cons ider  t h e  s t imu lus  subtype t o  be  . i r r e l e v a n t ,  i n  t h i s  experi-  
ment. You would l i k e  t o  update  your r eco rds  t o  show one more 
occurrence  f o r  t h e  p a r t i c u l a r  response and s t imulus  wi thout  regard  
t o  t h e  s t imu lus  subtype. 

Write a program t o  update  t h e  e x i s t i n g  d a t a  base i n  t h e  d e s i r e d  way. 
Make i t  a s  " e f f i c i e n t t t  as you can. Use -a  s e q u e n t i a l  update  f i l e .  

Suppose e i t h e r  fhe  s t imu lus  type  o r  combination of stimulus t ype  - 
and response type  a r e  n o t  t o  be  found i n  t h e  d a t a  base. What' a r e  
you going t o  do about t h a t ?  What happens t o  your d a t a  base  i f  t h e  
system c ra shes  i n  t h e  middle of a run?  Is i t  hard t o  recover  from 
t h a t ?  (You bet!.) 

(#8C) Discuss  an  a l t e r n a t i v e  des ign  t o  t h e  program you wrote  f o r  / / 8 ~  which can 
accommodate new s t i u ~ u l u s  ur response types and which is nor s u b j w r  
t o  s e v e r e  recovery problems i f  t h e  system c r a s h e s  i n  t h e  middle of a 
run.  What is t h e  "cost" of t h i s  ex t r a .  f l e x i b i l i t y  and p r o t e c t i o n ?  



9. Indexed and r e g i o n a l  d a t a s e t s .  

9.1. One of t h e  a l t e r n a t i v e s  t o  consecut ive  d a t a s e t  o rgan iza t ion  i s  indexed 
o rgan iza t ion ,  s p e c i f i e d  by t h e  INDEXED op t ion  of t h e  ENVIRONMENT a t t r i b u t e .  

Indexed d a t a s e t s  a r e  keyed d a t a s e t s .  The r eco rds  and t h e i r  recorded keys 
a r e  maintained i n  l o g i c a l  o r d e r  by ascending key va lues ;  t h e i r  phys i ca l  o rde r  
is  no t  m a t e r i a l ,  .as f a r  a s  t h e  program i s  concerned, because t h e r e  i s  no way' 
i t  can be  known. The s e q u e n t i a l  o rde r  def ined  f o r  indexed d a t a s e t s  i s  key- 
sequence o rde r .  

Whereas t h e  r eco rds  i n  a  consecut ive  d a t a s e t  can only  be  accessed sequen- 
t i a l l y ,  t hose  i n  an  indexed d a t a s e t  can be  accessed s e q u e n t i a l l y  ( i n  key 
sequence) o r  i n  a r b i t r a r y  o rde r ;  t h a t  is ,  e i t h e r  a  s e q u e n t i a l  o r  a d i r e c t  
f i l e  may be used wi th  an  indexed d a t a s e t .  An index i s  maintained i n  t h e  
d a t a s e t ,  by t h e  ope ra t ing  system, t o  a i d  i n  t h e  l o c a t i o n  of a  record  having 
a  p a r t i c u l a r  recorded key va lue .  See LRM 164, LRM 174, CPG 11, and OPG 12.  

9.2. Statement op t ions  d e a l i n g  wi th  keys.  

When a WRITE s ta tement  needs t o  i d e n t i f y  t h e  p a r t i c u l a r  record  t o  be w r i t -  
t e n ,  i t  uses  t h e  KEYFROM op t ion .  The op t ion  con ta ins  a  c h a r a c t e r - s t r i n g  
valued express ion  whose va lue  i s  used a s  t h e  sou rce  key ( i . e . ,  t h e  pro- .-. 
gram's des igna t ion  of t h e  r e c o r d ' s  key va lue ) .  Example: 

WRITE FILE (F) FROM (V) KEYFROM (K 1 )  P) ;  
Th i s  causes  t h e  con ten t s  of t h e  record  v a r i a b l e  V t o  b e  w r i t t e n  i n  t h e  da t a -  
s e t  a s s o c i a t e d  wi th  t h e  f i l e  F a t  a  p l ace  i d e n t i f i e d  by t h e  va lue  of K I ) P .  
Usual ly t h e  va lue  of t h i s  source  key becomes t h e  va lue  of t h e  recorded key; 
however, we .wi l1  s e e  l a t e r  t h a t  t h e  a s s o c i a t e d  d a t a s e t  need n o t  b e  a  keyed 
d a t a s e t ,  i n  which c a s e  t h e  source  key is  used f o r  something e l s e .  KEYFROM means 
I I  t ake  t h e  source  key from the express ion  ..." 

There a r e  two ways keys e n t e r  the  p i c t u r e  i n  read ope ra t ions .  You may 
i d e n t i f y  t h e  record  t o  be  read by g iv ing  a  p a r t i c u l a r  source  key va lue ,  
us ing ,  t h e  KEY op t ion .  Example: 

READ FILE (G) INTO (s) KEY ( 'REC'  I I K); 
This  causes  t h e  record  i d e n t i f i e d  by t h e  va lue  of t h e  exp res s ion  'KECI 
I I K ( t h e  sou rce  key va lue )  t o  be  read from t h e  d a t a s e t  a s s o c i a t e d  

w i t h  f i l e  G i r ~ t o  t h e  record  v a r i a b l e  S. KEY means " the  record  whose 
11 .key is. . .  A l t e r n a t i v e l y ,  i f  you a r e  reading  s e q u e n t i a l l y  you may 

read  t h e  next  record  i n  sequence and have i t s  key v a l u e  handed t o  you. 
The KEYTO o p t i o n  is  used f o r  t h i s .  I t ' n a m e s  a  s c a l a r  c h a r a c t e r  s t r i n g  
v a r i a b l e  t o  which t h e  key va lue  i s  ass igned .  Example: 

READ FILE (H) INTO (R) KEYTO (KEWAR); 
Th i s  causes  t h e  next  s e q u e n t i a l  record  t o  be  read  i n t o  t h e  r eco rd  v a r i -  
a b l e  R from f i l e  H; i t s  key v a l u e  i s  ass igned  t o  t h e  key v a r i a b l e  
KEWAR. A s  w l t h  t h e  WRITE s t a t emen t ,  t h e s e  source  key va lues  u s u a l l y  
correspond t o  recorded key v a l u e s ,  b u t  h e r e  t oo  .the d a t a s e t  need n o t  be 
keyed and t h e  source  key may have a  d i f f e r e n t  meaning. KEYTO means 
I I  a s s i g n  t h e .  key .to. .  . I t .  



When t h e  seq .uent ia1  o r d e r  de f ined  f o r  a d a t a s e t  i s  key sequence, t h e  meaning 
of t h e  IGNORE o p t i o n ,  which can be  used -- a s  w e  s a w  i n  Lesson 8 -- i n  p l ace  
o f . t h e  INTO o p t i o n ,  i s  "read t h e  g iven  number of r e c o r d s  i n  key sequence and 
i g n o r e  them. " 

A REWRITE s t a t emen t  t h a t  r e p l a c e s  a n  e x i s t i n g  record  may or may n o t  need 
t o  i d e n t i f y  t h e  r eco rd  t o  b e  r ep l aced .  I f  i t  does ,  i t  uses  t h e  KEY opt ion  
i n  t h e  same way as f o r  t h e  READ s ta tement .  

See LRM 175' and LRM 176,  and review LRM 169. 
, . 

9 . 3 .  ENVIRONMENT o p t i o n s  f o r  indexed d a t a s e t s .  

There a r e  a number of ENV o p t i o n s  a p p l i c a b l e  t o  indexed d a t a s e t s .  Some:of 
t h e s e  have t o  do w i t h  s p e c i f y i n g  t h e  l e n g t h  of t h e  recorded key f i e l d  o r  
i t s  r e l a t i v e  p o s i t i o n  i n  t h e  record  ( i f  i t  happens t o  be  of t h e  embedded 
k ind ) .  Th i s  and o t h e r  in format ion  can  a l s o  be s p e c i f i e d  i n  JCL.  We w i l l  
n o t , c o v e r  JCL f o r  indexed d a t a s e t s .  The programmer's g u i d e s , ( r e f e r e n c e s  
g iven  l a t e r )  do a good job i n  t h i s  a r e a .  For now, s e e  LRM 177. Other  ENV 
o p t i o n s  p a r t i c u l a r l y  a p p l i c a b l e  t o  indexed d a t a s e t s  are s c a t t e r e d  through- 
o u t  LRM.163. 

' 9.4. Crea t ing  a n  indexed daease t .  

. ' An indexed d a t a s e t  must be  c r e a t e d  sequentially. The r eco rds  a r e  presented  
w i t h  t h e i r  keys i n  ascending key sequence, u s ing  WRITE...FROM...KEYFBOM. 
Appl icable  FDA's are KEYED SEQL OUTPUT. The source  Cey va lues  become t h e  
r eco rded 'key  values.  See LRM 178,  CPG 12 ,  and OPG 13.  

9.5. Re t r i ev ing  a n  indexed d a t a s e t .  

' 

The r eco rds  of an  e x i s t i n g  indexed d a t a s e t  may be  read  s e q u e n t i a l l y  ( i n  
ascending key sequence) o r  i n  a r b i t r a r y  o rde r .  

I f ,  when you a r e  r ead ing  them s e q u e n t i a l l y ,  you don ' t c a r e  t o  know what t h e  
key va lues  a r e ,  you can  use  t h e  same techniques  a s  f o r  consecut ive  d a t a s e t s .  
I . e . ,  you can  open t h e  f i l e  f o r  s e q u e n t i a l  i n p u t  and u s e  READ...INTO o r  
READ...IGNORE. T h i s  is  an  example of a non-keyed f i l e  be ing  a s s o c i a t e d  wi th  
a keyed d a t a s e t .  

I f  you want t o  know t h e  key v a l u e s ,  open t h e  f i l e  f o r  keyed s e q u e n t i a l  i npu t  
and u s e  READ...INTO...KEYTO. The recorded key va lues  become t h e  sou rce  key 
va lues .  You can a l s o  u s e  READ...IGNORE. Another t h ing  you can  do i s  s k i p  
ahead i n  t h e  key sequence t o  a record  having a p a r t i c u l a r  key, by us ing  



READ. . . INTO. . .KEY. Having pos i t i oned  ahead t o  ' t h e  d e s i r e d  r eco rd ,  you can  
then  con t inue  r ead ing  s e q u e n t i a l l y  w i t h  READ...INTO...KEYTO. 

. . 

To read  r e c o r d s  i n  a r b i t r a r y  o r d e r ,  u s e  t h e  KEYED DIRECT INPUT FDA's and 
READ...INTO...KEY s t a t emen t s .  The key va lues  'can be  presented  i n  any o rde r .  

'Normally., t h e  sou rce  key va lue  s p e c i f i e d  i n  a  KEY o p t i o n  of t h e  READ s t a t e -  
;merit t r a n s l a t e s  d i r e c t l y  i n t o  a  recorded  key va lue .  The t r a n s l a t i o n  has  
i n t e r e s t i n g l y  d i f f e r e n t  p r o p e r t i e s  when t h e  GENKEY op t ion  of  t h e  ENV a t t r i b u t e  
i s , u s e d ;  r ead  about  t h a t  a t  LRM 179. 

9.6. A l t e r i n g  a n  indexed d a t a s e t .  

There are s e v e r a l  ways.you can update  a n  indexed d a t a s e t .  Sequen t i a l  up- 
d a t i n g  i s  l i k e  t h e  kind of updat ing w e  showed f o r  consecu t ive  d a t a s e t s .  You 
f i r s t  read  a r eco rd  (using any of t h e  forms of READ s ta tement  desc r ibed  
above) ,  al ter t h e  r eco rd  v a r i a b l e ,  t hen  w r i t e  t h e  updated d a t a  back o u t  by 
execut ing  a  REWRITE...FROM s ta tement .  The KEY o p t i o n  i s  n o t  used because . 
t h e  r eco rd  be ing  rep laced  i s  t h e  l a s t  one read .  Appl icable  FDA's a r e  
SEQL UPDATE o r  KEYED SEQL UPDATE. 

. . 

You can  update  r eco rds  i n  random o rde r  i f  t h e  f i l e  i s  opened f o r  keyed 
d i r e c t  update .  I n  t h i s  c a s e  a  record  need n o t  be  read  b e f o r e  i t  i s  re-  ' 

. w r i t t e n ,  s o  you must u s e  t h e  KEY o p t i o n  on t h e  REWRITE s ta tement  t o . d e s i g -  ' 

n a t e  t h e  record  t o  be  r e w r i t t e n ,  However, t h e  des igna ted  record  must e x i s t .  
. . I f  i n  f a c t  t h e  one you d e s i g n a t e  f o r  r e w r i t i n g  was no t  t h e  ' l a s t  one r e a d ,  

t h e  REWRITE causes  a n  i m p l i c i t  READ j u s t  t o  check t h a t  t h e  record  e x i s t s .  

An e x i s t i n g  indexed d a t a s e t  opened f o r  keyed d i r e c t  update  can a l s o  have 
r eco rds  added t o  i t .  Use WRITE.. .FROM. . .KEYFROM. Keys can be  presented  i n .  
any o r d e r ,  b u t  they  must d e s i g n a t e  non-exis ten t  r e c o r d s  (conformance i s  
checked!); B e  s u r e  you see t h e  d i f f e r e n c e  between REWRITE and WRITE f o r  a 
d i r e c t  u p d a t e ' f i l e .  

Another way i n  which an  e x i s t i n g  indexed d a t a s e t  can b e  a l t e r e d  i's desc r ibed  
immediately below. 

'9.7. The DELETE s ta tement  and dummy reco rds .  

We come now t o  t h e  f i r s t  u se  of t h e  DELETE s t a t emen t .  
. . 

Execution of a  DELETE s ta tement  causes  t h e  s p e c i f i e d  e x i s t i n g  record  t o  be  
marked a s  d e l e t e d .  Subsequently,  i t  is  a s  i f  t h e  record  had never  been i n  
the d a t a s e t  i n  t h e  f i r s t  place. 



The s t a t emen t  is permi t ted  f o r  d i r e c t  update  f i l e s ' .  The KEY op t ion  i s  used 
t o  i d e n t i f y  t h e  e x i s t i n g  r eco rd  t o  b e  d e l e t e d .  Example: 

DELETE FILE (F) KEY (K I I SUBSTR (S, 2 ) )  ; 
The record  i d e n t i f i e d  by t h e  key whose v a l u e  i s  g iven  by .  I 1 SUBSTR(S, ,2) 
i s  d e l e t e d  from f i l e  F. 

For indexed d a t a s e t s ,  t h e  DELETE s ta tement  is  a l s o  permi t ted  w i t h  s e q u e n t i a l  
upda te  f i l e s .  I n  t h i s  c a s e  t h e  KEY o p t i o n  is  no t  used.  A s  w i t h  r e w r i t i n g  
r eco rds ,  on ly  t h e  l a s t  r eco rd  r e a d  may be  d e l e t e d .  

Note t h a t  no r eco rd  v a r i a b l e  is  used. Data t r a n s f e r  i n  t h e  usua l  s ense  
does not  occur .  However, i n  t h e  c a s e  of  indexed d a t a s e t s  accessed through 
d i r e c t  upda te  f i l e s  a n  i m p l i c i t  READ i s ,  performed under the same r.j.rr.1.m- 

stances as w i t h  REWRITE t o  check t h a t  t h e  record  e x i s t s ,  The record  t o  b e  
d e l e t e d  is p h y s i c a l l y  r ep l aced  wi th  a s p e c i a l  mark t h a t  i n d i c a t e s  "de le ted  
record ."  Such n r eco rd  is  c a l l e d  a dummy record. With Indexed d a t a s e t s  
you a c t u a l l y  have your c h o i c e . ( e x p r e s s e d  through JCL) a s  t o  whether dummy 
r e c o r d s  are o r  are n o t  t o  b e  i n v i s i b l e  d i ~ r t n g  a R E D  ope ra t ion .  Ece LRM 180,  
CPG 1 3 ,  and OPG 14.  . . 

Now read LRM 181,  CPG 14,  and OPG 15.  

We have skipped over  many of t h e  d e t a i l s  of how indexed d a t a s e t s  a r e  managed 
by t h e  system, D e t a i l s  a r e  t o  b e  found i n  passages p rev ious ly  c i t e d .  The 
a d d l t i u n  of r e c o r d s  t o  an e x i s t i n g  indexed d a t a s e t  causes  i t  t o  become d i s -  
organized ,  and e f f i c i e n c y  is  s e v e r e l y  degraded (your WAIT t i m e  can  go through 
t h e  roof ! ) .  It is  a good i d e a  t o  "reorganize" an  indexed d a t a s e t  occas iona l ly .  
See CPG 1 5  and OPG 16.  For some complete examples of t h e  u s e  of indexed 
d a t a s e t s ,  see CPG 1 6  and OPG 17. 

9.8. Regional  d a t a s e t s .  

The t h i r d  a l t e r n a t i v e  d a t a s e t  o r g a n i z a t i o n  is r e g i o n a l  o rgan iza t ion .  A 
r e g i o n a l  d a t a s e t  i s  thought  of as be ing  d iv ided  i n t o  regio.nsnumbered con- 
secuLfvefy s t a r c i n g  w i t h  zero .  A r e g i o n  can  hold one o r  more r eco rds .  A s  
we s h a l l  see, t h e  s e q u e n t i a l  o rde r  de f ined  f o r  r e g i o n a l  d a t a s e t s  has  c e r t a i n  
a s p e c t s  of ghyoicol  seqrience (as f u ~  ~unoecutivc d a t a s e t s )  and cer~alr~ 
a s p e c t s  of key sequence ( a s  f o r  indexed d a t a s e t s ) .  By s p e c i f y i n g  r eg ion  
numbers t h e  programmer may opt imize  (o r  a t  l e a s t  have some c o n t r o l  over)  t h e  
placement of  r e c o r d s  i n  t h e  d a t a s e t .  Source keys a r e  used t o  communicate 
r e g i o n  numbers and poss ib ly  a l s o  key v a l u e s  ( t o  correspond t o  t h e  va lues  i n  
rccorded keys).  

There a r e  t h r e e  s u b v a r i e t i e s  of r e g i o n a l  o r g a n i z a t i o n ,  denoted r e s p e c t i v e l y  
by t h e  E W  o p t  i o n s  REG IONAZI (1) , REGIONAL (2)  , , and REGIONAL (3)  . 

Regional(1)  d a t a s e t s  a r e  non-keyed d a t a s e t s .  Each r eg ion  con ta ins  e x a c t l y  



one r eco rd ,  hence a r e g i o n  number i s  a r e l a t i v e  record  number. Source keys ,  
when used, a r e  i n t e r p r e t e d  as reg.ion .numbers on ly ,  Access may be  s e q u e n t i a l  
o r  d i r e c t .  Sequen t i a l  acces s  i s  i n  r e g i o n  number o r d e r ,  hence t h e  physical .  
sequence c h a r a c t e r i s t i c s .  D i r e c t  acces s  ope ra t ions  go d i r e c t l y  t o  t h e  
record  i d e n t i f i e d  by t h e  r eg ion  number given.  Regional(1)  d a t a s e t s  can  con- ' 

t a i r ,  unblocked f  ixed-f ormat r eco rds  'only. 

Regional(2)  and r eg iona l (3 )  d a t a s e t s  a r e  both  keyed d a t a s e t s .  Records a r e  
always accompanied by'  (non-embedded) recorded keys. Sequen t i a l  acces s  is  
a g a i n  i n  r eg ion  number o rde r ,  una f f ec t ed  by recorded keys. D i r e c t  a c c e s s  
o p e r a t i o n s  s ta r t  a t  t h e  r eg ion  number s p e c i f i e d  i n  t h e  sou rce  key and scan  
from t h a t  p o i n t  forward (wrapping around t o  t h e  beginning of t h e  d a t a s e t  i f  
t h e  end i s  reached)  f o r  t h e  record  i d e n t i f i e d  by t h e  v a l u e  of a recorded  key. 
The sou rce  key is used ' t o  s p e c i f y  both  t h e  r eg ion  number a t  which t h e  sea rch  
i s  t o  begin  and t h e  recorded key va lue  t o  be searched f o r .  

The main d i f f e r e n c e  between r eg iona l (2 )  and r eg iona l (3 )  d a t a s e t s  i s  t h a t  
' r eg ions  i n  r eg iona l (2 )  d a t a s e t s  correspond t o  r eco rds ,  a s  i n  r e g i o n a l ( 1 )  
d a t a s e t s ,  whereas r e g i o n s  i n  r eg iona l (3 )  d a t a s e t s  correspond t o  t r a c k s .  
Thus, r e g i o n a l ( 3 )  r eg ions  may c o n t a i n  more than  one record .  

Regional  d a t a s e t s  employ dummy reco rds  t o  mark r eco rds  as having been de- 
l e t e d  (or  never  w r i t t e n  i n  t h e  f i r s t  p l a c e ) .  -There i s  no choice  a s  t o .  
whether dummy r e c o r d s  can  b e  d e t e c t e d  by t h e  program o r  n o t ,  as w i t h  indexed 
d a t a s e t s .  I n  some c a s e s  they  a r e  made a v a i l a b l e ,  i n  o t h e r  c a s e s  t hey  a r e ,  ' 

n o t ,  as w e  s h a l l  s ee .  

The above m a t e r i a l  i s  reviewed a t  LRM 182, CPG 1 7 ,  and OPG 18.  

9.9. Regional (1) d a t a s e t s .  

Regional(1) d a t a s e t s  may be  c r e a t e d  sequentTal ly  o r  by d i r e c t  acces s .  

I n  s e q u e n t i a l  c r e a t i o n ,  t h e  f i l e  i s  opened f o r  keyed s e q u e n t i a l  ou tpu t .  
Records a r e  presented  us ing  WRITE...FROM...KEYFROM. The sou rce  key v a l u e  
is. a c h a r a c t e r  r e p r e s e n t a t i o n  of t h e  r e g i o n  number. ,Records must be  presented  
i n  o rde r  of i n c r e a s i n g  r eg ion  number (hence t h e  a s p e c t s  of key sequence) .  
However, some r eg ion  numbers may b e  skipped over ;  t h e  system i m p l i c i t l y  
w r i t e s  a  dummy record  i n  each r eg ion  skipped over .  Also,  when t h e  d a t a s e t  
i s  c losed  t h e  remainder of t h e  space  i n  i t s  c u r r e n t  e x t e n t  i s  f i l l e d  w i t h  
dummy reco rds  s o  t h a t  a l l  of t h e  space  ( through t h a t  e x t e n t )  ,is f i l l e d  
e i t h e r  w i t h  real  o r  dummy reco rds .  

I n  d i r e c t  c r e a t i o n ,  t h e  f i l e  is opened f o r  keyed d i r e c t  ou tput .  A t  t h a t  
t ime t h e  f i r s t  e x t e n t  of t h e  d a t a s e t  i s  d reformatted by f i l l i n g  i t  w i t h  



dummy r e c o r d s  ( t h i s  can  t a k e  q u i t e  a  wh i l e ) .  Records are presented  as 
ab,ove, b u t  t h e  r e g i o n  numbers may be g iven  i n  any o rde r .  A r eg ion  number 
may even r e p e a t ;  t h e  r eco rd  p rev ious ly  w r i t t e n  i n  t h e  r e g i o n  w i l l  b e  over- 
w r i t t e n .  A t  t h e  conc1usion of t h e  c r e a t i o n  process  t h e  f i r s t  e x t e n t  
of t h e  d a t a s e t  w i l l  c o n t a i n  t h e  r e c o r d s  w r i t t e n  and those  dummy reco rds  n o t  
o v e r w r i t t e n  w i t h  r e a l  r eco rds .  

A f t e r  c r e a t i o n ,  t h e  r eco rds  of a n  e x i s t i n g  r eg iona l (1 )  d a t a s e t  can  b e  re- 
t r i e v e d  s e q u e n t i a l l y  o r  d i r e c t l y .  Sequen t i a l  acces s ,  u s ing  e i t h e r  SEQL 
INPUT and READ...INTO o r  KEYED SEQL INPUT and READ ... INTO ... KEYTO, is  i n  
r e g i o n  number o r d e r .  A l l  r e c o r d s  a r e  r e t r i e v e d ,  whether dummy o r  no t .  
The v a l u e  r e t u r n e d  t o  t h e  key v a r i a b l e  named i n  t h e  KEYTO o p t i o n  i s  t h e  
c h a r a c t e r  r e p r e s e n t a t i o n  of t h e  r e g i o n  number. A combination permi t ted  
f o r  fadexed d a t a s e t s ,  READ...INTO. ..KEY, which i s  used dur ing  s e q u e n t i a l  
i n p u t  o p e r a t i o n s  t o  s k i p  ahead i n  t h e  sequence, i s  n o t  permi t ted  f o r  re -  
g i o n a l  d a t a s e t s .  

D i r e c t  acces s  u ses  KEYED DIRECT INPUT and READ...INTO...KEY. Records may 
b e  r e t r i e v e d  i n  any o r d e r ,  and dummy reco rds  a r e  made a v a i l a b l e .  

The b a s i c  f a c i l i t i e s  f o r  a l t e r i n g  a r e g i o n a l ( 1 )  d a t a s e t ' a r e  a s  fo l lows .  

SEQL UPDATE 
READ. . . INTO Get nex t  r eco rd ,  r e a l  o r  dummy. 
REWRITE...FROM Replace i t  a f t e r  changing. 

KEYm SPQL UPDATE 
Same as above w i t h  a d d i t i o n  of KEYTO o p t i o n  t o  t h e  READ s t a t emen t .  

KEYED DIRECT UPDATE 
REm. . ,INTO.. .KEY Get any i ecurd,  r e a l  o r  d m y .  
REWRITE...FROM...KEY Replace any r eco rd ,  r e a l  o r  dummy. 
WRITE...FROM...KEYFROM Same e f f e c t  as REWRITE. 
DELETE. . . KEY Change any record  t o  dummy. 

Note t h a t  t h e  DELETE s ta tement  is  only  allowed wi th  d i r e c t  update  f i l e s ,  
whereas w i th  indexed d a t a s e t s  it was a l s o  allowed w i t h  s e q u e n t i a l  update  
f i l e s  . 

I f  you a r e  wondering why dummy r e c o r d s  a r e  r e t r i e v e d ,  why you can r e w r i t e  
o r  d e l e t e  a non-exis ten t  (dummy) r eco rd ,  and why you can w r i t e  over an  
e x i s t i n g  r eco rd  -- who knows? The a p p l i c a t i o n  of language f e a t u r e s  t o  
n a t i v e  I / O  f a c i l i t i e s  of  t h e  system would be  smoother i f  t h e s e  t h i n g s  
weren ' t  permi t ted  f o r  r e g i o n a l ( 1 )  d a t a s e t s .  



See LRM 183, CPG 18, and OPG 19. 

9.10. Regional(2) and regional(3) datasets. 

These are processed using.exactly the same FDA's, statements, and state- 
ment options as for regional(1) datasets. The differences are as follows. 

Dummy records are not retrieved during read operations. REWRITE can only 
replace existing (non-dummy records), and DELETE can only delete existing 
records. 

The source key'va1,ue. used in a KEY or KEYFROM option has two parts: a 
region number and a string corresponding to a recorded key. READ, REWRITE, 
and DELETE operations "search" for the designated record by starting 'at .. 

the track implied by the region number and actua'lly looking for the 'given 
recorded key. ' (The number of tracks spanned in the search, before giving 
up, is'governed by a JCL parameter.) WRITE operations start at the track 
designated and look for a dummy record to replace in the same manner. 
Note that duplicate recorded keys can exist in the dataset. Also note 
that a record retrieved or written may actually belong to a different 
region t,han the one at which the search started,.yet no feedback is given. 
concerning the actual region. 

In a regional (3) ' dataset, a dummy' record created by a DELETE statement, 
though not made available to a READ operation, is unfortunately nor avail- 
able for re-use by a WRITE statement. Only dummy records left over from 
the dataset's creation are available for the addition of new records. , 

All dummy records in regional(2)'datasets represent space available for 
new records. 

In sequential output operations it is only the region number part of the 
source key value that is checked for ascending sequence. There are no 
requirements on the part of the source key value to be used for the -re- 
corded key. 

In sequential input (or update) operations, records are retrieved in their 
physical sequence. If the file is keyed and the KEYTO option is being 
used to receive the key of the record read, the value assigned to the key 
variable is Llle recorded key value only. These will not necessarily be in 
any particular order. 

See LRM 184 and LRM 185, CPG 19 and CPG 20, and OPG 20 and OPG 21. The 
programmer's guide references contain examples. JCL considerations are 
given at CPC 21 and CPG 22, and OPG 22 and OPG 23. 
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9.11. The EXCLUSIVE attribute and locked records. 

You,probably know that the difference between the JCL disposition parameters 
0LD.and SHR is that the first is used to prevent the scheduling of another 
job that needs to use the dataset to which it applies, the idea being that 
you intend to write into the dataset and it. would be meaningless for another 
job to access the dataset while you are writing into it, whereas the second 
says that you don't intend to write in it and hence another job that also 
needs it, but not for writing, can be scheduled concurrently. By use of 
appropriate PL/I facilities to "synchronize" access., you actually can per- 
mit two jobs that update a given dataset to be safely,scheduled together; 
that is, you can use DISP=SHR in both sets of JCL. This is accomplished 
as follows. The facilities apply only to direct update files; they are to 
be used in the way described in both programs. 

Use the. EXCLUSIVE FDA. When a READ statement is executed,on an exclusive 
file, the record involved (not the whole datasat) is "locked" so that 
another program cannot access it. If another program tries to, ti-.' will 
just wait for the record to be unlocked. The record is unlocked automat- 
ically when your READ statement is followed up by a REWRITE or DELETE 
statement addressing the same record, or when the file is closed. Alter- 
natively, if you decide after reading the record that you don't want to 
alter it, you can explicitly unlock it by executing an UNLOCK statement, as in 

- .  mLoj~ FILE-(~)-&k --- . . .. . - -- . . - - - .- - ... . . - . 

Finally, to suppress the automatic locking that occurs on a READ, add the 
NOLOCK option to the READ statement. See LRM 191 through LRM 193. These 
features are not in the ANSI standard. We will see them again in Lesson 14. 

9.12. Conditions applicable to indexed and regional 110. 

There is one remaining qualified 110 condition to be described. The KEY 
condition occurs whenever an invalid key value is presented in a KEY or 
KEYFROM option. Some of the colrmon cases of occurrence are as follows. 

Requested record having designated key doesn't exist. 
Keyed sequential: key is out of sequence. 
No space in dataset to add keyed record. 

Other cases are described in the relevant entry in LRM 116. Default 
status is enabled; KEY cannot be disabled. Standard system action is to 
issue a message and raise ERROR. On normal return from a KEY on unit, 
execution continues with the statement following the one whose execution 
raised KEY. 

9.13. Review 

To review all the record 110 transmission statements, read ~RM'186 through 
LRM 190. Ignore all discussion of the EVENT option. For the READ state- 
ment ignore the SET option. 



9.14. Comparison to FORTRAN. 

The ability to read or write a given record-identified by its relative 
record number, provided for regional(1) dat'asets, is roughQ comparable to, 
FORTRAN "direct-access" reads and writes. In FORTRAN, however, the records 
can be processed as unformatted data transfers or under format control; 
the latter option is not directly reflected in the PL/I capabilities. 

FORTRAN has no processing capability comparable to.that provided in PL/I 
for indexed, regional(2), or regional(3) datasets. 

9.15. Unanswered questions.. 

In Lesson 10 we will see how the different causes of the KEY condition may 
be distinguished. 

9.16.. Homework problems. 

(#9A) Why do you think the REWRITE statement .uses the KEY option instead 
of the KEYFROM option? 

(#9B) State the distinction between the REWRITE statement and the WRITE 
statement. (We saw that the distinction was 'blurred in the case 
of regional (1) datasets .) 

(119C) State the rule relating READ statements and 'REWRITE statements for 
sequential update files. 

(#9D) Is the following sequence permitted for sequential update files? 
I'f so, what does' it mean? . . 

READ ... INTO 
READ...IGNORE 
REWRITE...FROM, 

(1/9E) . Suppose 'no records have been added to an indexed dataset since its 
creation. Considering what the index is used for, how much 110 is 
involved in finding a record having a given recorded key, by direct 
access? Specifically, is it a fixed amount'or does it depend on the: 
size of the dataset? Answer the same question for regional(2) or 
regional(3) datasets (assume unique recorded keys). What can the 
system designer (programmer and data base designer) do to dinimize . 

the.search time for regional(2) or regional(3) datasets? Can you 
see any realistic applications for these kinds of regional datasets? 



(#9F) I f  you ,had  a  d a t a s e t  c o n s i s t i n g  of f ixed- length  unblocked r eco rds  
t h a t  i n  f a c t  conta lned  t h e .  c h a r a c t e r  r e p r e s e n t a t i o n s  of problem d a t a  
(perhaps  s e v e r a l  pe r  r e c o r d ) ,  what P L / I  language f e a t u r e s  could you 
combine i n  ' o rde r  t o  s e l e c t  t h e s e  r eco rds  i n  a r b i t r a r y  o rde r  (by rel- 
a t i v e  r eco rd  number) and y e t  s t i l l  decode .them under format c o n t r o l ?  

( # 9 ~ )  Which c o n d i t i o n ,  ENDFILE o r  KEY, do you t h i n k  i s  r a i s e d  by a. 
READ...INTO...KEY s ta tement  on a keyed s e q u e n t i a l  f i l e  when, i n  po- ' 

s i t i o n i n g  ahead i n  key sequence t o  t h e  record  wi th  t h e  des igna ted  . . 

key, ,  t h e  end of f i l e  i s  encountered? 

(#9H) R e c a l l  problem #8B (s t imulus-response data-base) . What advantages 
might indexed o r g a n i z a t i o n  y i e l d ?  Discuss  how you would u s e  i t .  



10. (a) Builtin functions and pseudo-variables . 
(b) Interlanguage . . communication. 

10.1.  Review of bui l t in  functions and pseudo-variables. 

In the f i r s t  three lessons we discussed a good many bui l t in  functions', 
and some pseudo-variables, without saying too much about them. 

Builtin functions are functions that  can be invoked for  their  returned 
- value and which are provided by the language ; that is, one need not 

code procedures to  compute the desired function. An implementation 
may supplement those defined by the language. The function is supported 
ei ther  by in-line code or by a library routine. Builtin functions are 
provided for  purposes of convenience-to the programmer, or for  common 
computational needs or because the compiler cah generate better  code, or  
sometimes because the function involved simply can ' t  be expressed by the 
programmer using other language features. A l l  of the bui l t in  functions 
that we have s'een so f a r  'take arguments ; we w i l l  soon see others that  
don t . 

Pseudo-variables are similar i n  that references t o  them look just  l ike  
function references. However, they don't denote a value. Instead, they 
denote a variable or  a portion of a variable and in  fact  their  use is as 
an assignment target. The pseudo-variables generally have counterparts 
as bui l t in  functions. For example, SUBSTR is both a pseudo-variable and 
a bui l t in  function. A reference to  SUBSTR means a substring of the 
str ing which is the f i r s t  argument. When it is used as a bu i l t in  func- 
tion reference, . the f i r s t  argument may be an arbitrary expression, 
because the result  of the reference t o  SUBSTR needs only to  have a value 
that  can be used i n  the context of the expression i n  which the SUBSTR 
reference is embedded. When it is used as a pseudo-variable reference, 
the f i r s t  argument can only be a s t r ing variable, because the resul t  of 
the reference t o  SlTBSTR in  this case needs to  denote some "storage" to  
which a value may be assigned. 

10.2. Names of bui l t in  functions and pseudo-variables. 

In a l l  our examples so f a r  we have used bui l t in  functions and pseudo- 
variables just by using their  names i n  appropriately constructed syntac- 
t i c a l  functionreferences. I t h a s  beentacit lyassumedthat  thenames 
do not appear i n  declarati.ons' of other objects . I f  they do, then any 
use of the name within i ts scope denotes the object declared, and not 
the bui l t in  function or  psetmo-va.riable. This.means that you can use . 

SIN as the name of a variable, for.  instance , and you can use LOG as the 
name of a procedure (internal or  external) assuming these names were 
properly declared. However, within the scopes of thei r  declarations, 
these names are not available to  mean the bui l t in  functions. 



10.3. The BUILTIN at tr ibute.  

The name of a bui l t in  function which ha.s been usurped for  some other 
purpose may be restored' to. its. original meaning, inside a nested 
block, by declaring it with the BUILTIN attr ibute.  No other attributes, 
except INTERNAL, ' can be used with it. Example : 

P: PROC; 
DCL INDEX FIXED. BIN; 
INDEX = 0 ;  
BEG IN ; 

DCL INDEX BUILTIN; 
I = INDEX(S,'/*.'>; 

END; 
J2ND ; 

'lhe k i r s t  reference to  INIIEX (TNnEX 9 0;) is a reference t o  a FIXED 
BINARY variable. The second, inside the begin block, is a reference 
t o  thc INDEX bu i l t in  f m . c t i o ~ ~ .  

BUILTIN carries no implications for  data type, etc.  There are no values 
or  variables, or  constants, of type "builtin." I t  is incorrect t o  declare 
as BUILTIN an identif ier  which is not the name of a bui l t in  function. 
See LRM 194. 

I t  i s  also improper to think of a bui l t in  function'as a kind of "entry" 
value having, maybe,'special properties. The current language, however, 
blurs the 'distinction in  one special case. The names of the mathematical 
bui l t in  functions' (SIN, SQRT, EXP, etc.)  may be used as entry constants 
i n  the context of an argument being associated with an entry parameter, 
e,.g. ,  

CALL F (SIN) ; 
CALL F (COS) ; 
F: PROC (Q) ; 

DCL Q ENTRY (FLOAT BIN (21)) 
RETURNS (FLOAT BIN (21) ) ; 

y : Q(X); 
; 

See LRM 195. This limited fac i l i ty  is not available i n  the ANSI standard 

10.4. Parameterless bui l t in  functions and pseudo-variables. 

Why is i t  unnecessary, except fo r  the reasons demonstrated above, to  
declare a bui l t in  function name such as SQRT as BUILTIN? The reason is 
as follows. A reference such as SQRT (X) , i n  the absence of a deklara- 
tion fo r  the name SQRT, cannot possibly be anything else. I t  cannot .be 
a referellce t o  an external entry constant because they must be -declared 
(as we saw in  Lesson 4).  I t  cannot be a reference to an array because 
an undeclared identif ier  cannot require the climension at tr ibute by 
& f d ~ l t  . 



A s  we shall  soon see, certain bui l t in  functions and pseudo-variables 
do not take any arguments. A reference to  one of them, when written 
without an argument l ist ,  would look l ike a reference to  a simple 
variable, and we have seen that  they acquire the attributes of an 
a r i thmet ic .var iabmy default. There is a potential conflict,  then, 
when a name of a parameterless bui l t in  function, such as TIME, i s  
written by i t s e l f .  In the absence of an explici t  declaration for  
TIME, shall  TIME by i t s e l f  denote the TIME buil t in function, or  shal l  
it be a FLOAT DECIMAL (6) variable? I t  must be the l a t t e r ;  a homework 
problem w i l l  help you understand why. 

However, i f  we want TIME t o  mean the bui l t in  function rather than a 
variable declared implicitly (with default at tr ibutes) ,  then we may 
do one of two things. We may explicitly declare TIME as bui l t in ,  or 
we may write the bui l t in  function reference as TIME(), i . e . ,  with an 
argument l i s t ,  a lbei t  an empty one. The argument l is t  puts us  back 
i n  the situation of SQRT (X) which, we argued, cannot be anything but 
a bui l t in  function reference. 

An empty argument l is t  may also be written a f te r  the name of a parameter- 
less entry to be invoked, as i n  

FUNCC ION : PROC R E m S  (CHAR (1) ) ; 
RETURN (SUBSTR (S , I, 1) ) ; 

END ; 
T = FUNCTION() ; 

In the ANSI language you w i l l  be required t o  write an empty argument 
list to  get FUNmION invoked, although in  the current language you are 
not.. (Review the' discussion i n  Section 6.8. ) . I t  is very good docu- 
mentary practice, i n  any event, t o  write an argument l is t  ' ( i f  only an 
empty one)'with every function reference. 

10,.5. Additional specific buil t in functions and pseudo-variables. 

In Lesson 1 we examined a l l  of the. arithmetic bui l t in  functions and 
mathematical bui l t in  functions. In Lesson 2 we had most of the string- 
handling buil t in functions. In Lesson 3 we had some of the array- 
handling bui l t in  functions. 

Remaining string-handling builtin-functions: 
STRING ' This effectively concatenates the elements of i ts  aggregate 

argument, which must be an array or structure containing 
s'tring elements. The res1.il.t i s  a. scalar value. I t  is as i f  
a scalar s tr ing variable were string-overlay defined (Lesson 
3) on the argument. The STRING' bui l t in  function may also be 
used as a pseudo-variable. There are minor differences i n  
the ANSI standard. 



UNSPEC This effectively allows the storage occupied by its argument 
t o  be viewed as a b i t  s tr ing.  Since the storage required 
fo r  a variable of a given 'data type is implementation-defined, 
so is the length of the b i t  s tr ing.  1.JNSPPEC is also a pseudo- 
variable. Examples: 

DCL I FIXED BIN (31), 
. X FLOAT BIN (21) , 

U BIT (32) ; 
U = UNSPEC(1) ; The 32 b i t s  occupied by I (in our 

implementation) are moved into U. 
U = UNSPEC(X); Ditto for  X ,  i . e . ,  it is interpreted 

as a b i t  s tr ing of length 32. 
UNSPECV) = ,'0101110.. .0110!B; . 

Store the b i t  pattern i n  X .  
UNSPEC (I) = UNSPEC (X) ; . - 

This moves the contents of X into I 
without conversion. The value of the 
floating point variable X can then be 
manipulated as i f  i t 3  internal representa- 
tion were an integer (by manipulating I 
i n s  teacl) . 

UNSPEC gives you a legal, though inevitably implementation- 
dependent, way of looking a t  the storage occupied by any 
variable through other 'attributes. 

Remaining array-handling bui l t in  functions: 
SUM T'akes'. an array argument and returns the sum of i ts elements. 
PROD Same, but returns the product. 
ANY Same, but the' array argument is an array of : b i t  strings and 

the operation is logical "or." Thei-th b i t  i n  the resulting 
sca.1a.r b i t  s t r ing :is 1 i f  and only i f  the i-th b i t  of any 
element of the 'array is 1. 

ALL Same as ANY except the operation is logical "and." ANY and 
ALL are renamed' SOME and EVERY, and sl ightly changed, i n  the 
ANSI language. i POLY Computes, 'for array A and value X ,  essentially Z aix . Also 
a more general form. Not i n  ANSI. 

Details of the above may be found a t  LRM 18. 

Having covered conditions i n  Lesson 6 and la ter .  we are now ready t o  
look a t  the condition-handling bui l t in  functions. See LRM 196 A d  
LRM 18. A l l  of these are parameterless bui l t in  functions (some are 
pseudo-variables as well) -that give you certain information about the 
interrupt i n  whose on unit  (or descendant block thereof) they are 
referenced. 



ONCODE Returns an implementation-defined integer value specifying 
the cause of the interrupt. See LRM 197. Can be used, 
for  instance, to determine whether a condition occurred 
naturally or  was signaled or  to distinguish between many 
different reasons 'for the occurrence of a condition. 

ONLOC Returns, as a character s t r ing value, the name of the 
procedure i n  which the intefrupt occurred (more precisely, 
the name of the entry point a t  which it was entered). . 

ONF ILE For an 1/0 condition, the name of the f i l e .  Though an on 
unit can be established separately for  each f i l e ,  making . 

this determination unnecessary, should standard system 
action i n  the absence of such an on unit  take you into an 
ERROR on unit,  you would need ONFILE to  determine the f i l e  
on which the condition occurred. 

DATAFIELD The contents of the bad f i e ld  that caused the NAME condition 
to  occur (Lesson 7) .  Called ONFIELD i n  ANSI language. 

ONCOUNT See description i n  LRM 18 and LRM 198; also OPG 25 
ONKEY The' value of a .bad key' causing the KEY condition. 
ONSOURCE The contents of the bad character s t r ing value whose attempted, . ' 

conversion to something else fai led,  causLng the CONVERSION . . . . 

condition. Canbeusedasapseudo-var iab le inaCONVonuni t  , 

to  replace that bad str ing for  purposes .of recovery; the . . . . 

replacement value is used when the conversion is reattempted 
on normal return from the on unit  (see Lessons 2 and 6) . 

ONCHAR Denotes the single ch.aracter (one of those i n  the str ing 
represented by ONSOURCE) which caused the conversion to  f a i l .  
May be used as a pseudo-variable to replace the single 
character i n  a recovery attempt. 

Stream 1/0 bui l t in  functions: 
COUNT The number of data items transmitted during the last'GET or: 

PUT operation on the specified f i l e .  
LINEN0 The current line number of the. specified pr in t  f i l e .  

One of thelstorage control bui l t in  functions 
i n  Lesson 11): 

(others w i l l  be discussed 

ALLUWl'lON The number of generations i n  the stack for  the, given controlled 
variable (see Lesson 5). 

Miscellaneous bui l t in  functions: 
DATE Parameterless; returns the current date as an implementation- 

defined character s tr ing value (YYMMDD i n  our sys tem) . 
TIME Similarly, the current time (HHMMSSTIT; 19"r is milliseconds) . 



Others i n  ANSI (which have not been previously mentioned) : 
COLLATE Returns a character 'string value containing the character 

s e t  i n  the implementation's collating sequence. 
DOT Dot product of two vectors. 
PAGENO Like LINENO; returns the current page number of the 

specified pr in t  f i l e  . 
SUBTRACT An arithmetic bui l t in  function, l ike ADD. 
VALID Tests whether a given computational value conforms to a '  

given picture specification. Returns a BIT' (1) result  
without raising the CONVERSION condition. 

Good news! The mathematical bui l t in  functions which we remarked i n  
Lesson 1 had been deleted i n  the ANSI standard are now back in! 

10.6. Overview of interlanguage communication fac i l i t i e s .  

A natural question t o  ask is whether or not FORTRAN and PL/I routines 
can be intermixed: Can a routine written i n  one language invoke one 
m i t t e n  i n  the other'! Clearly, i f  th is  were possible one could receive 
that much more .value from his accumulation of FORTRAN subprograms, for  
instance. ' O r  one might extend the usefulness of existing FORTRAN 

,programs by having 'them interEace with PL/I procedures to  do update 
operations on datasets, say. 

A l l  of th is  is possible--but only because'certain f ac i l i t i e s  are 
specifically provided t o  meet these needs. These f ac i l i t i e s  deal with 
the impediments. t o  free'  communication between languages . Some of 'these 
impediments are described below. 

The primary problem i s  that  different languages generally have different 
run-time environments. This is true i n  IBM systems but not, apparently, 
i n  Univac systems. The differences i n  environment involve, among other 
things : 

(a) the handling of hardware interrupts, such as overflow; 
(b) the addressing of arguments and parameters (arguments 

and parameters may be addressed un different sides of 
ail interlanguage buwi i la~y)  ; 

(c) the mapping of aggregates, such as arrays; 
(d) defined actions on program termination. 

The ILC (interlanguage communication) f ac i l i t i e s  of the Checkout and 
Optimizing compilers permit useful communicatiori between PL/I, FORTRAN, 
COBOL, and Assembler routines. In this  course we w i l l  study only 
FORTRAN-PL/I communication. The de t a i  1s of PL/ I -Assembler c o m i c a t i o n  
are  well covered i n  OPG 24 and CPG 23. 



When communicating w i t h  FORTRAN, the main program may be of either 
language. There' are no special requirements for  the contents of the 
FORTRAN routines; existing ones may be used with.PL/I without recom- 
piling. A l l  of the services'required are performed by the PL/I 
system in  accord with specifications made in  the PL/I routines. 
See LRM 199. 

10.7. FORTRAN calling PL/I . 

An external PL/I procedure to be called by FORTRAN must use. the OPTIONS 
option of the PROCEDURE statement to  announce this fact .  Example: 

PLISUB: PROC (X, Y) RETURNS (FLOAT) 
OFTIONS (FORTRAN] ; 

. , 

OPTIONS (FORTRAN) may also be specified on an ENTRY statement of an 
external procedure. In fact ,  a procedure may have several different 
entry points, some to .be  entered from a FORTRAN routine and others from 
PL/ I . Any given' entry point cannot, unfortunately , be invoked equally 
well by both. 

I f  any of the parameters of a PL/I procedure called by FORTRAN are 
arrays, thei r  bounds must be declared i n  the PL/I procedure as constants 
(unfortunately). Recall from Lesson 5 that the only form of "adjustable 
extent" permitted i n  parameter declarations is an "asterisk extent," 
denoting that  the bounds are inherited' from the actual argument. 
Unfort'unately , FORTRAN doesnl t make that  information available. Since 
PL/I won1 t allow expressions in declarations of parameters, the following 
"FORTRUN-s tyle" construction is not allowed: 

P : PROC (X , N) OPTIONS (FORTRAN) ; 
DCL X(N) FLOAT ; 

Because arrays of more than one dimension are mapped differently i n  PL/I 
and FORTRAN (row-major order i n  PL/I and column-major i n  FORTRAN) , one 
of the services provided by the OFTIONS (FORM) specification is the 
remapping of an array (of more than one dimension) on entry and on return. 
That is', on entry t o  the PL/I procedure storage is acquired dynamically, 
the FORTRAN array is copied in to  it (in transposed order), and the copy 
is then used in  the PL/I procedure. On return from the procedure the 
transposed copy of the array (which may have been. the target of some 
assignments) is copied back in to  the actual FORTRAN array i n  the proper 
order, and the dynamic storage is released. 'Thus, the fact  that  arrays 
are  mapped differently i n  our implementations of these. two languages 

. need not be a concern. 

However, the remapping of arrays can be "expensive" i f  they are large 
(extra storage requirements for  the remapped copy) or i f  it occurs' 
frequently '(extra execution time for  the copying) . I f  these factors 
a re  important, the PL/I programmer has several options a t  h is  disposal 
t o  refine o r  control the s ' e ~ c e s  provided automatically. 



First of a l l ,  i f  an array parameter is not changed by assignment i n  ', 

the PL/I procedure, the' transposed copy need not be written back into 
the original FORTRAN array on return from PL/I . To suppress that ,  ' ,  

use the NOMAPOUT o tion of the OPTIONS option. Example: 
P : e m I o N s  (FORTRAN Nowour (x , z) ) ; 

Alternatively, an array which is not assumed t o  have a value on input 
i . e . , whose elements are not fetched' i n  the PL/I procedure before 
being assigned values by it, does'not have to  have the remapped copy 
ini ' t ialized with the elements of the FORTRAN array on entry. 
Specify th is  with the N W I N  o tion, e.g., 

p: PRoc &,y,?) -AN 
NOMAPOUT (X , Z) 
NOMAP I N  (Y) ) ; 

The programmer may also suppress entirely'  the creation of a copy 
(which saves space as well a s  time) i f  he is  willing to  reverse the 
order of subscript e m r e s s i o r ~  in  subscripted array references i n  the 
PL/I procedure. *'l'o db that ,  use thc NCM@ o tion '(syntax same as for  
previous options). Actually, the nee h-E- to reverse the order of the 
subscript expressions can be avoided by the use of ISUB-defining 
(Lesrun 3 ) .  

See LRM 200 - LRM 204. 

10.8 PL/I calling FORTRAN. 

As with a l l  external entry constants, the name of the FORTRAN routine 
m i s t  be declared' as  EX'rEKNAL ENTRY i n  the PL/I procedure (Lesson 4) . 
To indicate that it is a FORTRAN, and not a PL/I,  routine, the OPTIONS 
at t r ibute  is also used. Example: 

TlCl', CWlP ENTRY (FLJIAT (*) , FIXED BIN (31) ) 
RETURNS (FLOAT) 
OPTIONS (FORTRAN) 
m; 

The OmIONS at t r ibute  is much l ike  the OPTIONS option. I t  can include 
the N W ,  N W I N ,  and NOMAPOUT options t o  control the automatic 
remapping of multidimensional arrays. The individual arguments to 
which these options apply a E  indicated i n  the way demonstrated below. 

DCL FORTSUB ENTRY ( (*, *) F,LOAT, (*, *) FLOAT, 
(* ,*) FLOAT, (* ,*) FLOAT) 

OPTIONS (FORTRAN 
NWIN(ARG~) 
NOMAPOUT (ARG 4) 
NOMAP (ARG 3) ) 

ExT; 
With the above declaration, i n  a ca l l  such as 

CALL FORTSUB(A(*,*), B(*,*), C(*,*l Dlk , * ) )  ; 
.the third argument, C , . . w i l l  be passed as is  without remapping, while 
dummy arguments (copies) w i l l  be made for  the others just before 



invoking FORTSUB. The copies of ' B  and D w i l l  be in i t ia l ized to  the 
transposes of B and D during th i s  process, but A ' s  w i l l  not be 
in i t ia l ized (A is presumed t o  be an "output" argument); and on return 
from FORTSUB the elements of the transposed copies of A and B w i l l  be 
assigned back to A and B, respectively, before the dynamic storage 
for  a l l  the copies' is  released (D is assumed to  be an "input" argument, 
i . e . ,  one whose elements are not changed by FORTSUB). 

An additional option can be used i n  the OPTIONS attr ibute.  The INTER 
o tion says that PL/I is to handle those interrupts not handled b y e  
*sys tem (ones which would normally cause abnormal termination) . 
For the Model 195, INTFX specifies that PL/I w i l l  handle a l l  interrupts. 
By "handle an interrupt" is meant the following: the c h a z o f  active 
blocks w i l l  be searched for an established on unit .  I f  one is found, 
it is invoked; it may return normally to  the point of interrupt or it 
may terminate by a GO TO out of block, as usual. I f  no established on 
unit  is  found, standard system action is taken, as usual. 

See LRM 205 - LRM 207. 

10.9. Creation and destruction of other-language environments. 

When a c a l l  t o  an other-language routine is  f i r s t  made, the current 
run-time enkironment is se t '  a i ide and the other-language environment 
is  created. When the other-language routine returns 'to its cal ler ,  
the original environment is restored. Hoyever , the other-language 
environment is not discarded quite yet'; it is just s e t  aside. .This . 
is done i n  anticipation of another ca l l  to the other-language routine 
(such a ca l l  may be inside a loop, fo r  instance). I f  such a repeat 
c a l l  is made, the other-language environment is found to  exist  already, 
so it only needs to  be retrieved instead of created from scratch 
(which is much cheaper) . An other- language environment is not discarded 
entirely unti l  the routine which invoked the other-language routine 
returns to - i ts cal ler .  This is' accomplished by a clever manipulation 
of -d~e  "save area" chain by the interlanguage communication modules of 
the PL/I library. I t  is i l lus t ra ted below. 
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One consequence of the des'truction of a language I s  environment i s  that 
f i l e s  opened'while i n  that environment are closed when the environment 
is  terminated. Several things can be done to  retain an other-language 
environment for  a longer time than the preceding diagram shows. One 
involves crossing several boundaries. I f ,  i n  'the preceding diagram, an 
active PL/I procedure exists .  somewhere i n  the chain of ca l l s  w-here the 
comment "No PL/I routines beyond here" is , then' the PL/I environment 5s 
not created a t  "call  #3" ( i t  is merely retrieved) and it is not discarded 
a t  "return #3"; it is not -discarded &ti1 the original or f i r s t  ca l ler  
of a PL/I procedure returns to  its caller .  

Another technique is dem0nstrated.b~ the following. Assume the main 
program is FORTRAN. Let' it ca l l  a dummy PL/I procedure which merely 
returns to i ts caller'. This establishes the PL/I environment; it is 
not discarded un t i l  the cal ler  of the PL/I procedure, i . e . ,  the FORTRAN 
main program, returns to its cal ler  (which i n  this case is the operating 
system). Thus, the chain of ca l ls  subsequently in i t ia ted  by the FORTRAN 
main program may cross language boundaries any number of times, a t  any 
depth, without destruction of the PL/I environment. 

See LRM 208. Read LRM 209 to review. LRM 210 contains a discussion 
of communicating via  common storage ("named COMMON" i n  FORTRAN, STATIC 
IXERNAL i n  PL/I) . 

10.10. JCL considerations. 

I t  i s  recommended that  you use PL/I cataloged procedures to link edi t ,  
load, and execute mixed' PL/I -FORTRAN programs. (These are discussed i n  
Lesson 13.) You w i l l  need to make the' FORTRAN library available t o  the 
linkage editor or loader'whenever a PL/I procedure contains OPTIONS (FORTRAN).. 
One way th is  may be accomplished is by use of the symbolic parameter POSTLIB: 

POSTLIB = 'SYS1.M)RTLIB1 
Also, you w i l l  need to  supply a DD statement for  FT06F001 in  the GO s tep,  
even i f  the FORTRAN routines ncvcr w i t c  t o  unit 6 ,  since one.of the 
actions performed during creation of the FORTRAN environment is the 
opening of FT06F001. See OPG 25 and CPG 24. 

10 .'11. ,Homework problems. 

(#loll) Explain what each of the following means: 
B = SUBSTR(UNSPEC (X) , 4, 2) ; 
B = UNSPEC (SUBSTR(S , 4, 2) ) ; 

Are the following allowed? I f  so, what do they mean? 
msm(LJNspEc(x), 4, 2) = B; 
UNSPEC (SUBSTR(S, 4, 2) ) = B; 



I f  you are having trouble deciding whether these are allowed, 
consider'which 'of the following 'are allowed and which aren' t .  
F, G ,  and H are user-defined 'functions. 

SUBSTR(F(X), 4, 2) = B; 
SUBSm(S, G(A), 2) = B; 
SUBSm(S, 4, H(A)) = B; 
UNSPEC (F (C) ) = B ; 

(#10B) In the notes we said an undeclared identif ier  cannot acquire 
the dimension at tr ibute by default. Let's explore this further. 

Under what conditions are identif iers  declared contextually? 
(Review' LRM 71.) 

I f  A, By and SIN are not explicitly declared i n  a program, are 
they contextually dcclarcd' by their appearances ' ill U~tt fullowing 
statement?. If so, as what? 

A = B (1) + SIN (1) ; 
Is there any error here, i . e . ,  w i l l  the compiler balk? 

Suppose the program contained a DEFAULT statement which specifies 
the dimension at tr ibute as a default: 

DFT RANGE (*) (2) ; 
When are defaults applied (in particular,  before or af ter  
acquisition of at tr ibutes by context)? (Review LRM 72.) 
To wllicli u f  A,  B,  and SIN would th is  default apply? Is the 
program now legal? 

Leave the DEFAULT statement i n  and consider the following. 
What is the effect  of the addition of the declaration 

DCL (A, B) ; 
to  the program? Note that A and B are explici t ly declared, 
but with no at tr ibutes.  'Do they acquire any at tr ibutes by 
context? By default? Is the program now legal? 

What happens i f  we also add the following? 
DCL 3IN; 

Consider the program i n  any of i ts  intermediate stages as it 
was developed above. I f  it was. legal a t  a given stage, would 
i ts  meaning have changed i f  B were a l l  of a sudden 'added to  
the language as the name of a bui l t in  function? Is there any 
way 3 program can have its rneaiilig clrariged by the addition of 
a bui l t in  function? Comment on what might happen in  FORTRAN 
i f  a new int r ins ic  function were added. 



(#10C) Comment on why TIME is not known as a bui l t in  function i n  
A = TIME; (no declarations) 

but is in  - 
A = TIME(); 

or 
DCL TIME BUILTIN; 
A = TIME; 

(#10D) During an attempt t o  add a keyed record t o  an indexed dataset 
using a direct update f i l e  and a WRITE. . .FROM.. .KEYFROM s ta te-  
ment, the KEY condition may occur ei ther  because there is no 
space for  the new record or  because a record containing the 
specified key already exists; How can these cases be distinguished? 

(#10E) Suppose a CONVERSION on unit  has been established as follows: 
ON COW ONCHAR() = '0 ' ;  

What happens when each of the following character s tr ing 
values undergoes ' oonvers ion to.  numeric? What is  the f ina l  
numeric result?.  

12x3 
1X4Y 
12EF3 (tricky) 

What happens i n  t he  fol.l.nwing? 
CDEFGH (very tricky) ' 

(Hint: how many digits  can appear i n  an exponent f i e ld  of a 
floating-point constant, i n  our implementation?) 

(#10~)  In Lesson 6 we remarked' that  
IF  A = B THEN ...; 

i s  i l legal  i f  A and B are arrays, because the comparison 
operator applied to  arrays yields an array of BIT (1) results  
and the IF statement requires a scalar expression. Show how 
the ALL bui l t in  function can be used to  achieve the desired 
meaning i n  the IF statement. 



11. . L i s t  p rocess ing  and locate-mode 110. 

11.1. P o i n t e r s .  

I n  t h i s  l e s son .we  w i l l  encounter  t h r e e  new types  of program-control d a t a .  
The f i r s t  of t h e s e  is  "poin ter . "  

A p o i n t e r  v a l u e  i s  an  address  of some v a r i a b l e .  A p o i n t e r  va lue  must - n o t  
b e  thought of a s  an  i n t e g e r ;  i t  cannot be  used i n  t h e  ways i n t e g e r s  can be  

' 

used. For i n s t a n c e ,  you cannot do a r i t h m e t i c  w i t h  i t  and you cannot w r i t e  
a  p o i n t e r  ya lue  out  w i t h  s t ream ou tpu t .  

The POINTER a t t r i b u t e  is  used t o  d e c l a r e  a p o i n t e r  v a r i a b l e  (u sua l ly  c a l l e d  
simply a p o i n t e r ) ,  i . e . ,  a  v a r i a b l e ,  t h e  d a t a  type  of whose p o s s i b l e  va lues  
i s  " ~ o i n t e r . "  The a b b r e v i a t i o n  of POINTER i s  PTR. L ike  o t h e r  v a r i a b l e s ,  
p o i n t e r s  may b e  i n t e r n a l  o r  e x t e r n a l ,  of any s t o r a g e  c l a s s ,  a l i gned  o r  un- 
a l i gned ,  parameters ,  de f ined  on o t h e r  p o i n t e r s ,  a r r a y s ,  s t r u c t u r e  base  e l e -  
ments, . i n i t i a l i z e d ,  e t c .  

11.2. The ADDR b u i l t i n  func t ion .  

One way t h a t  p o i n t e r  va lues  may be  "generated" is  by r e f e r e n c e  t o  t h e  
ADDR b u i l t i n  func t ion  (one of t h e  s torage-handling b u i l r i n  f u n c t i o n s ) .  
The argument of ADDR may be  any v a r i a b l e  r e f e r e n c e  (but  i t  must denote  a 
v a r i a b l e  i n  connected s t o r a g e ) .  The r e s u l t  of t h e  b u i l t i n  func t ion  r e f e r -  
ence  i s  a p o i n t e r  v a l u e  which is  t h e  address  of t h e  argument. 
Examples : 

P: PROC (X) RECURSIVE; 
DCL X FIXED B I N  (15);  
DCL Y FLOAT DEC ( 6 )  CTL; 
DCL Z CHAR (20) VAR AUTO; 
DCL -A (15) CHAR (1) STATIC; 
DCL 1 .S STATIC, 

2 T, 
2 u ,  

3 V FIXED DEC (5 ,-2) , 
3 W FLOAT B I N  (100) ; 

ADDR(X): i s  t h e  address  of t h e  a c t u a l  a r g w e n t a s s o c i a t e d  wi th  X i n  
t h e  c u r r e n t  i nvoca t ion  of P. 

ADDR (Y) i s  t h e  address  of t h e  c u r r e n t  gene ra t ion  of t h e  c o n t r o l l e d  
v a r i a b l e  Y ,  i .e. ,  t h e  one .on  top  of t h e  s t a c k  f o r  Y: . 

ADDR(Z) is  t h e  add res s  of the .  gene ra t ion  of Z a l l o c a t e d  on e n t r y  
t o  t h e  c u r r e n t  i nvoca t ion  of A .  

ADDR (A) is  t h e  addres s  of t h e  whole a r r a y  A. 
ADDR(A(3)) i s  t h e  address  of t h e  t h i r d  element of  t h e  a r r a y  A .  
ADDR(A(1)) i s  t h e  add res s  of t h e  I - th  element of t h e  a r r a y  A ,  



ADDR(S) is  t h e  address of t h e  s t r u c t u r e  S. 
ADDR(S.U). i s  t h e  address of t h e  subs t ruc tu re  U wi th in  S. 
ADDR(S.U.W) i s  t h e  address of t h e  s t r u c t u r e  base element S.U.W. 
ADDR (5) i s  i l l e g a l  because the  argument i s  not  a v a r i a b l e .  

We w i l l  p r e s e n t l y  s e e  t h e  unique funct ion  po in te r  va lues  serve .  For t h e  
time being,  no te  t h a t  they may be assigned t o  po in te r  v a r i a b l e s  and they 
may b e  compared f o r  e q u a l i t y  ( a s  wi th  a l l  program-control d a t a ,  only t h e  
comparison o p e r a t o r s  = and i= a r e  allowed). 

11.3. The BASED s t o r a g e  c l a s s  and based v a r i a b l e s .  

I n  Lesson 5 w e  saw t h r e e ' o f  t h e  four s to rage  c l a s s e s ,  namely those  des- 
c r ibed  by t h e  s t o r a g e  c l a s s  a t t r i b u t e s  AUTOMATIC, STATIC, and CONTROLLED. 
W e  w i l l  now d e s c r i b e  t h e  remaining s t o r a g e  c l a s s ,  denoted by t h e  BASED, 
a t t r i b u t e .  A v a r i a b l e  having t h i s  s t o r a g e  c l a s s  is c a l l e d  a based va r i ab le .  

The unique s i g n i f i c a n c e  of based v a r i a b l e s  l ies  e n t i r e l y  i n  t h e  meaning of 
a r e fe rence  t o  one and i n  how they a r e  a l l o c a t e d . '  

To begin wi th ,  l e t ' s  look a t  references  t o  based v a r i a b l e s  ("based r e f e r -  
ences").  Suppose w e  have a based v a r i a b l e  B: 

DCL B FIXED BINARY (31) BASED; 
W e  may th ink of B a s  no t  having any s to rage  of i t s  own, i , e . ,  not  having 
a unique, assigned l o c a t i o n .  A r e fe rence  t o  B never the less  denotes a 
r e fe rence  t o  a FIXED BINARY (31) ALIGNED v a r i a b l e  r e s i d i n g  somewhere. 
W e  a r e  responsib le  f o r  saying where. We do t h a t  by providing, with t h e  - 
w r i t t e n  re fe rence  t o  B,  a pointer-valued expression whose value  is taken 
t o  be the  address  of B f o r  t h a t  reference .  The syntax,  i n  genera l ,  is:  

pointer-expression -t based-variable 
A simple example i s  P -t B where P i s  a po in te r  v a r i a b l e .  NOTE: The 
symbol "+" appearing i n  these  notes  i s  represented i n  a PL/I program by 
a minus s ign  immediately followed by a "grea ter  than" s ign ,  i .e.,  "->It.  

...... . ._. . . . .  - - . . . . . . .  ..-. . . . . . - -  .- _. . .  _ ._  ..... _ . ... . . 

L e t ' s  examine t h i s  c lose ly .  We read i t  a s  " the  B pointed t o  by I?." It 
i s  a v a r i a b l e  r e fe rence  l i k e  any o ther :  it denotes a l o c a t i o n  having a 
va lue  understood i n  t h e  context  of c e r t a i n  a t t r i b u t e s  (FIXED RINARY'(31) 
ALIGNED i n  t h i s  case ) .  It may be  used anywhere a v a r i a b l e  r e fe rence  is 
permi t ted ,  as i n  t h e  fol lowing examples: 

P + B m P + B + l ;  
I F  P -+ B > Q THEN CALL F(C, P -+ B); 
GET LIST (P + B); 
DO P -t B = 1 TO 10;  
A(P + B) = C(P + B) / 3; 

I n  t h e  above examples i t  has been assumed t h a t  P has been assigned a va lue  
which i s  t h e  address  of a FIXED BINARY (31) ALIGNED var iab le . .  The r e f e r -  
ence P -+ B i s  no t  l e g a l  unless  t h i s  i s  so .  Examples: 



DCL (E , F, G ,  ) FIXED B I N  (31) ; 
DCL AR (10) FIXED B I N  (31); 
DCL 1 S, 

2 T FLOAT DEC (6) ;  
2 U FIXED B I N  (31) ; 
Before P . i s  assigned a va lue ,  a r e fe rence  t o  P + B is  i l l e g a l .  
P = ADDR(E); 
P + B now denotes E,  i .e . ,  i t  i s  a re fe rence  t o  t h e  s to rage  "occu- 

pied by" E. 
P = ADDR(F); 
P + B now r e f e r s  t o  t h e  s t o r a g e  occupied by F. 
P = ADDR(AR(I)) ; 
P + B now r e f e r s  t o  t h e  s to rage  occupied by AR(I), i .e . ,  by AR(C) i f  

I had t h e  va lue  i when t h e  address  of AR(1) was taken. 
P .= ADDR(S .u) ; 
P + B now r e f e r s  t o  t h e  s to rage  occupied by S.U. 
P = ADDR(S.T); 
A r e fe rence  t o  P -+ B i s  now i l l e g a l ;  we. w i l l  examine why l a t e r .  

You can see from, t h e s e  examples t h a t  t h e  locat io l i  referenced i n  a based . 
r e fe rence  i s  determined by t h e  cu r ren t  va lue  of t h e  p o i n t e r  expression 
w r i t t e n  wi th  t h e  reference .  Actual ly ,  i n  a l l  of the examples t h a t  ex- 
press ion  was merely a s c a l a r  po in te r  v a r i a b l e ;  w e  w i l l  see more genera l  

, forms s h o r t l y .  The th ing  t o  no te  is t h a t  the  same po in te r  expression may 
have d i f f e r e n t  va lues  a t  d i f f e r e n t  t imes,  and thus  a given based re fe rence  
may denote d i f f e r e n t  l o c a t i o n s  a t  d i f f e r e n t  times. Example: 

DO P = ADDR(E), ADDR(AR(I) 1, ADDR(F) ; 
P + B = P + B + l ;  

END ; 

This loop causes 1 t o  be  added success ively  t o  t h e  t h r e e  FIXED BINARY (31) 
ALIGNED v a r i a b l e s  E ,  AR(I), and F. 

Of course,  two d i f f e r e n t  based references  involving the  same based v a r i a b l e  
may have d i f f e r e n t  po in te r  expressions.  Suppose P and Q were both po in te r  
va r i ab les .  Then P + B and Q + B denote FIXED BINARY (31) ALIGNED v a r i a b l e s  
having p o t e n t i a l l y  d i f f e r e n t  loca t ions .  They.would denote t h e  same th ing 
only i f  t h e  va lues  of P and Q were equal .  Example: 

P = ADDR(E) ; 
Q = ADDR (F) ; 
P + B = P.'B + ' Q  + B; 

The e f f e c t  of t h i s  i s  t o  add F t o  E. 

A l l  of t h e  po in te r  expressions shown s o  f a r  have been simple s c a l a r  va r i -  
ab les .  S l i g h t l y  more complicated ins tances  nf v a r i a b l a s  used i n  baaed 
references  a r e  as follows: 

DCL P PTR STATIC; 
DCL Q PTR 9ASED; , 



- . . . .  
DCL B . BASED ; 
P + Q + B i s  read " the  B pointed t o  by t h e  Q pointed t o  by P." B i s  lo-  

ca ted  by a p o i n t e r  v a r i a b l e ,  a s  i n  the  previous examples; however, 
t h a t  p o i n t e r  v a r i a b l e ,  Q,  is  i t s e l f  based and ie loca ted  by P. 

DCL ~ ( 1 0 )  PTR; 
R(1) + B denotes t h e  B pointed t o  by the  I- th element of t h e  p o i n t e r .  . 

arr,ay R'. 
DCL 1 PTRS, 

2 FIRST .PTR, - 
2. LAST PTR; 

PTRS.FIRST -t B denotes t h e  B pointed t o  by PTRS.FIRST. 

Function procedures can r e t u r n  po in te r  values, i . e . ,  you can. write 

DCL SUB ENTRY (FIXED) RETURNS (PTR)' EXT; 
SUB': PROC ( I )  RETURNS (PTR); 

6 

RETURN (P) ; 

RETURN (ADDR (E) ) ; 
e t c .  

An example of a  p o i n t e r  expression which i s  not  a  po in te r  v a r i a b l e  (pos- 
s i b l y  subscr ip ted  o r  s t ruc tu re -qua l i f i ed )  is a func t ion  reference:  

. . . . . . . . . . . . . . . . . . . . . .  SUB ( J*K-2) . j 'B- -" - . --- 

Such a func t ion  r e f e r e n c e  may b e - a  b u i l t i n  f l inct ion re fe rence  which r e t u r n s  
a  po in te r  value:  

ADDR(E) ,+ B. 
We conclude by saying t h a t  a  po in te r  expression i s  e i t h e r  a  po in te r  va r i -  
a b l e  o r  a  func t ion  reference;  t h e r e  a r e  no "operators" t h a t  y i e l d  a pointer  
va lue  a s  r e s u l t .  

-.- . . .  . . . .  -- ........ - -. - . .. . .  ......-..--..... " ..... . ..- . ..-- ........... . ., 

.This  d i scuss ion  of based v a r i a b l e s  has  served t o  show t h e  uses  of pointer  
va lues :  they a r e  used t o  "locate" based var iables- tha t  ' s  a l l :  

The process of l o c a t i n g  a based variable is c a l l e d  p o i n t e r  q u a l i f i c a t i o n .  
A l l  of our examples have been examples of e x p l i c i t  po in te r  q u a l i f i c a t i o n  
( i n  which t h e  po in te r  expression used t o  l o c a t e  t h e  based v a r i a b l e  is  
w r i t t e n  e x p l i c i t l y  a s  p a r t  of t h e  based reference ,  using t h e  po in te r  qual- 
i f i c a t i o n  symbol.+ ) .  In  another  form, i m p l i c i t  . po in te r  q u a l i f i c a t i o n ,  
t h e  qua l i fy ing  po in te r  expression is  written as p a r t  of t h e  BASED attribute 
and is  omitted from t h e  based reference ,  as i n :  

DCL B FIXED BINARY (31) BASED (P);  
P = ADDR(E); 
B = B + l ;  
P = ADDR(F) ; 
B = B + l ;  



Thi s  causes  1 t o  be  added f i r s t  t o  E ,  then  t o  F. The i m p l i c i t  p o i n t e r  
q u a l i f i c a t i o n  can be  over r idden  on a p a r t i c u l a r  based r e f e r e n c e ,  a s  i n  

B = Q + B + l ;  

There i s  n o t  much going f o r  i m p l i c i t  p o i n t e r  q u a l i f i c a t i o n .  It i s  j u s t  a 
convenience f e a t u r e  t h a t  saves  w r i t i n g  i n  c e r t a i n  ca ses .  .An unqua l i f i ed  
based r e f e r e n c e  such as B f a i l s  t o  convey t o  t h e  r eade r  t h a t  t h e  l o c a t i o n  
of B is  determined dynamically and is  g iven  by t h e  va lue  of an  expres s ion  
appear ing  elsewhere i n  t h e  program. We thus  recommend t h a t  e x p l i c i t  p o i n t e r  
q u a l i f i c a t i o n  always b e  used. 

We must emphasize t h a t  a based v a r i a b l e , . B ,  d e c l a t e d  wi th  d a t a  t y p e  a t t r i -  
b:utes a t t r ,  can  only  b e  used t o  acces s  s t o r a g e  belonging t o  a v a r i a b l e  
'having t h e  a t t r i b u t e s  a t t r .  Thus, execut ion  of t h e  s ta tement  1 a b e l e d . L  i n  

DCL V 1  a t t r l  ; 
DCL V2 a t t r 2  BASED; 
DCL P PTR; 
P = ADDR(V1) ; 

.L: s o m e  r e f e r e n c e  t o  P -t V2; 
i s  i n  e r r o r  u n l e s s  a t t r l  and a t t r 2  are t h e  same. ( a t t r l  and a t t r 2  need no t  
be  e x p l i c i t l y  dec l a red ,  a s  shown; t hey  may, of course ,  be  . a t t r i b u t e s  acqui red  
c o n t e x t u a l l y  o r  i m p l i c i t l y  i n  t h e  g e n e r a l  ca se . )  One s l i g h t  except ion  t o  
t h e  requirement  f o r  matching of a t t r i b u t e s  i s  g iven  later.  

A s  a consequence of t h e  above r u l e ,  
DCL V 1  FLOAT DEC ( 6 ) ;  
DCL V2 BIT (32) ALIGNED BASED; 
DCL P PTR; 
P = ADDR (Vl) ; 
DCL B32 BIT (32) ; 
L: B32 = P -t V2; 

is  i l l e g a l  (execut ion  of t h e  s ta tement  l abe l ed .  L is. i n  e r r o r ,  even though a 
FLOAT DEC ( 6 )  v a r i a b l e  occupies  32 b i t s  i n  our  implementat ion) .  It .is j u s t  
a s  i l l e g a l  t o  l ook  a t  s t o r a g e  through " d i f f e r e n t "  a t t r i b u t e s  t han  t h e  ones 
implied upon i t s  a l l o c a t i o n ,  us ing  based v a r i a b l e s ,  as i t  is wi th  def ined  
v a r i a b l e s  ( s e e  Lesson 3 ) .  The purpose of  t h i s  Is t o  guarantee  tha.t a l e g a l  
program h a s  t h e  same meaning i n  a l l  implementations.  

Now what does a based r e f e r e n c e  s u c h . a s  P -t B ( I ) , ; w h e r e  B is  a based a r r a y ,  
mean? Th i s  is read  " the  I - t h  element of t h e  a r r a y  B po in ted  t o  by P." 'Tha t  
is, t h e  v a l u e  of P must b e  t h e  add res s  of  an  a r r a y  having t h e  same a t t r i b u t e s  
as B ( i nc lud ing  t h e  dimension a t t r i b u t e ) .  Note t h a t , i t  is  t h e , a d d r e s s  of  t h e  
whole a r r a y  and n o t  t h e  address  of t h e  I - th  element.  Example: 

DCL B (10) FIXED B I N  (31) BASED; 
DCL C - FIXED B I N  (31) BASED ; 
DCL P PTR; 
DCL V (10) FIXED B I N  (31); 
P = ADDR(V) ; 



P -+ B i s  a r e f e r e n c e  t o  t h e  whole a r r a y  V.  
P -+ B(I) i s  a r e f e r e n c e  t o  V(1). 
P + C i s  i l l e g a l ,  because P does not  point  t o  a  s c a l a r  FIXED BINARY (31) 

v a r i a b l e ;  it p o i n t s  t o  an a r r a y .  
P = ADDR(V(J)) ; 
P -+ C i s  now l e g a l .  It i s  a re fe rence  t o  V(J) - o r ,  more p r e c i s e l y ,  

V G ) ,  where j was t h e  va lue  of J when t h e  address of V(J) was taken. 
C has  t h e  same d a t a  type (and s t r u c t u r i n g )  a t t r i b u t e s  a s  an element 
of V ( t h a t  is ,  a s  what P po in t  t o ) ,  namely, s c a l a r  FIXED BINARY (31).  

P -+ B i s  i l l e g a l  because P doesn ' t  po in t  t o  an a r r a y ;  i t  po in t s  t o  a  
s c a l a r .  

P -+ B(1) i s  i l l e g a l  f o r  t h e  same reason. 

By t h e  same token, P + S.T means " the  T component of t h e  s t r u c t u r e  S pointed 
t o  by P." P must have a s  va lue  t h e  address  of a  v a r i a b l e  having t h e  a t t r i -  
b u t e s  ( inc luding s t r u c t u r i n g )  of S. Example: 

DCL 1 S BASED, 
2 T FLOAT, 
2 u, 

3 .  V FIXED BIN (15) ,  
3 W CHAR ( 3 ) ;  

DCL 1 X LIKE S STATIC; 
DCL 1 Y LIKE S.U BASED; 
DCL .P PTR; 
P = ADDR(X) ; . . 
P -t S is a r e f e r e n c e  t o  X .  
P -+ S.U i s  a r e fe rence  t o  X.U. 
P -+ S . U . V  is  a reference t n  X.1T.V. . ,  

P -+ Y i s  i l l e g a l ,  because t h e  a t t r i b u t e s  of Y a r e  not  t h e  same a s  what 
P p o i n t s  t o ,  i .e . ,  a r e  not  t h e  same a s  those  of X. 

P = ADDR(X.U); 
P + Y i s  now l e g a l ,  s i n c e  Y has t h e  same a t t r i b u t e s  a s  what P po in t s  t o ,  

i . e . ,  a s  X . U ,  namely, a s t r u c t u r e  c o n s i s t i n g . o f  a  FIXED BIN (15) 
i t e m  followed by a CHAR(3) i tem, both  one l e v e l  removed from the  
p a r e n t a l  level. , 

Of what use  i s  any of t h i s ?  So f a r  w e  have seen how v a r i a b l e s  t h a t  a l ready 
e x i s t ,  i . e . ,  t h a t  have had s t o r a g e  a l l o c a t e d  t o  them presmably  a s  the  r;esult 
of a s t a t i c ,  automatic,  o r  con t ro l l ed  a l l o c a t i o n ,  may be  accessed through a 
s imi la r ly - s t ruc tu red  based v a r i a b l e ,  which does not  have any s to rage  of i t s  
own ( i . e . ,  which se rves  only a s  a  s o r t  of template t h a t  can be moved around). 
But t h i s  doesn ' t  provide much more f a c i l i t y  than o the r  techniques f o r  looking 
a t  t h e  same s t o r a g e  through d i f f e r e n t  v a r i a b l e s  (e .g. ,  through parameters o r  
def ined v a r i a b l e s ,  n e i t h e r  of which has any s to rage  of i t s  own). 

The main 'use  f o r  based s to rage  i s  a technique c a l l e d  "list processing" which 
u t i l i z e s  c e r t a i w t h i n g s  we haven' t  described y e t  (next  s e c t i o n ) .  But the  
f a c i l i t i e s  we. have described s o  f a r  form t h e ' b a s i s  of many "system program- 
ming" a p p l i c a t i o n s  when combined with something l i k e  "UNSPEC1'-ing an absolute  



integer value into a pointer variable to gain access to an absolute memory 
location not "belonging" to a variable allocated during the execution of the 
PL/I program. . That such applications are made implementation-dependent by 
the.use of UNSPEC is not objectionable because, after all, the "system" 
which is the object of its processing is what defines the "implementation," 
in a sense. You do not require a program that accesses IBM OS control blocks, 
for instance, to run on a Univac system. 

Any of the !'illegal" uses of pointer qualification demonstrated above repre- 
sent violations of the ANSI standard. As with any such language violation, 
the meaning of the program in not defined by the language rules and an im- 
plementation may do what. it wants. Three possible ways an implementation may 
11 .react1' to a language violation are as follows: 

(a) Generate code which assumes no violation has occurred. This ap- 
proach leads to the most efficient program when, in fact, no vio- 
lation of language rules occurs. When one does, however, the 
result is often unpredictable. Sometimes it may be predictable 
and useful, and many technically illegal (and potentially unex- 
portable) programs are written on this basis. '1n any event, the 
result is not documented officially: you either hear about it 
from someone else, discover it'by accident, discover it by looking 
at.generated code, or assume something incorrect about the langu- 
age itself which turns out to be a property of the implementation 
and not the language. 

(b) Permit the violation and document the consequences.. This is often 
done when those consequences are useful and consistent within an 
implementation, and when they dontt.change the meaning of'a program 
which doesn't rely on them. This is called an "implementation 
extension. 1 I 

, (c) Check for the violation and report an error. This differs from (b) 
in two respects: extra code is specifically generated (or executed) 
to detect violations; and when a violation is detected, no way is 
provided to extract a useful result from it. For instance, an im- 
plementation may raise the'ERROR condition in such an instance. 
Recall from Lesson 6 that there is no way to'return to the point of 
interrupt after ERROR is raised. 

With respect to illegal uses of pointers, the Optimizing compiler takes approach 
(a) and the Checkout compiler takes approach (c). 

It is. time to catch up with references: read LRM.211 - LRM 215 and the. entry 
for ADDR in LRM 18. 

11.4. Allocating based storage. 

A based variable can be used in another way: to allocate some storage dynam- 
tc ally. For example : 



DCL B (10).  FIXED B I N  (31) BASED; 
DCL P PTR; 
ALLOCATE B SET (P) ; 

The ALLOCATE s ta tement  causes a genera t ion  of s to rage  s u f f i c i e n t  t o  hold a 
v a r i a b l e  having t h e  a t t r i b u t e s  of t h e  b a s e d v a r i a b l e  t o  be  a l l o c a t e d ,  and i t  
causes  t h e  address  of t h a t  genera t ion  of s to rage  t o  be  assigned t o  t h e  ind ica ted '  
p o i n t e r  v a r i a b l e .  Note t h a t  i f  t h e  BASED a t t r i b u t e ' i n  t h e  d e c l a r a t i o n  o f . t h e .  
based v a r i a b l e  .contains a re fe rence  to.  a po in te r  v a r i a b l e ,  t h e  SET opt ion  of t h e  
ALLOCATE statement may b e  omit ted;  t h e  address of the  new genera t ion  i s  assigned.  
t o  t h a t  p o i n t e r  v a r i a b l e .  Example: 

DCL X '., . BASED (P);  
ALLOCATE X ;  

Here, t h e  address  of t h e  s t o r a g e  a l l o c a t e d  dynamically i s  assigned t o  P. 

W e  saw i n ' l e s s o n  5 how t h e  ALLOCATE statement i s  used t o  a l l o c a t e  a new gen- 
e r a t i o n  of s to rage  f o r  a con t ro l l ed  v a r i a b l e .  No address i s  re turned.  The 
previous genera t ion  i s  "stacked," and subsequent references  t o  t h e  con t ro l l ed  
v a r i a b l e  r e f e r  t o  i t s  most recent  generat ion.  A FREE statement r e t u r n s  t h e  
s t o r a g e  belonging t o  the  c u r r e n t  genera t ion  and "unstacks" the  previous one, 
making i t  c u r r e n t .  

When t h e  ALLOCATE s ta tement  is  used t o  a l l o c a t e  s torage .  f o r  a based v a r i a b l e ,  
you a r e  handed t h e  address  of the new gene.rati.nn.. You use  t h a t  s u b s ~ q u a r i f l ~  
t o  l o c a t e  the  s t o r a g e  f o r  t h a t  genera t ion .  You may a l l o c a t e  mul t ip le  gener- 
a t i o n s .  Providing you s a v e ' t h e i r  addresses i n  d i f f e r e n t  po in te r  v a r i a b l e s  
you w i l l  be  a b l e  t o  access  a l l  of them (compare t o  con t ro l l ed  v a r i a b l e s ,  where 
you can on ly  access  t h e  most r ecen t  genera t ion) .  Example: 

DCL B ... BASED; 
DCL (P,Q) PTR; 
ALLOCATE B SET (P), B SET (Q); 
P + B = l ;  
Q + B =  2;  

. P + B = P + B / Q + B ;  . . 

Note t h a t  i f  you a r e  n o t  c a r e f u l  you can e a s i l y  l o s e  t r a c k  of s to rage  a l l o c a t e d  
dynamically through a based v a r i a b l e .  For example, 

ALLOCATE .B SET (P) ; 

ALLOCATE B SET (P); 
It is  assumed t h a t  t h e  va lue  of P is  no t  copied , in to  any o the r  po in te r  v a r i -  
a b l e  between t h e s e  two statements.  . Then, the  second a l l o c a t i o n  ass igns  a new 
v a l u e  t o  P. You subsequently have no way of accessing t h e  f i r s t  a l l o c a t i o n  
of B - o r  of recovering i t s  s torage .  It is  l o s t  forever!  



The FREE s ta tement  i s  used t o  r e l e a s e  s t o r a g e  acqui red  dynamically f o r  a 
based v a r i a b l e  (we saw i t  used i n  Lesson 5 f o r  c o n t r o l l e d  v a r i a b l e s ) .  You 
have t o  q u a l i f y  t h e  gene ra t ion  of t h e  based v a r i a b l e  being f r e e d ,  u s ing  e i t h e r  
e x p l i c i t  o r  i m p l i c i t  p o i n t e r  q u a l i f i c a t i o n .  Example: 

FREE P -t B; 
C l e a r l y ,  you can f r e e  gene ra t ions  of based v a r i a b l e s  i n  any o r d e r ;  they  a r e  
no t  r equ i r ed  t o  be  f r e e d  i n  t h e  o r d e r  of a l l o c a t i o n ,  o r  t h e  r e v e r s e  of t h a t ,  e t c .  

Once a  gene ra t ion  of s t o r a g e  has  been a l l o c a t e d  f o r  a  based v a r i a b l e ,  t h a t  
s t o r a g e  b e a r s  no i n t i m a t e  r e l a t i o n s h i p  t o  - t h a t  based v a r i a b l e .  Any based 
v a r i a b l e  having t h e  same a t t r i b u t e s  ( i nc lud ing  s t r u c t u r i n g )  may be used t o  
acces s  i t  ( i n  conjunct ion  wi th  t h e  a p p r o p r i a t e  p o i n t e r  v a l u e ) .  I n  t h i s  re -  
gard ,  t h e  gene ra t ion  of s t o r a g e  i s  i n d i s t i n g u i s h a b l e  from t h a t  belonging t o  a  
non-based v a r i a b l e  which happens t o  be accessed through a based v a r i a b l e  and 
a  p o i n t e r  va lue  obta ined  by t ak ing  t h e  ADDR of t h e  non-based v a r i a b l e ,  a s  was 
demonstrated e a r l i e r  i n  t h i s  l e s son .  .Note, .however ,  t h a t  t h e  only  kind of 
s t o r a g e  t h a t  can be  f r e e d  by a  FREE s ta tement  naming a based v a r i a b l e  i s  
s t o r a g e  t h a t  was a l l o c a t e d  by an  ALLOCATE s ta tement  f o r  a s i m i l a r  based v a r i a b l e .  

I n  Lesson 5 we Said t h a t  i n i t i a l i z a t i o n  implied by the'INITIAL a t t r i b u t e  t a k e s  
p l a c e  upon a l l o c a t i o n .  This  is ,  of course ,  t r u e  a l s o  f o r  based v a r i a b l e s .  

We have now seen  two ways t h a t  new p o i n t e r  va lues  a r e  generated:  by r e f e r e n c e  
t o  t h e  ADDR b u i l t i n  f u n c t i o n  and by a l l o c a t i o n  0 f . a  based v a r i a b l e .  

See LRM 216, LRM 217, and r e l e v a n t  p a r t s  of LRM 90. 

11.5. Adjus tab le  e x t e n t s  f o r  based v a r i a b l e s .  

Based v a r i a b l e s  can have a d j u s t a b l e  e x t e n t s ,  t h a t  is ,  a r r a y  bounds and s t r i n g  
l e n g t h s  g iven  by t h e  v a l u e s  of exp res s ions  appearing i n  t h e i r  d e c l a r a t i o n s .  
However, i n  t h e  c u r r e n t  language you must u se  ano the r  o p t i o n  i n  conjunct ion  
wi th  t h e s e ,  and t h e  i t e m s  con ta in ing  a d j u s t a b l e  e x t e n t s  can fur thermore  only 
e x i s t  a s  members of a  based s t r u c t u r e .  .The a d d i t i o n a l  o p t i o n  i s  c a l l e d  t h e  
REFER op t ion .  An example fo l lows:  

DCL N FIXED BINARY (15);  
DCL 1 S BASED, 

2 L FIXED B I N  (IS), 
2 A (N REFER (S .L)) FLOAT; 

A is  a une-dimensional a r r a y  of FLOAT elements  and i s  a member of t h e  s t r u c -  
t u r e  S. O n ' a l l o c a t i o n  of S, t h e  upper bound of A i s  taken  t o  be t h e  va lue  of 
N. That de te rmines  how much s t o r a g e  is  . a l l oca t ed .  That v a l u e  i s  then  auto-  
m a t i c a l l y  ass igned  t o  S.L i n  t h e  newly a l l o c a t e d  gene ra t ion  of S.  On any 
subsequent r e f e r e n c e  t o  t h i s  gene ra t ion  of S, t h e  element S.L is consul ted  
t o  f i n d  t h e  upper bound of S.A ( i f  t h a t  i s  needed f o r  any th ing ) .  C l e a r l y ,  
you can  f r e e l y  a s s i g n  va lues  t o  S.L a f t e r  a l l o c a t i o n  of S ,  b u t  on any r e f e r -  
ence t o  S.A (o r  an  element t h e r e o f )  t h e  va lue  of S.L must b e  what i t  was when 
S w a s  a l l o c a t e d .  I n  p a r t i c u l a r ,  S.L must have i t s  o r i g i n a l  va lue  when S is  
f r e.ed , 



For d i f f e r e n t  a l l o c a t i o n s  of S, N may have a d i f f e r e n t  va lue .  Thus, t h e  
d i f f e r e n t  genera t ions  of S would con ta in  a r r a y s  wi th  d i f f e r e n t  upper bounds. 
Each genera t ion  of S would con ta in  t h e  upper bound ( i n  S.L) of i ts own com- 
ponent A. We c a l l  such s t r u c t u r e s  se l f -def in ing data. '  

A based s t r u c t u r e  d e c l a r a t i o n  may conta in  any number of ad jus tab le  e x t e n t s  
and REFER opt ions .  There a r e  a  few r u l e s  t h a t  guarantee t h a t  a  s t r u c t u r e  can - 
be "mapped" when a r e f e r e n c e  i s  made t o  i t .  For example, each r e f e r  ob jec t  
( the  s t r u c t u r e  base  element named i n  a REFER option) must precede the  com- 
ponent whose d e c l a r a t i o n  con ta ins  it .  See LRM- 218 through- LRM 220. 

The REFER op t ion  e x i s t s  i n  the ,same form i n  t h e  ANSI standard.  I n  add i t ion ,  
any e x t e n t  may b e  given by an expression without t h e  REFER opt ion ,  and such 
an e x t e n t  need no t  belong t o  a  s t r u c t u r e  member. The expression i s  evaluated 
upon a l l o c a t i o n  and whenever n e c e s s a r y ' t o  "map" t h e  v a r i a b l e  t o  which i t  
a p p l i e s ,  subsequently;  i n  t h e  l a t t e r  case  i t . m u $ t  g ive  the  same value a s  i t  
d i d  on a l l o c a t i o n .  Example: 

N FIXED RXN; 
DCL A (N) FLOAT BASED; 
DCL (P,Q) PTR; 
N = some va lue  (value 1 ) ;  
ALLOCATE A SET (P) ; 
N = some o t h e r  va lue  (value 2 ) ;  
ALLOCATE A SET (Q); 

On any re fe rence  t o  t h e  genera t ion  of A loca ted  by P, N must have "value 1" 
and on any referenc'e t o  Q -+ A i t  must have "value 2." 

11.6. L i s t  processing.  

The va lue  of a l l o c a t i n g  mul t ip le  genera t ions  of a  based v a r i a b l e  i s  l imi ted  
by your a b i l i t y  t o  s t o r e  a l l  t h e  po in te r  va lues  used t o  l o c a t e  them. For 
i n s t a n c e ,  i f  you use  an a r r a y  of 100 elements t o  s t o r e  po in te r  va lues ,  you 
c a n ' t  keep t r a c k  of more than 100 simultaneous genera t ions ,  even though you 
could allocate more. 

The t r u l y  outstanding value  of based v a r i a b l e s  and po in te r s  i s  t h a t  the  gen- 
e r a t i o n s  of t h e  based v a r i a b l e s  themselves can conta in  the  ~ o i n t e r  va lues  
used t o  access  " re la ted"  genera t ions .  This  i s  the  essence of l i s t  processing. 
It is  a way of organizing,  a l l o c a t i n g ,  manipulating, and referencing an 
unbounded amount of d a t a  r e l a t e d  i n  some use fu l  way (bounded only by the  
t o t a l  amount of memory a v a i l a b l e ) .  The r e l a t i o n s h i p s  between da ta  i t e m s  (or  
o rgan iza t ion  imposed on them) charac te r i ze  c e r t a i n  l o g i c a l  p roper t i e s  of the  
d a t a  a n d , d e f i n e  how you may access  them. 

Such a c o l l e c t i o n  of d a t a  i tems i s  c a l l e d  a l i s t  s t r u c t u r e .  To repea t :  i t  
i s  a c o l l e c t i o n  of m u l t i p l e  generat ions of based v a r i a b l e s  i n  which each gen- 
e r a t i o n  i s  an aggregate which conta ins  both problem-dependent d a t a  and pointer  
v a r i a b l e s  used t o  reach r e l a t e d  genera t ions .  I n i t i a l  e n t r y  i n t o  such a 



c o l l e c t i o n  i s - b y  means of a  p o i n t e r  va lue  (or  maybe s e v e r a l )  he ld  e x t e r n a l  
t o  t h e  c o l l e c t t o n  i t s e l f .  

A l ist s t r u c t u r e  may t a k e  many forms. Some examples are p i c t o r i a l i z e d  below. 
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In these diagrams we have used to designate a unique pointer value which 
doesn't point to anything. Such a pointer value is returned by the NULL 
builtin function. See LRM.18. Even though NULL( ) is a function reference, 
it is pekmitted.as an initial value for a static pointer variable, e-g,, 

DCL P PTR STATIC INIT (NULL( ) ) ;  

The following example shows- a procedure OBSERVE that maintains a list of ti . 

unique character string values that are presented to it along with a count 
of the number of times each has been observed. The list is initially empty. 
The pointer variable HEAD gives access to the list. At all times entries in 



' the list are maintained in "sorted" order, so that we don't generally have 
to scan the whole list to determine that an entry is not present. Study it 
carefully and convince yourself that the. algorithm works in all these cases: 

(a) An entry is being added to an empty list. 
(b) An entry is being added before the first entry. 
(c) An entry is being added after the last entry. 
(d) An entry is being inserted between two existing entries. 

The special requirements of these cases are as follows (check that they are 
met) : 

(a) HEAD has to be made to point to the new entry. The new entry's 
NEXT component must be set to the null pointer value. 

(b), HEAD has to be made to point to the'new entry. The new entry's 
NEXT component must be made to point to the previously first entry. 

(c) The last entry's NEXT component must be made to point to the new 
entry. The new entry's NEXT component must be set to the null 
pointer value. 

(d) The "previous" entry's NEXT component must be made to point to .the 
new entry. The new entry's NEXT component must be made to point 
to the entry that was after the "previous" entry, i.e:, to the 
I1 next" entry. 

OBSERVE: PROC (S); 
DCL S CHAR (10); 

DCL HEAD PTR STATIC EXT INIT (NULL ( ) ) ; 
DCL 1 ENTRY BASED, 

2 NEXT PTR, 
2 T CHAR (lo), 
2 COUNT FIXED BIN (15); 

DCL NEXT FIELD PTR BASED; 
/* NEXT FIELD IS 'A TEMPLATE GIVING ACCESS E I ~ E R  TO HEAD OR TO SOME 
ENTRY.NEXT */ 

DCL (P,.Q,R) PTR STATIC; 
DCL (NOT - FOUND, SEARCHING) BIT (1) ; 

NOT - FOUND, SEARCHING = '1'B; 
P = ADDR(HEAD) ; 

/* IF P STILL HAS THIS VALUE LATER, P + NEXT - FIELD ACCESSES HEAD * /  
Q = HEAD; 

/* IF LIST IS EMPTY, Q HAS VALUE NULL ( ) ;  OTHERWISE,, IT POINTS TO 
FIRST ENTRY * /  

DO WHILE (NOT FOUND 6 , SEARCHING 6 Q 1 - NULL ( ) ) ; 
IF Q + E~TRY .T < S THEN no; /*KEE~ GOING*/ 
. P = ADDR(Q +, ENTRY .NEXT) ; 

/* REFERENCE TO P + NEXT FIELD. 
LATER REFERENCES AN E~TRY . NMT * / 

Q = Q + ENTRY.NEXT; 
END ; 
ELSE IF Q + ENTRY.T = S THEN /*FOUND IT*/ 

.NOT FOUND = 'O'B; 
ELSE S ~ C H I N G  = 'o'B; /*WENT BEYOM>*/ 

END; 



IF NOT FOUND THEN DO; - 
R = Q ; /*MAY HAVE VALUE NULL ( ) */ 
ALLOCATE ENTRY SET (Q) ; 
Q -t ENTRY.NEXT = R; /*CHAIN NEW TO  RIG^/ 
Q -t ENTRY.T = S; 
Q -t ENTRY.COUNT = 0; 
P -t NEXT-FIELD = Q; /*CHAIN LEFT TO NEW/ 

END ; 

Q -t ENTRY.COUNT = Q -t ENTRY.COUNT + 1; 
END ; 

List structures may be employed in,engineering applications to "model" so- 
phisticated physical systems, such as physical or chemical structures. The 
relationships between data items linked by pointers represent information in 
an abstract sense. Exploitation of this can lead to newer, more natural ways 
of processing information. See LRM 221 through LfiM 222. 

11.7. Areas. 

One normally has no, control over where in storage a based variable is allo- 
cated. Generations of based variables could be scattered all over storage. 
For certain operations you would like to draw a box around a particular list 
structure and then treat the whole list structure (i.e., the contents of the 

. .  box) as a single object. It is possible to do essentially that,'by restricting 
certain based allocations to a particular area of storage and treating that 
area as a. whole object. 

For this purpose we introduce another program-control data type, "area." An 
area variable is declared with the AREA attribute, which includes an area size 
(which has an implementation-defined meaning; in our implementation, it is 
the number of bytes reserved for the area). Example: 

DCL A AREA (5000) ; 
This declares an area variable of size 5000 bytes (plus 16 more for control 
information).' The "value" of an area variable is its contents, including 
the control information. 

Area variables may have any storage class, and internal or external scope; 
they may be parameters, elements of arrays, elements of structures, etc. 
Because'they can be of any storage class, they can even be based. 

The area size specification is the third and final type of "extent. " (The 
other two were array bounds and string lengths.) Static area variables can 
have only constant extents (as is true of extents of any static variables). 
Area variables.of the three dynamic storage classes can have their sizes 
given by expressions (for based areas in the current language, the REFER option 
must be used and the area must be'a component of a structure). Area parameters 
may have an "asterisk extent" indicating inheritance of the extent from the 



a c t u a l  a r e a  argument (which may be d i f f e r e n t  . i n  d i f f e r e n t  i n v o c a t i o n s ) .  

The main purpose of an  a r e a  v a r i a b l e  i s  t o  mark o f f  an  a r e a  of s t o r a g e  in -  
s ide 'wh ich  based a l l o c a t i o n s  may be  made. Generat ions o'f based v a r i a b l e s  
i n  a r e a s  can a l s o  be  f r eed .  (We w i l l  see how t o  do t h e s e  t h i n g s  l a t e r . )  

. . The system manages t h e  space within an  a r e a ;  space  which i s  f r e e d  can b e  
a l l o c a t e d  t o  something e l s e .  An a r e a  v a r i a b l e  i s  au toma t i ca l ly  i n i t i a l i z e d  
t o  t h e  "empty" s ta te  on a l l o c a t i o n .  

Areas may b e  passed as arguments and r e tu rned  a s  func t ion  values. '  They may 
b e  ass igned  t o  o t h e r  a r e a  v a r i a b l e s .  They may se rve '  as r eco rd  v a r i a b l e s  i n  
r eco rd  t r ansmis s ion  s ta tements .  Movement of' an  a r e a  va lue  (by assignment ,  
r eco rd  110, e t c . )  c o n s i s t s  of t h e  mass movement of i ts  con ten t s  and c o n t r o l ,  
in format ion ,  preserv ing  i n t a c t  any l i s t  s t r u c t u r e s  t h a t  happen t o  e x i s t  w i t h i n  
i t .  More on t h i s  l a t e r .  See LRM 223 and LRM 224. 

1'1.8. The EMPTY b u i l t  i n  func t ion .  

The c o n t e n t s  of an  a r e a  v a r i a b l e  may. b e  r e s e t  t o  t h e  i n i t i a l ,  , "empty" s t a t e  
by a s s ign ing  t h e  va lue  of t h e  EMPTY ' b u i l t i n  f u n c t i o n  t o - i t .  T h i s  h a s  t h e  
e f f e c t  of f r e e i n g  a l l  t h e  based gene ra t ions  i n s i d e  t h e  a r e a  a t  once. . S e e  
LRM 225 and t h e  e n t r y  f o r  EMPTY i n  LRM 18.  

11.9. Area assignment and t h e  AREA condi t ion .  

There i s  a c e r t a i n  p o i n t  i n  each  a r e a  beyond which no gene ra t ions  of based 
v a r i a b l e s  e x i s t ;  beyond t h a t  p o i n t  i s  f r e e  space. Up t o  t h a t  po in t  i s  "used" 
space.  Note t h a t  t h e  used space  may c o n t a i n  h o l e s  r ep re sen t ing  f r e e d  gener- 
a t i o n s  ( t h i s  space ,  l i k e  t h e  f r e e  space  a t  t h e  end, i s  a v a i l a b l e  f o r  subse- 
quent a l l o c a t i o n s  i n  t h e  a r e a ) .  

When an a r e a  va lue  ( i . e . ' ,  t h e  va lue  of an  a r e a  v a r i a b l e  o r  a  func t ion  r e f -  
e rence  t h a t  r e t u r n s  an  a r e a  va lue )  is  ass igned  t o  an  a r e a  v a r i a b l e , , o n l y  t h e  
used p o r t i o n  is  copied t o  t h e  t a r g e t .  The c o n t r o l  in format ion  which i s  a l s o  
moved i d e n t i f i e s  t h e  p o r t i o n  of t h e  a r e a  which is  used. I f  t h e  s i z e  of t h e  
t a r g e t  a r e a  i s  i n s u f f i c i e n t  t o  con ta in  t h e  used p o r t i o n  of t h e  a r e a  va lue  
being a s s igned ,  the AREA cond i t i on  occurs .  

Defau l t  s t a t u s  f o r  t h e  AREA c o n d i t i o n  i s  enabled;  i t  cannot be  d i sab led .  I n  
t h e  absence of an e s t a b l i s h e d  on u n i t ,  s tandard  system a c t i o n  i s  t o  i s s u e  a  
message and r a i s e  t h e  ERROR cond i t i on .  . . 

The AREA cond i t i on  i s  one of t h e  few f o r  wh ich ' a  u s e f u l  a c t i o n  is  de f ined  on 
normal r e t u r n  from an  on u n i t .   h he t a r g e t  area . re ference  i s  re-evaluated and 
t h e  assignment i s  re-attempted. I n  o t h e r  words, i n  an AREA on u n i t  you may 



f r e e  . t h e  t a r g e t  area and a l l o c a t e  a  l a r g e r  one, change t h e  va lue  of a  sub- 
s c r i p t  used i n  t h e  t a r g e t  a r e a  r e f e r e n c e ,  o r  change t h e  va lue  of t h e  p o i n t e r  
used t o  l o c a t e  a  b a s e d , a r e a  t a r g e t .  See LRM 226 and t h e  e n t r y  f o r  AREA i n  
LRM' 116. 

. . 

11.10. A l l o c a t i o n  i n  an  a r e a . .  

To a l l o c a t e  a based v a r i a b l e  i n s i d e  an  a r e a ,  u se  t h e  I N  op t ion  of t h e  
ALLOCATE s t a t emen t .  

ALLOCATE B I N  (A) SET (P) ; 
Here, A i s  a n  area v a r i a b l e .  The I N  o p t i o n  i s  a l s o  used i n  t h e  FREE s t a t e -  
ment t o  denote  f r e e i n g  i n  an  area: 

FREE P -t B I N  (A); 

I f  an  .attempt a t  a l l o c a t i o n  i n  an  a r e a  f a i l s  (because of i n s u f f i c i e n t  f r e e  
space)  t h e  AREA c o n d i t i o n  occurs .  On normal r e t u r n  frbm an  AREA on u n i t  
e n t e r e d  f o r  this r e a s o n , .  t h e  a l l o c a t i o n  i s  rea t tempted  a f t e r  re -eva lua t ing  
t h e  a r e a  named i n  t h e  I N  o p t i o n  (which presumably has  been changed i n  t h e  : 

on u n i t ) .  . . 

Question: If  a l ist  s t r u c t u r e  i s  b u i l t  up i n  an  a r e a ,  t h e  va lues  of t h e  
p o i n t e r  v a r i a b l e s  fmrolved w i l l  b e  a b s o l u t e  addresses  of l o c a t i o n s  i n s i d e  ' 

t h a t  a r e a ;  what purpose, then ,  can a r e a  assignment s e rve?  Even though t h e  
based v a r i a b l e ,  g e n e r a t i o n s  a r e  copied i n  such a n  assignment,  none of t h e  
p o i n t e r  v a l u e s  i s  changed. 

'l'o overcome this problem we in t roduce  ano the r  type  of program-control d a t a  
i tem. 

11.11. O f f s e t s .  

An " o f f s e t "  v a l u e  is  an  a d d r e s s - r e l a t i v e  t o  t h e  s t a r t  of t h e  s to.rage a l l o -  
c a t e d  t o  a  p a r t i c u l a r  a r e a  v a r i a b l e .  An o f f s e t  v a r i a b l e  i s  a v a r i a b l e  
which can hold such a  va lue .  An example of a d e c l a r a t i o n  of an  o f f s e t  
v a r i a b l e  is: 

D.CL OFST OFFSET (A) ; 
where A i s  an  a r e a  ' v a r i a b l e .  

O f f s e t  v a r i a b l e s  may be  used e s s e n t i a l l y  fn te rchangeably  w i t h  p o i n t e r  v a r i -  
a b l e s ,  O f f s e t  and p o i n t e r  va lues  may b e  converted i n t o  each o t h e r .  Both 
k i n d s  of  v a r i a b l e s  are c a l l e d ,  because of t h e i r  use and thejr  dnterchange- 
a b i l i t y ,  l o c a t o r  v a r i a b l e s .  

When an  o f f s e t  v a r i a b l e  is  used t o  l o c a t e  a  based v a r i a b l e ,  e i t h e r  i n  exp l i -  
c i t  o r  i m p l i c i t  l o c a t o r  q u a l i f i c a t i o n  (gene ra l i z ing  now on t h e  e a r l i e r  term 



11 po in t e r '  q u a l i f i c a t i o n " )  , t h e  o f f  set va lue  i s  i m p l i c i t l y  converted t o  a 
p o i n t e r  va lue  by adding t o  i t  t h e  address  of t h e  a r e a  named i n  i t s  d e c l a r a t i o n .  

When a  based a l l o c a t i o n  is  made i n  an  a r e a ,  and t h e  SET op t ion  names an o f f -  
set v a r i a b l e ,  t h e  va lue  ass igned  t o  t h e  o f f s e t  v a r i a b l e  is  t h e  o f f s e t  of t h e  
a l l o c a t e d  gene ra t ion  r e l a t i v e  t o  t h e  a r ea .  (Actua l ly ,  a t t e n t i o n  may focus  
on s e v e r a l  d i f f e r e n t  a r e a s  here :  t h e  one named i n  t h e  I N  op t ion  and t h e  one.  
named i n  t h e  d e c l a r a t i o n  of t h e  o f f s e t  v a r i a b l e .  Furtherinore, e i t h e r  of.  t h e s e  
may b e  omi t ted  and s t i l l  implied by v a r i o u s  ' t h i n g s .  See LRM 227. However, 
t o  keep t h i n g s  .simple assume bo th  a r e a s  a r e  t h e  same.) 

By us ing  t h e  f a c i l i t i e s  desc r ibed  h e r e ,  l i s t  s t r u c t u r e s  b u i l t  up w i t h i n  a r e a s  
can be-made t o t a l l y  r e l o c a t a b l e ,  i . e . ,  they  won't con ta in  any abso lu t e '  ad- 
dresses--only r e l a t i v e  ones.. Thus, t h e  list s t r u c t u r e s  r e t a i n  t h e i r  v a l i d i t y  

'when a r e a  va lues  a r e  ass igned ,  and when they  are w r i t t e n  ou t  and l a t e r  read 
back i n  (even i f  they  a r e  read  i n  t o  a  d i f f e r e n t  l o c a t i o n )  . Thus, whole l i s t  
s t r u c t u r e s  may b e  s t o r e d  and r e t r i e v e d  very  e f f i c i e n t l y  a s  r eco rds  i n  record  
d a t a s e t s .  

See LRM 228 through LRM 231. 

11.12. E x p l i c i t  o f f s e t / p o i n t e r  conversion.  

Besides t h e  i m p l i c i t . o f f s e t  t o  p o i n t e r  conversion d iscussed  a l r e a d y ,  t h a t  
conversion may be fo rced  e x p l i c i t l y  u s ing  t h e  POINTER b u i l t i n  f u n c t i o n .  
Suppose a based v a r i a b l e  i s  a l l o c a t e d  i n  a r e a  A and o f f s e t  v a r i a b l e  0  i s  s e t  
t o -  i t s  o f f s e t  i n  A .  Suppose t h e  , a r e a  A is  ass igned  t o  B. B now con ta ins  a  
gene ra t ion  of t h e  based v a r i a b l e  ( c a l l  i t  Q) a t .  t h e  same o f f s e t  a s  t h e  one 
i n  A. 0  may be. used t o  l o c a t e  e i t h e r  t h e  one i n  A o r  t h e ' o n e  i n  B. I f  0  
was dec l a red  a s  

DCL 0  OFFSET (A) ; 
t hen  0 -+ Q locates che m e  i n  A because 0 undergoes i m p l i c i t  conversion t o  
p o i n t e r  r e l a t i v e  t o  t h e  a r e a  (A) w i t h  which i t  was dec l a red .  To l o c a t e  t h e  
Q i n .  B we may write 

POINTER(0, B) -+ Q 
o r  we may a s s i g n  0  t o ,  s ay ,  M, dec l a red  as 

DCL M OFFSET (B) ; 
and then  w r i t e  

M -, Q. 

The OFFSET b u i l t i n  f u n c t i o n  conve r t s  a p o i n t e r  va lue  t o  an  o f f s e t  r e l a t i v e  
t o  t h e . g i v e n  a r e a .  'The  p o i n t e r  v a l u e  must b e  an  address  w i t h i n  t h e  a r e a .  

See t h e  r e l e v a n t  p a r t s  of LRM 18.  

11.13. Locate-mode 110. 



The kind of r eco rd  1 / 0  demonstrated i n  Lessons 8 and 9 is  c a l l e d  move-mode I / O  
because  d a t a  may b e  t r a n s f e r r e d ,  o r  moved, between b u f f e r s  and v a r i a b l e s  i n  
t h e  program.. ( ~ u f  f  srs a r e  used-  f  o r  blocked r eco rds  and i n  o t h e r  c ircumstances .) 
It i s  p o s s i b l e  by us ing  based v a r i a b l e s . t o  g a i n  acces s  t o  d a t a  r i g h t  i n  t h e  
b u f f e r s .  The technique  i s  c a l l e d  locate-mode 1 / 0  because d a t a  i s  loca t ed  d i -  
r e c t l y  i n  t h e  b u f f e r s  and n o t  moved between them and program v a r i a b l e s .  This  
c o n s t i t u t e s  a u se  of based v a r i a b l e s  e n t i r e l y  d i s t i n c t . f r o m  l i s t  process ing  o r  
system programming. 

11.14. READ s t a t emen t  w i t h  t h e  SET op t ion .  ' 

The INTO o p t i o n  of a READ s ta tement  may be  rep laced  by t h e  SET dp t ion  i n  t h e  , . 
c a s e  of a s e q u e n t i a l ,  keyed o r  non-keyed, i n p u t  o r  update  f i l e .  The SET op t ion  
c o n t a i n s  a r e f e r e n c e  t o  a p o i n t e r  v a r i a b l e ,  e .g . ,  

READ FILE (F) SET (P) ; 
'lhe next  record-  ( o r  t h e  d e s i r e d  r eco rd ,  i n  t h e  c a s e  of a keyed f i l e - - i . e . ,  
when t h e  KEY o p t i o n  is  used) is. read  and l e f t  i n  t h e  b u f f e r  ( i n  t h e  c a s e  of 
blocked r eco rds  i t  was probably a l r e a d y . t h e r e ) ;  i ts  addres s  is re tu rned  i n  
t h e  p o i n t e r  v a r i a b l e .  That p o i n t e r .  v a r i a b l e  may be used t o  l o c a t e  a based 
v a r i a b l e ,  th& e f f e c t .  of which i s  t o  acces s  t h e  record r i g h t  t h e r e  i n  t h e  b u f f e r .  

I n  t h e  c u r r e n t  language t h e  f i l e  must have t h e  BUFFERED a t t r i b u t e .  This  
a t t r i b u t e  is n o t  i n  t h e  ANSI s t anda rd ,  and locate-mode I/O can be  done with- 
o u t  i t .  

Once t h e  - next  READ s t a t emen t  f o r  t h e  same f i l e  is  executed,  o r  i f  t h e  f i l e  
is  c losed ,  t h e  p o i n t e r  v a l u e  obta ined  on t h e  previous  read  may no t  be used 
t o  l o c a t e  a , b a s e d  v a r i a b l e .  This  i s  because t h e  con ten t s  of t h e  b u f f e r  may 
have been changed by t h e  subsequent  r ead ,  o r  t h e  b u f f e r  may have d isappeared  
because  of t h e  f i l e  c l o s i n g .  

RW. . .SET and READ...INTO may be  intermixed on t h e  same f i l e  ( a s  w e l l  a s  
READ. . .IGNORE) , 

' How do we know what based v a r i a b l e  t o  u s e  t o  look a t  a record  i n  a b u f f e r ?  
The READ...SET, a l though i t  does gene ra t e  a p o i n t e r  v a l u e ,  i s  u n l i k e  t h e  
ALLUCATE sfatement  and t h e  ADDR b u i l t i n  f u n c t i o n  because no a t t r i b u t e s  a r e  
implied f o r  t h e  s t o r a g e  whose addres s  i s  being r e tu rned .  I f ,  i n  f a c t ,  
d i f f e r e n t  k inds  of r eco rds  can e x i s t  i n  t h e  d a t a s e f ,  and i f  different based 
v a r i a b l e s  would be a p p r o p r i a t e  f o r  t h e  d i f f e r e n t  r eco rds ,  then  t h e  program 
must a n t i c i p a t e  what kind of r eco rd  comes next and u s e  t h e  r i g h t  based 
v a r i a b l e .  It is  i l l e g a l  t o  u se  t h e  "wrong" one because you might address  
s t o r a g e  o u t s i d e  . t he  b u f f e r ,  o r  g e t  t h e  wrong a t t r i b u t e s  f o r  st0rag.e i n s i d e  
t h e  b u f f e r .  The " r igh t "  based v a r i a b l e ,  of cou r se ,  is  one which has  t h e  
same a t t r i b u t e s  and s t r u c t u r i n g  a s  t h e  v a r i a b l e  from which t h e  record was 
p rev ious ly  w r i t t e n .  



One a d d i t i o n a l  freedom is permi t ted  t o  e a s e  t h e  burden of l o g i c a l l y  a n t i c -  
i p a t i n g  what kind of record comes nex t .  The a t t r i b u t e s  of t h e  based v a r i -  . . 

a b l e  through which you acces s  t h e  record  i n  t h e  b u f f e r  on ly  need t o  d e s c r i b e  
a  "head" o r  i n i t i a l  p o r t i o n  of t h e  record .  I . e . ,  i f  a record  i s  r e a l l y  
descr ibed  by a  s t r u c t u r e  such a s  

DCL 1 S1 BASED, 
2 CODE a t t r ,  
2 ... 
* 9  

then  i t  is  l e g a l  t o  r e f e r .  t o  t h a t  s t o r a g e  through a  based v a r i a b l e  dec l a red  
as 

DCL 1 S 2  BASED, 
2 CODE a t t r ;  

I n  o t h e r  words, t h e  e a r l i e r  r u l e  t h a t  t h e  a t t r i b u t e s  o f -  t h e  based v a r i a b l e  
must exac t ly .ma tch  those  of t h e  gene ra t ion  of s t o r a g e  being accessed  w a s  
too  s t r o n g ;  they  only  need t o  match a s  f a r  as' they go. This  permi ts  t h e  . - 

beginning  of t h e  r eco rd  t o  b e  accessed through,  S2.CODE. ~ e p e n d i n g .  on what , .  

i s  found t h e r e ,  you may then  u s e  t h e  same' p o i n t e r  v a l u e  wi th  some o t h e r  
a p p r o p r i a t e  based v a r i a b l e  t o  acces s  t h e  whole r eco rd .  

1 n . o t h e r  words, t h e  s t ruc tu re .mapp ing  r u l e s  a r e  guaranteed by t h e  language 
t o  map a s t r u c t u r e  cha t  matches t h e  beginning of another  s t r u c t u r e  e x a c t l y  
t h e  same a s  t h e  beginning of t h a t  o t h e r  s t r u c t u r e .  

See LRM 232 and LRM 233. 

Note t h a t  a  REWRITE s ta tement  wi thout  t h e  FROM o p t i o n  which fo l lows  a  READ 
s ta tement  w i th  t h e  SET o p t i o n  i s  ve ry  e f f i c i e n t  ' indeed;  t h i s  is  e f f e c t i v e l y  
a  no-op. The whole b u f f e r  i s  even tua l ly  w r i t t e n  back o u t  t o  t h e  d a t a s e t  
( a s  t h e  r e s u l t  of execut ing  one o r  more REWRITE'statements,for r eco rds  i n  
t h e  b u f f e r ) ;  b u t  on ly  a f t e r  t h e  whole b u f f e r  has  been processed ( i . e . ,  when 
a  subsequent read  des igna te s  a re,cord n o t  i n  t h e  b u f f e r ,  o r  when t h e  f i l e  
i~ cloec 'd) ,  . 

11.15. The LOCATE s t a t emen t .  . . 
\ 

Locate-mode ou tpu t  i s  performed by 'execut ing a LOCATE s ta tement  i n s t e a d  of 
a  WaPTE s ta tement .  It a p p l i e s  t o  s e q u e n t i a l  ou tpu t  f i l e s  which have t h e  
BUFFERED a t t r i b u t e .  

A s ta tement  such as 
LOCATE B FILE (F) SET (P) ;  

causes  a gene ra t ion  of s t o r a g e  f o r  t h e  based v a r i a b l e  B t o  be  a l l o c a t e d . i n  
t h e  next  a v a i l a b l e  s l o t  i n  t h e  b u f f e r  f o r  f i 1 e . F .  The addres s  of t h a t  
gene ra t ion  is  re tu rned  i n  P. P may subsequent ly be  used t o  add res s  t h e  
record  i n  t h e  b u f f e r  by l o c a t i n g  B.  



Notice we s a i d  B i s  a l l o c a t e d  i n  t h e  b u f f e r .  That means t h a t  a d j u s t a b l e  . a . 
e x t e n t s  a r e  eva lua t ed  a t  t h a t  t ime and any i n i t i a l i z a t i o n s  s p e c i f i e d  by 
t h e  d e c l a r a t i o n  of B a r e  c a r r i e d  ou t  then.  

The gene ra t ion  of t h e  based v a r i a b l e  a l l o c a t e d  i n  t h e  b u f f e r . r e m a i n s  ac- .  
c e s s i b l e  u n t i l  t h e  nex t  execut ion  of e i t h e r  a LOCATE s ta tement  o r  a WRITE 
s t a t emen t  f o r  t h e  same f i l e ,  o r  u n t i l  t h e  f i l e  i s  c losed .  A t  t h a t  t i m e  
(bu t  n o t  be fo re )  t h e  b u f f e r  i s  e l i g i b l e  f o r  t ransmiss ion  t o  t h e  d a t a s e t .  

See LRM 234 through LRM 236. 

11.16. Review. 

New p o i n t e r  v a l u e s  a r e  "generated" by: 
(a )  'Reference t o  t h e  ADDR b u i l t i n  f u n c t i o n .  
(b) Reference t o  t h e  NULL b u i l t i n  f u n c t i o n .  
( c )  By a l l o c a t i o n  of a based v a r i a b l e  no t  i n  an  a r e a .  
(d)  Locate-mode inpu t  (READ,..SET). 
( e )  Locate-mode output  (LOCATE) . 
( f )  Conversion from an  o f f s e t  va lue .  
(g)  Record i n p u t  o p e r a t i o n s  ( t h e  v a l u e  may n o t  be v a l i d ) .  

They a r e  propagated by assignment.  
They may b e  used  i n  t h e  fo l lowing  ways: 

( a )  To l o c a t e  a gene ra t ion  of a based v a r i a b l e .  
(b) I n  e q u a l i t y  comparison ope ra t ions .  
( c )  I n  r eco rd  output  ope ra t ions .  

New o f f s e t  v a l u e s  are "generated" by: 
( a )  A l l o c a t i o n  of a based v a r i a b l e  i n  an  a r e a .  
(b)  Conversion from a p o i n t e r  va lue .  
( c )  Record i n p u t  o p e r a t i o n s  ( t h e  v a l u e  i s  v a l i d )  

They a r e  propagated by assignement.  
They may b e  used a s  fo l lows:  

( a )  To l o c a t e  a gene ra t ion  of a based v a r i a b l e  ( a f t e r  conversion t o  
pointer).  

(b)  and ( c ) :  Same a s  f o r  p o i n t e r .  

New a r e a  v a l u e s  a r e  "generated" by: 
( a )  Reference t o  t h e  EMPTY b u i l t i n  func t ion .  
(b) Updating a n  a r e a  v a r i a b l e  by a l l o c a t i n g  o r  f r e e i n g  a based 

v a r i a b l e  i n  i t ,  
( c )  Record i n p u t  ope ra t ions .  

They a r e  propagated by assignment.  
They may b e  used a s  fo l lows:  

( a )  To l o c a l i z e  a based a l l o c a t i o n .  
(b)  I n  r eco rd  output  ope ra t ions .  



1 1 . 1 7 .  Homework p r o b l e m s .  

(I11~) W h a t  s i m p l e r  e x p r e s s i o n  has the k a m e  v a l u e  as ADDR(P + B) ? ' 

A s  ADDR(X) + B? 

( I l l B )  In  the.  s t a t e m e n t  l a b e l e d  L ,  i s  the reference t o  the  b a s e d  v a r i a b l e  
B a reference t o  E o r  t o  F ?  

DCL P PTR; 
DCL ( E , F )  .. . . ; 
DCL B . . . BASED (P ) ;  
P = ADDR(E) ; 
BEGIN ; 

DCL P PTR; 
P = ADDR (F)  ; , . 
L :  B = B + l ;  . . 

END ;. 

. . 

( i / l l C )  What p r o b l e m s  o r  errors d o  y o u  see h e r e ?  ~ s s u m e  appropr ia t e  
declarations.  

(a) DO 'I = 1 T 0 ' 1 0 ;  
. ALLOCATE X SET (P)  ; 

P + X = A ( 1 ) ;  
END; 
DO I = 10 TO. 1 BY -1; . . 

B ( 1 1  - I) = P + X; 
FREE P + X; . , 

END; 

(b ) '  DCL S FLOAT STATIC, 
T F'LOAT BASED; 

P =. ADDR(S) ; 
ALLOCATE T SET (Q) ; 
Q -, T = 2 0 :  
P + T = 3 5 * Q + T ;  
FREE Q + T ,  P + T ;  

(lI1I.D) W h a t  d o e s  the c o m p i l e d  code have t o  d o  on any reference t o  P + S.U 
w i t h  ' S d e c l a r e d  as f o l l o w s ?  

. . DCL 1 S BASED, 
2 N FIXED BIN,  

. . 2 T (K REFER ( S  .N) ) FLOAT, 
2 U CHAR (1) ; 

Why i s  the  f o l l o w i n g  not  p e r m i t t e d ?  
DCL 1 S BASED, 

2 T (K REFER (s.N))  OAT, 
2 N FIXED BIN,  
2 U CHAR (1) ; 



(iI11E) Con t r a s t  based and de f ined  v a r i a b l e s .  

(U11F) What do t h e  fo l lowing  mean'? 
GO TO P -+ L; 
CALL P + Q; 

(#11G) R e c a l l  t h e  example of t h e  procedure OBSERVE i n  Sec t ion  11.6 .  A 
t y p i c a l  r e a l i z a t i o n  of t h i s  procedure f r e q u e n t l y  omits  t h e  based 
v a r i a b l e  NEXT-FIELD and r e p l a c e s  two s ta tements  w i th  o t h e r s ,  as 
fo l lows  : 

P = ADDR(Q + ENTRY~NEXT); 
by P = Q; 

and P + NEXT-FIELD = Q 

by P -, ENTRY.NMT = Q; 

Under t h e  Optimizing compiler t h e  modified program works and has  
t h e  d e s i r e d  e f f e c t . '  I n  f a c t ,  i t  gene ra t e s  t h e  same code a s  t h e  
one i n  Sec t ion  1l.b. However, it is eechnlcally i l l e g a l ,  arld w u n ' ~  
g e t  p a s t  t h e  Checkout compiler .  Why i s  i t  i l l e g a l ?  Hint :  When 
c o n t r o l  reaches  t h e  modified s ta tement  

P -t ENTRY. NEXT = Q ; 
t h e  f i r s t  t ime,  i . e . ,  when t h e  f i r s t  e n t r y  i s  being added t o  t h e  
( c u r r e n t l y  empty) l i s t ,  t o  what 'does  P r e a l l y  p o i n t ?  I . e . ,  what 
a r e  t h e  a t t r i b u t e s  of t h e  gene ra t ion  of s t o r a g e  t o  which P p o i n t s ?  
A r e  t h e s e  t h e  same a s  those  of t h e  based v a r i a b l e  l o c a t e d ' b y  P? 
Would t h e  modified program work i f  NEXT w e r e . t h e  second o r  t h i r d  
component of ENTRY i n s t e a d  of t h e  f i r s t ?  What about  t h e  o r i g i n a l  
program? 

(iI11H) Suppose a  c a l l  has  j u s t  been made t o  OBSERVE. P and Q a r e  l e f t  
po in t ing  i n t o  t h e  l ist .  When t h e  next  c a l l  i s  made t o  OBSERVE, 
they  w i l l  be  i n i t i a l i z e d  t o  new va lues  i n  p r e p a r a t i o n  f o r  a new 
t r a v e r s a l  of t h e  l is t .  However, i f  t h e  new c h a r a c t e r  s t r i n g  va lue  
presented  on t h a t  c a l l  c o l l a t e s  h ighe r  than  t h e  one i n  t h e  e n t r y  
t o  which Q was l e f t  po in t ing ,  r e s e t t i n g  P  and Q t u r n s  o u t  t o  be  
was t e fu l .  Modify OBSERVE t o  do a n  i n i t i a l  t e s t  of Q -+ ENTRY.T 
a g a i n s t  S, and avoid r e s e t t i n g  P and Q when t h a t  is  unnecessary.  
Make s u r e  t h i s  works t h e  f i r s t  t i m e  OBSERVE i s  en te red  (what w i l l  
Q be  ps in tgng  t o  t h e n ? ) ,  

P and Q have a l r e a d y  been dec l a red  STATXC a n t i c i p a t i n g  t h i s  change. 
The o r i g i n a l  program d id  no t  r e q u i r e  t h a t .  

(U11I) Wri te  a procedure t o  t r a v e r s e  t h e  list b u i l t  by repea ted  c a l l s  t o  
OBSERVE. A t  each e n t r y ,  p r i n t  ENTRY.T and ENTRY.COUNT. F ree  t h e  
e n t r y  b e f o r e  going on t o  t h e  next  one. 



Code the loop using a WHILE-only DO group, i.e., DO WHILE (...); 
Then try to code the loop using the DO...REPEAT of the ANSI lan- 
guage (see Section 6.5). The form will be something like 

DO Q =. initval REPEAT '(nextval) WHILE (cond) ; 
What common, potential error is avoided by using this form? 

Suppose you have a card-image dataset containing a source program. 
Sequence information exists in columns 73-80, but is has been 
corrupted. Write a program that updates the dataset by replacing 
th6 contents of,the sequence field of successive'cards by 00000010,' 
00000020, etc. Use a sequential update file, READ. ..SET, and 
REWRITE without FROM. Comment on the amount of physical I /O  per- 
formed. The based variable used to access a card in the buffer 
should be a structure. Consecutive sequence numbers can be gen- 
erated conveniently by using a numeric picture variable (see Lesson 

(#11K) The technique demonstrated in section 11.14 for decoding a record 
whose address has been supplied by a.READ...SET can be avoided if 
the "record type code" for a record is kept in the previous record. 
Then, every access to a given record can be made by using the cor- 
rect based variable. (The program has to'have some convention a- 
bout the first record, however.) 

Let us focus on the creation of such a dataset, i . e. , one in which 
each record contains information about the "type1' of the next record 
in sequence. Suppose that a program which writes such a dataset 
cannot know the type of a record to be produced until it is.finished 
producing the previous one. What feature of locate-mode output 
(LOCATE) permits the "typeu of the next tecord to be put in the 
previous record after it is logically completed?. 

(#11L) Consider the use of a based self-defining structure to represent 
, .  characrer string data of fixed, but adjustable, length. Different 

generations of the based variable will contain character string. 
values of different lengths. What advantage is gained by repre- 
senting the data this way, instead of using a based varying-length 
string with a fixed maximum length? Show a suitable declaration of 
of such a structure. Write a procedure which accepts a pair of 
pointers to two generations of such a based variable, allocates a 
third whose character string part contains the concatenation of 
their character string parts, frees the two generations, and returns 
a pointer to the new generation. 



12. (a) Miscellaneous features. 
(b) Preprocessor. 

This lesson deals almost exclusively with useful features of our 
implementation which have not been standardized by ANSI. 

12.1. DISPLAY statement. 

The DISPLAY statement allows communication with the operator 
in the form 

DISPLAY ( e x p r )  ; 
the value of e z p r  is convetted (if necessary) to character 
and written on the operator's console. 

In our environment messages to the operator are not 
enc.ouraged and really serve no useful purpose. However, 
they are copied to a job's S'YSMSG output, which may be .use- 
ful. It is probably a good idea, for instance, to open 
file SYSPRINT explicitly very, early in the execution of a 
program just to know that it is definitely "available" for 
program output and system error messages. Before opening 
the file, an UNDEFINEDFILE on unit should be established 
for SYSPRINT. If this on unit should be entered it means 
there is no way the system will be able to deliver PL/I 
error messages to the user .in the normal way. The on unit 
can explain that to the user, via SYSMSG, by executing some 
DISPLAY statements. (The operator probably won't even 
notice.. . ) 

By using the REPLY option on the DISPLAY statement, the 
program will print a message to the operator, then'wait 
for his. reply. The reply, when issued, is assigned to the 
character string variable named in the REPLY option. You 
should not use this form here without submitting special 
instructions with your job; even then, you cannot count 
on the operator remaining free enough.to notice your mess- 
age and reply to it in. a timely fashion. You are charged 
for the WAIT time accrued while waiting for the reply. 

See LRY 237. 



12 .2 .  FETCH and RELEASE s t a t e m e n t s .  

An e x t e r n a l  p rocedu re  l i n k  e d i t e d  i n t o  a program occup ie s  
c o r e  s t o r a g e  f o r  t h e  d u r a t i o n  of  t h e  program's  e x e c u t i o n ,  
even i f  it i s  r a r e l y  ( o r ,  i n  t h e  ext reme case, n e v e r )  
invoked.  B e t t e r  u s e  of  c o r e  s t o r a g e  can  o f t e n  be  made 
e i t h e r  by employing o v e r l a y  s t r u c t u r e s  i n  t h e  l o a d  module 
(see OPG 26 and CPG 25) o r p b y  u s i n g  FETCH and RELEASE 
s t a t e m e n t s .  

An e x t e r n a l  p rocedu re  named i n  a FETCH o r  RELEASE s t a t e m e n t  
i s  n o t  l i n k  e d i t e d  i n  w i t h  t h e  rest o f  t h e  program (no - 
e x t e r n a l  r e f e r e n c e  i s  g e n e r a t e d ) .  Ra the r ,  it i s  loaded  
i n t o  c o r e  on e x e c u t i o n  o f  a FETCH s t a t e m e n t  an.d d e l e t e d  on 
e x e c u t i o n  of  a RELEASE s t a t e m e n t .  ' E x e c u t i o n  of  a CALL s t a t e -  
ment naming t h e  p rocedu re  c a u s e s  it t o  be loaded  b e f o r e  be ing  
invoked i f  'it i s  n o t  a l r e a d y  i n  c o r e ;  

" F e t c h a b l e "  e x t e r n a l  p rocedu re s  must be  d e c l a r e d  w i t h  t h e  
a t t r i b u t e s  ENTRY EXTERNAL l i k e  any o t h e r  e x t e r n a l  p rocedures .  
They a r e  known a s  f e t c h a b l e  p rocedures  by v i r t u e  of t h e  
appearance  o f  t h e i r  names i n  FETCH o r  RELEASE s t a t e m e n t s ,  
o r  bo th .  The e n t r y  names appea r ing  i n  t h e s e  s t a t e m e n t s  ~ r ~ u s L  
be  e n t r y  c o n s t a n t s ;  t h e y  cannot  be  e n t r y  v a r i a b l e s .  The 
f a c i l i t y  i s  v e r y  l i m i t e d  and h a s  many r e s t r i c t i o n s .  See 
LKM 238 t h rough  LKM 2 4 1 .  JCL c o n s i d e r a t l v r l s  w i l l  Le d i s -  
cussed in Lesson 1 3 ,  

12 .3 .  PLIRETC b u i l t i n  p rocedure .  

PLIRETC i s  t h e  f i r s t  o f  s e v e r a l  b u i l t i n  p rocedu re s  d e f i n e d  
by t h i s  implementa t ion .  A b u i l t i n  p rocedure  i s  l i k e  a 
b u i l t i n  f u n c t i o n  e x c e p t  t h a t  ~t 1s ;nv&ed by a CALL s t a t e -  
ment.  I ts  name i s  known t o  t h e  compi le r  and g e n e r a l l y  
d o e s n ' t  have t o  be  d e c l a r e d .  See Lesson 10, 

The PLIRETC b u i l t i n  p rocedure  a l l ows  you t o  set a s t e p  
r e t u r n  code which can  be  t e s t e d  i n  J C L  t o  de te rmine  whether 
a succeed ing  job  s t e p  shou ld  be  execu ted  o r  bypassed.  For 
i n s t a n c e ,  

CALL PLIRETC ( 8 )  ; 
sets a s t e p  r e t u r n  code ,  o r  comple t ion  code ,  of  8 .  The u s e r  
must  r e s t r i c t  h imse l f  t o  codes  between 1 and 999 .  I f  a job 



terminates abnormally (see the discussion in Section 6.91, 
a return code of 1000 or 2000 will be added to the value 
set by the programmer. If the environment becomes hope- 
lessly destroyed, a code of 4000 or higher, signifying 
total disaster, will be returned. See CPG 3 and'0~G 3, 
also CPG.26 and OPG 27. .If a job terminates normally and 
the programmer has not set a return code, 0 is returned. 

12.4. PLISRTx builtin procedures. 

This implementation also provides direct and dynamic access 
to the system SORT utility via four builtin procedures, 
PLISRTA through.'PLISRTD. These are completely described. 
in CPG 27 and OPG 28. 

12.5. Other facilities. 

This implementation has builtin procedures for access to 
the system Checkpoint/Restart facilities, but these are not 
implemented in our system. 

Other facilities useful primarily in debugging will.be des- 
cribed in Lesson 13. 

12.6. The preprocessor. 

PBM's P L / l  has always had a preprocessor or compile-time 
facility that allows the programmer to write macros, arrange - 
for text substitutions in his source program durlng compila- 
tion, compile certain parts of the program conditionally, 
etc. Perhaps due to some of the inadequacies of the pre- 
processor, the rest of the world has not considered it to 
be a part of PL/I. Other vendors have not implemented i t, 
and'it is not in the ANSI standard. 

The,compile-time facility is not invoked unless certain 
compiler options, discussed in Lesson 13, are elected. We 
will assume in this lesson that the necessary options have 
been turned on. 



The preprocessor can be used advantageously for simple 
purposes such as systematic changing of identifiers, para- 
meterization of a program, and introduction of personal 
abbreviations, or for more advanced purposes, such as the 
wholesale mechanical generation or derivation of programs 
from minimal specifications. 

See LRM 242. 

12.7. The preprocessor scan. 

The preprocessor, when invoked, "worlcs on" the source pro- 
: gram before the compiler proper sees it. The output of the 

preprocessor is what qets compiled. 

The preprocessor scans the source program for preprocessor 
statements, which are executed when they are encountered 
and not transmitted to the output, and "active" identifiers, 
which are replaced in the output by some replacement text. 
Any part of the source progrgm scanned in this process which 
is not a preprocessor statement or an active identifier is 
carried through fntaet to the output. 

Every preprocessor statement starts with a percent sign ( % )  
and ends with a semicolon. Each preprocessor statement 
type has, furthermore, a particular syntax. In other words, 
once the preprocessor encounters a % in its scan, what fol- 
lows up to the next semicolon must be a syntactically valid 
preprocessor statement. Outside of preprocessor statements, 
however, anything goes. The text outside of preprocessor 
statements is "atomized" into identifiers, constants, com- 
ments, parentheses, commas, and "everything else," but that 
is all: in other words, these atoms need not (at this stage) 
be related by any higher level syntax. The sole purpose of 
this atomization is to be able to detect active identifiers 
and preprocessor statements without confusing them with 
parts of constants (e.g., the E in 5E-03 will never be taken 
for an active identifier) or with the contents of character 
string constants or comments. See LRM 243. 

12.8. %DECLARE statement. 

Initially, identifiers in the source pr'ogram are inactive 



and thus not subject to replacement. When the preprocessor 
scan encounters a %DECLARE 'statement, the named identifiers 
are activated. 

An active identifier., declared in a %DECLARE statement, 
,represents a preprocessor variable. When it appears subse- 
quently in source text outside of preprocessor statements 
.it is replaced by its value. The mechanism for assigning 
values to preprocessor variables will.be shown shortly. 

Preprocessor variables make take on integer numeric .or 
character string values only.  h he %DECLARE statement, in 
addition to activating an identifier. as a preprocessor 
variable, assigns it some attributes used to describe the. 
kinds of values it may acquire. The two kinds of values are 
respective'ly declared by the FIXED and CHARACTER attributes. 
No other attributes may be included. A FIXED preprocessor 
variable behaves like a FIXED DECIMAL (5,O) PL/I variable; 
a CHARACTER proprocessor variable behaves like a CHARACTER 
VARYING PL/I variable with no maximum length. %CECLARE ~ 

statements can be used to declare certain other objects, 
too, as we will see later. S ~ ~ ' L R M  244. 

12.9. %' assignment statement. 

The preprocessor assignment statement i s  used to assign a 
value to a preprocessor variable. The form is 

% variable = expression; 
The expression cannot have the full generality of PL/I 
expressions. Its operands can be only preprocessor vari- 
ables, preprocessor function references (see below), decimal 
integer constants, string constants, and certain builtin 
function references. The exponentiation operator is not 
allowed. The operands of arithmetic operators are con- 
verted, if necessary, to FIXED DECIMAL (5,O). All arith- 
metic is performed in this precision; note, therefore, 
that division behaves more like FORTRAN integer division 
than regular PL/I fixed-point division. 

The expression, called a preprocessor expression, is evalu- 
ated and its value is assigned to the variable whenever 
the preprocessor scan encounters the % assignment statement. 
See LRLL 245 and LE4 246. 



Note that this is a preprocessor statement, hence no 
replacement activity is triggered by the appearance of 
an active identifier in it. The identifier is used in 
the way dictated by the particular preprocessor statement. 

12.10. Rescanning and replacement. 

When an active identifier which is the name of a prepro- 
cessor variable is encountered outside of preprocessor 
statements during.the preprocessor scan, it is removed from 
the source text and its current value replaces it in'the 
output. If the preprocessor variable has the FIXED attri- 
butc, itc value is converted from FIXEn DECTMAL, (5,O) to 
CHAR (8) for this purpose. 

Before the replacement value is placed into the output it 
is, in general, first rescanned for other possible active 
identifiers. Replacement of them, and rescanning, 
continues until no further active identifiers remain in 
the value; it is then placed in the output text. The re- 
scanning of the replacement value of an active identifier 
can be suppressed, as explained below. 

Had B been declared as CHAR instead of FIXED, and had its 
value been assigned by 

% B = '9'; 

Example : 
% DCL A CIIAR, D FIXED: 
% A = 'CtB'; The value of A is now the 

3-character string C+B. 
% B = 9; The value of B is now 9. 
X = A+E; This text lies outside of pre- 

1 
processor statements. The 

a£ ter identifier A is active. It is 
initial removed and replaced by its 

replacement replacement value, which is then 
rtscanned. 

X = C+B+E; The replacement value, C+B, con- 

after 
rescanning 

tains an active identifier, B. 
It is removed and replaced by 
its replacement value, which is 

i converted to CHAR (8) for this 
purpose. 

X = C+-9+E; The final result is as shown. 



then the final result would have been 
, ' 

X = C+9+E; 

12.11. % DEACTIVATE statement'. 

The % DEACTIVATE statement (abbreviated % DEACT) makes a 
preprocessor variable inactive. When its name is encoun- 
tered subsequently, no replacement activity occurs. The 
variable retains its,value, because it may be reactivated.. 
See LRM 247. 

12.12. % ACTIVATE statement. 

when the preprocessor scan encou,nters a ' % ACTIVATE statement 
(abbreviated % ACT), the identifier is'again activated for 
replacement. ,One of,two options, RESCAN and NORESCAN, may 
be included. The RESCAN option (which is the default if 
both are omitted) specifies that the replacement value.of 
the active identifier is to be rescanned for possible addi- 
tional'replacement activity before being placed in the out- 
put. This is also the behavior described above for identi-' 
'fiers initially activated by the %.DECLARE statement. The 
NORESCAN option says that the replacemenk value is to be 
placed in the output text without rescanning for further 
possible replacements. . .  

.Example: The "expansion" of 
% DCL (A,B) CHAR; 
% A = 'C+Bt; 
% B = =In1; 
X = A+E; 

% DEACT A; . . . . . 
X = A+E; 

% ACT A NORESCAN; 
X = A+E; 

yields 
X = C+D+E; 
X = A+E; 
X = C+B+E; 

See LRM 248 through LRM 250. 



12.13. % IF statement. 

The % IF statement has one of the forms 
% IF preprocessor-expr % THEN true-'part; 

or 
% IF preprocessor-expr % THEN true-part; 
% ELSE false-part; 

The true-part and false-part must be single preprocessor 
statements or preprocessor DO groups (see below). 

The preprocessor-expr, which is just like an expression 
on the right-hand side of a % assignment statement, is 
evaluated and converted to a bit string. The bit string 
is interpreted as "true" or "false" in the same way as for 
normal PL/I IF statements (see Lesson 6.) The preprocessor 
scan resumes at the true-part, or the false-part, or the 
text after the true-part if the expression is false and 
there is no % ELSE clause. 

Examples : 
% IF'A=B+l % THEN % A=A-1; 
%.IF B<C&C=D % THEN 

% IF WORD = 'STOP' % THEN % WUKU = ' I ;  

% ELSE % WORD = WORD I I NEXT; 

See LRM 251 and LRM 252. 

12.14. % DO statement. 

Preprocessor DO groups may be of the non-iterative kind, 
% DO; . . .; % END; or the iterative kind. In the latter 
case only the'.controlled, or indexed, type of group with 
one specification is allowed. 

  he non-iterative preprocessor DO group is particularly 
useful.with % IF statements. The contents of the DO group 
may be a mixture of preprocessor statements and 'non- 

" f 

preprocessor text. 

Example : 
% IF TYPE = 'TEST' % .THEN % DO; 

PUT FILE (SYSPRINT). DATA (X ,Y ,Z) ; 
% END; 



A s  a r e s u l t  o f  t h e  above,  t h e  PUT s t a t e m e n t  i s  -- 

g e n e r a t e d  i n  t h e  s o u r c e  program i f  t h e  p r e p r o c e s s o r  
v a r i a b l e  TYPE h a s  t h e  v a l u e  TEST. 

% DCL (1,J) FIXED; 
% DO I =  1 TO 5 ;  

% ,  J = 2*1 + 5;  
A ( 1 )  = B ( J ) ;  

% END; 
T h i s  g e n e r a t e s :  

A ( 1) = B (  7 )  ; 
A ( 2 )  = B ( .  9 )  ; 
A ( 3 )  = B (  11) ; 
A ( 4 )  = B (  1 3 )  ; 
A ( 5 )  = B( 1 5 )  ; 

See LRM 253 and LRM 254. 

12.15.  % GO'TO s t a t e m e n t .  

The p r e p r o c e s s o r  GO TO s t a t e m e n t  c a u s e s  t h e  p r e p r o c e s s o r  
s can  t o  b e  resumed from a d i f f e r e n t  p o i n t  i n  t h e  s o u r c e  
program. 

Any preproce ' s so r  s t a t e m e n t  may have a l a b e l .  The l a b e l ,  ' 

and i t s  f o l l o w i n g  c o l o n ,  a r e  p l a c e d  between t h e  p e r c e n t ,  
s i .gn and t h e  s t a t e m e n t  keyword. E.g. ,  

. . 
% LAB: A =  B;  

. %  LAB1: I F  A < B % THEN % GO TO LAB; 
. ,  . 

. . .  

See LRM 255 and LR4 256. . . 
I 

. . . . 
12.16.  % n u l i  s t a t e m e n t .  . . 

The p r e p r o c e s s o r  n u l l  s t a t e m e n t ,  w h i c h l o o k s  l i k e  

can  be  used  t o  match n e s t e d  % ELSE c l a u s e s  a g a i n s t  t h e  
p r o p e r  % I F ,  a s  i n  

% I F  ... % THEN 
% I F  ... % THEN ...; 
% ELSE % ;  

% ELSE .; 



X t  can also be used to insert a label anywhere to serve 
as the target of a preprocessor GO TO statement. Example: 

% DCL I FIXED; 
% I = 0; 
% L: ; 

3 IF I < 10 % THEN % GO TO L; 

See,LRM 257 and LRV 258. 

12.17. Preprocessor procedures. 

The preprocessor features.we have seen so far allow for 
simple calculations, simple replacement of identifiers, 

' . and conditional or unconditional redirection of the pre- 
processor scan. Preprocessor procedures permit more,complex 
flow patterns to be set up during the preprocessor scan, , , 

. and they allow functions of arguments to be computed during 
compilation. 

A preprocessor procedure is like a normal'function procedure, 
but it can be invoked only at compile time. Bo.th the 
PROCEDURE statement and matching END statement must be 
marked by leading percent signs. Statements in the body 
o f  the procedure are interpreted as preprocessor statements 
but their percent signs are omitted. Only the sLdL&menLs 
described above can be used fn preprocessor prucedu~es, , 

. plus the RETURN statement. Preprocessor procedures may 
not be nested. 

Declarations made inside a preprocessor procedure obey 
the normal scope rules for internal names, i.e., the items 
declared are not known outside the procedure. Variables 
declared in a preprocessor procedure behave as if they 
had static storage class; that is, they retain their . . ..!I.:. 
former value across invocativr~s uE .the proce~u~r@:4..~';i$.''A.:pYe- 

, ... i ..., .. -. . . 
processor procedure may also reference prepro$eYssor var:i- 
ables declared outside the procedure (their 's.cope is ..the 
whole source program, except preprocessor.procedures,in 
which they are redeclared). ,. 

. . 

. . .! : 
A preprocessor procedure.must return a value (which may - 
,be of type FIXED or type CHAR). Therefore: 



The PROCEDURE statement must include 
RETURNS (FIXED) or RETURNS (CHAR) . 

The procedure can only be invoked by a function 
reference. 

It must execute a RETURN statement containing 
an expression for the returned value. 

The parameters of a preprocessor procedure'are declared, 
inside the procedure, in the normal way. It is 'interesting 
to note that the number of arguments supplied in an invoca- 
tion of a preprocessor procedure need not match the number 
of its parameters. Excess arguments are ignored; excess 
parameters are initialized to 0 or the null string depend- 
ing on their attributes (FIXED or CHAR, respectively). . . 

A preprocessor procedure may be invoked either from a pre- 
processor statement (in which its n'ame appears in a function 
reference in a preprocessor expression.) or from non- 
preprocessor text. We will examine these cases separately. 

When a preprocessor procedure is invoked from a function 
reference in a preprocessor expression in a preprocessor 
statement, the association of arguments and parameters 
occurs in the normal way, and the returned value is used 
in the normal way in the preprocessor expression.' The 
arguments. in the function reference must all be preprocessor 
expressions; Dummy arguments are created, as usual, if con- 
version is required to match the data type of the argument 
to that. of the parameter, . .  , 

Example : 
8 DCL (AIBIC) FIXED; 

. .  . .  . 

% P: ,PROC (X,Y) RETURNS (FIXED); 
DCE (X,Y) FIXED; 
1F.X >= 0 THEN Y = B - 1; 
RETURN (Y*X - A) ; 

% END; 
% A = 3; 
% B = 8; 
% C = 10; 
% A = I3 I P(A+l, C); . . 

% A =  B + P(A-40, C); 
On the first invocation of PI the parameters X and Y have 
the values. 4 and 10. The IF statement references B, 
declared outside of P; it sets Y (and hence C) to B-1, ' . 
i.e., 7. The RETURN statement also references a variable., 
A,, declared outside of P. It returns the value 7 * 4 - 3 ,  or 
25. The % assignment statement that invoked P thus assigns 



8 + 25, or 33, to A. A, B, and C now have values 33, 8, 
and 7. On the second invocation of P, X and Y have values 
-7 and 7. Y, and thus C, .are not altered further by the 
IF statement.. The value Yeturned is 7* (-7') - (-7) , or -42 : 
The final values of A, B, and C are thus -34, 8, and 7. 

Somewhat different rules apply to the invocation of a 
preprocessor procedure when its name appears with an 
argument list as a function reference in non-preprocessor 
text. The general idea is that the returned value replaces 
the function reference. However, this replacement activity 
only occurs if the procedure name is active. Preprocessor 
procedure names are activated by their appearance, during 
the preprocessor scan, in a % DECLARE statement with the 
ENTRY attribute, or by their appearance in a % ACTIVATE 
statement. The concept of rescanning applies to replace- 
ment values of preprocessor procedure references just like 
it does to replacement values of preprocessor variables. 
The % DEACTIVATE statement is used to prevent the name of 
a preprocessor procedure from initiating replacement activity 
in non-preprocessor text; the procedure is not even invoked 
when it is inactive. 

Perhaps the greatest difference between the two environments 
in which preprocessor procedures can be invoked lies in the 
interpretation of the argument list. In non-preprocessur 
text, the rules for argument lists of preprocessor function 
references are as follows. IYhe text between consecutive 
"unprotected" commas (or between one of these commas and 
the parenthesis ateither end of the argument list, or 
between the parentheses when there are no commas) is consid- 
ered to be an argument. The literal sequence of characters 
comprising the argument is scanned for active identifiers 
(and active procedure references, too!); replacements are 
performed and rescanned if indicated; and when no further 
replacement activity can be performed the resulting sequence 
of characters is considered to be a character string valued 
argument, and that is what is associated w i t h  t h e  parameter. 
In the case of a FIXED parameter, the character string value 
of the argument is converted. In any case, a dummy is made. 

By "unprotected com~a" we mean a comma not inside character 
string-delimiters, comment delimiters, or balanced parenthe'ses. 
This rule is required in order to recognize another function 
reference in the argument list. .I.e., in 

P(Q(A,B)) '-.;. 

we have one argument for P, "Q (A, B) I' , not two, "Q (A" and "B) " . 



Although this may seem obvious, recall that very little 
syntax is imposed on non-preprocessor text du'ring the pre- 
processor scan. 

See LRM 259 through LRE4 261. 

12.18. An example. 

Suppose we wish to code a table, in a PL/I program, as a 
static initialized array of structures, for example: 

DCL 1 TABLE (4) STA.TIC, 
2 HEIGHT FLOAT INIT (3, 1.5, 1.5, O.S), 
2 RADIUS FLOAT INIT (.32, -15, 1, -8) , 
2 POLISHED BIT(1) 

INIT ('llBI 'llBI 'O'B, 'O'B) I 
2 STYLE CHAR(1) 

INIT ('A', 'L', 'El, 'A'); 
Each element of the array TABLE is a structure carrying 
four properties of a cylindrical object. For instance, 
TABLE(3) is an entry describing a single object having 
height 1.5, radius 1, style 'El, and which is not polished. 

The problem of maintaining such a table quickly becomes 
tedious. 'Each time we wish to add a'new entry we have'to 
increase the upper bound in the first line and change four 
"initial" lists. When these have become long enough to,be 
spread over several lines, it then becomes difficult to 
tell, at a glance, what all the properties of the' i-th 
entry are. 

We will define some preprocessor variables and procedures 
that permit us to produce the table simply by writing 

TABLE ( 3, .32, 'llB, 'A' ) 
TABLE (1.5, .15, 'llB, 'L1) 
TABLE(1.5, 1, '0'13, IEt) 
TABLE(0.5, -81 'O'B, 'A' ) 
END TABLE 

It is now obviously easy to make a new entry in the table, 
and the properties of an entry can be seen at a glance. 

The following declarations and definitions suffice. Five 
"global" preprocessor variables are declared and initial- 
ized. Procedures TABLE and END TABLE are defined, plus 
another, APPEND, which is invokzd from inside TABLE. Note 



that END 'TABLE must be activated for NORESCAN so that its - 
replacem~nt'value, which contains the identifier TABLE, 
will not be rescanned. the purpose of the TABLE procedure 
is merely to append the values of its four.parameters to 
four global- variables which END TABLE 'will 'use .to "emit" 
the four lists of initial values. TABLE it'self generates 
a null string for replacement value. 

% DCL (HEIGHT I N I T ,  
RADIUS-INIT, 

. , POLISHED INIT,  

STYLE I N ~ T )  CHAR; 
% DCL #ENTRIES FIXED; 
% #ENTRIES = 0 ;  
% HEIGHT I N I T  = ' I  ' ; 

. , ' % RADIUS-INIT = - ; 
% -.POLISHED I N I T  - ' ' ; 
% STYLE INTT = "; 

. % TABLE? PROC (HEIGHT, RADIUS, POLISHED, STYLE) 
RETURNS (CHAR) ; 

DCL , (HEIGHT, 
RADIUS, 
POLISHED, 
STYLE) CHAR; 

#ENTRTES = #F:'NT~,RIES + 1 ; 
HEIGHT IPJIT = APPEND (HEIGHT I N I T ,  .HEIGHT) ; 
RADIUS-INIT = APPEND (RADIUS-INIT, RADIUS) ; 
POLISHEL) :I:NIT = A P P E N ~  ( P ~ T , T K H ~  TNTT, P O T ~ T S H R D ) . ;  - 
STYLE .INIT = APPEND (STYLE INIT,  STYLE) ; - RETURU ( - 1  ; 

% END; 
% APPEND: PROC ( I N I T  L I S T ,  ITEM) RETURNS (CHAR) ; - 

DCL ( I N I T  L I S T ,  ITEP4) CHAR; 
IF #ENTRIES > 1 THEN 

I N I T  L I S T  = I N I T  L I S T  I I ' , ' ;  
RE?URN TINIT LIST 1 ITEM) ; - 

% ET\JlI; 
% END TABLE: PROC RETURNS (CHAR) ; 

RETURN. ( ' DCL .1 TABLE ( ' 
I I #ENTRIES 

I 'I ' )  S T A T I C , '  

1 1 ' 2  HEIGHT FLOAT I N I T  ( ' 

I I FIEIGIIT IPJIT - 
I I ' ) I 1  

1 1 ' 2  RADIUS FLOAT I N I T  ( ' 

I I RADIUS I N I T  - 



1 )  '2 POLISHED BIT (1) INIT (' 

I I POLISHED - INIT 

I I STYLE - INIT 
I I I); 1 ;  

% END; 
% ACTIVATE TABLE NORESCAM, 

END .- TABLE NORESCAN; I 

12.19. % INCLUDE statement. I 

It is frequently extremely useful to be able to include 
kt text from a library into a source program. For instance, 

common declarations need not always be written out but may 
be included from a library. This is particularly valuable. 
when the declarations are those of external variables and 
need, therefore, to be exactly the same in all external 
procedures containing them. 

For the syntax of the % INCLUDE statement, see LRM 262 
and LRM 263. JCL considerations will be taken up in 
Lesson 13. . . 

The facility provided by the % INCLUDE statement was 
recently'added to the ANSI version of PL/I. 

12.20. Builtin functions. available in the preprocessor. 

The LENGTH, SUBSTR, and INDEX builtin functions may be 
'used inside preprocessor procedures and elsewhere in pre- 
processor expressions. They may be used in non-preprocessor 
text only if they.are specifically declared BUILTIN in a 

' % DECLARE statement (which also activates'them). Example: 



% DCL SUBSTR B U I L T I N ;  
% DCL S CHAR; 
% S = ' S T R I N G ' ;  

X  = S U B S T R ( S ,  3 ) ;  
% DEACT SUBSTR; 

X  = S U B S T R ( S ,  3 ) ;  
% S = S U B S T R ( S ,  3 ) ;  

X  = S; 
generates t h e  f o l l o w i n g :  

X  = RING;  
X = SUBSTR (STRING , 3 )  ; 
X  = RING;  

S e e .  LRM 2 6 4 .  

1 2 . 2 1 .  H o m e w o r k  p r o b l e m s .  

( # 1 2 A )  What do you expect t o  happen here? 
. % P:  PROC ( S )  RETURNS ( F I X E D )  ; 

'DCL S F I X E D ;  
RETURN ( S  + 1 )  ; . . 

% END; 
. . 

B ACT P; 
P(X) . . 

( # 1 2 B )  T h i s  w i d e l y  c i rcu la ted  p u z z l e  has  an  absurd 
a n s w e r .  What do you have t o  w r i t e  i n  place of 
t h e  " ? "  so t h a t  t h e  p r o g r a m  w i l l  p r i n t  o u t  a s i n g l e  
quo t e?  I n  p a r t i c u l a r ,  h o w  m a n y  s i n g l e  quotes? 

PROG: PROC OPTIONS (MAIN) ; 
% DCL S CHAR; 
% S = ? ;  
DCSA C CHAR ( 1 - 0 0 )  VAR; 
CET ETRINC (E )  L I S T  (C)  I 
PUT F I L E  ( S Y S P R I N T )  E D I T  ( C )  ( A )  ; 

END; 

A c t u a l l y ,  t h e  key t o  getting t h e  correct  a n s w e r  
d o e s n ' t  have m u c h . t o  do w i t h  t h e -  preprocessor. 

( # 1 2 C )  What happens here?' 
% DCL I F I X E D ;  
% I = 0 ;  
% L :  ; '  

A ( 1 )  .= A ( 1 )  + 1; 
% IF I > o % THEN % I = I + . I ;  
% GO T O  L ;  



(#12D) How can preprocessor variables and procedures 
"stack" information at compile time? For what 
kinds of "language extensions," implemented with 
preprocessor facilities, might this capability be 
useful? 

(#12E) Suppose a. preprocessor procedure, P , has one par'am- 
eter declared with the CHAR attribute. What is the 
value of that parameter, on entr.y to P, when P is 
invoked with the argument list shown 

P('ABC1) . . 
(a) in a preprocessor statement? 
(b) in non-preprocessor text? 

(#12F) Write a "macro" (preprocessor procedure) called 
STRG, meant to be used in DECLARE statements as 
follows : 

DCL C STRG ( ' ABCDEFGH ' ) ; 
generates 

DCL C CHAR (8) INIT ( 'ABCDEFGH ' ) ; 
and 

DCL D STRG('ISNf IT') ; 
generates 

DCL D CHAR (5) INIT ('ISN1'T'); 
Note the string length (5) in the second.expansion. 

(#lZG) Write a macro, HEX ,' that translates HEX'( ' 12FC ' ) 
into '0001001011111100'~, etc. . . 

. . 



13. (a) Advanced JCL' and compiler options. 
(b) Program de~elopmen~ and debugging. 

1n this lesson we will explore some of the non-language related 
features of our implementations of PL/I that enhance the useability 
of the language. In 'addition, we will consider some of the exten- 
sions to the language, present in our implementations, which aid 
in the debugging process. 

13.1. 'organization of the Checkout compiler. 

The Checkout compiler is designed to meet the requirements 
of the program testing and debugging part of the program 
development cycle. It is not intended for the generation 
and running of production code. 

The compiler is vrganized as a translator and interpreter. 
The translator phase replaces the conventional compilation 
phase. Its goal is to produce intermediate output for the 
interpretation phase. The intermediate output is a coded 
representation of the source program that permits the inter- 
preter to "execute" the program without repeatedly scanning 
and parsing the source, applying defaults, etc. The trans- 
lation phase is generally faster than a traditional compil- 
ation because less work is performed; optimized machine 
code is not produced. The translator concentrates on 
reporting source program errors in helpful, high-level 
terms. It also repairs syntax errors very effectively. 

The interpreter phase, on the other hand, is much slower 
'than execution of a program from machine code. This is 
justified because one generally makes very few passes of 
a program though the interpreter during the program's 
development; most of the program's useful life will be 
represented by optimized production runs. The interpreter 
does far more "consistency" checking than it would be 
profitable for generated machine code to do. It is capable 
of detecting errors that would go undectected in an opti- 
mized, production version of a program and which could lead 
to unpredictable program failures ranging from wrong results 
to an abend (abort). Furthermore, errors are detected and 
reported as soon as they occur; in an optimized machine 
code environment'the observable effects of such errors are 
often far removed in time from their causes, making.debug- 
ging hopelessly difficult. Finally, because the interpreter 



has the complete coded form of the source program avail- 
able to it,-it is able to report errors in very high level 
source program.terms. As an example, the message for an 
out-of-bounds subscript value tells you the name of the 
array; the number of the dimension involved; the value 
of the subscript itself; and, if the subscript value was 
supplied by a simple variable, the name of that variable. 
You are also told the statement number of the statement 
containing the error. 

The multiple functions of the Checkout compiler are 
reflected in the variety of ways it can be used. The most 
straightforward mode of use is employed when a single exter- 
nal procedure, a main procedure which doesn't need any 
subroutines, is to be translated and interpreted. (Note: 
builtin functions, whether supported by "library routines" 
or not, are not considered to be suLruuLiries in this conto~rt.) 
In this mode the translator produces its output directly 
in core (some of it may spill onto a temporary dataset), 
and the translation phase is followed immediately, in the 
same job step, by the interpretation phase. Thus, neither 
the linkage editor nor the loader is used. See CPG 28. 
This mode of use is called "compile and go"; like the usual 
"compile, load and go" mode of other compilers, no "object 
module" survives after the run. 

It i3 alco possible to translate an external procedure and 
save the output of translation for later executivri Ly Lhe 
interpreter phase. This mode of use is mandated by the 
need to link-edit (or load) separately translated external 
procedures together to resolve external references. It is 
also required when you need to link-edit in AMDLIB routines 
or FORTRAN routines. 

I 

To support this mode of use, it is possible to request out- 
put from the translator. Normally, output from a compiler 
is in *.he form of an "object module" to be used as subse- 
quent input to the linkage editor or loader. 111 t l ~ c  case 
of the Checkout compiler, translator output consists of 
two separate parts: a normal object module and the inter- 
mediate text. The object module contains a minimum of 
informati.on and is much smaller than usual. Called a 
"link-edit stub," it basically contains the information 
needed by the linkaqe editor to resolve external references, 
and it contains a little bit of executable machine code. 
The intermediate text contains most of the information 
about the external procedure in coded form. It is used 



subsequently only by the interpreter; it is not passed 
through the linkage editor or loader. See CPG 29. 

The output described above is produced by the translator 
in response to the OBJECT compiler option. If you use 
the appropriate cataloged procedures, such as PLCCP 
(described in the next section), this option ,is supplied 
automatically and you need not concern yourself with it. . - . 

(Another option,'NORUN, is also supplied to tell the com- 
piler to stop after the translation phase rather than go 
on into interpretation.), .The object module output (link-edit 
stub) is "captured" in the normal way by a SYSOBJ DD card 
defining a sequential dataset or a member of a partitioned 
datase't. The intermediate text output is captured by a 
SYSITEXT DD. card defining a partitioned dataset (not a member 
thereof). This dataset has no counterpart in other IBM corn-, 
pilers. The intermediate text for a given external procedure 
is stored ass member whose member name is derived from the 
external procedure. name and supplied automatically by the, 
compiler. 

The collection of obj,ect~modules is next.processed either 
by'the linkage editor, to form a load module, or by the 
loader. After that, execution is initiated in.the normal 
way. If the linkage editor has been used, the load,module 
is invoked in a separate job step. If the loader has been 

'.used, the loader initiates execution.in the same job step 
in. which .it resolves external references. In either case, 
in the job step in which execution takes place the parti- 
tioned.dat,aset containing the intermediate text modules 
created by the translator must be made available via 'a DD 
card for SYSITEXT. When execution begins, the executable 
machine code in the link-edit stub for the main procedure 
receives control. What it does is invoke the' interpreter 
phase of the Checkout compiler. All of these things are 
quite transparent when you use the appropriate cataloged 
procedures. 

See CPG 30. 

1.3.2. Cataloged procedures far the Checkout .compiler. 

Each Programmer's Guide contains a chapter on the IBM-supplied 
cataloged procedures for the compiler in question. Note that 
we do not - use the IBM-supplied cataloged procedures here. 



Rather, we use our own. These are tailored somewhat to our 
environment. In addition, we have arranged to offer a 
similarly named family of procedures for each compiler. 

The family prefix for the Checkout compiler is PLC. Members 
of the standard family available in the PLC series are 
PLCCLG, PLCCEG, PLCCP, PLCCEP, PLCC, PLCEP, PLCEG, and 
PLCLG. One member,.PLCCD, is not available because it is - 
not possible to obtain an "objec,t deck" from the Checkout 
compiler. The PLC series includes two members not in'the 
standard family: PLCCG and PLCG. All are briefly described 
be low. 

Step names used in the cataloged procedures are as follows: 
PLC - Translate only. Compiler options OBJECT and 

NORUN are supplied automaticaPly to cause the 
translator phase to produce output, then stop. 

EDT - Link-edit step. 
GO - (a) Execution of link-edited program. 

(b) Substitute the loader for the linkage editor, 
and go right into execution. 

(c) In procedure PLCCG, translation is immedi- 
ately followed by execution in the single 
step 11a111ecl GO. 

The s t e p s  preseat in each of the procedures are indicated 
in the following table. 

PLC EDT GO 

PLCCG 
PLCCLG 
PLCCEG 
PLCCP 
PLCCEP 
PLCC 
PTICEP 
PLCEG 
PLCLG 
PLCG 

Note: The single step, GO, in PLCCG combines the classical 
functions of the PLC and GO steps in one step. 



The purpose of each procedure is briefly described here. 
PLCCG: Translate and interpret a self-contained program 

in the form of a single external procedure (a main 
procedure) . 

PLCCLG: Translate, load, and interpret. This is used if 
several external procedures are being translated and 
linked together by the loader. (Note: how several 
external procedures can be translated in a single PLC 
step is described later.) There may be other requirements 
dictating the use of the loader, even if only one external 
procedure is being translated. PLCCLG can be used where 
PLCCG will suffice, but resources will be wasted. 

PLCCEG: Translate , link edit, and interpret. The linkage 
editor provides certain services not provided by the 
loader, however, it is difficult to imagine how these 
could be of use when the linkage editor output is not 
saved. 

PLCCP: Translate only. The user must capture object module 
output via PLC.SYSOBJ and intermediate text output via 
PLC. SYSITEXT. 

PLCCEP: Translate and link edit. The user must capture 
intermediate text output via PLC.SYSITEXT and load module 
output via EDT.SYSPVT. 

PLCC: Translate only, with object module and intermediate 
text output passed in temporary datasets to another job 
step. 

PLCEP: Link edit only. The user must supply input to the 
linkage editor (the result of a previous translation) via 
EDT.SYSIN and capture its load module output via EDT.SYSPVT. 

PLCEG: Link edit result of previous translation, supplied 
via EDT.SYSIN,and interpret it. Again, it is doubtful 
that the special services offered by the linkage editor, 
but not the loader, are useful in this context. The user 
must s i ~ p p l y  the intermediate L e x t  resulting from the pre- 
vious translation via GO.SYSITEXT. 

PLCLG: Process the result of previous translation, supplied 

7 
via GO.LDRIN, through the loader and interpret it. The 
user must supply the intermediate text resulting from the 
previous translation via GO.SYSITEXT. 

PLCG: Interpret a previously translated and link-edited 
program. The user supplies the load module library via 
GO.STEPLIB and uses the symbolic parameter PROGRAM to 
name the member to be exectiled. In addition, the inter- 
mediate text is supplied via GO.SYSITEXT. 

Typical uses of PLCCG and PLCCLG, which are the most likely 
to be needed, were shown in Lesson 0. Other information 
may be found in OTHER 3, and in vther publications and 
courses of the Computer Center. 

t 



13.3.  Source i n p u t  convent ions .  

The t r a d i t i o n a l  ddname f o r  sou rce  i n p u t  t o  compi le rs  i s  
SYSIN. SYSIN may b e  used a l s o  f o r  d a t a  i n p u t  t o  your program; 
r e c a l l  from Lesson 7 t h a t  SYSIN i s  one of t h e  s t anda rd  f i l e s .  
The d u a l  f u n c t i o n s  of SYSIN pose  problems f o r  t h e  "compile 
and go" mode o f  o p e r a t i o n :  how can bo th  f u n c t i o n s  be accom- 
modated i n  a  s i n g l e  job s t e p ?  The Checkout compiler  s o l v e s  
t h i s  problem by p rov id ing  two d i f f e r e n t  ddnames f o r  t h e  two 
f u n c t i o n s .  SYSCIN ("compiler  i n p u t " )  i s  f o r  source  i n p u t  t o  
t h e  t r a n s l a t o r ,  l e a v i n g  SYSIN f o r  d a t a  i n p u t  t o  t h e  program 
d u r i n g  i n t e r p r e t a t i o n .  

A c t u a l l y ,  o t h e r  s o l u t i o n s  t o  t h e  problem are a v a i l a b l e  a l s o .  
I f  you p r e f e r . ,  you may use  t h e  t r a d i t i o n a l  SYSIN f o r  source  
i n p u t  ( i n s t e a d  of  t h e  new SYSCIN). I f  you happen t o  have 
d a t a  i n p u t  a l s o ,  you fo l low t h e  sou rce  program by a  c o n t r o l  
c a r d  c o n t a i n i n g  

*DATA ; 
s t a r t i n g  i n  column 1 and f o l l o w  t h a t . b y  t h e  d a t a .  F ' i n a l l y ,  
you,may supply  bo th  sou rce  and d a t a ,  s e p a r a t e  by a  '*DATA 

. . s t a t e m e n t ,  i n  SYSCIN. The t h r e e  c h o i c e s  a r e  'demonstrated 
below. 

/ RXEC PT,CCG 
))GO.SYSCIN DD * 

sou rce  
/*  
//GO.SYSIN DD * 

d a t a  
/ *  

,/,/ EXEC PLCCG 
//GO.SYSIN DD * 

sou rce  
*DATA; 

d a t a  
/* 

// EXEC PLCCG 
//GO.SYSCIN DD * 

source 
*DATA; 

d a t a  
/ *  

See CPG 3 1  and CPG 32. The l a t t e r  r e f e r e n c e  a l s o  d e s c r i b e s  
how t h e  program can  be executed  w i t h  s e v e r a l  d i f f e r e n t  s e t s  
o f . d a t a  a l l  i n  one job s t e p  and wi thou t  r e t r a n s l a t i n g  it. 

13.4 .  . T r a n s l a t i n g  s e v e r a l  e x t e r n a l  p rocedures  a t  once. 

I f  s e v e r a l  e x t e r n a l  p rocedures  a r e  t o  be t r a n s l a t e d ,  l i nked  
t o g e t h e r ,  t h e n  execu ted ,  it i s  n o t  neces sa ry  t o  execu te  one 
o r  more PLCC c a t a l o q e d  procedures  followed by a  PECCLG 
c a t a l o g e d  p rocedure ,  w i t h  each  ca t a loged  procedure  t r a n s -  
l a t i n g  a s i n g l e  PL/I e x t e r n a l  procedure .  You can make do 
w i t h  a  s i n g l e  i n v o c a t i o n  of PLCCLG. A l l  o f . t h e  e x t e r n a l  



p rocedu re s  a r e  t r a n s l a t e d  i n  t h e  s i n g l e  PLC s t e p .  They a r e  
s e p a r a t e d  i n  t h e  s o u r c e  i n p u t  d a t a s e t  by a c o n t r o l  c a r d  con- 
t a i n i n g  

*PROCESS ; 
s t a r t i n g  i n  column 1, a s  shown i n  Lesson 0. See CPG 33 
and CPG 34. 

When you u s e  PLCCG, you may a c t u a l l y  t r a n s l a t e  and i n t e r p r e t  
s e v e r a l  d i f f e r e n t  complete  one-procedure  programs i n  a  s i n g l e  
i n v o c a t i o n  o f  t h e  compi l e r .  A s  CPG 34 d e m o n s t r a t e s ,  you can 
have s e p a r a t e  d a t a  f o r  e ach  program by cod ing  

// EXEC PLCCG , 

//GO.SYSCIN DD * 
s o u r c e  1 

*DATA; 
d a t a  1 

"PROCESS ; 
s o u r c e  2 

*DATA ; 
d a t a  2 

e t c .  
/ *  

o r  you can u s e  t h e  same d a t a  f o r  a l l  by cod ing  
// EXEC PLCCG 
//GO.SYSCIN DD * 

s o u r c e  1 
'*PROCESS ; 

s o u r c e  2 
e tc .  
/ *  
'//GO.SYSIN D.D * 

common d a t a  
/ *  

All s o r t s  o f ' . i n t e r m e d i a t e  combina t ions  a r e  p o s s i b l e .  

13 .5 .  Checkout compi le r  o p t i o n s .  

See CPG 35 and CTUG 4 f o r  a comple te  d e s c r i p t i o n  of  compil.er 
o p t i o n s .  Note ,  however, t h a t  i n  some c a s e s  o u r  i n s t a l l a t i o n  
d e f a u l t s  d i f f e r  from t h e  I B M  d e f a u l t s . .  . A  l i s t  o f  o u r  l o c a l  
.dcefa .u l t s ,  r e p r i n t e d  from 'OTHER 3 ,  i s  a t t a c h e d  t o  t h e s e  n o t e s .  

C e r t a i n  compi l e r  o p t i o n s  a r e  e f f e c t i v e  d u r i n g  t r a n s l a t i o n ,  
w h i l e  o t h e r s  app ly  d u r i n g  i n t e r p r e t a t i o n ;  some app ly  d u r i n g  
bo th .  Two symbol ic  pa r ame te r s  a r e  p rov ided  in 0~1.r c a t a l o g e d  
p rocedu re s  t o  p a s s  o p t i o n s  t o  t h e  compi l e r :  OPTIONS i s  t o  



be used for translate (PLC) steps and GOOPTS for interpret 
(GO) steps. (Both are defined in the single-step procedure 
PLCCG.) A simple example of their use in an EXEC statement 
follows : 

// EXEC PLCCLG ,OPTIONS= 'FORklAT1 ,GOOPTS= 'ERRORS (20 ) ' 
Cataloged procedures with translate-only (PLC) steps supply 
OBJECT and NORUN for you; whatever you may specify via OPTIONS 
supplements these. 

Compiler options may also be specified on a *PROCESS statement 
as described in CPG 33. These modify the options specified 
in the symbolic parameters, or defaulted, for the following 
external procedure only. 

You may pass an argument to your main procedure. The param- 
eter must be declared as CHAR (100) VAR (see LRV 265). The 
argument is supplied via the GOPARM symbolic parameters, as 
in 

// EXEC PLCCLG,GOPAN4='3,UPDATE1 
If you have no argument to pass in, and indeed have no param- 
eter in the main procedure to receive one, you will neverthe- 
less have to suffer message 

IEN12071 AN ARGU24ENT IS BEING PASSED TO MAIN PROCEDURE 
XXX, BUT THE PROCEDURE HAS NO PARAMETER LIST. 
ARGUMENT IGNORED. 

This occurs because our cataloged procedures make it look 
like a null string is being passed in as an argument when 
you do not use the symbolic parametel GOPAEIM. 

An argument to the main procedure may also be specified on 
a *DATA statement as described in CPG 32. 

13.6. Specific Checkout compiler options. 

We cannot hope L u  describe all tlic clvc~ilable optionn. How- 
ever, a few will be mentioned here and more will be covered 
later. When you have time, read about the complete set of 
options in the references previously cited. 

The Checkout compiler is constantly monitoring for references 
to unitialized variables. To detect thern, it actually 
initializes variables which you - don't initialize by using 
particular unlikely bit patterns (see LFUI 266). In rare 
cases the patterns used for uninitialized FIXED BINARY or 
CHARACTER variables may actually represent values your 



program can produce and dea-l with. In these cases you 
will need to disable the automatic checking by specifying , 

GOOPTS='NODIAGNOSE1. Don't, however, do this as a matter 
of routine, since the service is one of the most valuable 
performed by the Checkout compiler. 

Our default for the ERRORS option, ERRORS (10) , tells the : 

interpreter to report and then recover from the first ten 
errors that result in the raising of the ERROR condition. 
Its recovery action is tailored to the specific cause of 
error; in some cases it is taken after'normal returnfrom 
an established ERROR on unit, while in other cases it is 
taken in lieu of raising the condition. The repair of 
errors is surprisingly successful. More often than not, it 
permits the program to proceed to where other, unrelated, 
errors are discovered in the same run. 

The FORMAT option can be used to obtain a formatted source 
listing--one which is "properly" indented, having no more 
than one statement per line, e'tc., and generally easier to 
read. 

Our default for the SIZE option is SIZE(MAX). This tells 
the compiler to make use of all the storage available to 
it; thus, increasing the region request will automatically 
give the compiler more core storage to work with. It 
should be noted that the IBM PL/I compilers, unlike the 
FORTRAN compilers, are designed to work in surprisingly 
small amounts of storage. There is no lower limit below 
which the compiler will cease to work (however, interpreta- 
tion cannot proceed if insufficient storage is available 
fol- Ll~e allocation ot all of your PL/I variables). Generally, 
if insufficient storage is available to keep everything in 
core, the compiler will "spill" onto a temporary dataset. 
The amount of spilling that occurs is a function of space 
available to the program, amount of PL/I storage allocated 
(during interpretation), size of the program, complexity of 
the program (mix of language features used), etc. If 
spilling becomes excessive the extra 1/0 can cause your job 
charges to increase very rapidly. The compiler monitors 
the activity on the spill file; it will report a "thrashing" 
condition if one should develop. It should be pointed 
out that the default region of 150K established in our 
cataloged procedures is probably too small except for very 
simple programs; 250K will usually result in a cheaper, 
faster job. 



You do not have to worry about space for buffers for your 
open datasets when you specify SIZE(MAX). File openings 
are performed under the control of the interpreter, and it 
turns out the routines are smart enough to know how much OS 
space will be required for buffers; the space is made avail- 
able (by spilling, if necessary) before it is requested. 
However, certain requests for OS core storage may be made 
without the Checkout compiler's knowledge. This can happen 
in the following three cases: 

(a) You invoke the SORT utility dynamically. 
(b) You invoke an other-language routine which 

obtains storage by executing a GETMAIN. 
(c) YOU load a fetchable load module by executing 

a FETCH statement. 
In these cases yo11 cannot permit the Checkout compiler to 
use all the storage available to it; you must reserve some. 
You can reserve, say, 30K of the region by coding 
GOOPTS='SIZE (-3UK) ' . 

13.7.. Cataloged procedures for the Optimizing,compiler. 

The Optimizing compiler produces an object module as output. 
It must be link-edited or loaded prior to execution, even 
if no subroutines are needed (certain housekeeping library 
routines are always needed). The cataloged procedures 
available for this compiler comprise a standard family of 
procedures whose prefix is PLO. Members of the PLO series, 
and the names of the steps they contain, are indicated 
below. 

PLO EDT GO 
PLOCD 
PLOCLG 
PLOCEG 
PLOCP 
'PLOCEP 
PLOC 
PLUEY 
PLOEG 
PLOLG 

The PLUCU cataloged procedure automatically supplies the 
compiler options DECK and NOLOAW to override the opposite 
defaults. The user is responsible for supplying inputs 
and capturing outputs in the ways described for the PLC 
series of procedures. There is, of course,. no need for 
SYSITEXT. 



For consistency with the Checkout compiler, the Optimizer 
will also accept its source input from SYSCIN or from SYSIN. 
Multiple external procedures can be compiled in a single 
PLO step; they are, as before, separated by *PROCESS state- 
ments. There is no use for the *DATA statement with this 
compiler. See OPG 29 through OPG 31. 

13.8. Optimizing compiler options. 

For the Optimizing compiler, a clear .distinction is made 
between compiler' and execution options. Although the com- 
piler itself is not present during execution, certain 
options may be specified then to select certain services 
from the run-time support or to "tune" the environment. 
OPTIONS, GOOPTS, and GOPARM are used exactly as they are 
i.n PLC procedures. Note, however, that we do not currently 
have a PLOG procedure. To execute a previously link-edited 
production program, you will need to code "bare" JCL, as in 
the following (which demonstrates how you communicate both 
execution-time options and an argument to the main procedure). 

// EXEC PGX=member ,PARfJ1=~lexe~-options/main-a~g ' 
//STEPLIB DD DISP=SHR,DSN=pds.containing.member 

' //SYSPRINT. and other DD statements, as needed. 

Compiler and execution options are described in OPG 32 and 
OTUG 5. As with the Checker, we have established defaults 
that differ in some instances from the IBM defaults. Ours 
are tabulated at the end of these notes. 

13.9. Specific Optimizing compiler options. 

To obtain maximum optimization you need to specify 
OPTIONS='OPT(2)'. This will increase the cost of compila- 
tion to a degree, but.the gains achieved during exe~u~ion 
will be worth it if the program is executed often and if 
,other optimization options (MORDER, TOTAL, and CONNECTED) 
are specified in the program itself. 

Two execution options, ISASIZE and REPORT, are worth 
studying carefully. Dynamic PL/I storage is allocated in 
an area called the ISA (Init'ial Storage Area), which is 
obtained at program initialization time. The allocations 
performed within the ISA are reasonably efficient (in any 
event, better than performing a GET-MAIN to obtain the . 
storage from 0s) . If the ISA proves insufficient, addi- 



tional storage will be.obtained, as needed, by GETMAIN; 
the program will continue to run (as long as the additional 
storage is available in the region), but.performance will 
be degraded relative to a run performed with a larger ISA. 
The reason you can't generally specify ISASIZE(MAX) is that 
you must leave behind whatever storage will be needed for 
buffers and dynamically loaded library modules. The spectrum 
of' requirements of dif.ferent programs cannot optimally be 
accommodated by a single default. Ours, ISASIZE(8K), differs 
from the IBM default for subtle.reasons. You,can specify 
your own better guess. If you know that the space required 
for buffers, etc.,'is relatively constant, while.the amount 
of PL/.I storage required depends on the inputs in a particular 
run (as it-well might in a list-processing application), you 
can reserve a fixed amour~t ul: storage far OS and let the ISA 
track the region request by coding, for in.stance, 
GOOPTS='ISASIZE ( - 2 0 ~ )  ' . 

In any event', you can ask the system to monitor its own 
. -  storage management activities and 'report on them.at the end 

of a run. For this purpose, you use the REPORT option, e.g., 
GOOPTS='REPORT'. You can. specify both together, using 
abbreviations, as in GOOPTS='R,ISA(-20K) ' .  The storage 
management report, which tells you, among other things, an 
optimal ISASIZE, is produced on the file with ddname 
PLIDUPIP. Thus, when you specify the REPORT option you must 
add to your GO .step 

//GO. P.LIDUMP DD- SYSOUT=A 

A good discussion of these very important options and stor- 
age management considerations is in OPG 33. 

13.10. Source record formats, margins, and sequence fields. 

Both the Checker and Optimizer can accept source input in 
a varicty of record formats and, record lengths. 

Unless you use the MARGINS compiler option to specify 
otherwise, the default source margins for fixed-format 
(blocked or unblocked) recurds are 2 and 72, whilc for 
variable-format (blocked or unblocked) they are 10 and 100. 
At the same time, unless you specify otherwise with the 
SEQUENCE compiler option, the compilers will assume columns 
73 to 80 of fixed-format records, or 1 to 8 of variable- 
format records, have been reserved for sequence information. 



Column .1 (F-format) or 9 (V-format) is assumed to contain a 
listing-control character (as described under the MARGINS 
option). 

These two defaults automatically match source records 
created by EDIT in TSO. There, as we will see in Lesson 15, 
you have a choice of two dataset "types": PLI and PLIF. 
The former results in V-format blocked records with sequence 
information in 1 to 8, while the latter creates an F-format 
dataset with sequence information in 73 to 80. V-format 
records are generally more economical because trailing 
blanks are not included to "complete" the record beyond the 
last character you type. Note that in either case, the 
first character that you type goes into the listing-control 
column and is not read as part of the source. 

The F-format records are also the standard "card-image" 
format for card decks. 

Each statement is numbered by the compiler so that it may 
be uniquely. referenced in any error messages. You have 
your choice as to whether .the statement numbers are to be 
assigned by the compiler from the sequence 1,2, ... or are 
to be taken from the sequence field of the record on. which 
the statement begins. The latter choice is the default 
(determined by the compi'ler options NUMBER and NOSTMT) 
when the compilation is performed in TSO, because there 
you do not get a source listing by default (the option 
determing that is NOSOURCE). When the compilation is per- 
formed in the. batch system, the default options are STMT, 
.NONU?4BERt and SOURCE. The compiler assigns consecutive 
statement numbers, which are shown on the source listing. 
Note that if the source dataset happens to contain sequence 
information in this case, as it.would if it had been created 
by EDIT in TSO, the sequence information is also listed on 
the source listing. 

In the checkout compiler, execution-time error messages 
are always accompanied by statement numbers. Under the 
OpLi~ni.zing compiler, you have your choice as to whether 
statement numbers are to accompany the. code offset in 
run-time error messages. The cost of having them do so 
is a table, kept in core during execution, and consulted 
on the occasion of producing any system message. If your. 
program is compiled in the batch system, the defaults there 
(NOGOSTMT, NOGONUMBER, OFFSET) suppress the inclusion of 



this table in the load module but print it out as part of 
the compilation listing. Error messages at run time will 
not contain a statement number, but you can look up the 
offset appearing in the message in the offset table in the 
listing to find the statement number. If your program is 
compiled in TSO, you do not get a listing of the offset 
table by default, so statement numbers (derived from the 
sequence information) are obtained from the in-core table 
and used in run-time error messages (the governing options 
are NOOFFSET, GONUMBER, NOGOSTMT). 

13.11. Using the preprocessor. 

To use the facilities of the preprocessor (Lesson 12) you 
must specify.the MACRO compiler option. If the SOURCE ' 

option applies., the source listing produced represents the 
output of the preprocessor. To obtain, in addition, a 
listing of the input to the preprocessor, use the INSOURCE 
compiler option. If you wish to capture the output of the 
preprocessor on cards, use the i4DECK option. Read about 
these in the references previously cited for compiler 
options. 

If you use the %INCLUDE statement to include source text 
from a library of source text members, the library (o r  
libraries).will have to be named in DD statements in the 
compile (PLO) or translation (FLC, or, in the cataloged 
procedure PLCCG, GO) step. The ddname is either the one 
you use in the %INCLUDE statement or, if that includes only 
a member name and no ddname, SYSLIB. 

Included text need not have the same record format as the 
primary source. And if %INCLUDE is the only preprocesgor 

. statement used, you need not specify the ,HACRO option; 
specify the INCLUDE option instead (it. is more efficient). 

See OPG 34 and CPG 36. 

13.12. Mixing PL/I and FORTRAN. 

We mentioned in Lesson 10, and will repeat here, that when 
you link-edit PL/I and FORTRAN mixtures you must make the 
FORTRAN library ayailable. Use the POSTLIB symbolic 



parameter of link-edit (EDT) or lo'ader (GO) steps for that 
purpose. Also, FT06F001 must be defined in the GO step, . 

even if the FORTRAN program does not write on unit 6. 
Review Sections 10.10 and'13.6 (for the need to use the 
SIZE option of the Checker with interlanguage communication) 
and CPG 24. A JCL sample follows. 

// EXEC FTHC 
//FTH.. SYSIN DD * 

FORTRAN source 
/* 
// EXEC PLOCLG,POSTLIB='SYSl.FORTLIB' 
//PLO.SYSCIN DD * 

PL/I source 
/* 
//GO.FT06F001 DD SYSOUT=A 
// other DD statements, as needed 

13.13. JCL considerations for fetchable procedures. 

A "fetchable" procedure, i.e., an external procedure to 
be loaded dynamically before invocation, must be completely 
'link-edited with any other external procedures it invokes 
and stored as a member of the load module library named in 
the STEPLIB DD statement of the execution step. 

Normally you do not have to worry about specifying an 
entry point to the linkage editor or loader; the standard 
entry point of PL/I load modules, PLISTART, is communicated 
automatically.' However, you must intervene to specify a 
different entry point for a fetchable load modu1.e. The i 

entry p o i n t  name (and the member name under which,it is 
stored) must both be.the same as the external procedure 
name. 

Example: A main procedure called PROG includes the follow- 
ing statements. 

DCL (SUBR1, SUBR2) ENTRY EXT; 
IF TYPE = 1 THEN DO; 

FETCH SUBR1; 
CALL SUBR1; 
RELEASE SUBR1; 

END; 
ELSE DO; 

FETCH SUBR2; 
CALL SUBR2; 
RELEASE SUBR2 ; 

END; 



Complete JCL (except for JOB and account cards) for treat- 
ing a production version of the program and executing it 
follows: 

// EXEC PLOCEP 
//PLO.SYSCIN DD * 

PROG source 
/ *  
//EDT.SYSPVT DU DISP=(NEW,CATLG),DSN=load.lib(PROG), 
// UNIT=unit,SPACE=space 

.// .EXEC PLOCEP 
//PLO.SYSCIN DD * 

SUBRl source 
/ *' 
//EDT. SYSPVT DD DISP=OLD ,DSN=load . lib (SUBR1) 
//EDT.SYSIN DD * 

ENTRY SUBRl 
/ *  

// EXEC PLOCEP 
//PLO.SYSCIN DD * 

SUBR2 source 
/* 
//EDT.SYSPVT DD DISP=0LDtDSN=load.lib(SUBR2) 
/'/EDTaEYSIN DD * 

ENTRY SUBR2 
/ *  
// EXEC PGN=PROG 
//STEPLIB DD DISP=SHR,DSN=load.lib 
//SYSPRINT and other DD statements, as needed 

Ecc OPC 35 and CPG 37. 

13.14. DD statements for SYSPRINT. 

. . 

. The following DD 'statement, for SYSPRINT is..contained in the 
GO step of all PL/I .cataloged procedures:: 

//SYSPRINT DD SYSOUT=A,DCB=(RECFM=VBAtLRECL=137,BLKSIZE=1511) 
This effectively overrides the default linesize of 120 for 
print files ' and gives you 132 'instead. When you use "bare" . . 

JCL for production runs of optimized code, you should write 
the SYSPRINT statement as above. (We may add a PLOG cata- 
loged procedure, analogous to PLCG, in the future.) 



13.15. General plan for program development. 

We cannot be too emphatic in our recommendations that the. 
Checkout compiler be used whi'le a program is undergoing 
development and testing. Although its greatest utility is 
experienced in the interactive mode (Lesson 15), it is'by 
far still the best debugging tool we have in batch. 

As program testing proceeds, external procedures considered 
debugged may be compiled under the Optimizing compiler and 
link-edited with those still being tested under the Checkout 
compiler (we will demonstrate this later). 

If bugs are by and by disclosed in production (optimized) 
code, certain features of the Optimizing compiler (also 
described later) may be helpful in identifying them. 
Alternatively, one or more external procedures can.be put 
bsclc throuyh the Checkout compiler. 

13.16. Special features for debugging. 

The language itself has several debugging features to.offer. 
(These have not been standardized.) Both the Checker and 
Optimizer implement the CHECK condition, and the SNAP 
option of ON statements. The Checker (only) .implements,. 
in addition, the FLOW, SNAP, and ALL.options of the PUT 
statement, and the CHECK and FLOW sta'tements. And each 
compiler implements certain compiler options useful 'in 
debugging situations. A general reference- for the Checker's 
special features is LRM 267; others will be given later. 
Also. review LRM.124. I 

13.17. The CHECK condition. 

The CHECK condition occurs whenever a variable to which 
it applies i.s assigned a value, or a procedure or label to 
which it applies is reached. The condition is normally 
disabled. Like the 1/0 conditions and the CONDITION 
condition, it is a qualified condition, meaning that you 
state the individual items to which it applies. Standard 
system action for the CHECK condition is to write a comment 
on SYSPRINT showing the procadure or label redched, or the 
name of the variable and its new value. CHECK can be applied 
to all known names by leaving out the list of qualifying 
names. See LRM 268 and the entry for CHECK in LRM 116. 



13.18. The CHECK statement. 

The'CHECK statement dynamically enables the CHECK condition 
for variables, etc., referenced subsequently. Its primary 
use ,is in an interactive environment, -however it is- also - 
-useful in batch. The simplest way to get a complete trace 
of assignments is to execute a CHECK statement as part of 
your initialization in the main procedure.. The NOCHECK 
statement nullifies the effect of the CHECK statement. See 
LRM 269 through LRV 271. The Optimizer analyzes these 
statements for correct syntax, then ignores them. 

13.19. The SNAP option of the ON statement. 

An ON statement may include the SNAP option. The effect of 
this is to produce a traceb'ack through active blocks, on 
SYSPRINT, whenever the action specified by the ON statement 
(whether that be standard system action or execution of an 
on unit) is taken. This feature, which is in the ANSI 
standard, is useful in determining the cause of the condi- 
tion. See LRM 272 and LRM 273. 

13.20. Checkout compiler extensions of PUT statement. 

Under the Checkout compiler (only), program-control vari- 
ables can be transmitted by LIST- or DATA-directed output. 
The value transmitted is an implementation-defined high-level 
interpretation of the value. For example, the value printed 
for a label variable is the name of the label constant and 
information from which you can deduce the "environment" 
part of the label value; for a file variable, it is the 
name of the file constant which provided its value, a list 
of file description attributes, and an indication of 
whether the file i s  open ow closed and a count of the number 
of records processed; etc. Any value which has not been 
initialized, or which is invalid or inaccessible,. is indicated 
by a comment. 

In addition, other options are permitted on,the PUT state- 
ment under the Checkout compiler. The SNAP 0p.tio.n- causes 
a traceback through active blocks to be printed. The FLOW - 
option causes a table of the last few changes in the flow of 
control to be printed. The ALL option includes the effects 
of SNAP and FLOW; in addition, for all active blocks the 
following is printed: 



(a) The block identification. 
(b) The enablement/disablement status, in the 

block, of each PL/I condition. 
(c) The. values, in t.he block, of all of the "ON" , 

builtin functions (ONCODE, etc.) . 
(d) ,The' names and values of all variables declared 

in the b,lock. 

It may be 
high-level 
everything 
executing, 

seen from the above that an extremely useful 
debugging printout of the status of just about 
can be printed on the occasion of any error by 
early in your program, 

ON ERROR BEGIN; 
ON ERROR SYSTEM; 
PUT ALL; 

END; 

. . 
. . See LRM 2 7 4  and LRM 2 7 5 .  

13.21. Flow infdrmation. 

. . . 

There are .two ways that "flow information," i.e., informa- 
tion about any action resulting in the interruption.of 
sequential statement execution, such as a procedure invoca- 
tion or return, a branch resulting from a GO TO, IF, or DO, 
statement, or the raising of a condition, can be obtained 
from the Checkout compiler. This information, also, can 
be useful in determining what is actually happening in-a 
malfunctioning program. 

Data on the last several changes in the flow of control 
are kept in a "flow table." The size of this table is 
determined by an execution-time option, the, FLOW optlon. 
Our default is 2 0  entries. The flow table is dumped onto 
SYSPRINT by executing a PUT FLOW or PUT ALL statement or, 
incidentally, whenever SNAP action is taken for a condition. 

Altern.atively, by executing a FLOW statement you cause .the 
flow data to be written on SYSPRINT as it is senerated. 
The NOFLOW statement turns dynamic flow. tracing off. See 
Lm4 2 7 6  through LRM 278. 



13.22. Checkout compiler options for special debugging situations. 

Each execution-time message from the Checkqut compiler 
includes a count of the number of statements interpreted up 
to that point. Suppose the first error occurs after 10000 
statements have been interpreted, and suppose any output 
your program may have produced before that doesn't help you 
find the cause of error. Furthermore, it is assumed that 
any FLOW or SNAP output produced with the error message 
doesn't help. You would like to dynamically enable the 
CHECK condition by executing a CHECK statement, but you don't 
know where in the program to execute that. If you execute 
that too early, you will get too much CHECK output. 

What you do is execute the CHECK statement'early and block 
its output until, say, 9900 statements have Been executed. 
The blocking is accomplished by the BLOCK op,tion: 

GOOPTS= 'BLOCK (9900) ' 

Another situation that you can get a handle on by using 
appropriate execution options is an apparent infinite loop. 
You can break the loop after execution of a given number of 
statements or after d y i ~ e 1 1  number of lines arc printed on 
SYSPRINT by using the STEP or STEPLINES execution options, 
respectively. When the appropriate limit is reached, the 
ERROR condition is raised. A small further allotment of 
statements or lines permits you to print out some debugging 
output. (The ERROR on unit shown in Section 13.20 is about 
the best you can do.) This may be usefully combined with a 
CHECK statement and the BLOCK execution option to produce 
a trace of assignments that occur in the statements executed 
just prior to interruption of the loop. 

An additional source of information on debugging techniques 
for batch use of the Checkout compiler is CPG 38. 

. . 

13.23. Mixing Optimizer and Checker compiled procedures. : , I ' '  
. :.. 

Once one external procedure from a large program has been 
debugged to your satisfaction, it may be compiled under the 
Optimizing compiler and link-edited with procedures compiled 
by the Checkout compiler. Execution still occurs under.the 
control of the Checkout compiler, but whenever control 
reaches an Optimizer-compiled procedure the procedure is 
executed at full machine speed. 



There are two precautions you must observe when you mix 
modules in this way. First of all, if any locator variable's 
(pointers or offsets) are communicated between Checker and 
Optimizer procedures, then the Checker procedures involved 
must be compiled in conjunction with the COMPATIBLE com~iler 
option, and-execution (.under the Checker) must also be ion- 
ditioned by the COMPATIBLE execution option. Secondly, the 
first input seen by the linkase editor or loader must have 
been produced by the checkout-compiler (this is to ensure 
that the Checker will have control over all storage allocation. 

You have a choice of two libraries that may be used to 
resolve the library external references in the Optimizer- 
produced code. The normal Optimizer library is SYSl..PLIBASE 
and is provided automatically in PLO series cataloged pro- 
cedures. 'This contains the full code to support library 
services. An alternative, SYSl.PLICNIX, is selected auto- 
matically by PLC series cataloged procedures. This brings 
in much smaller amounts of code whose function it is to 
bootstrap into the proper Checkout compiler interpreter 
routines, which perform the services. The first library 
results in a larger, faster program compared to the second. 
You can specify either library in either series of procedures 
by using the LIBRARY symbolic parameter. See CPG 39 and 
OPG 36. 

13.24. Debugging with the Optimizer. 

There are a few things you can do to find problems in pure- 
Optimizer code. 

You can use -the SUBSCRIPTRANGE, STRINGRANGE, SIZE, and 
CHECK conditions, and the SNAP.op.tion of the ON statement. 
Enablement of the above conditions causes extra code to be 
generated,,degrading performance and increasing core require- 
ments. 

Flow information can ,also Le obtained trom the Optimizing 
compil'er, providing the FLOW compiler option is used during 
execution. The table is dumped whenever SNAP action is 
taken for a condition. 

A similar option, the COUNT option, car1 be used to print a 
table of statement execution counts at the end of execution. 
Available in the Checker, too, this option is de,faulted on - 
for the Checker and off for the Optimizer. See OPG 33. - 



As a final resort, a dump can be requested. For this pur- 
pose you call the PLIDUMP builtin procedure provided by our 
implementation. This gives you quite a bit of high-level 
(i.e., interpreted and formatted) information first, includ- 
ing the contents of buffers of opened files, followed (if 
the appropriate option has been specified to PLIDUMP) by a 
hexadecimal dump of storage. You will need to add 

//GO.PLIDUMP DD SYSOUT=A 
to your JCL. 

All of these debugging facilities are discussed in OPG 37. 

13.25. A library maintenance technique for program development. 

~ e t  us present some JCL, then discuss it. 

// EXEC PLOCEP,EDTIF='(16,LTIPLO) ' ,EDTOPTS=NCAL 
//PLO.SYSCIN DD * 
"PROCESS NAME ( 'PROC1' ) ; 
PROC1: PROC . . . 

6 

END; 
"PROCESS NAME ('PROC2 ' ) ; 

PROC2: PROC . . , 

END; 
/* 
//EDT.SYSPVT DD DISP=OLD,DSN=auto.call.lib 

We assume a partitioned load-module dataset whose name 
replaces "auto.call.lib" above has been previously created. 
This dataset wlll colitain one member fur each exLe~11a1 pro- 
cedure in a program under development; the member name is 
the same RS the cxt.~rnal procedure name. The members have 
been processed through the linkage editor, so each is a 
load module. However, no member is executable as it stands, 
because it has been link-edited with the NCAL linkage editor 
Ioption, which leaves external references unresolved. The 
dataset will serve as an "automatic.cal1 library" in a later 
link-edit or loader step that will bring all the modules 
together into.an executable load module. 



You run a job such as the one shown above either to compile 
some external procedures for the first time or to recompile. 
some after making changes. In the job shown above, two 
procedures, PROCl and PROC2, are compiled. Note that the 
*PROCESS statement in front of the source for each procedure 
specifies the NAME compiler option. The string given with 
the NX4E option will become the member name under which the 
external procedure will be stored in the automatic call 
library. The symbolic parameter EDTIF is assigned the value 
(16,LT,PLO) so that the link-edit step will be executed 
regardless of'the severity of errors discovered by the com- 
piler in any procedure (without this, a suffici.,ently severe 
error in one external procedure will prevent the link-editing - 
of - any of them, and they will all have to be recompiled). - 

The goals of the above JCL are to make it unnecessary to 
recompile any external procedure that hasn't been changed 
when you recompile some that have; to maintain fully up-to- 
date object code at all times; and to ease the burden of 
tailoring JCL. Assuming that you keep the *PROCESS statement 
for a procedure with the source itself, as the first card, 
then you never have to change any JCL. You merely grab 
whatever decks you wish to compile or recompile and put them 
in the "fixed" JCL between 

//PLO.SYSCIN DD * 
and 

/ *  
Some people prefer to maintain the source for each external 
procedure as a member of a partitioned source module'dataset. 
Assuming the source for each procedure starts with a *PROCESS 
statement, then the extent of your "variable1 JCL for the 
above job would be the minimum necessary, namely: 

//PLu.SYSCIN DD DISP=SHR,DSN=source.lib(PROC1) 
// DD DISP=SHR,DSN=source.lib(PROC2) 

Assuming you have named your main procedure DRIVER (for 
example), you can execute your program subsequently by 
collecting the pieces and resolving external references 
with the loader, using the following JCL: 

// EXEC PLOLG,PRELIB=lauto.call.libl ,EP=PLISTART 
//GO.LDRIN DD DISP=SHR,DSN=auto.call.lib(DRIVER) 
// other DD statements, as needed.. 

Instead of resolving external references every time you 
execute the program, you may do that just once. One way 
uf doing this is by adding the following JCL to the job 
which recompiles and updates your automatic call library. 



It assumes you have an existing executable program library, 
a partitioned dataset containing one member. This dataset 
is scratched and reallocated each time the following JCL 
is run. 

// EXEC PGM=IEFBR14 
//DDl DD' DISP= (MOD, DELETE) ,DSN=exec .prog . lib, 
// UNIT=unit,SPACE=space . . 

// EXEC PLOEP,PRELIB='auto.call.lib' 
//EDT.INCLIB DD DISP=SHR,DSN=auto.call.lib 
//EDT. SYSPVT DD DISP= (NEiV,CATLG) ,DSN=exec .prog. lib, 
// UNIT=unit,SPACE=space 
//EDT..SYSIN DD * 

INCLUDE INCLIB (DRIVER) 
ENTRY PLISTART 
NAYE DRIVER 

/* 
Note that this JCL does not have any names in it that need 
to be changed depending on which external procedures have 
just been compiled. To execute your program, use the 
following "bare" JCL: 

// EXEC PGM=DRIVER 
//STEPLIB DD DISP=SHR,DSN=exec.prog.lib 
//SYSPRINT and other DD statements, as needed 

The above JCL can be easily. adapted for use with the Check- 
out compiler, or for ~hecker/~ptimizer mixtures. (In the 
latter case, the requirement that a Checker module be.the 
first presented to'the linkage editor can be met by keeping , 

DRIVER, i . e. , the main procedure, at the Checker level. ) 

Finally, this JCL can also be adapted for use with a program 
containing fetchable procedures. Suppose in addition to the 
main program, DRIVER, you have t w o  fetchable yr .ucedu ies ,  
FP1 and FP2. The only necessary modification is 

,//E;DT, SYSIPJ DD * 
INCLUDE INCLIB (DRIVER) 
ENTRY PLISTART 
NAME U l < l V C l <  
INCLUDE INCLIB (FP1) 
ENTRY FP1 
NAME FP1 
INCLUDE INCLIB (FP2 ) 
ENTRY FP2 
NAME FP2 

/" 



Although all three load modules are re-created each time 
any procedure is compiled, the advantages of this technique 
are : 

(a) The JCL shown above still doesn't depend on 
which procedures are compiled. 

(b) If a particular external procedure happens to 
be referenced by two or more of the fetchable 
procedures, it is contained only once in your 
automatic call library, yet it is automatically 
brought in to each fetchable load module that 
needs it. 



CHECKOUT 'COMPILXR AND EXECUTION OPTIONS 

[ 1 a r e  u s e d  t o  d e n o t e  t e x t  t h a t  may b e  o m i t t e d .  

COMPILER OR EXECUTION OPTION ABBREVIATED NAME DEFAULT 

AGGREGATE I N0,AGGREGATE AG (NAG AG i n  b a t c h  
NAG i n  TSO 
I! i n  b a t c h  
N A  i n  TSO 
BL (0)  
CAPS 
C S ( 6 0  EB) 
Ncon 
CT i n  b a t c h  
N C ~  i n  TSO 
D I l G  
N D U  
E R R O R S  ( 1 0 )  i n  b a t c h  
ERRORS ( 0 )  i n  TSO 
ESD i n  b a t c h  
NOES9 i n  TSO 
P ( I )  i n  b a t c h  
F(W) i n  TSO 
FL.OW ( 2 0 , 2 0 )  
NPO R 
N3HALT 
I S  i n  b a t c h  
NIS  i n  TSO 
I S A S I Z E  ( 8 1 3 2 ,  

8 1 9 2 , 2 0 )  
LC (55) 
LnsG i n  b,a tch  
SMSG i n  TSO 
N M 
N M I  
!IAR ( 2 , 7 2 , 1 )  f o r  

F - f o r m a t  
N R R  ( 1 0 , 1 0 0 , 9 )  . for 

V ,  U-format 
NMD. - 
NEST 
N N U N  i n  b a t c h  
N U N  i n  TSO 
WORJ 
OP i n  b a t c h  
NOP i n  TSO 
NORUN (S)  i n  b a t c h  
NORUN(%) i n  TSO 
SZQ ( 7 3 , 8 0 )  f o r  

P - f o r m a t  
SEQ(1 ,F ) )  f o r  

V,U-format 
SZ (NAX) 
NOSMAN i n  b a t c h  
SMAN i n  TSO 
S  i n  b a t c h  

ATTRIBUTES 1 NOATTRIBII'PES 

BL ( n )  - 
cs ([ 4 3  I 60 I[ EB l B I) 
COZll NCOM 
CT 1 NCT 

BLOCK ( n )  
c a p s  1 asIs 
CHAR SET ([ 4 8 1  6 0  ][ E B C 3 I C i  BCD]) 
COMPATIBLE 1 NOCOMPATIBLE 
COUNT( NOCOUNT 

DIkGNOSEI NODIAGNOS E  
D u n r  IWoDvmr 
ERRORS (ri) 

FLOFI (n ,  m) I NOFLO!J 
F O P Y A T I  NOFORMAT 
HALT ( NOHALT 
INSOURCE ( NOINSOURCE 

- 
FOR1 XFOR - 
I S  ( N I S  

LINECOUNT (n) 
LMESSRGEl SMESSAGE 

LC ( n )  
LMSG ( SMSG 

MACROJ FOMACBO 
MARGIN1 ( '  c ' )  1 NOMARGIN1 
MARGTNS ( m ,  n[ ,c 1) 

M D E C K (  NOHDECK 
NAME ( l  a a a a a a a a ' )  
NEST 1 NOWEST 
M U M E E S I B O N ~ B B E R  

MD (NND 
N ( ' a a a a a a a a ' )  - 
N U M I  N N U N  

OBJECT ( NOOB.3 ECT 
OPTIONS 1 NOOPTIONS 

Q B J  1 NOBJ 
OPl NOP 

SEQ!JENCF: (m, n )  ( NOS EQCJENCE SEQ (m,n)  1 NOSEQ 

S I Z E  ([ - I n  I [  - I n K !  MAX) 
SMAN (NOSHAN 

SOVRCE I NOSOURCE 



STEP (n[ , m 1 )  1 NOSTEP ST (n[ ,m 1) I NST 
STEPLINES ( n )  ( NOSTEPLINES , STL (n )  I NSTL 
STMT 1 NOSTHT - 
STORAGE ( NOSTORAGE STG 1 NSTG 

NS i n  TSO 
NS T 

.NSTL 
STNT' i n  batch 
NOSTMT i n  TSO 
STG i n  batch 

. . NSTG i n  TSO 
S Y N T A X  ( ' N O S Y N T A X [  ( W  ( E I  S) ] S Y N ) N S Y N [  ( w ( E ( s )  ] NSYN(S) i n  batch , 

NSYN (E) i n  TSO 
TERHINALC ( o p t i o n s )  ]I NOTERMINAL FERN[ ( o p t i o n s )  ] I  NTE RH NTERM i n  batch - 

VERIFY ( NOVERIPY 
XRYF I NOX REF 

TERM i n  TSO 
v 
X i n  batch 
NX i n  TSO 



O P T I H I Z E R  C O R P I L E R  O P T I O N S  

. . . . 
[ ] are  u s e d  t o  d e n o t e  t e x t  t h a t  m a y  be omitted.  

COMPIZER O P T I O N  ABBREVIATED NAHE 

AGGREGATE 1 NOAGGREGATE 

ATTRIBUTES NOATTRIBUTES 

CHARSET ([ 48.1 60] [  E B C D I C 1  BCD]) 
C O M P I L E (  NOCCMPILE[ (WI E l  S )  ] 
COUNT( NOCOUNT 
DECK 1 NODECK 
DUMP1 NODDHP 
ESD ( IQOESD 

FLOW[ (n,m) J(NOFL0W 
GONUMBER 1 NOGONUMBER 

GOSTHT ( NOGOSTHT 
IN!?RFCTSE I NOIMPRECISE 

INCLUDE I NOINCLUDE 
INSOURCE1 NOINSOURCE 

LINECOUNT ( n )  
L I S T [  ( n ,  m )  ] ( N O L I S T  
L N E S S A S & ( S M & S S A G E  

AG-I NAG 

c s ( C 4 8 1 6 0  I[ E B I B ] )  
cl NCC (W I E l  S )  I 
CT 1 NCT 
Dl ND 
DO (NDU 
P 

- 
GN ( NGN 

GS ( N G S  
I M P 1  NIMP 

I N C (  NINC 
I S  ( N I S  

MACRO( NOMACRO a1 N N  
MhDl NONAP - 
MARGIN1 ( I c e )  (NOHA'RGINI M I  ( ' c e )  I NMI 
N B R G I N S  (3, n[ ,c j) MAR (m,nC * c  3 )  

MDECK ( NOFDECK 
NRME ( 1  a a a a a a a a * )  
NEST 1 NONEST 
NUMBER 1 NONUMBER 

MD( NMD 
N ( '  a a a a a a a a ' )  - 
N U N  ( NNUH 

OBJECT ( NOOBJECT O B J l  NOBJ 
O F F S E T  ( NOOFFSET OF 1 NOF 

O P T 1  MIZE ( T I M E 1  0  1.2) ( N O O P T I M I Z  E O P T  (TIME 1 0  (  2 )  ) NOPT 
O P T I O N S (  NOOPTIONS OP ( NOP 

SEQUENCE (m, n )  ( Nos EQUENCE s E Q ( m , n )  INSEQ 

S I Z E  ( n  1 nK l H A  X) 
SOURCE ( NOSOURCE 

DEFAULT 

AG i n  b a t c h  . , ' 

NAG i n  T S O  
A i n  b a t c h  
NA i n  TSO 
CS ( 6 0  EB) 
NC ( S )  
NC T 
ND 
ND u 

. E S D  in b a t c h  
NOESD i n  TSO 
F ( 1 )  i n  b a t c h  
F.(W) i n  T S O  
NOFLOP 
NGN i n  b a t c h  
GN i n  T S O  
NG S 
IMP i n  b a t c h  
NIHP i n  TSO 
NINC 
I S  i n  b a t c h  
NIS i n  T S O  
LC (55) 
NOL I S T  
LMSG i n  b a t c h  
SNSG i n  TSO . 
N?I 
NORRP 
NM I 
MAR (2 ,72 ,1 )  f o r  

F - f o r m a t  
1 ? 9 R ( 1 0 , 1 0 0 , 9 )  f o r  

V ,  U-format 
NM D - 
NEST 
NNUI! i n  b a t c h  
Elnn i n  TSO 
OB J 
CF i n  b a t c h  
WOP i11 TSO 
ROPT 
OP i n  b a t c h  
NOP i n  T S O  
SEQ ( 7 3 , 8 0 )  f o r  

F - f o r m a t  

S E Q ( 1 , 8 )  f o r  
V , U - f o r m a t  

SZ (MAX) 
S i n  b a t c h  
NS i n  TSO 



STMT lNOSTHT 

STORAGE 1 NOSTORAGE 

- 
STG 1 NSTG 

STHT i n  b a t c h  
NOSTMT i n  TSO 
STG i n  b a t c h  
NSTG i n  TSO 

SYNTAXINOSYNTAX[ (WJEIS) ] SYNINSYNI (W(E(S)  ] NSY N (S )  
TERMINAL[ ( o p t i o n s )  IINOTERHINAL TERtl[ ( o p t i o n s )  ]I NTERll NTERM i n  b a t c h  

XREP 1 NOXREP 
TERM i n  TSO 
X i n  b a t c h  
NX i n  TSO 



O P T I N I Z E R  EXECUTION O P T I O N S  

[ ] a r e  u s e d  t o  d e n o t e  t e x t  t h a t  may be o m i t t e d .  

EXECUTION OPTION ABBREVIATED NAME DEFAULT 

COUN T I NOCO UNT 
FLOW[ (n ,  m) ]I NOFLOW 
I S A S I Z E  (C x I,[ Y I,[ 1) 
REPORT ( NOREPORT 
STAE 1 WOSTAE 
S P I E  1 WOSPIE 

C T (  NCT C o m p i l e - t  ime 
C o m p i l e - t i m e  
I S A  ( 8 K , 8 K , 2 0 )  
N R 
STP. E 
S P I  E 



14. Multitasking and asynchronous I/O. 

Multitasking is perhaps the single most unique feature of PL/I, 
having no parallel in other popular high-level languages. The 
feature allows one to express algorithms for parallel computation 
(concurrent processing) in a natural way. However, the multitasking 
feature of the language, like the preprocessor, has deficiencies. 
Until a little over a year ago, ANSI was well along with an improved 
version of the multitasking feature. Then the committee began t o  
have second thoughts. They eventually decided that new develop- 
ments in computer'architecture and operating system capabilities 
were coming forth so rapidly that. t.he standardization of multi- 
tasking, which is intimately related to operating system capabi1i.- 
ties, was actually premature. As a result, multitasking was entirely 
withdrawn from the proposed standard; and, since asynchronous 1/0 
uses some of the same language elements, that went too. These 
features will undoubtedly be standardized in the future. For the 
time being, you can expect IBM to continue to offer their version 
of multitasking as an extension to the standard. Univac is offering 
an amalgam of that and the earlier proposal from ANSI. 

14.1 Concept of flow of control. 

We may think of the execution of a "conventional" program, i.e., 
the kind we have been talking about all along, as being "tracked" 
by a cursor that points to the instruction or statement being 
currently executed. Normally this cursor moves forward, or down, 
in the program. When it encounters an IF statement it may skip 
ahead. On. encountering the END statement of a DO group it may back 
up to the DO statement. For a GO TO statement, it jumps to some 
other place. For a procedure call, it also jumps, and if control 
reaches the procedure's END statement or one of its RERRN statements, 
the cursor jumps back to the point just beyond the "point of invo- 
cation." Finally, whenever a condition is raised and an on unit 
entered, the cursor jumps in the same way it does for a procedure 
call, with the expectation of a return jump back to the "point of 
interrupt" when (and if) the on unit returns normally. 

A delay (some WAIT time) that occurs for 1/0 activity when the 
''cursor1' is at an 1/0 transmission statement doesn't change the 
picture in any way. The program may be temporarily suspended, in 
the sense that its cursor is not progressing, but the point is that 
it still identifies some statement (and only one) as the current 
statement. 



In describing the peregrinations of the cursor we are describing 
what is commonly referred to as the "flow of control." The essential 
feature of a conventional program which distinguishes it from a 
multitasking program is that its behavior is described by a single 
flow of control; in procedure and on unit invocations we have to 
"remember" the point of call or point of interrupt, so the cursor 
can be restored to that point on the appropriate action by the 
program, but that housekeeping doesn't alter the fact that there 
is a single flow of control. 

In a multitasking program there may be an arbitrary number of con- 
currently active "cursors" or "flows of control." That is, several 
different statements may all be ideneified as llcur~ent.ll The cursur 
for each one moves along in the program in the normal way - jumping 
around, ctc. 

How, you say, can several statements be in a state of concurrent 
execution on a single computer? Well, on our syste~il there is in 
fact only one processing element. It can be servicing only one 
flow of control at a time. Various things may cause the processing 
element to temporarily divorce itself from one flow of control and 
begin (or resume) servicing another. So the several statements 
are not being executed exactly at the same time. But for all prac- 
tical purposes, they logically are because there is a degree of 
unpredictability in the extent to wh5ch the one processing element 
will service one flow of control before something causes it to 
switch to another. In any event, other computer systems may have 
multiple processing elements all sharing common storage, so it is 
entirely conceivable that several statements of a multitasking pro- 
gram may be in states of physically simultaneous, and not just logi- 
cally concurrent, execution. 

Another feature of multitasking programs is that they start off 
with a single flow of control, looking for all the world like a 
conventional program. At some point, however, they do something 
internally to establish an additional flow of control. These addi- 
tional flows of control may continue for a while, then terminate, 
leaving others, including the original one, still progressing. A 
particular flow of control, from the moment of its birth until its 
death, is called a task. To rephrase what we have already said: 

(a) A conventional program has a single task. 
(b) A multitasking program starts out in the conventional way, 

but after a while it creates (starts, or "attaches") new 
tasks. These may create yet others, etc. 

(c) All of the tasks proceed concurrently, eventually dying. 



Generally, individual tasks can and do proceed independently of 
each other. They may each execute different portions of the code 
in a program, or they may execute the same portion. This poses no 
problem because the code is not self-modifying (it is "read-on1.y") 
and each task can be given its own separate work area. Tasks may 
also share data defined by the program, that is, several statements 
being executed concurrently in different tasks can access common 
data. When this, in fact, occurs in a program, that program will 
generally need to employ some means of synchronizing the accesses 
of the tasks to the common data. Synchronization is accomplished 
through the temporary 'lsuspensionll of one or more tasks, if necessary. 

1 4 . 2 .  Overview of PL/I multitasking facilities. 

PL/I provides language primitives for: 

(a) Creating tasks. 
(b) Synchronizing tasks. 
(c) Terminating tasks. 

14.3. When to use, and not use, multitasking. 

It is natural to conclude that the ability to code "parallel processes" 
by using multitasking may gain you the advantage of additional 1/0 
overlap (,several tasks can do 1/0 simultaneously, and another can 
be using the CPU). Actually, this overlap can be achieved in a con- 
ventional, non-multitasking program by using the asynch?onous 1/0 
facilities to be described later in this lesson. But, in any event, 
whether there is any advantage in going out of your way to achieve 
extra overlap depends on sevcral factors. Two aspects to be con- 
sidered are possible system-wide gains in throughput that work to 
everyone's advantage and possible lower job charges (due to decreased 
WAIT time) that work to yours. 

In the case of a job that occupies all, or most of, core storage, the 
only thing of importance is to minimize the total residence time of 
the job since it effectively has control of the whole machine during 
the time it is resident. Clearly, if additional overlap allows it 
to complete sooner, everyone gains  by the increased throughput. The 
person who runs the job should be, and in our system willbe, rewarded 
through lower costs. 

For a job that occupies a small.amount of core storage, overlap achieved 
by. it is not so important in.terms of overall system throughput, since 

- l o t s o f  core storage remains for the scheduling of other jobs which 



can provide overlap on an inter-job basis. Becausc of this, it can 
be argued that a "small-core" job should be neither rewarded for 
extra overlap nor penalized for not achieving it. Unfortunately, 
our system tends to reward even small-core jobs for extra overlap. 
What is worse, it is just those jobs that are subject most to certain 
kinds of contention that can inhibit potential overlap,'contributing 
to the variation in recorded WAIT time. 

Independently of the above, one must consider the difficulty of 
designing and debugging a multitasking program. Also, one must 
recognize that multitasking programs incur additional operating 
system overhead. (See LRM 279.) And finally, at least for sequen- 
tial 1/0 you can achieve the benefits of I/O-CPU overlap without 
going out of your way merely by employing buffered files (which are, 
in fact, thc dcfault) . 

What, then, are the logical uses for multitasking? Basically, multi- 
tasking is used to express, in a natural way, algorithms exhibiting 
a high degree of parallelism. An example in system programming is 
the implementation of a time-sharing system supervisor: the parallel 
activities are the independent, simultaneous services requested by 
logged on users. An example in engineering or science fields might 
be the simultaneous search for a solution by different methods where 
the convergence of any method is unpredictable; another example might 
be the simulation of a physical system characterized by competing 
or cooperating, random or probabilistic, concurrent processes. 

14.4. Attaching n tnslr. 

In PL/I, an additional independent flow of control is started by 
invoking a procedure with one of the multitasking options. For 
exm~lple : 

CALL SUBR(arg-Zist) TASK; 
In this CALL statement, the TASK option is used to denote that the 
execution of the procedure SiiBR-should constitute a new task. 'l'he 
invoking procedure does not transfer control to SUBR in the normal 
way. Rather, it goes right on with the executiorl of the next state- 
ment; it does not wait for SUBR to return. SUBR is free to execute - 
"in parallel" with the invoking procedure. The task represented 
by the execution of SUBR survives until the procedure SUBR returns. 
At that moment, the task (i. e. , the flow of control) comes to an 
end. (As we will see later, there are also several other ways that 
tasks can end.) 



The situation described can be diagramed in the following way. 

CALL SUBR( ...) TASK; - - - + SUBR: PROC( ...); 

Contrast this to the normal invocation of a proecdure. 

CALL SUBR( ...); - - - SUBR: PROC( ...); 

F - 'z 

-2, 

1 \1 - END; 
When SUBR is executed as a task, it is called a subtask of the task 
represented by the execution of the invoking ~rocedure; that task, 
in turn, is called the arent task. The main procedure has no parent 
task. It is called the \ major tas . 

Any task can start any number (in theory) of subtasks; these may 
start other subtasks, etc. A given procedure may have several con- . . 

current invocations (as tasks). This situation should be compared . . 
to recursion, in which the several concurrent invocations of a. given 
procedure are all part.of the same task: the one flow of,control ' .  

is in the most recent invocation. . . 

See LRM 280 and LRM 281. 

14.5. Scheduling of tasks; priorities. 

When several tasks are active simultaneously they compete for CPU 
, service. Some of them may be waiting for the completion of 1/0 
(or for other things) and are not demanding CPU service at the 
moment. They are said not to be "ready." Amongst the ready tasks, 
however, only one can be receiving service from the single CPU. 
The algorithm which determines which ready task receives CPU service 
is the scheduling policy of the operating system. Many different 
scheduling policies are imaginable, such as "least recently served," 
"1-0~11d robi~l," etc, 



In the case of OS, however, each task in the system has a priority, 
and it is always the highest priority ready task that receives control. 
Tasks of a multitasking PL/I program, like all other tasks in the 
system, have priorities. There are facilities in PL/I, which will 
be described shortly, to assign a priority to a new task, to determine 
the .priority of a task, and to change the priority of a' task. 

There are two ways that control can leave a task. The task may 
give up control voluntarily by becoming "not ready," as, for instance, 
by arriving at a point where it must,wait for the completion of an 
1/0 operation. Or it may involuntarily give up control, i.e., have 
control usurped from it, as the result of a higher priority task 
becoming ready. The one from which control is usurped remains ready, 
of course, and is not logically aware that control is usurped. The 
usurping of control is usually a probabilistic or non-deterministic 
happening; however, it may be occasioned by something the task.itself 
does (such as raise the priority of another ready task above its own): 

When a task is created as shown in the previous section, its initial 
priority is set equal to that of its parent task. The PRIORITY 
o tion of the CALL statement, however, can be used to assign either k ig er or lower initial priority to the new task. The effect of 

CALL SUBR ( . . . ) TASK PRIORITY (expr  ) ; 
is to attach SUBR as a task with a priority of n relative to that 
of the parent task, where n is the value of expr (converted, if 
necessary, to a binary integer). 

In PL/I, priorities are always relative (ultimately to that of the 
major task, which is set initially by the operating system). But 
this is always sufficient because, as far as your program is concerned, 
its use of priorities is for the logical purpose of controlling 
which of its ready tasks is to be selected for CPU service in pref- 
erence to the others. 

The maximum and minimum absolute priorities of tasks are determined 
by factors outside PL/I . ' Generally, you can expect ten or so priority 
levels below that of the major task to be reachable. It would be ' 

wise, however, to assume that no higher levels are reachable. 

How essential is the use of priorities for logical purposes in PL/I? 
It turns out that in the current language their use is essential, 
but only to 'lsimulatel' a primitive multitasking service which is 
not in PL/I but is essential. It is interesting to note that the 
revised multitasking ianguage eariier proposed by ANSl had this 
other service ("locking" or "enqueueing") and eliminated the concept 
of priority. 

See LRM 282 and LRM 283. 



14.6. Task values and variables. 

In this section we will describe how the prior it.^ of a task may 
be determined or changed. For this purpose we will need task vari- 
ables and the PRIORITY builtin function and pseudo-variable. 

A variable declared with the TASK attribute is hown as a task 
.variable. Task values (i,e., values o f  task variables), which are 
a new kind of program control data, have very.limited use. They 
may, of course, be propagated by assignment. 

The vaiue of a task variable may be thought of as a binary integer 
representing a priority. 

Task variables may or may not be associated with tasks. Initially, 
a task variable is not associated with any task; it is said to be 
an "inactive task variable." An inactive task variable is associated 

~ - - -  

with a task by referencing the variable in the TASK option of the 
CALL statement which creates the task. Examples: 

CALL SUBRl TASK (TI) PRIORITY (-1): 
CALL SUBR2 TASK (TZ(1)) PRIORITY (1); 
CALL SUBR2 TASK (P + T) PRIORITY (N) ; 
CALL SUBR3 TASK (S. T) PKIOKT'IY ('0) ; 

In these examples, four tasks are created. They are represented 
by the execution of procedures SUBR1, SUBR2 (for two of the tasks), 
and SUBR3. With each is associated a task variable (respectively, 
the elenlent task variable TI, the I-th element of the array T2 of 
task variables, the based element task variab1e.T located by the 
value of the pointer variable P, and the task variable T which is 
a component ' of the structure S) . 

Once a task varjab1.e is associated with a task, it is called an 
"active task variable." It remains active until the task with 
which it is associated terminates. It is illegal to attempt to 
associate an active task variable with a task by referencing it in 
a TASK option. In other words, the following is illegal: 

CALL SUBM TASK [T) PRIORITY (-1) ; 
CALL SUBR2 TASK (T) PRIORITY (- 2) ; 

When a task variable is made active by associateing it with a task 
as shown above, it is given a value (as a priority value) representing 
the priority of the newly created task. The priority of the task 



may be subsequently examined by use of the PRIORITY builtin function. 
For example, - 

N = PRIORITY (TI ; 
assigns to N the priority of the task associated with the task 
variable T. In keeping with the spirit of relative pr.iorities, 
this value is not the absolute priority of that task, but rather the 
value relative to the priority of the task in which the statement 
is executed. Hence the reference PRIORITY(T). may return different 
values depending on which task it i.s evaluated in. 

The priority of a task, after it is initially established, may be 
changed in either of two ways. One is by assigning a new task 
value to the associated task variable, as i.n 

CALL SUBRl 'I'ASK (T) PRIORITY (- 1) ; 
CALL SUBR2 TASK (U) PRIORTTY (N) ; 

I 

I 

T = U; 
The effect of this is to change the priority of the task associated 
with T to that of the task associated with U. 

The second way to change the priority of a task is by using the 
PRIORITY pseudo-variable. For instance, 

PRIORITY(T) = -1; 
This causes the priority of the task.associated with T to be set 
to one less than the priority of the task executing this statement 
(observe the use of relative priorities again). 

A task can increase or decrease its own priority. One way of accom- 
plishing that is shown by the following example: 

DCL T TASK; 
CALL SUBR TASK (T) PRIORITY (-1) ; . 
SUBR: PROC; 

* 
t 
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PRIORITY (T) = 1; 
1 

I 

END ; 
By the normal scope rules, the variable T declared outside of SUBR 
is also known inside SUBR. It is associated with t.he task represented 
by the execution of SUBR by the CALL statement. The statement 

PRIORITY(T) = 1; 
increases the priority of the named task by one relative to the current 
task. But the named task - is the current task in this case. 



This method of changing a task's own priority would not be available 
to it if no task variable was named in the TASK option of the CALL 
statement that created the task. In particular, it is not available 
to the major task. Thus, the second 111ethod of changing a task's own 
priority is to use the PRIORITY pseudo-variable with an empty argu- 
ment list : 

PRIORITY( ) = 1; 

It sho1il.d bc remarked that priority values can be llelcl by inactive 
task variables. Although in this case the priority value is not 
that of an actual task, it behaves as if it were. One (non-essential) 
use for this is the following. If the CALL statement that creates . 

a task uses t h e  TASK option containing a task variable, but no 
PRIORITY option, then the priority of the newly created task is 
set equal to that held in the (inactive) task variable. Thus, 

CALL SUBR TASK (T) ; 
is equivalent to 

CALL SUBR TASK (T) PRIORITY (PRIORITY (T) ) ; 
Both of these statements would .be in error if T had not previously 
been assigned a value (as a priority). 

See LRM 284 through LRM 287 and the entries for PRIORITY in LRM 18. 

14.7. Event variables and values. 

Suppose a parent task needs to know if one of its subtasks is still 
active, i.e., in existence. You might think it would suffice to 
set a BIT (1) variable to 'llB just before creating thc subtask, 
then arrange for the procedure whose execution represents that 
subtask to set the same variable to 'OIB just before it returns. 
The parent task could then test that variable at any time. The 
problem with this is that the subtask can ten~~lnate in other ways 
(which we haven't seen yet) besides executing a RETURN or END 
statement; it would not have a chance to set the bit variable to 
'O'B in these other cases. 

Event variables (those declared with the EVENT attribute) may be 
employed to keep track of the status of a task. (They.may be used 
for a lot of other things, as we shall see.) 

Event variables havc two parts to their value: a "completion" part 
represented as a BIT (1) value, and a "status" part represented 
as a binary integer. 

Event variables may or may not be associated with tasks. Initially, 
an event variable is not associated with a task (or certain.other 



things described later) and is said to be an "inactive event variable." 
An inactive event variable may be associated'with a task by refer- 
encing the event variable in ;he EVENT o tion of the CALL ktatement 
that creates the task, as in the + .allowing. - 

CALL SUBR TASK EVENT (E) ; 
This serves three purposes: 

(a) To make the event variable E active. It remains active 
until the associated task terminates. During this time 
it may not be associated with another task (or certain 
other things). 

(b) To set the completion part of E to the value 'OIB. It 
remains 'O1B until the task terminates, at which time 
4.t .  is set t o  ' 1. '.R autmatically. 

(c) To set the status part of E to the value 0. Further use 
of the status part is described later. 

The parent task, or any other task for that nratter, can subsequently 
examine the value of the completion part of E to determine whether 
the subtask is still active. Access to thc completion part of an 
event variable is gained by use of the COMPLETION builtin function. 
For example 

IF COMPLETION(E) THEN ...; 

When an event value is assigned to an event variable, the effect is 
to assign the completion and status parts simultaneously. No inter- 
rupt can occur in this operation, and no task switch can or.r.1l-r 11nt.il 
it is complete. But assignment to event variables  particularly 
to their completion parts) will be saved until later, because it 
is illegal to do anything to the completion p3rt of an active event 
variable (except look at it). Assi..gnment to an inactive event 
variable is not useful, as yet, "because any value it inay have is 
not used, and in fact is overwritten, when the event variable is 
made active. 

. . 
See LRM 288 through LRM 291 and the entry for the COMPLETION builtin 
function in LRM 18. 

14.8. The WAIT statement. 

Supposenow that a p.arent task, which has been executing in parallel 
with a subtask it has created, has reached a point in its logic 
,where it absolutely must wait until the subtask reaches its end 
before going on. (Perhaps it needs a value which is set by the 
subtask just before it finishes.) One thing the parent task could 
do is "spin" in a right loop, repeatedly looking at the completion 



part of the event variable associated with the subtask. This would 
be extremely unwise, however, given a suitable alternative. For 
it would waste CPU cycles. Worse than that, if the subtask does 
not have a higher priority than the parent task, the loop would be 
infinite since the subtask would never again get control and could 
not terminate. (It is assumed the spin loop in the parent task 
does no 1/0 or anything else to voluntarily relinquish control of 
the CPU. ) 

To accomplish what is needed here, the parent task executes a WAIT 
statement naming the event variable. If, at that instant, the- 
completion part of the event variable has' the value lllR (indicating 
the associated subtask has already terminated), the parent task 
merely proceeds to the statement after the WAIT statement. On the 
other hand, if it has the value 'O'B (indicating the subtask is 
still executing), then the execution of the parent task is tempo- 
rarily suspended; i.e., that task is made ','not ready." It remains 
suspended until the subtask terminates (more precisely, until the 
event variable has been marked "complete" by the termination of . .  

the subtask), whereupon it again becomes "ready." This situation 
is not unlike what happens when a task waits for the completion 
of an 1/0 operation. 'During the period of waiting, other tasks 
(including, obviously, 1ower.priority ones) may receive CPU service. 

The form of the WAIT statement used for the above is: 
WAIT (E) ; 

In general, a WAIT statement may wait on the completion of any 
number of events. A list may be specified, e.g., 

WAIT (El, E2, E3) ; 
This WAIT statement will cause the task that executes it to wait 
for the completion of the three events (i.e., subtask terminations, 
for now) with which the event variables El., E2, and E3 have been 
associated. 

In addition, any item,in the list of event variables may be an 
aggregate of event variables. The meaning is the same as writing 
all the contained element event variables in the list. E.g., for an 
array E of four event variables, 

WAIT (E(*)) ; 
is the same as 

WAIT (E(11, E(2), E(31, E ( 4 ) ) ;  

, Finally, a task can wait on the completion of.any number of the 
event variables specified in the list; it need not wait on the 



completion of all of them. For example, 
WAITTI, E2) ( 3 ) ;  

causes the current task to be suspended until at least one of El and 
E2 is marked complete. In general, an expression may be given for . 
the wait count. 

See LRM 292 and LRM 293. 

14.9. Termination of tasks. 

'l'ermination of a task is said to be normal if the procedure whose 
execution represents the task reaches a RETURN statement or its 
END statcmcnt. In this case, the status part of the assor.iated 
event variable, which was set to 0 automatically when the task was 
created, is left with this value. There are several ways a task 
can terminate abnormally. Two we will consider here are the follow- -- 
ing : 

(a) It may execute an EXIT statement. See LRM 294. 
b) Theblock which created it can terminate. 

Thisforces termination of the subtask. Example: 

BEGIN ; 
CALL SUBU 'IASK JiWr (El) ; 
CALL SUBR2 TASK EVENT (E2) ; 
WAIT (El, E2) (1) ; 

Elm ; 

Two subtasks are started by the begin block which then 
waits for the completion of either one. As soon as one 
.completes (normally, presumably), the WAIT statement is 
satisfied, so the parent task proceeds. This causes 
termination of the begin block. That will force the 
abnormal termination of the remaining subtask. 

When a task terminates abnoml.ly, the status part of its associated 
event variable is set to 1 if it is still 0. See LRM 295. 

A parent task may determine whether a subtask has terminated normally 
or abnormally by examining the status.part of its associated event 
variable after termination. This is achieved by use of the STATUS 
builtin function. See the entry for the STATUS builtin function in 
LRM 18. 



Although it is illegal to assign an event value to an active event 
variable (because, in particular, an attempt may not be made to 
affect its completion part in this or any other way), it is legal 
to assign a value to its status part only. This is acco*ished by 
use of the STATUS pseudo-variable. (See entry in LRM 18.) A non- 
zero value assigned in this way will be left untouched if the task 
terminates abnormally. 

Note that execution of an EXIT statenlent in the major task is 
equivalent to execution of a STOP statement in any task. Review 
LRM 112 and LRM 113. 

14.10. Sharing data among tasks. 

In general, two tasks can connnyicate through any variables hown to 
both of them. Which variables are known is determined in the usual 
way by the block structure and scope of names. The programmer, 
however, is responsible for synchronizing (by using event variables 
and the WAIT statement in ways to be shown later) simultaneous refer- 
ences, one of which may change the value of a variable, in two or 
more tasks. Further details are given at LRM 296. Considerations 
for the sharing of files between tasks are given at LRM 297. 

14.11. Inheritance of on units across tasks. 

In Lesson 6 we decribed the search process for an established on , 

unit to handle the occurrence of a condition. The search.proceeded 
from the current block out along the chain of active blocks to the . 

main procedure (if necessary). The same process is used in multi- , 

tasking situations, i. e. , if a11 established on unit is not 'found 
in any of the active blocks of a subtask in which the condition 
occurs, the search continues in the active blocks of the parent 
task. (Note that those blocks must still be active, for otherwis,e 
the subtask would have been terminated abnormally earlier.) 

If an on unit is found in one of the blocks of the parent task, it 
is ii~vcrkell i l l  Llie ~lormal way. However, note that its execution is 
part of the flow of control through the subtask, not through the 
parent task. Tl~e parer~L task continues doing whatever it was doing 
when the condition occurred in the subtask. That parent task could 
even raise the same condition and execute the same on unit in parallel 
with the subtask! See LRM 298. 



The situation described in the last paragraph is only one way in 
which the same section of code can be in simultaneous .execution 
by different tasks. Other ways result from the following: 

(a) The same procedure is attached multiple times as a task. 
' 

(b) An internal or external procedure is called in the normal 
way by two or more tasks concurrently. 

(c) A program, even one which does no multitasking, can be 
made resident in the operating system, so that if several 
users happen to execute it simultaneously they will share 
one copy of the code and all static data rather than having 
their own separate copy. As far as the operating system 
is concerned, the execution of that common code by each 
of those users is a separate task. This situation, in 
which a program has several concurrent executions as 
separate tasks without itself creating any subtasks. is 

X .  

called multiprogramming. 
Whenever part of the code of any external procedure can be executed 
by two or- more tasks simultaneously, that kxternal procedure must 
specify OPTIONS(REENTRANT) on its procedure statement. This will 
tell our compiler.to use dynamic storage (behaving, in fact, like 
automatic storage) for any writeable workspace it needs for the 
procedure, so that each of its "executors" will have a separate 
copy. (It might otherwise use static storage - which is shared 
amongst all the executors.) The programmer, too, must observe the 
same requirement and use automatic storage for any local variables 
of a reentrant procedure. See LRM 299 and LRM 300. 

Before leaving this subject, we will give emphasis to a point 110e 
adequately made in the LRM. The establishmenr. sratus of on units 
in a parent task is essentially "frozen" when it attaches a subtask, 
as far as the subtask is concerned. That is, if the search for an 
established on unit should go back as far as the blocks of the parent 
task, the effects of any ON or REVERT statements executed there 
after the creation of the subtask will not be observed by the sub- 
task. They will, however, have their usual effect on the on units 
that may be entered by the occurrence of a condition in the parent 
task. Fnr example, 

ON FOFL X = 1; 
CALL SUBR TASK; 
ON POFL X = 2; 
L1: A statement that raises FOFL; 
SUBR: PROC; 

L2: A statement that raises FOFL; 
END ; 

Execution of the statement labeled L1 causes X to be assigned the 
value 2. Execution of L2 causes it to be assigned the value 1, even 
if the parent task has already executed its second ON statement. 



Also, at this point it should be remarked that standard system action 
for the FI'NISH condition, which was said in Lesson 6 to terminate 
the program, actually only terminates the task in which it is raised. 
The termination is normal only if the raising of FINISH results 
from the execution of a procedure END or RETURN statement for the 
task. In particular, standard system action for ERROR, raised in 
a task, causes a message to be printed, FINISH to be raised, and 
that task (only) to be terminated (abnormally). Thus, another 
legitimate use,of multitasking might be merely to isolate the effects 
of catastrophic errors and prevent termination of the whole program 
by one. 

14.12. EVENT option of DISPLAY statement. 

Recall, from Lesson 12, that execution of 
DISPLAY (expr) REPLY (variabZe) ; 

prints a message (the value of expr) to the operator, then causes 
the program to be suspended until his reply is received (and stored 
in variabZe],. The wait is just like that for an 1/0 operation. 
By adding the EVENT option to the DISPLAY statement, the program, 
instead, goes on with the next statement without waiting for a reply. 
The event variable named must be inactive, i. e. , not currently 
associated with a task or, we can now add, with an operator reply. 
Its use in a DISPLAY statement makes it active and initializes the 
completion part to 'O'B. It remains in this state until two things 
have happened: 

(a) The operator's reply has been received. 
(b) A WAIT statement referencing the event variable has been 

executed. Note that examination of the completion part 
by use of the COMPLETION builtin function will reveal a 
value of 'OIB if it is performed before a WAIT statement 
references the event variable, even if the operator's . 

reply has already been received. 

When both conditions are met, the event variable is set inactive 
and its completion part is set to '1'B. Its status part is not 
used. See LRM 301. 

14.13. Asynchronous I/O. 

We have already remarked several times in passing that execution of 
1/0 transmission statements may result in an implicit wait for the .' 
completion of the 1/0 operation, during which time the ,task executing 
the statement is in a "not ready" state. As with the DISPLAY state- 
ment, the EVENT option can be added to most transmission statements 
to allow the task executing the transmission statement to proceed to 
the following statement. The WIT statement is used subsequently 



when the task f inal ly  arrives a t  that  point where it absolutely needs 
t o  be sure the 1/0 operation has completed before proceeding. 

Rules for  the use and management of 1/0 event variables are similar 
t o  those fo r  display events. Specifically: 

(a) The event variable referenced by the EVENT option of an 
asynchronous transmission statement must be inactive, i . e . ,  
not currently associated w i t h  a task, or an outstanding 
operator reply, or, we ca.q now add, an asynchronous 1/0 
operation. 

(b) Execution of the transmiss'ion statement causes the event 
variable to  become active, se ts  i ts  completion par t  t o  
the value 'O'B and its status part  to  0. 

(c) While thc event variable is activc, it is i l l ega l  to  
change the value of i ts  completion part  (as by assignment 
t o  the event variable) or  t o  associate the event variable 
w i t h  a task, operator reply, or another asynchronous 1/0 
operation. 

(d) The event variable remains active, and i ts  completion 
par t  continues to have the value 'O'B, un t i l  two conditions 
are met: the 1/0 operation has physically en=, and the 
event variable has been referenced i n  a WAIT statement. 
As  w i t h  display events, but unlike task events, execution 
of the WAIT statement (eventually) is a prerequisite to  
set t ing the completion part  of the event variable to  'LIB. 

References w i l l  be given la ter .  

Asynchronous 1/0 can be used to  overlap CPU use w i t h  1/0 operations, 
t o  overlap 1/0 operations on different f i l e s ,  or  even t o  overlap 1/0 
operations.on the same f i l e .  In certain cases of the l a t t e r  use, 
the NCP ENVIRONMENT option (or JCL DCB parameter) must be employed 
t o  specify an upper bound on the number of I/O operations that can 
be outstanding simultaneously fo r  a given f i l e .  See LRM 302 and 
LRM 303; further information is i n  'the Programmer's Guides. 

Note that the performance of asynchronous 1/0 operations does not 
involve the creation of new tasks. (Neither does the execution of 
a DISPLAY ... REPLY ... EVENT statement.) The fac i l i ty  may be used i n  
a conventional program. Thus, the WIT statement and event variables 
have uses both i n  multitasking and i n  conventional programs. 



14.14. Conditions in  asynchronous I/O. 

We have seen that execution of an 1/0 transmission statement can 
raise a variety of conditions (ENDFILE, TRANSMIT, RECORD, e tc . ) .  
I f  an asynchronous 1/0 statement causes one or  more of these condi- 
tions to occur, the on units are not entered unt i l  the WAIT s ta te-  
ment is  executed. That is, thei r  execution is made synchronous 
with respect to  the flow of control through the task. I f  an on 
unit  is to be entered, then the following occurs when the WIT 
statement is f inal ly  executed: 

(a) The event variable remains active. 
(b) Its status part  is s e t  t o  1. 
(c) Its completion part  remains a t  'O'B. 
(d) The on unit .is entered. 
(e) I f  the on unit returns normally to the point of interrupt 

(the WIT statement), a further on unit  may be entered. 
(f) When a l l  on units have been executed and have returned 

normally, the completion part  of the event variable is 
s e t  to ' 1 ' B  and the event variable i s  made inactive. 

(g) The event variable is similarly marked complete and 
made inactive i f  an on mi t terminates abnormally, i . e . ; 
by a GO TO out of block. Any additional pending on 
units w i l l  not be entered. 

The EVENT option can be added t o  READ, WRITE, REWRITE, .or DELETE 
statements i n  cases described a t  LRM 304. The f i l e  must have the, 
UNBUFFERED at tr ibute.  Additional information is found in LRM 305 
through LRM 311 as well as the entries for  the,applicable 1/0 
conditions i n  LRM 116. 

14.15. Review of exclusive f i l e s .  

In Lesson 9 we briefly introduced the EXCLUSIVE attr ibute,  NOLOCK 
option of the READ statement, and the UNLOCK statement. These were 
shown to be of use i n  synchronizing two independent concurrent con- 
ventional programs which update a common data base. They may also 
be employed to  synchronize multiple tasks of a single program which 
independently update a shared data base. Review the material and 
references from Lesson 9. 



14.16. 'Physical" events. 

We may characterize the task completion events, operator reply 
events, and asynchronous 1/0 completion events with which event 
variables may be associated, as described above, as "physical" 
events. The event variables are marked complete automatically 
when the associated physical act ivi ty comes to  an end. (In the 
case of display and 1/0 events, but not task completion events, 
a WIT statement naming the event variable must also be executed 
before the variable can be marked complete.) Generally, the 
program is largely unable to influence directly the completion 
of one of these kinds of physical ac t iv i t ies  ; the act ivi ty com- 
pletes in due course. (This is not l i t e r a l l y  true i n  the case 
of task events. We have seen how a task can be terminated abnor- 
mally, essentially a t  w i l l ,  by having the block which created it 
terminate. And, of course, even the nomal completion of a task 
is guided by program logic within the twk.  Generally, however, 
the task proceeds un t i l  normal completion while making unpredict- 
able progress, and therefore it is useful to think of i ts  comple- 
t ion a.i a physical event. ) 

14.17. "Abstract," or  programmed, events. 

The PL/I programmer may also define.abstract or logical events 
that  do not necessarily correspond to particular physical act ivi ty . 
Rather, they correspond to the program having reached a certain 
"state , " which can have any meaning the programmer desires. The 
"completion1' and "status" of thes'e abstract events can be freely 
s e t  by the programmer, and tasks can be made to  wait for  the com- 
pletion of an abstract event. 

So f a r  we have seen no use for  "inactive" event variables except 
that  they are available for  association with a physical event. 
As soon as they are associated with it, they become active and 
(essentially must be l e f t  alone un t i l  the physical event runs i ts  
course. They are automatically marked "incomplete" a t  the s t a r t  
of the physical ac t iv i ty  and "complete" a t  i ts  end. During th is  
time they may be the subject of a W1'1' statement. 

Inactive event variables, we can say now, can be used to  mark the 
completion of abstract events. The general technique is to  s e t  
one's completion part  t o  'O 'B a t  some point in time and t o  ' 1 ' B  
a t  a l a te r  oint i n  time. Once it has been assigned a value, any P task can WA T on the event variable. (There is never any res t r ic-  
t ion on which event variables may be waited upon except that  thei r  



completion parts must have been .assigned a definite value before 
they are  referenced i n  a WIT statement .) The task is suspended 
i f ,  a t  the time the WIT statement is. encountered, the referenced 
event variable has the completion value 'OIB,  but it is not sus- 
pended i f  a t , t h a t  moment it has the value ' 1 ' B .  I f  it is suspended, 
it remains suspended un t i l  some other task assigns the value ' l l B  
to  the event variable's completion part .  Note, of'course, that  i n  
general a WIT statement may present a l i s t  of event variables and 
a number of them which must be marked complete before the wait is 
sat isf ied.  

How does one assign a value to  the completion par t  of an event 
variable? One way is t.0 use the CWLETION pseudo-variable, as i n  

COMPLETION (E) = ' 1 ' B ; 
or  

COMPLETION (E) = N > 0 ; 
(See the entry i n  LRM 18.) This leaves the status par t  of the 
event variable unchanged. Another way is t o  assign an event value 
(obtained by referencing another event variable 'or invoking a func- 
t ion that  returns an event value) t o  the event variable. ' This 
propagates the completion and status parts simultaneously, with no 
poss'ibility of interrupt or a task switch un t i l  the whole assign- 
ment is  complete. Examples w i l l  be presented la ter .  See LRM 312. 

14.18. The DELAY statement. 

Another statement that  may have a marginal use i n  multitasking 
situations is. t h e  TIETAY statement. The form is 

DELAY (expt) ; 
The current task is suspended for  a number of milliseconds given 
by the value of e x p .  I t  is exactly as i f  an 1/0 operation that  
required the specified amount of WIT tirue were being performed. 
The DELAY statement may usefully be employed in a loop i n  a high 
priori ty task to l e t  a lower pr ior i ty  task gain control un t i l  the 
expiration of the delay, whereupon the higher priori ty task w i l l  
usurp.contro1 from it. I t  may then examine the progress of the 
l m ~ r  priori ty task (by accessing shared variables, for instance) 
and ei ther go back through the 'loop and delay again, or do some- 
thing clse. See LRM 3 i 3  and LRM 314. 

14.19. Examples of abstract events. 

,The f i r s t  example w i l l  be developed i n  stages . 



We assume a program w i l l  "produce" and "consume" 100 (say) values. 
A value i s  available for  consumption as soon as it is produced. A 
very simple conventional program can be bu i l t  around a loop such as 

DO I = 1 TO 100; 
CALL PRODUCE (X) ; 
CALL CONSUME (X) ; . . 

END ; 
However, we assume that  the acts of producing and consuming a single 
value are each very laborious, involving a ' lot  of 1/0 act ivi ty that  
could be overlapped ( i .  e . , logically the consumer I s  1/0 act ivi ty is 
independent of the producerl's and can be overlapped with i t ) .  So 
one improvement using task events might be 

CALL PRODUCE (X) ; 
DO I = 1 TO 99; 

Y = X; 
CALL C O N W  (Y] , TASK EVEWT (N)  ; , 

CALL PKODUCE (X) TASK EVENT (EX) ; 
WIT (M,N) ;  

ENIJ ; 
CALL CONSUME (X) ; 

Here, the 2nd value is being produced while the 1st is being consumed, 
and so on. 

The only real  criticism of th is  multitasking solution is that subtasks 
a r e  created 198 times (only two are active simultaneously, of course). 
There is  a considerable overhead involved in  creating a task which we 
would l ike t o  avoid. 

Ol~r solution w i l l  be to  have the main rogram (the major task] creaee 
two subtasks, just once, and wait for  % 0th of them to  complete. One 
w i l l  be responsible for  producing values, the other for  consuming 
them. We w i l l  arrange for  the consumer to  wait un t i l  the producer 
has produced a value i n  some workspace belonging to the producer. 
When the producer has produced such a value, it w i l l  inform the con- 
sumer that it may proceed. We wi l l  make it the responsibility of the 
consumer, when it receives the signal t o  proceed, to  move the value 
t o  its own workspace. The producer w i l l  wait for  th is  action to  be 
completed. The consumer w i l l  signal the producer when it has com- 
pleted the move. A t  that  point, the producer wi l l  be free to  produce 
another value while the consumer is busy consuming the last one. If 
the consumer happens to  f inish f i r s t ,  it w i l l  wait for  another value 
t o  be made available (as signaled by the producer). If the producer 
happens to  f in ish  f i r s t ,  it w i l l  wait fo r  the consumer to  catch up 
and signal that  it has moEd the new value to  its workspace. 

Study the following solution carefully! 



PROG: PROC . OPTIONS (MAIN) ; 
DCL (PRODUCE, CONSUME) EWTRY EXT; 
E L  (X, Y) . :. ; 
DCL (PRODUCED, MlvED, E l ,  ,E2) EVENT ; 
COMPLETION (PRODUCED) , ' COMPLETION (MNED) = ' 0 ' B ; 
CALL PRODUCER TASK EVENT (El) ; 
CALL CONSUMER TASK EVEWT (E2) ; 
WAIT (El, E2) ; 

PRODUCER: PROC; 
DCL I FIXED BIN; 
DO I = 1 TO 100; 

CALL PRODUCE (X) ; 
COMPLETION(PR0DUCED) = '1'R; 
WAIT (mVED); 
COMPLETION(M0VED) = 'O'B; 

END ; 
END; 

CONSUMER: PROC; 
DCL I FIXED BIN; 
DO I - 1 TO 100; 

WIT' (PRODUCED) ; 
COMPLETION (PRODUCED) =' ' 0 ' B ; 
Y = X; 
CCMPLETION(M0VED) = '1'B; 
CALL CONSUME (Y) ; . 

.END; 
END; 

END; /* PROG */ 

The kind of control flow achieved i n  th is  program is known as a 
classical "caroutine" structure. I t  is characterized by an order ly  ' 

' 'handshaking' ' of two paral lel  processes. Notice the symmetry: the 
operations'. performed by .one task on PRODUCE11 and MOVED are the same 
as those performed by the other task on MOVED.and PRODUCED,.respec- 
tively . Also notice that al.1 the tasks can execute a t  the. s'ame 
priority. 

In the second example, we w i l l  assume that  we have two tasks doing 
"ms t l y  i ndepkndenttl things. Every once i.11 a while', however, each. 
task needs to  update. some data shared between the two tasks. In 
other words, there is a region in  each task, called a "cr i t ica l  
region," i n  which a l l  operations on the shared data are performed, 
having the following properties: I f  neither task is in  i ts c r i t i c a l  
region, the f i r s t  one to  arrive a t  i ts  c r i t i c a l  region is permitted 



unconditionally to  enter it. I f ,  however, a task arrives a t  its 
crit . ica1 region while the other is already i n  its, the one just 
arriving must wait un t i l  the other leaves i ts c r i t i c a l  region. 
Thus, we are guaranteed that  both tasks w i l l  not be i n  thei r  c r i t i c a l  
regions simultaneously. 

I t  might appear that  th i s  problem is solved by having both tasks 
execute code l ike  the following: 

WAIT (NOT IN CRITICAL REGION) ; 
COMPLETIO~(N~ - IN - CRITICAL - REGION) = ' 0 ' B ; 

c r i t i c a l  region 

COMPLETION (NOT IN CRITICAL REGION) = I I B  ; 
Here, NOT I N  C R I T I ~  REGION isVini t ia l ly  complete. Let us suppose 
task 1 aryivgs a t  thi? code well i n  advance of task 2 , '  so that  it i s ,  
say, i n  the middle of its c r i t i c a l  region when task 2 arrives a t  i ts  
WAIT statement. The event variable w i l l  be found t o  be marked illcam- 
plete. So task 2 w i l l  indeed wait un t i l  task 1 leaves i ts  c r i t i c a l  
region and se t s  the event variable complete. 'But the danger,here is 
that  the two tasks may arrive a t  thei r  WAIT statements nearly 'simul- 
taneously. They w i l l  both find the event variable marked complete 
and both w i l l  proceed. (For example, assume task 2 has a higher 
pr ior i ty  than task I. but is not, a t  the moment, "ready," i . e . ,  assume 
it is waiting for  I/O. Task 1 is proceedillg. I t  passes i ts  WIIT 
statement but before it has a chance to  s e t  the event variable incom- 
plete,  task 2 EZ&es its I / O ,  becomes ready, and usurps control 
from task 1 by virtue of its higher priori ty.  I t  executes i ts  WIT 
statemen.t and also proceeds. Being a t  a higher priori ty,  task 2 con- 
tinues and se t s  the event variable incomplete, then enters i ts  c r i t -  
i c a l  region. Let's assume it does some 1/0 i n  there, so it re l in-  
quishes control to  task 1. Task 1, already past i ts  WAIT statement, 
s e t s  the already incomplete event variable irlco~nplete and proceeds 
in to  i t s  c r i t i c a l  region. Both tasks are now i n  thei r  c r i t i c a l  
regions, and that  is what we wanted t o  avoid.) 

You might say ' 'The probability that  the adverse, timing hypothesized 
above permits both tasks to enter thei r  c r i t i c a l  reginns j s  incredibly 
and acceptably small; don't worry about it." But is the r isk  worth 
taking? The fai lure of the program's logic, i n  that  one chance out of 
a mi'llion, could cause the destruction of a crucial data base! I t  is 
the essence of multitasking that  programs be provably correct regard- 
l e s s o f  sequence of any actions that can be performed in  paral lel .  - 



Our solution w i l l  be shown in pieces. We w i l l  need a special task, 
represented' by the' procedure GRANTOR, which w i l l  execute a t  a higher 
priori ty than any other' task i n  the program. Thik is an absolute 
necessity. GRANTOR w i l l  spend most of Tts time waiting for  a request 
to  perform a service, so it w i l l  not consume much of the CPU resource 
and won't generally interfere with the lower priori ty tasks. The 
idea, however, is that when' one of the two tasks asks GRANTOR to  
perform a service,'-OR must get control immediately and i n  par- 
t icular  not l e t '  the other' task proceed. I t  must also not relinquish 
control un t i l  it is finished performing the service requested. This, 
too, is  essential and is achieved by coding GRANTOR so that  it does 
no 1/0 or  anything else that can cause it to  wait un t i l  it has 
finished its duty. 

. . 

The main program is shown f i r s t .  I t  s t a r t s  by in i t ia l iz ing some 
event variables, lowering i ts  awn priori ty,  then creating GRANTOR 
a t  a higher priori ty.  'GRANTOR w i l l  immediately take control. I t  
w i l l  wait for  a request . The main program w i l l  resume a t  that  point 
and w i l l  then i n i t i a t e  the two tasks containing the c r i t i c a l  regions. 
(These must never execute a t  a pr ior i ty  as high as GRANTOR'S.) . When 
both of these tasks have finished, the main program t e l l s  GRANTOR t o  
terminate normally (that is one of the services it can be asked to  
perform) then waits for  it to  do so. 

PROG: PROC OPTIONS (MAIN) ; 
DCL (GRANTOR, TASKl, TASK2) ENTRY EXT ; 
DCL (G, ' T l ,  T2) EVENT; 
DCL (TAKE, GIVE, QUIT, LOCK(2)) ml' EXT; 
CWLETION(T~), C W X I ' I O N ( G I V E ) ,  COMPLETION(QU1T) = 'O 'B;  
COMPLETION (LOCK (*) ) = ' 1 ' B ; 
PRIORITY() = -1 
CALL GRANTOR TASK PRIORITY (+I) EVENT (G) ; 
CALL TASKl TASK EVENT (Tl) ; 
CALL TASK2 TASK EVENT (T2) ; 
WIT (Tl, T2) ; 
COMPLETION(QU1T) = '1'B; /* TELL GRANTOR TO END */ 
WIT (G) ; /* WIT FOR IT TO DO SO */ 

END; 

The code i n  the vicinity of TASK]. ' s  c r i t i c a l  region w i l l  look l ike 
T r n  = EV1; 

c r i t i c a l  region 

GIVE = EVl; 



Here, EV1 is a local event variable declared and in i t ia l ized i n  
TASK1 as follows': 

DCL EV1 EVEWT; 
COMPLETION (EV1) = ' 1 ' B ; 
STATUS(EV1) = 1; 

LOCK is an array of' event variables declared i n  TASKl,...TASKZ, and 
GRANTOR as i n  PROG: 

DCL LOCK (2) EVENT EXT; 
The code i n  the vicini ty of TASK2's c r i t i c a l  region w i l l  be similar,  
namely : 

TAKE = EV2; 
WIT (LOCK (2) ) ; 

c r i t i c a l  region 

GIVE = EV2; 
In TASK2, 'EV2 is declared m a i n i t i a l i z e d  as fo,llows: 

DCL m2 EVENT; 
COMPLETION (EV2) = ' 1 ' B ; 
STATUS (EV2) = 2; 

,Obviously, TASK1, TASK2, and GRANTOR a l l  declare TAKE and GIVE as 
external event variables. (Remember, they were in i t ia l ized by the . 

main program. ) 

As soon as e i ther  task assigns t o  TAKE, GRANTOR w i l l  proceed (because 
it .is waiting ' for  the completion of any one of several event variables, 
including T m ,  and it has a higher priori ty) .  Note that  the task 

, , ' . performing the assignment also succeeds i n  calu~lulicating the value 1 . . 
or 2 (us'ed to  identify the requesting task) to  GRANTOR via  the status 
part  of TAKE. The assignment statements TAKE = EV1 and TAKE = EV2 
are not interruptible. '  When GRAWTOR gets control, it w i l l  s e t  the 
element of the LOCK array corresponding to  the requesting task ei ther  
to  complete' or to  incomplete, depending on whether the other task is 
not, or  is, already i n  i ts c r i t i c a l  region. I t  w i l l  do some other 
housekeeping, then go dormant again waiting for  another 'request. The 
task which made the request w i l l  e i ther  wait or  not, depending on the 
value assigned t o  i t s  element of LOCK. Even i f  the other task has 
become ready before the requesting task executes i ts  WAIT statement 
( i .c . ,  whilc CRlWTOR has control), when it m&es i t s  request t o  - 
GRANTOR for  permission to  enter i ts  c r i t z a l  region, GRANTOR w i l l  
observe that  it has already granted that  permission to  the f i r s t  task 
and w i l l  s e t  the second task's element of LOCK t o  incomplete. 
Finally, when ei ther task leaves its c r i t i c a l  region, it "gives back" 
the permission it was granted by making another request to  GRANTOR. 
Note that i f  the other task is waiting for  permission t o  enter,  
GRANTOR must now s e t  that  task 's  element of LOCK complete. 

The code for  GRANTOR is as follows: 



GRAiiOR: PROC; 
DCL (TAKE, GIVE, QUIT) EVEWT EXT ; 
DCL LOCK (2) EVEWT EXT; 
DCL (WANTOR, GIVER, OMER) FIXED BIN;  
DCL OWI'ElI BI'l' (1) INIT ( 1  0 ' B) ; 
lI0 WHILE ( ' l lB) ;  /* LOOP TERMINATED BY RETURN */ 

UIT (TAKE, G I V E ,  QUIT) (1) ; /* AWIT A REQUEST */ 
IF COMPLETION (TAKE) THEN DO; /* WANTS TO ENTFX */ 

WANTOR = STATUS (TAKE) ; /* WHO W S  ? */ 
COMPLETION (LOCK (MAWOR) ) = -I OWNED ; 

/* GRANT PERMISSION IFF RIGHT TO ENTER 
NOT ALREADY OIWED BY OTHER TASK */ 

OWNED = '1'B; 
COMPLETION(TAKE) = 'O 'B;  /* RESET */ 

END; 
ELSE IF COMPLETION(G1VE) THEN DO; /* READY TO LEAVE */ 

G I V E R  = STATUS (GIVE) ; /* WHO M S  TO LEAVE ? */ 
CrrHER = 3 - GIVER; /* INDEX OF OTHER TASK */ 
IF COMPLETION(LOCK(OTHER)) THEN /* IT WANTS I N  */ 

COMPLETION (LOCK ((YI'HER) ) = ' 1 ' B ; 
/* LET I T  IN ,  BUT LEAVE OWNED ON */ 

ELSE owmn = ' o 'B ;  
COMPLETION(GIVE) = 'O'B; 

END; 
ELSE /* REQUEST TO QUIT */ RETURN; 

m D  ; 
END; 

14.20. J C L  considerations. 

Whenever you use a cataloged procedure that  link edi ts  or  loads a 
multitasking program, you must use the TASKLIB symbolic parameter 
i n  the way shown below 

TASKLIB = 'SYS1.PLITASK1 
See OPG 38. 

In addition, the ISASIZE execution option may be used t o  specify, 
via its second and th i rd  operands, the s i ze  of the ISA acquired 
for  each task other than the major task, and the maximum number of 
tasks (including the major task.) that  can be active simultaneously. 
The f i r s t  operand of ISASIZE is used, a s  shown i n  Section 13.9, t o  
specify the s ize  of the major task 's  1%. (Reread t.hat wcti.on and 
the reference given there, OPG 33.) Note that  ISASIZE is an execu- 
t ion  option of the Checkout compiler as well as the Optimizer, No 
mention was made of ISASIZE in connection with the Checker, i n  
Lesson 13, because i n  that  compiler i ts  f i r s t  operand is ignored 
and the value specified fo r  the SIZE operand is used instead. See 
CPG 40. 



In our system, the default for  ISASIZE i n  a multitasiing program is 
ISASIZE (8K, 8K, 20) . Typical use of TASKLIB and ISASIZE (together) 
is demonstrated i n  the' following: 

// EKEC PLOCLG, TASKLIB=.'SYSl .PLITASK' ,GOOPTS= ' ISA(30K, 10K, 4) ' . . 

14.21. Homework problems. 

(# 14A) Describe the differences between multiple concurrent 
invocations of a given procedure as separate. tasks' 
and multiple concurrent invocations of a given pro- 
cedure by recursion. 

(#14B) L i s t  a l l  the PL/I actions you c m  think of that  w i l l  
cause the current task t o  relinquish control t o  
another ready task i n  your program. 

(#14C) How can you create a subtask a t  a priori ty higher 
than that  of the major task without reaching a 
pr ior i ty  level higher than that  assigned in i t i a l l y  
to the major task by the operating system? 

(#14D) Execution of the GO TO statement i n  the following 
example is i l legal .  Can you explain why? 

CALL SUBR TASK; 
L: . ' ,  

, , 

SUBR: PROC; 

GO TO L;  

; 

.Under what conditions is execution of the .GO .TO 
statement i n  the following example legal? Tllcgnl? 
.. ON FOFL GO TO L ; 

CALL SUBR TASK; 
L: ... 



(#14E) Give several reasons why a task must be (abnormally) 
terminated' when' the' block contai-n the' CALL s ta te- '  
ment that created' it terminates'. 

(#14F) Recall that  the event variable ksocia ted w i t h  an 
asynchronous I /O. .  operation is marked complete only 
as part of the'execution of a WIT statement refer- 
encing i t , : even ' i f  the 1/0 operation is physically 
complete- ear l ier .  Thus, it would appear there is  
no way to  "test" whether an 1/0 operation is complete. 
or not without being forced' to wait i f  it isn't: 
There is  a tricky '(though legal) way t o  t e s t  its 
completion periodicaliy, however, without being 
forced t o  w a i t .  Can you find i t ? .  Weak hint:' You 
w i l l  need a second event variable.. 

(Very di f f icul t )  Generalize' the "cr i t ica l  region" 
problem i n  the following way: 

(a) Permit any number of tasks t o  have 
c r i t i c a l  regions, rather' than just  two. 

(b) Permit any task to  have any number'of 
c r i t i c a l  regions, each identified i n  
some convenient way. 

(c) Make sure that  only one task a t  a time 
is permitted to enter a c r i t i c a l  region 
of type "x". A given task may have 
several different c r i t i c a l  regions of 
type "x", as well as c r i t i ca l .  regions 
of other types. While a task is i n  a . . 
c r i t i c a l  region of type "x", another 
task may b'e in a c r i t i c a l  region of a 
different. type. 

Hints: Since no bound is s e t  on the nlnnher of tasks 
ur c r i t i c a l  regions, you w i l l  need t o  use list processing 
techniques (based variables, pointers, etc.  ) . Be sure 
that  based'storage is freed in  the same task i n  which it 
is allocated. You w i l l  need a task w i t h  the "high. 
priority, non-interruptible" properties of GRANTOR. You 
tjill need t o  communicate more information to  it with. 
each request than you can conveniently represent i n  the' 
s tatus part  of an - event variable, ' so 
instead create the senrice task each time you need' a 
sewice fromzt and communicate v ia  arguments; it w i l l  
end normally when it has provided. the service. 



15. The Checkout compiler in TSO. 

In Lesson 13, the use of th'e.Checkout compiler in the batch system 
was outlined. In addition, special features of PL/I useful in 
debugging, particularly in a batch environment, were described. 
While the value of the Checkout compiler in batch cannot be 
belittled, neither can its unique capabilities in a conversational 
environment be overstressed. The Checkout compiler is "at home" 
in TSO, and in this lesson we hope to convey a sense of excitement 
about its truly outstanding potentia1.h this environment for con- 
tributing to productivity in the development and debugging process. 

The notes for 'this lesson cover a brief orientation lecture which 
is meant to precede a taped demonstration of the Checker in TSO. 

15.1. Creating a PL/I source dataset. 

To create a source dataset containing a PL/I program, in 
TSO, enter the EDIT command with either of the "dataset" 
types" PLI or PLIF, as in 

EDIT PROG PLI NEW 
You will be prompted with line numbers. As you type each 
line, remember that the first character you type goes into 
the column reserved (by our default compiler options) for 
a listing control character; it is not part of the source 
program. (Except when you want a blank line, overprinting, 
or a page eject in the listing, type a blank as .the first 
character. ) 

PLIF dataset type produces a dataset having FB-format 
records with an LRECL of 80. The EDIT line numbers are 
.placed in columns 73-80. . The first character you type goes 
into column 1; the next 71 or less go into columns 2 through 
72. These are the default conventions assumed by the com- 
piler for source margins and sequence information for source 
datasets consisting of fixed-length records. 

PLI dataset type produces a dataset having VB-format .records 
with an LRECL of 104. The first four bytes of a record are 
used by the system to indicate the length of the remainder 
of the record. The EDIT line numbers are placed in columns 
1-8 of the data portion of the record, i.e., immediately 
followi'ng that length prefix. The first character you type 
goes into column 9. The next 91 or less go into columns 10 
through 100. Short records are produced if you do not type 



all 91 possible characters. These conventions match those 
assumed by the compiler, by default, for variable-length 
records. 

Note that the use of either dataset type results in the 
appending of the "dataset qualifier" PLI to the dataset 
name given in the EDIT command. 

PLI dataset type is generally more efficient than PLIF data- 
set type, in that short lines won't waste space. However, 
you cannot conveniently dump such a dataset onto cards. 
You would have to use the COPY command of TSO first to make 
a copy of the dataset in card image format. You will need 
several operands of the COPY command to arrange for this 
change of format and movement of the line numbers. Note 
that lines containing in excess of 71 source characters 
would be truncated during the copy. 

A guide to the use of the editor may be found in CTUG 5 and 
OTUG 6. The two terminal users guides should be consulted, 
by those new to TSO, for chapters on other basic aspects of 
using TSO. 

15.2. Invoking the Checker. 

The Checkout compiler is invoked with the PLIC command in 
TSO. Before we get into that, we must mention the need for 
you to iss'ue the-IPLIC command first. This is used once 
per session, before the Checker is entered. It allocates 
the file SYSPLIC to the system da.taset SYS1.PLICLNK required 
by the Checker. In addition, it allocates files SYSIN and 
SYSPRINT to the terminal. Use of the IPLIC command will not 
be necessary if you use the PLICKLGN logon procedure (it per- 
forms the above three allocations). If you have not used 
IFLIC or PLICKLGN, the response to your PLIC command will be 
a rather fast READY not accompanied by any further information. 

The Checkout compiler absolutely cannot run in our 70K 
regions. For very small programs it might squeeze by in 
140K. If the program is of moderate size, the amount of 
"spilling" performed when only 140K is available will be 
painfully slow and expensive for you, and probably detri- 
mental to the performance of TSO for everyone. The use of 
the 200K region will result in more efficient processing of 
typical programs. 



The PLIC command has the general form 
PLIC d s n  k e y w o r d - o p e r a n d s  

For example, 
PLIC PROG 

or 
PLIC PROG LMSG HALT MACRO 

The d s n  is the source dataset name. (PLI is appended as 
a dataset qualifier automatically.) You are actually invok- 
ing what is known as a "prompter". for the Checkout compiler. 
Its main function is to allocate files and datasets required 
for y0u.r compilation and then invoke the compiler itself. 
Some of the k e y w o r d - o p e r a n d s  are defined by, and used by, 
the prompter only. The majority of them, however, translate 
into compiler options and are assembled by the prompter as 
a string of compiler options to be passed to the.compiler. 
If you specify operands erroneously, you will be prompted 
by the prompter for corrections. 

How can you find out about operands of the PLIC command? Two 
ways : 

(a) Use the TSO HELP command. This is available for 
the purpose of finding.out about the operands 
of any TSO command. 

(b) S~~TUG 6. 

~ypical or ordinary use of the PLIC command serves the same 
purpose as the' PLCCG cataloged procedure (Lesson 13), i.e., 
the compiler proceeds from translation into in'terpretation 
without creating an object module. This is suitable for the 
execution of a self-contained main program not requiring 
link editing with other external procedures. Object modules 
and intermediate text modules may be created for later com- 
bining by the linkage editor or loader and execution under 
the interpreter phase of the Checker (references and a few 
brief notes will be given later). . . 

We will here mention a few essential operands of PLIC. 

One of the most essential is the PRINT operand. It. controls 
the allocation of the file used for SYSPRINT. Note that 
when you use the PLIC command, the allocation of SYSPRINT 
to the terminal previously established by IPLIC or PLICKLGN 
is not actually used (it would be used for isolated execu- 
tion under the interpreter phase).' The default for the 
PRINT operand is PRINT ( * )  , which says to allocate the f i l e  



t o  be  used  f o r  SYSPRINT t o  t h e  t e r m i n a l .  G e n e r a l l y ,  you 
can r e l y  on t h i s  d e f a u l t .  R e c a l l  t h a t  SYSPRINT i s  used by 
t h e  t r a n s l a t o r  phase  f o r  l i s t i n g s  and s i m i l a r  o u t p u t s  you 
select v i a  o p t i o n s ,  and it i s  used ( g e n e r a l l y )  by t h e  pro- 
gram i t s e l f  (and by t h e  sys tem) a s  a  s t a n d a r d  o u t p u t  f i l e  
d u r i n g  e x e c u t i o n .  So, a l l o c a t i o n  t o  t h e  t e r m i n a l  i s  q u i t e  
r e a s o n a b l e .  Note t h a t  you w i l l  n o t  be f looded  by l i s t i n g s ,  - 
e tc . ,  s i n c e  t h e  compi le r  o p t i o n s  f o r  them have been set 
" o f f "  i n  t h e  d e f a u l t s  t h a t  app ly  when t h e  compi ler  i s  used 
c o n v e r s a t i o n a l l y  (see OTHER 3 a g a i n ) .  

Another v e r y  u s e f u l  c h o i c e  i s  PRINT(dsname). The f i l e  used 
f o r  SYSPRINT w i l l  be a l l o c a t e d  t o  a  d a t a s e t  having d a t a s e t  
name dsname.LXS'1'. It  it d o e s n ' t  e x i s t ,  it is  c r e a t e d  f u r  
you w i t h  r e c o r d  fo rmat  VBA. You can  submit  a  job  t o  l i s t  
it l a t e r .  What makes t h i s  e s p e c i a l l y  v a l u a b l e  i s  t h a t  any 
subsequen t  i n t e r a c t i o n s  t h a t  you have w i t h  t h e  Checker ( i t s  
prompts and your  r e p l i e s )  w i l l  be recorded  on t h a t  d a t a s e t .  
Thus ,  you w i l l  have  a  "hardcopy" r e c o r d  o f  your  s e s s i o n ,  
which i s  n i c e  i f  you a r e  a t  a  t u b e .  

But ,  you a s k ,  wou ldn ' t  you m i s s  s e e i n g  SYSPRINT ouput  pro-  
duced by your  program? Y e s ,  b u t  you can  a r r a n q e  t o  have 
a  copy o f  wha t -goes  t o  t h e  d a t a s e t  dsname.LIST d u r i n g  i n t e r -  
p r e t a t i o n  s e n t  t o  t h e  t e r m i n a l  a t  t h e  same t ime  (shown l a t e r ) .  
A1so;note t h a t  a l l  compi le r  d i a g n o s t i c s  ( bo th  d u r i n g  t r a n s -  
l a t i o n  and i n t e r p r e t a t i o n )  a r e  a u t o m a t i c a l l y  cop i ed  t o  t h e  
t e r m i n a l ,  w i t h o u t  cl o p e a i f i c  r c q u e s t  from you, if you have 
used  PRINT (dsname) . 

I f  you u s e  an  operand f o r  a compi le r  o p t i o n ,  such a s  SOURCE, 
t h e  l i s t i n g  i s  produced on tke f i l e  used f o r  SYSPRINT, a s  
governed by t h e  PRINT operand.  You can  a l s o  embed t h a t  
o p t i o n  i n  t h e  TERMINAL . ..-.,. .., .,.,..- ,... .- , ..,& operand . .,... ", .,,,-,. ,. ., .." (which i s ,  i t s e l f ,  a  compi le r  
o p t i o n ) ,  a s  i n  TERMINAL(S0URCE). The l i s t i n g  r e q u e s t e d  i s  
produced on t h e  t e r m i n a l  independent  of  t h e  a l l o c a t i o n  of 
t h e  f i l e  used f o r  SYSPRINT. 

A l l  d i a g n o s t i c  messages have a long  form and a  s h o r t  form. 
Which you g e t  i s  governed by t h e  comp'i'ler 'opt ion 
LME'SS AGE /'SME S'SAGE . 

I n  TSO t h e  d e f a u l t  ( u s i n g  t h e  a b b r e v i a t i o n )  i s  SMSG. Note 
two t h i n g s :  



(a) The long messages are generally much more 
informative, and you would do well to request 
them while you are still a beginner. Invoke 
PLIC as follows: 

PLIC dsn M S G  
(b) If you have started a session with the default 

SMSG, you can change to LMSG during the session 
(demonstrated later). Or, there is a way you 
can ask for the text of the long form of a 
specific diagnostic you have just been given 
(they are always acc~mpanied by their message 
numbers) . 

15.3. General behavior of the Checker in TSO. 

As a consequence of our default options, the Checker pro- 
ceeds as follows. 

First it proceeds through translation. Syntax checking 
occurs first. If sufficiently severe syntax errors are 
found, control is turned over to you at the terminal. You 
can use various facilities of the Checker to correct the 
syntax errors that are reported, then go on. Next "global" 
checking of the programfor consistency' is performed.. Again, 
jf sufficiently severe errors are found, control is sent to 
the terminal and you are given a chance to correct them. 

Following that, interpretation begins. .As the program 
proceeds, various things can happen. which',again cause 
control to be sent to the terminal. You can interact with 
the program in several ways, modify it, etc., and go on. 

Whenever control-is sent to the terminal, you are prompted 
for a request. A prompt always ends in a " ? "  but that may 
be preceded.by other characters which denote the state of 
the Checkout compiler. A variety of responses' from you are 
permitted, depending on the state. 

15.4. When control is passed to the terminal. 

In general, when control has been passed to the terminal 
you may issue a subcommand. These are considered to be 
subcommands of the PLIC command just like CHANGE, LIST, 



SAVE, etc., are subcommands of EDIT. There are a very 
large number of subcommands of PLIC. 

In addition, when control is passed to the terminal during 
interpretation (identified by the prompt " ? "  without any 
preceding characters), you may enter PL/I statements from 
the terminal ("immediate-mode PL/IW). These are immedi- 
ately translated and interpreted. Almost any PL/I state- 
ment, no matter how complex, is allowed. You may enter a 
DO g r o u p ,  a begin block, etc. 

One of the subcommands is HELP. It serves various purposes, 
depending on the operands written with the subcommand. 
HELP is valid in response to any prompt. When used without - 
any operands, i.e.., as just HELP or HI the reply will be an 
explanation of the current state followed by a list of sub- 
commands valid in that state. Whenever you don't know what 
is expected o'f y.ou ,' type H. 

Two other uses of the HELP command are as follows: 
(a) To ask for an explanation of a particular sub- 

command. Fnr  i n s t a n c e ,  H LIST (or just H L) 
requests information on the LIST subcommand. 
H H requests information on the HELP subcommand. 

(b) To ask for the long form of a particular compiler 
diagnostic whose short form has just been given 
to you. Example: H 1093 (here, we assume the 
short-form message was prefixed by the message 
number IEN10931). 

Another useful subcommand, valid most of the time, is OPTIONS. 
It can be used to list or change compiler options. For 
instance, OP LMSG sets the.LMESSAGE option for subsequent 
diagnostics. 

The MONITOR subcommand is used to initiate the copying at 
the terminal of all output directed to a stream file allo- 
cated to a dataset. F'or instance, if SYSPRINT has been 
effectively allocated to a dataset (by use of the PRINT 
operand of PLIC as shown above), you can get a copy of 
SYSPRINT output at the terminal by issuing the subcommand 
MONITOR SYSPRINT. NOMONITOR terminates monitoring. 

How can you force control to be passed to the terminal 
before execution starts, so that you can issue a MONITOR 



subcommand? One way is to use the HALT compiler option, 
specified as an operand on the PLIC command. It causes 
control to be passed to the terminal when the main pro- 
cedure (any external procedure, actually) is entered for 
the first time. When that happens, you can type 

MON (abbreviated ; SYSPRINT implied) 
GO (causes execution to resume). 

Several other subcommands will be described later. A 
wealth of information is found in'CTUG 7 and CTUG' 8: 

15.5. What sends control to the terminal? 

We have already mentioned that the translator sends control 
to the terminal if it finds severe enough errors (the 
required severity is determined by the setting of certain 
compiler options). It also sends control to the terminal , 

if you interrupt it (by depressing the BREAK key, for 
instance). In all cases, the prompt is "T?" to indicate 
that the translator has sent control to the terminal. 

During execution there are many ways control can be sent to 
the terminal. Some are the result of unique extensi0.n~ to 
the language implemented only by the Checkout compiler. 
Others are the result of slight redefinitions of'the language 
as implemented by the Checkout compiler. A few'of these are 
as follows. 

(a) Execution of a HALT statement sends control to . 

the terminal. See LW4 315. 
(b) Standard system action for the FINISH condition 

has been redefined to send control to the 
terminal. You are thus given a chance to re- 
execute the program, possibly after modifying it, 
before terminating your session. 

(c) Standard system action for the ERROR condition 
has been redefined to send control to the terminal. 
By use of appropriate subcommands you can deter- 
mine the cause of the error and correct it, then 
resume execution from an appropriate point in 
the program. 

(d) An additional condition, the ATTENTION condition, 
is available in the interactive environment. The 
ATTN condition "occurs" during execution when the 

I 
BREAK key is depressed. Standard system action 
is to send control to the terminal. You can, of 
course, establish an ATTN on unit and thereby 



use the BREAK key to affect the logic of your 
program (but not in a program compiled by the 
Optimizer). 

See LRM 316. 

In all of the above cases, a message is printed at the. 
terminal explaining why control was passed to it.. You are 

. . then prompted with "? " .  

In the case of either prompt, "T?" or "?", you may issue 
various subcomrnands. One of these, the GO subcommand, is 
used to resume processing just after the point frnm which 
eoritrol was passed to the terminal. . (GO may be abbreviated 
by a null line.) In response to a " ? "  prompt you may, in 
addition, enter immediate-mode PL/I statements. The GO TO 
statement is an immediate-mode statement useful in this ' 
context to resume execution at a designated statement. The 
language has'been extended to allow a line number after the 
keyword GO TO, so that you may resume execution at an un- 
labeled statement. In connection with this, GO TO 0 is 
taken by convention to mean "start execution again from the 
beginning. " 

Further information on the passing of control to the 
terminal is in CTUG 9. 

15.6. Interactive debugging. 

Rather than write a lot about this subject, we will demon- 
s t r a t o  it. Thc main poinL, lluwever, is that one does not 
need to switch back and forth between different TSO pro- 
cessors (EDIT, a compiler, LOADGO). One c a n  dn ~ l l  one's 
debugging and program amending within the environment of 
the Checkout compiler, generally without even retranslating 
the program as it is amended. This is possible because 

(a) An internal copy of the original source dataset 
is avail.able for a variety of purposes at all 
times. When control is at the terminal, sub- 
commands can be used to list it, modify it, and 
save it in an external dataset. 

(b) PL/I statements may be executed in immediate 
mode to try to understand the nature of an 
execution error that has caused control to be 



passed to the terminal. Through the use of 
subcommands, "breakpoints" may be established 
in the program and execution resumed. You can 
arrange to execute statements attached at the 
breakpoints or to have control return to the 
terminal when one is reached. 

(c) Statements, or groups of statements, may be 
added, changed, or deleted without requiring 
retranslation of the whole program or loss of 
the execution environment. 

(d) Rather general text editing subcommands are 
provided within the Checker to cope with more 
extensive or arbitrary source program changes. 
Their use mandates a retranslation, but that 
is accomplished by another subcommand. 

Extensive information on the facilities for, and techniques 
of, interactive debugging may be found in LRV 317 and 
CTUG 10 through CTUG 12 (CTUG 11 contains numerous examples). 

Topics for further study . 

Consult the two TSO User's Guides (CTUG and OTUG) for inform- 
ation on the following topics, not covered in these notes. 

(a) Use of the Checker in TSO to translate several 
external procedures, followed. by their linking 
and execution (using LOADGO, or LINK and CALL). 
Interactive execution (program amending; etc.) 
is still possible, but if one retranslates an 
external procedure he will need to leave the 
Checker en~ironmen~ to use. LOAUGU or L l N K  again. 

(b) Mixing Checker and Optimizer modules in TSO. 
(c) . Compiling under the Optimizer in TSO. 
(d) Operands of LINK and LOADGO (PLIBASE and PLICMIX) 

that imply the PL/I libraries. 

Also review Section 7.25, "Stream I/O to a Terminal." 

Fetchable load modules (see Section 12.2) may be used in 
TSO providing execution of the program is initiated by 
the CALL command and the fetchable load modules are members 
of the partitioned dataset named in the CALL command. 



Key to versions of manuals referenced. 

OPG 

OTUG 

CPG 

OS PL/I Checkout and Optimizing Compilers: 
Language Reference Manual 

GC33-0009-3 

OS'PL/I Optimizing Compiler: 
Programmer's Guide 

SC33-0006-3 

OS PL/I Optimizing Compiler: 
TSO User's Guide 

SC33-0029-2 

OS PL/I Checkout Compiler: 
Programmer's Guide 

SC33-0007-2 

CTUG OS PL/I Checkout Compiler: 
TSO User's Guide 

SC33-0033-2 plus TNL SN33-6132 



XEFERENCES FOR LESSONS 1-5 

Lm1 1. p. 10, "Identifiers" 

~ ~ 4 2 .  p.15, "The characteristics. ..these features." 

L&Y 3. p. 49, "When a. ..is compiled." 

LR31 4. p. 432-433, "DECLARE" 

LRM 5. p. 49, "DECLARE AND DEFAULT STATEMENTS" 

LRM 6. p. 73-75, Up to "Examples of Declarations" 

LRM7. p.289, Figure 19.4 

LPtM 8. p. 392, Figure I. 1, note 1. 

LRM 9. p. 396, "BINARY and DECIMAL" 

LFUI 10. p. 398, "COMPLEX and REAL" . 

LRM 11. p. 410, "FIXED and FLOAT" . 

LRM 12. p. 421, "Precision Attribute" 

LRM 13. p. 15-19, "ARITHMETIC DATA" stopping at "Numeric Character 
Data" 

LRl4 14. p. 427, Gellerctl rule 2. 

LRM 15. p. 339, Explanation and Figures F.4a and F.4d. 

LRM 16. p. 324-339, Section F 

LRii 17. p. 345, "Mathematical Built-In Functions" and "ACCURACY 
OF THE MATHEMATICAL FUNCTIONS" 

p. 347-352, Figures G.l and G.2 

LRM 18. p. 353-367, (Descriptions of each built-in function) 

LRM 19. p. 344, "Arithmetic Built-In Functions" 

LR.1 20. p. 472-473, Figure K.l 

LRs4 21. p .  21, ':Character-String Data"  topping before the 
discussiorl of VARYING. 

"Bit-String Data" stopping before the discussion 
of VARYING. 

LXY 23. p. 197, "Editing by Assignment" stopping before the 
discussion of VARYING. 



LRM 2 4 .  p. 39-40 

LRM 25. p. 341, 

LRM 26. p. 40, 

LRV 27. p. 38-39, 

LRM 28. p. 38,  

LRii 32. p. 21-22, 

LRM 35 (none) 

LRii 36. p. 396,-397, 

LRM 3 7 .  p. 344, 

LRM 38. p. 420 '421,  

LN4 39. p. 22, 

LRM 40. p .  202-203, 

LFW 4 1 .  p. 305, 

LRM 43. p. 19-21, 

LRM 4 4 .  .p. 199-202, 

LRM 45 .  p .  305, 

LRM 46. p. 306-314, 

"COMPARISON OPERATIONS " 

~ x p l a n a t i o n  and F i g u r e s  F.5a and F.5b. 

" CON.CATENATION OPERATIONS " - 

"BIT-STRING OPERATIONS" s topp ing  a tWBoolean  
Bu i l t - In  Funct ion"  , . 

"Operat ions  u s ing  Bu i l t - In  Func t ions"  

"USE OF BUILT-IN FUNCTIONS" 

"COMBINATIONS OF OPERATIONS" 

F igu re  F . l .  

"Cha rac t e r - s t r i ng  v a r i a b l e s  may a l s o  be d e c l a r e d  ... c u r r e n t  l e n g t h ,  i n  b y t e s . "  

"A b i t - s t r i n g  v a r i a b l e  may be g iven  ... current 
l e n g t h  of t h e  s t r i n g ,  i n  b i t s . "  

" A ' s t r i n g  v a l u e  ... va ry ing  l e n g t h  s t r i n g  
v a r i a b l e . "  

"BIT. CHARACTER. and VARYING" 

"St r ing-handl ing  B u i l t - I n  Functions." 

"PICTURE I' 

"Cha rac t e r - s t r i ng  v a r i a b l e s  ... on ly  a  d i g i t . "  

"Charac te r -S t r ing  P i c t u r e  SpecLf i ca t ions"  

"Data a s s igned  t o  a v . a r i ab l e  d e c l a r e d ' w i t h  a 
c h a r a c t e r - s t r i n g  p i c t u r e  s p e c i f i c a t i o n  . 

i~ r a i s ed . ' '  

" P i c t u r e  Cha rac t e r s  f o r  C h a r a c t e r - s t r i n g  Data".; 

."Numeric Cha rac t e r  Data" 

"PICTURE  SPECIFICATION^ ( a l l  excep t  ' 'Character-[ 
S t r i n a  P i c t u r e  S ~ e c i f i c a t i o n s " ' )  

Two pa rag raphs ,  beginning "Ar i thmet ic  d a t a . . . "  

" P i c t u r e  Cha rac t e r s  f o r  Numeric Cha rac t e r  Data" 



LRM 47.  p. 25-27,  

LRM 49 .  p. 432-433,  

LRM 5 1 .  p. 27 ,  

LRM 5 2 .  p. 43-45,  

LRM 5 5 .  p. 4.16-417, 

LRM 5 6 . .  p. 4 6 9 - 4 8 3 ,  

LRii 57 .  p. 31-32,  

LRM 58 .  p. 391,394,  

LRM 59..  p. 45-46,  

LRM 6 0 .  p. 29-30,  

LRM 61 .  p. 45, 

LW4 62 .  p. 46,  

LRM 63 .  p. 427-429,  

' E M  64. p. 399,  

LRM 65. p ,  400,  

LRM 6 6 .  p. 30,  

LRM 67 .  p. 399-403,  

LRM 6 8 .  p. 52, 

LRii 6 9 .  p. 61, 

LRM 7 0 .  p. 73-74 ,  

"ARRAYS" stopping at "Cross-Sections of Arrays" 

"Dimension Attribute" 

"Factoring of Attributes" 

"AGGREGATE ARGUMENTS " 

"Cross-Sections of Arrays" 

"Array Expressions" stoppinq at "Array-and- 
. Structure Operations" 

"STRUCTURES" 

"LIKE Attribute" 

"LIKE" 

"Structure Mapping" 

"ALIGNED and UNALIGNED Attributes" 

"ALIGNED and UNALIGNED" 

"Structure Expressions" stopping at "Structure 
Assignment BY NAME" 

"ARRAYS OF STRUCTURES" 

"Array-and-Structure Operations" 

"structure Assignment BY NAME'' 

"Assignment Statement" 

General rule 2. 

"DEFINED Attribute" 

"DEFINED" 

"PROCEDURE STATEMENT" 

"PROCEDURE BLOCKS" 

"It is not...two uses of the name C." 



LRM 71. p. 74-75, 

LRM 72. p. 75, 

LRM 73. p. 73-74, 

LE4 74. p. 75, 

LRM 75. p. 76-77, 

LRM 76. p. 409, 

LRM 77. p. 78, 

LRV 78. p. 13, 

LRbl 81. p. 81-83, 

LRM 82. p. 433-435, 

LRM 83. p. 78-79, 

LRM 84. p. 85, 

LRV. 85.. p. 32-33, ' 

LRM 88. p.  85-86, 

LRM 89.. p. 86-89, 

LRM 90. p. 394-396, 

LKivl 91. 'p. 399-400, 

LRM 94. p. 398, 

"Contextual Declaration" 

"Implicit Declaration" 

"The appearance of.. .the same block) .I1 

"Since a...in error.h 

"Internal and External Attributes" 
stopping at "Note. " - 

"EXTERNAL and INTERNAL" 

"Scope of Member Names of External Structures" 

"A block...PROCEDURE statement." 

"DEFAULT Statement" 

"DEFAULT " 

"?4ultiple Declarations and Ambiguous References" 

"The purpose...class of storage used." 

"INITIAL Attribute" 

"Static Storage" 

"Automatic Storage" stopping before "EFFECT OF . 

RECURSION ON AUTOMATIC VARIABLES" 

"Controlled Storage" 

"AUTOMATIC, STATIC,' CONTROLLED and' BASED" 

General rules 3 and 7a. 

"ENTRY" stopping at General .rule 6. 

"ENTRY attribute" stopping at "Entry ~xpressions 
as Aruurnents" 

"CONNECTED" 



LRM 9 5 .  p .  4 5 7 ,  "RETURN" 

LRM 9 6 .  p.  4 4 0 - 4 4 1 ,  "ENTRY" 

LRY 9 7 .  p .  4 1 0 - 4 1 2 ,  "GENERIC" 

LRM " S u b r o u t i n e s  a n d  F u n c t i o n s "  

CPG 1. ' p .  2 7 ,  "AGGREGATE O p t i o n  " 

CPG 2. p. 4 0 ,  "AQQREQATE LENGTH TABLE" 

OPG 1. p. 2 2 ,  "AGGREGATE O p t i o n "  

OPG 2 .  p .  3 7 ,  "AGGREGATE LtENG'.I?H TARLE" 

CTUG 1. p. 1 1 6 ,  "AGGREGATE I NOAGGREGATE " 

OTUG 1. p .  5.9,' "AGGREGATE I NOAGGREGATE 'I 

. . 

OTHER 1. 

OTHER 2 .  

G. Weinberg, P L / I  _ P r o g r a m m i n g :  _ -_ ._+ L_ A M a n u a l  of 
.I-^*;. -4.. ...... -'- ..- 

, S t y l e ,  section 1.5.1. M c G r a w - ~ i l l ,  ( '1970) 

K .  D r i t z ,  T h e  Precision 



REFERSNCES FOR LESSONS 6-10  

LRM 1 0 1 .  p; 4 4 8 ,  " N u l l  S t a t e m e n t "  

LRM 1 0 2 .  p. 4 3 7 - 4 3 8 ,  G e n e r a l  r u l e s  1 and 6 .  

L R M 1 0 3 .  ' p .  4 3 8 ,  G e n e r a l  r u l e  2 .  

LRLY 1 0 4 .  p. 4 3 7 - 4 4 0 ,  It  DO" -- 
"LABEL" LRM 1 0 5 .  p. 4 1 5 - 4 1 6 ,  

LRM 1 0 6 .  p. 4 1 3 ,  R u l e  1 6 .  

LRM 1 0 7 .  p. 6 9 - 7 0 ,  " R e a c t i v a t i o n  of an A c t i v e  P r o c e d u r e  ( R e c u r s i o n ) "  

LRM 1,08. p. 4 4 5 - 4 4 6 ,  "GO TO" 

LRM 1 0 9 .  p. 1 1 3 - 1 1 5 ,  " E n t r y  E x p r e s s i o n s  as  A r g u m e n t s "  

LRM 1 1 0 .  p. 4 0 6 ,  G e n e r a l  r u l e s  8  and 9 .  

LRM 111. p. 4 0 4 - 4 0 6 ,  I' ENTRY It 

LKM 113. .p. 4 5 9 ,  " STOP " 

LRY 1 1 4 .  ' p. 2 0 7 ;  "When a . . . C h e c k o u t  C o m p i l e r . "  
. , 

LRM 1 1 5 .  p. 3 7 8 ,  " C 1 , a s s i f i c a t i o n  of C o n d i t i o n s "  

'LRM 1 1 6 .  p. 3 7 9 - 3 9 0 ,  D e s c r i p t i o n s  of i n d i v i d u a l  cond i t ions  

LRM 1 1 7  p. 1 2 7 1 3 ,  "A cond i t ion  p r e f i x  ... P r o g r a m  C h e c k o u t ' . "  

LRM 1 1 8 .  p. 2 0 7 ,  "The  p r o g r a m m e r .  . .when  t h e y  occu r . "  

LRM 1 1 9 .  p t  2 0 7 - 2 0 8 ,  " C o n d i t i o n  P r e f i x e s "  

LRM 1 2 0 .  p. 2 0 8 ,  " S c o p e  of t h e  C o n d i t i o n  P r e f i x "  

: 
!I 1 2 2 .  p. 4 5 9 ,  "SIGNAL" -- 

LRM 1 2 3 .  "CONDITION" 



LW4 124. p. 207-215, "Exceptional Condition Handling and .Program 
Checkout " 

LRM 125. p. 448-449, ' "ON" - 
LRM 126. p.  250-252, "ORDER AND REORDER OPTION" 

LRM 127. p .  429-430, "BEGIN" 

LRM 128. p. 452, General rule 5. 

LRM 129. . p .  249-278, "Efficient Programming!' 

LlUY 130. p .  119, "PL/I  in~1~des...execution of a program." 

LRM. 131. p .  432, "CLOSE" 

LRM 132. . p. 120-123, "Files " 

LRM 133. . p. 391-424, "Attributes" 

LRM 134. p. 124-129, "Opening and Closing Files" 

LRM 135. p .  449-450, "OPEN" --:.-.- 

LW4 136. p. 122, "STREAV and RECORD Attributes " 

LWl 135. p. 122, "INPUT, 'OUTPUT, and UPDATE ~ttributes" 

LRM 138. 

LRV 139. 

LRN 140. 

LRM 141. 

LRY 142. 

LRM 143. 

LRM 144. 

LRM 145. 

LRM 146. 

LRM 147. 

"PRINT Attribute" 

"ENVIRONMENT Attribute" 

"EI'WI RONIdENT AL LL iLu Le " 

Figure 1.2. 

"Data Specifications" 

"LIST-DIRECTED TRANS2.11SSIONn 

"List-directed Data specification" 

"DATA-DIRECTED TRANSMISSION" 

"Data-directed Data Specification" 

LRV 148. p. 141-142, "Edit-directed Data Speci,fication" stopping 
at "General rule" 



,LRM .149. 

.LRY 150. 

LRM 151. 

;LRM 152. 

LRM 155. 

LRM 156. 

LRM 160. 

LRM 161. 

LRM 162. p. 

LRM 163. p. 

LW4164. p. 

LRM 165. p. 

LRii 166. p. 

LRY 167,. p. 

LW4168. p. 

L w  169. p. 

LRii 170. p. 

LRM 171. p.. 

172. p. 

LRM 173. p. 

"Data Format Items" 

"Edit-directed Format Items" 

"Control Format Items" 

"Remote Format Items" 

"STRING Option in GET and PUT Statements" 

"Data Transmission Statements" 

"Options of Transmission Statements" 

'I GET " - 

"STANDARD FILES" 

"Print Files" 

"In record-oriented...deblocked automatically." 

"SEQUENTIAL, DIRECT. and TRANSIENT Attributes" 

"KEYED Attribute'' 

"Environment Attribute" 

"CONSECUTIVE, INDEXED, and REGIONAL Data Sets" 

"INTO Option" 
----=- -- - . - .--- 

"BUFFERED and UNBUFFERED Attributes" 

"BACKWARDS At.tribute " 

"IGNORE Option" 

"Consecutive Organization" stopping before 
"SEQUENTIAL UPDATE" 

"SEQUENTIAL UPDATE" 

"IN-LINE CODE OPTIMIZATION (TOTAL)" 

"Optimization of Input/Output operations" 



LRT4 174. 

LRY 175. 

LRM .176. 

LRM 177. 

LRM 178. 

LRM 179. 

LRM 180. 

LRM 181. 

Lrdf 102. 

L&Y 183. 

LRM 184. 

LRnl 185. 

LRM 186. 

LRM 187. 

LRii 188. 

LWJI 189. 

LRM 190. 

LRM 191. 

LRM 192. 

LRM 193. 

LRM 194. 

LRM 195. 

LRM 196. 

LRM 197. 

LRM 198. 

"Indexed Organization" stopping at "KEYS" 

"KEYFROM and KEYTO Options" 

"KEY Option" 

"KEYS" 

"CREATING A DATA SET" 

"KEY CLASSIFICATION. (GEPJKEY) " 

"DUMMY RECORDS " 

"SEQUENTIAL ACCESS" and "DIRECT ACCESS" 

"xegional Organization" stopping at "REGIONAL (1) 
.ORGANIZATION" 

"~GIONAL (1.1  ORGANIZATION^^ 

"REGIONAL(2) ORGANIZATION" 

"REGIONAL (3  ORGANIZATION^ 

"DELETE " 

"WRITE" 

"UNLOCK" .-. -.-- 

"EXCLUSIVE Attribute" 

"UNLOCK Statement". 

"NOLOCK Option" 

"If the parameter ... can be passed." 
"Condition-handling Built-in Functions" 

"Condition Codes (ON Codes)" 

"Multiple Interrupts" 
-, 



LRY 199. 

LRM 200. 

LRM 201. 
I 

LW4 202. 
I 

.LRV 203. 
I 

LRM 204. 

Lml 205. 

LRi4 206. 

LRM 207. 

LRM 208. 

LRT4 209. 

LRM 210. 

CPG 3. 

CPG 4. 

"Interlanguage Communication Facilities" 
through "or FORTRAN routines." 

"Passing Arguments to a PL/I Procedure" and 
"Invocation" 

Syntax rule 4. 

General rule 8. 

Syntax rule 5. 

General rule 7. 

"Passing Arguments to a COBOL or FORTRAN 
Routine" and "Invocation" 

"Interrupt Handling" 

"OPTIONS" 

"Establishing the.PL/I Environment" 

"FORTRAN INTERFACE" 

"Using Common Storage" 

Figure 12 .l. 

"Data Sets and  file^" 

CPG 5 .  p. 83-90, "Defining Data Sets for Stream Files" 

CPG 6. 

CPG 7. 

CPG 9. 

CPG ..,.. 10. 
' : 

88-90, "Tab Control Table" 

90, "STANDARD FILES" 

91, "CREATING A CONSECUTIVE DATA SET" . . 

91-95, "ACCESSING A CONSECUTIVE DATA SET". 

95-96, "EXAMPLE OF CONSECUTIVE DATA SETS and "PUNCHING 
CARDS AND PRINTING" 

96-99, "INDEXED Data Sets" stopping at "CREATING AN 
INDEXED DATA SET" 



CPG 12. P 

CPG 13. P 

CPG- 14. P 

CPG 15. P 

CPG 16. P 

CPG 17. P 

CPG 18. P 

99-103, "CREATING AN.INDEXED DATA SET" stopping at 
"Dummy Records" 

103, " Dummy, Re cp rd s " 

103-104, "ACCESSING AN INDEXED DATA SET" 

104, "REORGANIZING AN INDEXED DATA SET" 

104-105, "EXAMPLES OF INDEXED DATA SETS" 

105-106, "AYEGIONAL Data Sets" stopping at "CREATING A 
REGIONAL DATA SET" 

109-110, . "REGIONAL (1) Data Sets" 

CPG 19. p. 110, "Regional (2 ) Data S c t 3 "  

CPG 20. p. 110-118, "Regional (3) Data Sets" 

CPG 21. p. 107-109, "CREATING A REGIONAL DATA SET" 

CPG 22. p. 109, "ACCESSING A REGIONAL DATA SET" 

CPG 23. p. 163-173, "Linking PL/I and Assemble-r Language Modules." 

CPG 24. Pa .481 "MIXING OBJECT MODULES" through "bytes available" 

OPG 3 . .  p. 163, Figure 12-1. 

OPG 4. p. 28, "OPTIMIZE Option" 

OPG 5. g .  7 3 - 8 9 ,  "Bata Sets and Flles" 

OPG 6. p. 91-99, "Defining Data Sets for Stream Files" 

OPG 7. p. 97-98, "Tab Control Table" 

OPG 8. p. 98-99, "STANDARD F'ILESII 

OPG 9. p .  101-102, "CREATING A 'CONSECUTIVE DATA SET!! 

OPG 10. p. 102-103, "ACCESSING A CONSECUTIVE DATA SET" 

OPG 11. p. 103-105, "EXAMPLE OF CONSECUTIVE DATA SETS" and "PUNCHING 
CARDS AND PRINTING" 



OPG 12. p. 107-108, "Indexed Data Sets" stopping at "CREATING AN 
INDEXED DATA SET" 

, ~ P G  13. p. 108-114, "CREATING AN INDEXED DATA SET" stopping at 
"Dummy Records " 

OPG 14. p. 114, "Dummy Records" 

OPG 15. p. 114-115, "ACCESSING AN INDEXED DATA SET1' 
. . 

OPG 16. p. 115, "REORGANIZING AN INDEXED DATA SET" 

. OPG 17. p. 115-116, 

OPG 18. p .  116-118, 

OPG 19. p. 120-121, 

OPG 20. p. 121-122, 

OPG 21. p. 122-124, 

OPG 22. p. 118-120, 

OPG 23. p. 120, 

OPG 24. p. 165-175, 

"EXAMPLES OF INDEXED DATA SETS" 

"Regional Data Sets" stopping ,at' "CREATING A 
REGIONAL DATA SET" 

"RESIONAL (1) Data Sets" 

"Regional --, (2) . Da-ta Sets" 

"Regional (3) Data setsi1 

"CREATING A REGIONAL DATA SET" 

"ACCESSING A REGIONAL DATA SET" 

"Linking PL/I and Assembler-Language Modules" 

OPG 25. p. 211-212,. "IBM System/360 Models 91 and 195" 

CTUG 2. ' p. 85-87, "Conversational Input" 

CTUG 3. p. 87-89, "Conversational Output" 

 TUG 2. P. 67, w~~~~~~~~ (TIME I o 1 2) 1 NO OPTIMIZE^^ 
OTUG 3. p. 39-41, "Conversational Input" 

JG 4. p. 41-42, "Conversational Output" 



REFERENCES FOR LESSONS 11-15 

LRM 211. P= 89, "A based variable...area variables." 
, , 

LRM 212. P- 89, "BASED VARIABLES1' 

LRM 213. p. 89-90, "LOCATOR QUALIFICATION" 

LRM 214. P *  90, "POINTER VARIABLES" stopping at "Setting 
Pointer Variables" 

LRM 215. P* 91, "ADDR BUILT-IN FUNCTION" 

LRM 216. p. 426, General rules 7, 8, 12. 

LRM 217. ' p. 444, General rules 3-5. 

LRM 218. p. 93-94, "SELF-DEFINING DATA (REFER OPTION) " 

.LRM 219. p. 397, General rule 6. 
7 

LRM 220. p. 403, General rule 5. 

LRLY 221. 

LRM 222. 

LRM 223. 

LR2.I 224. 

LRM 225. 

LRM 226. 

LRM 227. 

LRM 228. 

"MULTIPLE GENERATIONS OF BASED VARIABLES", 
"NULL HUPLT-IN FlJNCTTnN", and "TYPES OF LIST" 

!!AREAS 11 stopping ac "Uffset Variables" 

"EMPTY Built-In Function" 

"AREA ON-Condition" 

"ALLOCATE Statement with the IN Option" 

"Offset variables" 

LRM 229. P= 98, "Offset Expressions" 

LRM 230. p. 99-100, "AREA ASSIGNMENT" 

LRM 231. p. 100, "INPUT/OUTPUT OF AREAS" 

LRM 232. p. 156, "SET Optionn 

LRM 233. p. 456, General rule 9. 



LRM . 2  3.5'. p. 157-160 ,  

LRl4 238 .  

LR! 239.  

LRM 240.  

LRM 241 .  
I 

LRLi 242.  

LRM 243 .  

LRM 244.  

LRM 245.  

, LRV 246 .  

LRM 247 .  

LRM 248 .  

. LRM 249.  

LRM 250 .  

LRM 252 .  p. 464 ,  

LRM 253.  p. 235; 

LRM 254.  p. 463-464,  

LRf4 255.  p. 237 ,  

LRII 256.  p. 464,  

I 2 5 7 .  p. 2 3 7 ,  

LRM 258.  p. 465,  

"LOCATE Statemen tl' 

"Processing Modes" 

I' LOCATE I' \ 

' "DISPLAY" except General rule 4. 

"FETCH AND RELEASE STATEMENTS" 

"Dynamic Loading,of an External 'Procedure" ' .  

Up to "Preprocessor Input and Output" 

"Preprocessor Input and Output' stopping at 
"Rescanning and Replacement" 

"%DECLAREw stopping at ~eneral rule 4. 

"Preprocessor Expressions" ' 

"%assignment Statement" 

"%DEACTIVATEn 

"Rescanning and.ReplacementN 

"Preprocessor Variables" 

"The % IF statement...IF statement." 

"Preprocessor Do-group" 

"The %GO TO statement...avoiding text." 

"%GO TO" 

"The preprocessor null statement...ELSE clause." 

"%null Statement" 



LRM 259. p. 233-235, 

LRM 261. p. 466, 

LRM 262. p. 235-236, 

LRM 263. p. 464-465, 

LRM 264. p. 235, 

LRM 268. p. 211-212, 

LRM 269. p. 218-220, 

LRM 273. 

LRM 274. 

LRYl 275. 

LRM 276. 

' LRM 277. 

LR! 278. 

LRfl 279. 

LKM 280. 

LRM 281. p .  241, 

LRM 282. p.' 242, 

'"Preprocessor Procedures" stopping at 
' "SUBSTR. . .Functionsw 

" %PROCEDURE1' 

"Preprocessor RETURN" 

"Inclusion of ~xternal Text" 

"SUBSTR, LENGTH, and INDEX Built-In Functions" . "  

".Passing an Argument to the M.ain Procedure?' 

"UNINITIALIZED VARIABLES" 

"Execution-time Facilities of the Checkout 
'Compiler " 

"CHECK Condition" 

"CHECK and NOCHECK Statements" 

"CHECK" 

"NOCHECK" 

"ON Statement" -- - 
General rule 6. 

."Current Status List" 

Syntax rules 3 through 5. 

"FT,T)W St~tement" a'cd "MOFLOW C t a t e m t n  kt' 

"FLOW" 

"NOFLOW" 

"~ultitasking may allow ... system overheads." 
First five paragraphs of "Multitasking" 

"Creation of Tasks" stopping at "CALL STATEMENT" 

"PRIORITY Option" up to "If the option does - .  
not appear. . . " 



LRM 2 8 3 .  p. , 2 4 2 ,  

LRM 2 8 4 .  p. 2 4 - 2 5 ,  

LRM 2 8 5 .  p .  2 4 2 - 2 4 3 ,  

LW.4 2 8 6 .  p .  4 3 0 ,  

LRLY 2 8 7 .  p .  4 2 3 - 4 2 4 ,  

LRM 2 8 8 .  P *  2 4 1  

LRM 2 8 9 .  p .  2 4 1 ,  

LkM 2 9 0 .  p. 4 3 0 ,  

LRM 2 9 1 .  p. 4 0 7 - 4 0 8 ,  

LRii 2 9 2 .  P -  2 4 4 1  

LRIq 2 9 3 .  p.  4 5 9 - 4 6 0 ,  

LRM 2 9 4 .  p .  4 4 1 - 4 4 2 ,  

LRM 2 9 5 .  p. 2 4 5 - 2 4 6 ,  

LR4 2 9 6 .  p .  2 4 3 - 2 4 4 ,  

LRM 2 9 7 .  p .  2 4 4 ,  

LRM 2 9 8 .  p .  2 4 0 ,  

LRM 2 9 9 .  p .  2 4 0 - 2 4 1 ,  

LRM 3 0 0 .  p .  4 5 1 ,  

LRM 3 0 1 .  p. 4 3 7 ,  

LFUq 3 0 2 .  p .  1 7 1 ,  

L R ~ I  3 0 3 .  p. 1 5 7 ,  

LRM 3 0 4 .  p.  , 1 5 6 - 1 5 7 ,  

LRM 3 0 5 .  p. ' 2 4 4 ,  

' 3 0 6 .  p.  4 0 8 ,  

LRM 3 0 7 .  p. 4 3 6 ,  

"PRIORITY OF TASKS" 

" TASK DATA 

"PRIORITY O p t i o n "  and "PRIORITY BUILT-IN . 

FUNCTION AND PSEUDOVARIABLE" 

G e n e r a l  r u l e s  1, 2 ,  4 ,  and 5.  

"TASK" -- 
"EVENT DATA" 

"EVENT O p t i o n "  except l a s t  p a r a g r a p h  

G e n e r a l  r u l e  3 .  

"EVENT" except  G e n e r a l  r u l e  1 0 .  

Two p a r a g r a p h s  of "WA1.T STATEMENT" 

G e n e r a l  r u l e s  1 through 4 .  

"EXIT" 

" T e r m i n a t i o n  of T a s k s "  

"SHARING DATA BETWEEN TASKS" 

"SHARING F I L E S  BETWEEN TASKS" 

" I n  genera l ,  t h e  r u l e s . . . i ' n  t h i s  chapter ."  

" T a s k i n g  a n d  ~ e e n t r a b i l i t y "  

S y n t a x  ' r u l e  4 .  

G e n e r a l  r u l e  4 .  

"NUMBER OF CHANNEL PROGFWMS (NCP) 'I 

" N o t e  t h a t . . . w a i t e d  f o r . "  

"EVENT O p t i o n "  

"An e v e n t  va r iab le .  ..abnormal r e t u r n . "  

G e n e r a l  r u l e  1 0 .  

Genera l  r u l e  5 .  



LRX308.  

LRX 309. 

LRM 310. 

LRM 311. 

-LRii 312.  

LRM 313.  

LRM 317.  

CPG 25.  

CPG 26. 

CPG 27.  

CPG 28.  

CPG 29. 

CPG 30. 

CPG 31. 

CPG 32. 

CPG33 .  , 

CPG 34.  

CPG 35.  

p .  455,456,  

p .  458-459, 

p .  461,  

p .  460,  

p .  244-245, 

p .  245, 

p .  436, 

p . .  4 4 6 ,  

G e n e r a l  r u l e  7.  

G e n e r a l  r u l e  5 .  

G e n e r a l  r u l e  3 .  

G e n e r a l  r u l e s  5  t h r o u g h  8 .  

"TESTING AND SETTING EVENT VARIABLES" 

"DELAY STATEMENT" 

"DELAY " 

" HALT " 
.- 

" ~ x e c u t i o n - t i m e  ~ a c i l i t i e s  o f  t h e  Checkout  
Compi ler"  u p  t o  " T r a c i n g  F a c i l i t i e s "  

"Program Amending" 

" OVERLAY I' 

"Xe tu rn  Codes " 

"P,L/I S o r t "  

"When L i n k - e d i t i n g  i s  R e q u i r e d . "  

Two p a r a g r a p h s  o f  " L i n k - e d i t  S t u b s  and O b j e c t  
Modules I' 

" L i n k - e d i t  S t u b  (SYSLIN)" and " I n t e r m e d i a t e  
T c x t  and Dictionary (SYSITEXT)" 

F i r s t  p a r a g r a p h  o f  "Pr imary  I n p u t  (SYSCIN 
o r  SYSIN) I' 

" l j m A  S'l'ATEMENT " 

"PROCESS S  TATENENT " 

"Batched Compi la t ion"  

" O p t i o n a l  F a c i l i t i e s "  



CPG 36. p. 43-45, "Compile-time Processing (preprocessing)" 

CPG 38. p. 151-1'61, "Prdgrarn Checkout" 

CPG 39. p. 48-50, "Combining PL/I Modules from the Optimizing 
221, and Checkout Compilers" 

CPG 40. P. 301 "ISASIZE Option" 

OPG 26. 

OPG 27. 

OPG 28. 

OPG 29. 

OPG 30. 

OPG 31. 

OPG 32. 

OPG 33. 

OPG 34. 

OPG 35. 

OPG 36. 

OPG 37. 

OPG 38. 
. . . . 

CTUG 4. 
, . 

CTUG 5.  

\ 

"OVERLAY STRUCTURES 

"Return Codes" 

"PL/I Sort" 

"Inwut (SYSIN. or SYSCIN) " 

"Specifying Compiler 0pt.ions in the PROCESS 
Statement" 

"Batched Compilation" 

"Optional Facilities" 

"EXECUTION-TIME OPTIONS" 

"Compile-time Processing (preprocessing)" 

"LINK EDITING FETCHABLE LOAD MODULES " 

"Combining PL/I Modules from the Optimizing 
and Checkout Com~ilers" 

"Program Checkout" 
. . 

"Multitaskina Usina Cataloaed Procedures" 

p. 111-131, "Compiler Options" 

p.. 11-23, " C r e d k i ~ l y  and Updating PL/I Programs" 



CTUG 6. p. 107-110, "PLIC Command" 

CTUG 7. p. 133-191, "Subcommands of PLIC Command" 
CTUG 8. . .p. 40-41, Figure 1.6. 

CTUG 9. p. 42-44, "Control Passing to ~erminal" 

CTUG'10. p. 25-44, "Debugging a Program" 

CTUG 11. , p. 45-83, "Debugging Techniques " 

CTUG 12. p. 133-191, "Subcommands of PLIC'. Command" 

OTUG 5. p. 55-70, "Compiler Options" 

OTUG 6. p. 11-25, "Creating and Updating PL/I Programs" 

OTHER 3. S. M. PraSLein, editor. Arsonne National - - 
Laboratory Computer User's Guide, 
chapters 9 and 12. 



1 7 - 1  
I N D E X  

*DATA c o n t r o l  s t a t e m e n t  .... 
13.3, 13.4, 13.5, 13.7 

*PROCESS c o n t r o l  s t a t e m e n t  . 
13.4, 13.5, 13.7, 13.25 

X s y m b o l  .............. 12.7 ........ % A C T I V A T E  s t a t e m e n t  
12.12, 12.17 ...... % A s s i g n m e n t  s t a t e m e n t  
12.9 ...... % D E A C T I V A T E  s t a t e m e n t  
12.11, 12.17 

%DECLARE s t a t e m e n t  ... 12.8, 
12.17 

%DO s t a t e m e n t  ........ 12.14 
% E L S E  c l a u s e  .. 12.13, 12.16 
% E N D  s t a t e m e n t  ...... 12.14, 

12.17 
% G O  TO s t a t e m e n t  .... 12.15, 

12.16 
XI F 

c l a u s e  ............. 12.13 ... s t a t e m e n t  12.1'3, 12.16 
% I N C L U D E  s t a t e m e n t  . . 12.19, 

13 .11  
'IrlNull s t a t e m e n t  ...... 12.16 ....... '%PROCEDURE s t a t e m e n t  

12.17 
%THEN c l a u s e  ......... 12.13 

f o r m a t  item ......... 7.19 
A b n o r m a l  t e r m i n a t i o n '  

o f  a  p r o g r a m  ... 6.9, 12.3 
of a t a s k  ... 14.9, 14.11, 

14.16 
A135 b u i l t i n  f u n c t i o n  ' ... 1.17 
A b s t r a c t  e v e n t s  ..... 14.17, 

14.19 
. ACOS b u i l t i n  f u n c t i o n  ...... 

1.20 
A c t i v e  

e v e n t  v a r i a b l e s  .... 14.7, 
14.14, 14. 17. 

i d e n t i f i e r s  ......... 12.7 
p r e p r o c e s s o r  f u n c t i o n  

r e f e r e n c e s  ..... 12.17 
t a s k  v a r i a b l e s  ...... 14.6 

A c t u a l '  a r g u m e n t s  ...... 5.9, 
5 .11 

A D D  b u i l t i n  f u n c t i o n  . . 1. 17 
A D D R  b u i l t i n  f u n c t i o n .  ...... 

11.2 
A d d r e s s  ............... 11.1 
I \ . d j u s t a b l e  e x t e n t s  .... 5.4, 

5.6, 5.7, 5.10, 5.11, 
10.7, 11.5, 11.7, 11.15 

AFTER b u i l t i n  f u n c t i o n  
(ANSI) .......... 2.18 

AGGREGATE c o m p i l e r  o p t i o n  . . 
3.10 

A g g r e g a t e  p a r a m e t e r s  . . 5. 13  
A g g r e g a t e s  ....... 3.1, 14.8  ...... A L I G N E D  a t t r i b u t e  3. 1 1  
A l i g n m e n t  .......... a t t r i b u t e s  3.11 

r e q u i r e m e n t s  . . 3.10, 3.11 
ALL 

b u i l t i n  f u n c t i o n  .... 10.5 
o p t i o n  ..... 13.16, 13.20, 

13.21 .... ALLOCATE s t a t e m e n t  5.7, 
11.4, 11.10 

ALLOCATION b u i l t i n  f u n c t i o n  
10.5 

AMDLIB ................ 13.1 
ANST S t a n d a r d  ... 0.2, 1.18, 

1.20, 2.18, 4.9, 5.7, 
5.9, 5.10, 5.12, ' 5 . 13 ,  
5.14, 6.5, 6.7, 6.18, 
6.19, 7.10, 7.15, 7.21, 
7.22, 8.9, 9.11, 10.3, 
10.4, 10.5, 11.3, 11.5, 
11.14, 12.0, 12.6, 
12.19, 13.16, 13.19, 
14.0, 14.5 

A N Y  b u i l t i n  f u n c t i o n  . . 10.5 
Area' .... a s s i g n m e n t  11.7, 11.9 .......... s i z e  1.1.7, 11.9 
A R  EA ........... a t t r i b u t e  11.7 ........... c o n d i t i o n  11.9 
Areas ................. 11.7 

e m p t y  ......... 11.7, 11.8 
A r g u m e n t  l i s t s  ............... e m p t y  10.4 ....... A r g u m e n t s  5.9, 5.1.1, 

12.17 
p a s s i n g  t o  m a i n  p r o c e d u r e  

13.5  
A r i t h m e t i c  o p e r a t i o n s  ....... 

1.14 
c o n v e r s i o n  r u l e s  .... 1,. 15  
p r e c i s i o n  r u l e s  ..... 1.16 

A r r a y s  ................. 3.2 ....... A r r a y s  a s  p a r a m e t e r s  
5.11, 5.13 

A r r a y s  of s t r u c t u r e s  . . 3.14 
ASIN b u i l t i n  f u n c t i o n  ...... 

1.20 
A s s i g n m e n t  s t a t e m e n t  ....... 

1 . 1 2 ,  2 . 6 ,  2.9, 2.16 
A s s i g n m e n t s  

a rea  .......... 11.7, 11.9 



INDEX 

a r i t h m e t i c  ........... 1 . 1 2  
a r r a y  ................ 3 . 4  . b i t  s t r i n g  ..... 2.9. 2  16 
BY NAME ............. 3 . 1 5  .... c h a r a c t e r  s t r i n g  2.6. 

2'. 16  
e n t r y  .........:..... ., 6 . 8  
e v e n t  ........ 14 .7 .  1 4 . 1 7  
f i l e  ................. 7  - 3  

. f i x e d - l e n g t h  b i t  s t r i n g  . . 
2 . 9  

f  i x e d - l e n g t h  c h a r a c t e r  
s t r i n g  ........... 2 . 6  

l a b e l  ................ 6 . 7  
s t r u c t u r e  ..... 3 . 12. 3 . 1 5  
v a r y  i n g - l e n g t h  b i t  s t r i n g  

2  . 16  
v a r y  i n g - l e n g t h  c h a r a c t e r  

s t r i n q  .......... 2 . 1 6  
A s t e r i s k  e x t e n t s  ..... 5.11.  

1 0 . 7 ,  '!I. 7 
A s y n c h r o n o ' u s  1/0 ..... 14 .0 .  

1 4 . 3 ,  1 4 . 1 3 ,  ' 14.14 ...... ATAN . b u i l t i n  f u n c t i o n  
1 . 2 0  ..... ATAND b u i l t i n  f u n c t i o n  
1  . 20 ...... ATANH b u i l t i n  f u n c t i o n  
1 . 2 0  ...... A t t a c h i n g  a  t a s k  14.4 .  
1 4 . 5 ,  1 4 . 6 ,  1 4 . 7 ,  14 .11  ... ATTENTION c o n d i t i o n  1 5 . 5  

A t t r i b u t e s  
a l i g n m e n t  ........... 3 . 1 1  
a r i t h m e t i c  ..... 1.5 .  1.6. 

1  . 19 
d e f a u l t  .............. 1 .4  
d e f i n i t i o n  o f  ........ 1.2  ............ d i m e n s i o n  3 & 3  .... f i l e  d e s c r i p t i o n  7.3. 

7 . 8 ,  7 . 1 0  ...... o f  a r e t u r n e d  Value 
5  . 14 

o f  c o n s t a n t s  ........ 1 .11  . o f  p a r a m e t e r s  ...... 5 11. 
5 . 1 2  

r o l e  o f  ............... 1.2  ................ s c o p e  4 .4  
s t o r a g e  c l a s s  ...... 5 . 1 2 .  

1 1 . 3  
s t r i n g  ............... 2 . 3  ....... s t r u c t u r e  3 .8 .  3 . 9  

AUTOMATIC a t t r i b u t e  .... 5.6 
A u t o m a t i c  c a l l  l i b r a r y  ..... 

1 3 . 2 5  
A u t o m a t i c  v a r i a b l e s  ... 5 .6 ,  

5  . 15. 14 .11  

B f o r m a t  item ......... 7 . 1 9  .... BRCKWARDS a t t r i b u t e  8 .9  ....... B a l a n c e d  p a r e n t h e s e s  
1 2 . 1 7  ........ Base a t t r i b u t e s  1 . 5  

B a s e  e l e m e n t s  (o f  
s t r u c t u r e s )  ....... 3 . 7  

Based  
r e f e r e n c e s  .......... 1 1 . 3  ........... v a r i a b l e s  1 1 . 3  ....... BASED a t t r i b u t e  11 .3  ....... Based  v a r i a b l e s  1 1 . 3  
a c c e s s i n g  r e c o r d s  i n  

b u f f e r s  ........ 1 1  .. 1 3  
i n  l ist  p r o c e s s i n g  . . 11 .6  
i n  s y s t e m  programming  .... 

1 1 . 3  
B a t c h e d  c o m p i l a t i o n  ... 13 .4  
BEFORE b u i l t i n  f l l n  c t  i o n  

(ANSI) .......... 2 . 1 8  
R ~ g i . n  h l o c k s  . . . . . .  4 . 5 .  6 . 2  
BEGIN s t a t e m e n t  . . 4 . 8 ,  6 . 1 9  . ........... B e l o n g i n g  t o  4  3  
B I N P . R Y  

a t t r i b u t e  ............ 1 . 5  
b u i l  t i n  f u n c t i o n  .... 1 . 1 7  

B i n a r y  t r e e  ........... 1 1 . 6  
BIT 

a t t r i b u t e  ............ 2 . 3  
b u i l t i n  f u n c t i o n  .... 2 .18  

B i t  s t r i n g  
v a l u e s  ............... 2 . 2  ...... v a r i a b l e s  2.3. 2 .15  

B i t  s t r i n g s  
f i x e d - l e n g t h  ......... 2 . 9  . i n  % I F  c l a u s e  ...... 1 2  1 3  
i n  I F  c l a u s e  ......... 6 . 1  
i n  WHILE c l a u s e  ...... 6 . 4  . v a r y i n g - l e n g L 1 1  ...... 2  16 

B l o c k  
e n t r y  ................ 5 .6  .... t e r m i n a t i o n  5.6.  6 .7 .  

14 .9 ,  1 4 . 1 6  ..... OLOCI( c x e c u  t i o n  op t i u n  
13 .22 

B l o c k  s t r u c t u r e  ...... 1 4 . 1 0  
B l o c k s  ............ 4.8. 6 . 7  
BOOL b u i l t i n  f u n c t i o n  ...... 

2.18 
Bounds  ...... 3.3. 5 .4 .  5 . 1 1  ............. BREAK k e y  1 5 . 5  
BUFFERED a t t r i b u t e  .... 8.9.  

1 1 . 1 4 ,  11 .15  . B u f f e r s  ....... 11.14.  1 1  1 5  . BUILTIN a t t r i b u t e  .... 10 3. 
12 .20  

when r e q u i r e d  ....... 10 .4  .... B u i l t i n  f u n c t i o n s  5 . 1 2 .  



10.1, 12.20, 13 .1 .  
a r i t h m e t i c  .......... 1.17 
a r r a y  a r g u m e n t s  ...... 3.5 

c o n d i t i o n - h a n d l i n g  -. . 10.5 
m a t h e m a t i c a l  .. 1.20, 10.5 
m i s c e l l a n e o u s  ....... 10.5 
m u l t i t a s k i n g  ....... 14 -6 ,  

14.7, $14.9 
s t o r a g e  c o n t r o l  .... 10.5, 

11.2, 11.6, 11.8, 11.12 
stream 1/0 .......... 10.5 
s t r i n g - h a n d l i n g  ..... 2.18 

B u i l t i n  p r o c e d u r e s  ... 5.12, 
12.3 

BY c l a u s e  .............. 6.5 
BY N A M E  o p t i o n  ........ 3 . 1 5  

C f o r m a t  item ......... 7. 19 
CALL command o f  T S O  ... 15.7 
CALL s t a t e m e n t  ... 4.1, 5.9, 

12.3, 14.4, 14.5, 14.6, 
14.7 

C a t a l o g e d  p r o c e d u r e s  .,. 0.7 
C h e c k o u t  c o m p i l e r  ... 13.2 
O p t i m i z i n g  c o m p i l e r  ...... 

13.7 
PLC series ... 13.2, 13.4, 

13.23 
PLO ser ies  , . . 13.7, 13.23 

CEIL b u i l t i n  f u n c t i o n  ...... 
1.17 

C H A R  b u i l t i n  f u n c t i o n  ...... 
2. 18 

... CAARACTER a t t r i b u t . ~  2 . 3 ,  
12.8 

C h a r a c t e r  s t r i n g  ............... v a l u e s  2.1 
v a r i a b l e s  ...... 2.3, 2.15 

C h a r a c t e r  s t r i n g s  
f i x e d - l e n g t h  ......... 2.6 
v a r y i n g - l e n g t h  ...... 2.16 

CHECK 
c o n d i t i o n  .. 13.16, 13.17, 

13.18, 13.24 
s t a t e m e n t  . . 13.16, 13.18, 

13.22 
C h e c k o u t  c o m p i l e r  ..... c a t a l o g e d  p r o c e d u r e s  

13.2 
c o m p i l e r  o p t i o n s  ... 13.5, 

13.6, 15.2 
d e v e l c p m e n t  a n d  t e s t i n g  . . 

13. 15 .............. i n  TSO 15.2 
o r g a n i z a t i o n  ........ 13.1 

s p e c i a l  d e b u g g i n g  f e a t u r e s  
13.16 

s t o r a g e  managemen t  . . 13.6 
C h e c  k p o i n t / R e s t a r t  ...... f a c i l i t i e s  12.5 ........ CLOSE s t a t e m e n t  7.6 ... C l o s i n g  a f i l e  7.6, 7.'8, 

11.14, 11.15 
COLLATE b u i l t i n  f u n c t i o n  

(ANSI) .......... 10.5 
COLUMN f o r m a t  item .... 7.20 ...... C o m p a r i s o n  o p e r a t i o n s  

2.14, 6.1, 6.4 
COMPATIBLE c o m p i l e r  a n d  ..... e x e c u t i o n  o p t i o n  

13.23 ...... C o m p i l e - t i m e  f a c i l i t y  
12.6 

C o m p i l e r  o p t i o n s  ..... 13.5, 
13 .6 ,13 .8 ,  13.9, 15.2 

C o m p i l i n g  
i n  b a t c h  ........... 13. 10  ...... i n  TSO 13.10, 15.2, 

15.7 
s e v e r a l  e x t e r n a l  

.... p r o c e d u r e s  a t  o n c e  
13.4, 15.7 

COMPLETION 
b u i l t i n  f u n c t i o n  ... 14.7, 

14.12 
p s e u d o - v a r i a b l e  .... 14.17 

C o m p l e t i o n  c o d e s  ........ 6.9, 
12.3 

C o m p l e t i o n .  p a r t  o f  e v e n t  
v a r i a b l e s  ...... 14.7, 

14.8, 14.12, 14.14, 
14,17 

COMPLEX 
a t t r i b u t e  ............ 1.5 
b u i l t i n  f u n c t i o n  .... 1.17 
p s e u d o - v a r i a b l e  .... ; 1.18 ......... C o n c a t e n a t i o n  2.12 

C o n c u r r e n t  e x e c u t i o n  ....... 
14.1, 14.11 

C O N D I T I O N  
a t t r i b u t e  ........... 6.17 
c o n d i t i o n  ........... 6, 17  

C o n d i t i o n  c o d e s  .. 6.9, 12.3 .... C o n d i t i o n  p r e f i x e s  6.12 
C o n d i t i o n s  

c o m p u t a t i o n a l  ...... 6.11, 
6.19 

c o n v e r s a t i o n a l  p r o c e s s i n g  
15.5 

d i s a b l e m e n t  o f  ...... 6.12 
e n a b l e m e n t  o f  ....... 6.12 
e s t a b l i s h m e n t  o f  , . . 6.13, 

6.15, 14.11 



I N D E X  

e x c e p t i o n a l  . . . . . . . . . 6.10 
1/0 ..... 7.5, 7.24, 8.17, 

14.14 
o c c u r r e n c e  of . . . . . . 6.11, 

6.16, 14.11 
p r o g r a m  c h e c k o u t  ... 6.11, 

13.17 
p r o g r a m m e r  named . . . . 6.17 
r a i s i n g  o f  ....... . .. 6.13 
s t a t u s  of . . ... ... ... 6.12 
s t o r a g e  c o n t r o l  . . . . . 11.9 
s y s t e m  a c t i o n  . . . . . . 6.11, 

15.5 
C O N J G  b u i l t i n  f u n c t i o n  ..... 

1.17 
CONNECTED a t t r i b u t e  . . 5.13, 

1 3 . 9  
C o n n e c t e d  r e f e r e n c e s  . . 3.6, 

I- -,. 13 
C o n s e c u t i v e  d a t a s e t s  .. 8.12 

a l t e r i n g  . . . . . . . . . . . . 8.15 
c r e a t i n g  . . . . . . . . . . . , 8.13 
r e t r i e v i n g  . . . . . . . . . . 8.14 

CONSECUTIVE s u b o p t i o n  .. . . . . 
8. 11, 8.12 

C o n s t a n t s  
a r i t h m e t i c  . . , . . . . . . . 1.11 
b i t  s t r i n g  . ... ... .. .. 2.8 
c h a r a c t e r  s t r i n g  . . . . . 2.5 
e n t r y  ..... .... . 4 . 6 ,  1 2 . 2  
f i l e  ................. 7.2 
l a b e l  ................ 6.7 
named . . . . . . . . . . . . . . . . 4 . 3  

C o n t a i n i n g  procedure ... 4 .3  
C o n t e x t u a l  d e c l a r a t i o n s  . . . . 

1.4, 4.3 
C o n t r o l  f l o w  . . . . . . . . . . 14.1 
C o n t r o l  format items . . . . . . . 

7.18, 7.20 
C o n t r o l  v a r i a b l e s  . . . . . . 6.5 
C o n t r o l l e d  

arguments . . . . . . . . . . . . 5.9 
p a r a m e t e r s  . . . . . . . . . . . 5.9 
v a r i a b l e s  ...... 5,7, 5.1, 

11.4  
CONTROLLED a t t r i b u t e  . . . 5.7 
C o n t r o l l e d  DO g r o u p s  . . . 6.5 
C o n v e r s a t i o n a l  d e b u g g i n g  . . . 

15.6 
CONVERSION c o n d i t i o n  . . . . . . . 

6.11,  7.19, 7.24, 7.26 
C o n v e r s i o n s  . . . . . 1.12, 1.13 

a r i t h m e t i c  t o  s t r i n g  . . . . . 
2.11 

b e t w e e n  p o i n t e r  a n d  o f  £ s e t  
11.12 

d u r i n g  1/0 ... 7.15, 7.16, 
7. 19 

i n  a r g u m e n t / p a r a  meter 
m a t c h i n g  . . . . . . . . 5.12 

i n  a r i t h m e t i c  a s s i g n m e n t s  
1.13 

i n  a r i t h m e t i c  o p e r a t i o n s  . 
1.15, 2. 11 

i n  s t r i n g  a s s i g n m e n t s  . . .. 
2.10 

i n  s t r i n g  o p e r a t i o n s  ..... 
2.11 

s t r i n g  t o  a r i t h m e t i c  . . . . . 
2.11 

COPY 
b u i l t i n  f u n c t i o n  ( A N S I ) ,  . . 

2.18 
command o f  TSO . .. . . . 15.1.  
o p t i o n  . . ,. . .. . . .. . . . 7.22 

c o r o u t i n e s  . . . . . . . . . . . 1 4 . 1 9  
C05 b u i l t i n  f u n c t i o n  . . 1 .20  
COSD b u i l t i n  f u n c t i o n  . . . . . . 

1.20 
COSH b u i l t i n  f u n c t i o n  . . . . . . 

1.20 
COUNT b u l l t i n  f u n c t i o n  . . . . . 

10.5 
COUNT c o m p i l e r  o p t i o n  . . . . . . 

13.24 
C r e a t i n g  a t a s k  . . .. . . 14.4, 

14.5, 14.6, 14.7, 14.11 
C r i t i c a l  r e g i o n s '  . . . . . 14. 19 
Cross s e c t i o n s  o f  a r r a y s  . .. 

3.6 

Data 
f o r m a t  items . . 7.18, 7.19 
l i s t  items . .. .. .. . . . 7. 13  
l ists  .......... ..... 7.13 
p r o b l e m  . . . . . . . . .. . . . 2.11 
p r o g r a m  c o n t r o l  .. . . . 4.7, 

7.2, 11.1, 1 1  .7, 11.10, 
13.20, 14.7 

DATA o p t i o n  . . . . . 7.16, 7.22 
D s t a , , d i r e c t e d  t r a n s m i s s i o n  . 

7.16, , 13.20 
DATAFIELD b u i l t i n  f u n c t i o n  . 

10.5 
Dataset o r g a n i z a t i o n  . . 8.11 
DataseLs . .... .. .. .... .. 7 . 1  
DATE b u i l t i n  f u n c t i o n  . . . . . . 

1 0 * 5  
Ddname . . . . .. . .. . . .. . . . . 7.4 
D e a c t i v a t i o n  o f  a c t i v e  

i d e n t i f i e r s  . . . . 12.11 
D e b u g g i n g  , ...... 13. 1, 15.6 

f e a t u r e s  ... 13. 16, 13.22, 
13.24 

DECAT b u i l t i n  f u n c t i o n  



INDEX 

( A N S I )  .......... 2'.18 
DECIMAL ............ a t t r i b u t e  1.5 

b u i l t i n  f u n c t i o n  .... 1.17 
DECK c o m p i l e r  o p t i o n  . . 13.7 
D e c l a r a t i o n s  

. i n s i d e  p r e p r o c e s s o r  
p r o c e d u r e s  ..... 12.17 

o f  e n t r y  c o n s t a n t s  . . 4.7, 
5.11,  5.12, 5.14 ... o f  e n t r y  v a r i a b l e s  6 - 8  ... o f  l a b e l  c o n s t a n t s  6.7 

r o l e  o f  .............. 1.3 
s c o p e  o f  . . 4.3, 4-.7, 4.8,. 

6.7 ............. t y p e s  o f  1.4 ..... DECLARE s t a t e m e n t  1.3. 
1 . 4  4.3 

D e f a u l t  
a t t r i b u t e s  ..... 1.4. 1.8. 

3.11, 4.5, 4.9 
d e c l a r a t i o n s  ... 5.8. 5.14 ..... DEFAULT s t a t e m e n t  1.4. 

4.9, . 5.8 
D e f a u l t  s t a t u s  o f  c o n d i t i o n s  

6.12 .... DEFINED a t t r i b u t e  3.16. 
5.10 

D e f i n i n g  ............... 3.16 . I S U B  .....:.... 3 18. 10.7 .............. . s i m p l e  3.17 ...... s t r i n g  o v e r l a y  3.19 
t y p e s  o f  ............ 3.20 

D E L A Y  s t a t e m e n t  ...... .14.18 
DELETE s t a t e m e n t  ...... 8.6. 

9.7, 9.9, 9.10, ,9.11, 
14.14 

D e t e r m i n i n g  s t a t e  of ..... F r o c e s s o r  i n  T S O  
15.4 

D I M  b u i l t i n  f u n c t i o n  . . 5.11 .... D i m e n s i o n  a t t r i b u t e  3.3 
Direct access .... 8.4. 9.1. 

9.2, 9.5, 9.6, 9.8, 9.9 
DIRECT a t . t r i b u t e  ....... 8.4 
D i s a b l e m e n t  o f  a c o n d i t i o n  . 

6.12 ..... DISPLAY s t a t e m e n t  12.1. 
14.12 .... DIVIDE ' b u i l t i n  f u n c t i o n  
1.17 

DO ..... g r o u p s  6.2. 6.3. 6.5  ....... s p e c i f i c a t i o n s  6.5 ..... s t a t e m e n t s  6.2. 6.4. 
6.5 ..... DO g r o u p s  6.2. 6.3. 6.5 

c o n t r o l l e d  ............ 6.5 

i n d e x e d  .............. 6.5 
i t e r a t i v e  ....... 6.3. 6 .5  
n o n - i t e r a t i v e  ........ 6.2 . p r e p r o c e s s o r  ....... 12 14  
WHILE-only ........... 6.4 

DOT b u i l t i n  f u n c t i o n  (ANSI) 
10.5 

Dummy . a r g u m e n t s  .... 5.12. 12  17  ... r e c o r d s  9.7. 9.8. 9.9. 
9.10 

Dumps ................ 13.24 
Dynamic  l o a d i n g  ...... 12.2. 

13.13 
Dynamic  s t o r a g e  ...... 1 1  . 7. 

14.11 
a l l o c a t i o n  ..... 5.1. 5.6. 

5.7, 11.4, 11.10 
d e a l l o c a t i o n  ( f r e e i n g )  ... 

5.6, 5.7, 11.4, 11.10 

.......... E f o r m a t  item 7.19 
EDIT 

command o f  TSO .... 13.10. 
15.1 

o p t i o n  ........ 7.17. 7 - 2 2  
E d i t - d i r e c t e d  t r a n s m i s s i o n  . 

7.17 
E d i t i n g  f e a t u r e s  o f  Check .ou t  

c o m p i l e r  ........ 15.6 ... EDTIF s y m b o l i c  p a r a m e t e r  
13.25' 

ELSE c l a u s e  ............ 6.1 
Empty a reas  ..... 11.7. 11.8 
EMPTY b u i l t i n  f u n c t i o n  ..... 

11.8 
E n a b l e m e n t  of a c o n d i t i o n  .. 

6.12 
E N D  s t a t e m e n t  .... 4.1. 4.8. 

6.2, 6.4, 6.5, 6.9, 
14.9, 14.11 .... ENDFILE c o n d i t i o n  7.24. 
8.17, 14.14 

ENDPAGE c o n d i t i o n  ..... 7.24 
E n t r y  ...... c o n s L a 1 1 t s  4.6. 4.7. 

12.2 
d e c l a r a t i o n s  . . 4.7, 5.11, 

5.12, 5.14, 6.8 
l a b e l s  .......... 4.1. 4.6 
v a l u e s  ............... 6.8 
v a r i a b l e s  ............ 6.8 

ENTRY 
a t t r i b u t e  ..... 4.7. 5.12. 

12.17 
s t a t e m e n t  ........... 5.16 

E n t r y  p o i n t s  ... 5.16. 13.13 



I N D E X  

.... E n v i r o n m e n t  10.6. 13 .20  3.5 .............. ...... o t h e r - l a n g u a g e  10.9 e l e m e n t  6 .1  ........ p a r t  of e n t r y  v a l u e  . . 6.8 p r e p r o c e s s o r  12.9 
p a r t  o f  l a b e l  v a l u e  .. 6.7 s t r u c t u r e s  a s  o p e r a n d s  i n  ...... ENVIRONMENT a t t r i b u t e  3.13 . .... 7.10. 8.10. 8.11. 8.12. E x t e n t s  5.4. 5.10. 11 5 

9 .3  E x t e r n a l  
s q u i v a l e n c i n g  o f  d a t a  ...... e n t r y  c o n s t a n t s  ....... 4.7 

3 . 16 names  ................ 4.4  ..... EFF b u i l t i n  f u n c t i o n  .. 1.20 p r o c e d u r e s  4.1. 4.3. 
E R P C  b u i l t i n  f u n c t i o n  ...... 5.11. 12.2. 13.4. 13.13. 

1.20 13 .25  
E r r o r  v a r i a b l e s  ....... 4.5. 5.8 

d e t e c t i o n  ........... 13 .1  EXTERNAL a t t r i b u t e  .... 4.4. 
messages .... 13.10 .  15.2. 4.7 

15 .4  ...... S R R O R  c o n d i t i o n  6.11. 
6 .16 r  7.5. 7.8. 7.24. F  format item .......... 7.19 
11.3.  13.20. 14.11. 15.5 ~'ETUH stateii~erlt ....... 1 2  . 2 ..... T R R O R S  c o m p i l e r  o p t i o n  F e t c h a b l e  p r o c e d u r e s  ....... 
1.7.6 12.2. 13.13. 13.25. 15 .7  

. 
E s t a b l i s h m e n t  of c o n d i t i o n s  F i e l d  w i d t h  ....... ... I . ' i Y  

6 . 13. 6 . 15. 14.11 F i l e  
E v e n t  . c o n s t a n t s  ............ 7 . 2  

v a l u e s  ....... 14 . 7. 14.17 v a l u e s  ............... 7.2 
v a r i a b l e s  .... 14.7. 14.8. v a r i a b l e s  ............ 7 . 2  

14.10. 14.12.. 14.14. F I L E  
14.17.  14.19 a t t r i b u t e  .... : ....... 7.2  

EVENT o p t i o n  ......... 7 .4 .  7 .22  
a t t r i b u t e  ........... 14.7 F i l e  d e s c r i p t i o n  a t t r i b u t c ~  
o p t i c n  ...... 14.7. 14.12. 7.3. 7.8. 7:10 .................. 14 .13  F i l e s  7 . 1  

E v e n t s  FINISII  c o n d i t i o n  ..... 6.11. 
a b s t r a c t  .... 14.17. 14.19 6.16. 14.11. 15.5 ..... d i s p l a y  14.12 .  14.16 FIXED 
I/O ......... 14.13. 14.16 a t t r i b u t e  ...... 1.5. 12.8 
o p e r a t o r  r e p l y  .... 14.12. b u i l t i n  f u n c t - i o n  .... 1 . 1 7  

14 .16  F i x e d - l e n g t h  b i t  s t r i n g s  ... 
p h y s i c a l  .... 14.16.  1 4 . 1 7  2.9 
p r o g r a m m e d  . . 14.17.  14.19 F i x e d -  l e n g t h  c h a r a c t e r  
t a s k  ................ 14.7 s t r i n g s  .......... 2.6 
t a s k  c O M p l e r l o n  .... 14.7. FIXEDOVZRPLOW c o n d i t i o n  .... 

14.8 .  14.9. 14.16 6 . 1 1  ..... E x c e p t i o n a l  c o n d i t i o n s  FLOAT 
6 . 10. 10.8 a t t r i b u t e  ............ 1.5 

EXCLUSIVE a t t r i b u t e  . . 9.11. b u i l t i n  f u n c t i o n  .... 1.1.7 
14 .15  FLOOR b u i l t i n  f u n c t i o n  ..... 

E x c l u s i v e  f i l e s  ...... 9.11. 1 . 17  
1 4 . 1 5  F L OF? 

EXIT s t a t e m e n t  ........ 14.9 c o m p i l e r  o p t i o n  .... 13.24 
EXP b u i l t i n  f u n c t i o n  . . 1.20 e x e c u t i o n  o p t i o n  ... 13  . 2 1 ...... E x p l i c i t  d e c l a r a t i o n s  o p t i o n  ...... 1 3  . 16. 13.20. 

1.4. 4.3. 4.7. 6 .7 13 .21  
' E x p l i c i t  o p e n i n g  . . 7.4. 7.8 s t a t e m e n t  ... 13.16.  13  . 2 1  
E x p l i c i t  p o i n t e r  F low of c o n t .  r o l  ...... 14 . 1. 

q u a l i f i c a t i o n '  ... 11.3 14.11. 14.14 
F x p r e s s i o n s  ............ 2.14 ' e s t a b l i s h i n g  . . 14 . 1. 14.4 

a r r a y s  a s  o p e r a n d s  i n  .... t e r m i n a t i n g  ......... 14 .1  



I N D E X  

Flow t a b l e  .... 13.21, 13.24 
Flow t r a c i n g  . . 13.21, 13.24 
F o r m a l  p a r a m e t e r s  ..... 5.9, 

5.11 . 

F o r  mat  
items .... 7.17, 7.18, 7.26 
l i s t  ........... 7. 17, 7.18 

FORMAT 
c o m p i l e r  o p t i o n  ..... 13.6 
s t a t e m e n t  ............ 7.21 

FORTRAN 
c o m m u n i c a t i o n  w i t h  PL/I  .. 

c o m p a r i s o n  t o  PL/I .. 0.8, 

3.3, 3..16, 4.1, 4.2, 
4.5, 5.1, 5.9, 5.11, 
5.12,5.14, 5.16, 6.5, 
7.13, 7.26, 8.18, 9.14, 
10.6, 10.9 

l i b r a r y  ............ 13.12 
s u b o p t i o n  .......:... 10.7 

FREE s t a t e m e n t  .. 5.7, 11.4, 
11.30 

PROM o p t i o n  ..... 8.7, 11.14 ...... FT06F001 D D  s t a t e m e n t  
13.12 ... F u n c t i o n  r e f e r e n c e s  4.1, 
5.9, 5.14, 12.17 

..... G e n e r a t i o n s  o f  s t o r a g e  
5.7,5.15., 11.4, 11.15 

G E N E R I C  a t t r i b u t e  ..... 5.17 
S e n e r i c  p r o c e d u r e s  .... 5.17 
G ~ . n e ~ i c  s e l e c t i o n  ..... 5.17 
G E N K E Y  s u b o p t i o n  ....... 9.5 
GET s t a t e m e n t  ... 7. 12, 7.25 
G l o b a l  c h e c k i n g  ....... 15.3 ...... G O  subcommand o f  PLIC 

15.4, 15.5 
GO TO 

o u t  o f  b l o c k  . . 6.7, 6.13, 
14.14 

s t a t e m e n t  ....... 6.6, 15.5 ... G O N U M B E R  c o m p i l e r  o p t i o n  
13.10 

GOOPTS s y m b o l i c  p a r a m e t e r  . . 
13.5, 13.8 

GOPARM s y m b o l i c  . p a r a m e t e r  . . . . 
13.5, 13.8 

H A L T  
c o m p i l e r  o p t i o n  ..... 15.4 
s t a t e m e n t ,  ........... 15.5 

H a r d c o p y  r e c o r d  o f  PLIC u s e .  
15.2 

HBOUND b u i l t i n  f u n c t i o n  .... 
5.11 

HELP 
command o f  T S O  ...... 15.2 
subcommand o f  PLIC . . 15.4 

H I G H  b u i l t i n  f u n c t i o n  ...... 
, 2.18 

1/0 t r a n s m i s s i o n  s t a t e m e n t s  
7.7 

r e c o r d  ........ 8.6, 14. 13 
stream .............. 7.12 

I d e n t i f i e r s .  ............ 1.1 
a c t i v e  ....... 12.7, 12.10 

I F  
c l a u s e  ............... 6.1 
s t a t e m e n t  ....... 6.1, 6.2 

IGNORE o p t i o n  .... 8.9, 9.2, 
11.14 

I I A G  
b u i l t i n ,  f u n c t i o n  .... 1. 17 
p s e u d o - v a r i a b l e  ..... 1.18 

I m m e d i a t e - m o d e  P L / I  
s t a t e m e n t s  ..... 15.4, 

15.5 
I m p l e m e n t a t i o n  e x t e n s i o n s  . . 

11.3 
I m p l e m e n t a t i o n - d e f  i n e d  

f e a t u r e s  .......... 0.2 
I m p l i c i t  d e c l a r a t i o n s  ....... 

1.4, 4.3, 4.9 
I m p l i c i t  o p e n i n g  .. 7.4, 7.8 
I m p l i c i t  p o i n t e r  

q u a l i f i c a t i o n  . :. 11.3 
1N o p t i o n  ............ 11.10 
I n - l i n e  1/0 ....,...... 8. 16 
I n a c t i v e  

b l o c k s  ............... 6.7 . 

e v e n t  v a r i a b l e s  ..... 14.7, 
14.17 

p r e p r o c e s s o r  p r o c e d u r e s  . . 
12.17 ... p r e p r o c e s s o r  v a r i a b l e s  
12.11 

t a s k  v a r i a b l e s  ...... 14.6 
INCLUDE c o m p i l e r  o p t i o n  .... 

13.11 
I n c l u s i o n  of t e x t  f r o m  a 

l i b r a r y  ....... 12.19, 
13.11 

I n d e x  ......... :. ....... 9.1 
I N D E X  b u i l t i n  f u n c t i o n  ..... 

2. 18, 12..20 
I n d e x e d  d a t a s s t s  ....... 9.1 

a l t e r i n g  ........ 9.6, 9.7 



INDEX 

c r e a t i n g  ............. 9 . 4  
r e t r i e v i n g  ........... 9 . 5  

I n d e x e d  DO g r o u p  ....... 6 . 5  
INDEXED s u b o p t i o n  .... 8.. 11, 

9 . 1  
I n f i n i t e  l o o p s  ...... 1 3 . 2 2 ,  

1 4 . 8  
I n h e r i t a n c e  o f  on u n i t s  .... 

6 .  13;  14 .11  
INITIAL a t t r i b u t e  ..... 5 . 3 ,  

1 1 . 4  
I n i t i a l  ' S t o r a g e  Area ....... 

1 3 . 9 ,  1 4 - 2 0  
I n i t i a l  v a l u e s  ......... 5.3  
I n i t i a l i z a t i o n  . . , 5 .1 ,  5.. 3 ,  ' 

5.6, 5 . 7 ,  1.1.4, 1 1 . 1 5  
INPLlT a t t r i b u t e  . . 7 .10 ,  8 . 8  
I n p u t  s t r e a m  

d a t a - d i r e c t e d  ....... 7 .16  
e d i t - d i r e c t e d  ...... 7 . 1 7 ,  

7. '19, 7.20 
l i s t - d i r e c t e d  ....... 7 .15  

INSOURCE c o m p i l e r  o p t i o n  ... 
.13 .11 

INTER s u b o p t i o n  ....... 1 0 . 8  
I n t e r a c t i v e  d e b u g g i n g  ...... 

1 5 . 6  
I n  t e r l a n g u a g e  c o m m u n i c a t i o n  

1 3 . 1 2  
common s t o r a g e  ...... 10.9  
o v e r v i e w  ............ 10.6  .. I n k c r m e d i a t c  t e x t  .... 1 3 . 1  

1 5 . 2  
I n t e r n a l  

e n t r y  c o n s t a n t s  ...... 4 .7  
names  ................ 4.4 
p r o c e d u r e s  ........... 4.2 

INTERNAL a t t r i b u t e  .... 4.4 ,  
4 . 7  

I n t e r p r e t a t i o n  ...,.... 1 5 . 3  
I n t e r p r e t e r  p h a s e  . . , . . 13 .1  . I n t e r r u p t i n g  t h e . ,  t e r m i n a l . .  

1 5 . 5  
INTO o p t i o n  ..... 8. '7, 11 .14  
I n v o c a t i o n  ...... 5. 9, 5 .15 ,  

5. 1 8 ,  6 . 7 ,  6 . 8 ,  6 .13 ,  
1 4 . 4 ,  14 .11  

. I P L I C  comma.nd o f  TSO , . 1 5 . 2  
ISA ................... 1 3 . 9  ... TSASIZE e x e c u t i o n  o p t i o n  

1 3 . 9 ,  1 4 . 2 0  
ISUS d e f i n i n g  ... 3.18,  1 0 . 7  
I t e r a t i o n  f a c t o r  ...... 5.3 ,  

. 7 . 1 8  
I t e r a t i v e  DO g r o u p  .... 6.3 ,  

6 . 5  

JCL ..... c o n s e c u t i v e  d a t a s e t s  
8 . 1 3 ,  8. 15  

DCB p a r a m e t e r s  ..... .8 .11 ,  
1 4 . 1 3  

ddname ............... 7 . 4  
d i s p o s i t i o n  p a r a m e t e r  .... 

9 . 1 1  
errors a n d  UNDEFINEDFILE ........ c o n d i t i o n  7 .5  
f o r  e x e c u t i n g .  p r o d u c t i o n  

p r o g r a m s  ....... 13 .8 ,  
13 .14 

f o r  f e t c h a b l e  p r o c e d u r e s  . 
1 3 . 1 3  

f o r  i n t c r l a n g u a g e  
c o m m u n i c a t i o n  . . 10. 10 

f o r  m u l t i t a s k i n g  ... 14.20 
f o r  p r o g r a m  de .ve lopment  . . 

1 3 . 2 5  
~ U L  s o u r e e  t e x t  l i b r a r i e ~  

1 3 . 1 1  .... FT06F001 DD s t a t e m e n t  
13 .12  ..... i n d e x e d  d a t a s e t s  9 . 3  ........ NCP o p e r a n d  14 .13  

p a r a m e t e r  f o r  dummy .......... r e c o r d s  9 . 7  
p a r a r n ~ t . e r  f o r  e x t e n d e d  

s e a r c h  .......... 9 . 1 0  
PLC s e r i e s  c a t a l o g e d  ..... p r o c e d u r e s  13. 2,  

13 .4  ..... PEfDUMP D D  s t a t e m e n t  
13.9,  1 3 . 2 4  

PLO ser ies  c a t a l o g e d  
p r o c e d u r e s  ...... 13.7  ........ r e c o r d  f o r m a t  8 . 7  ....... r e c o r d  l e n g t h  7 .11  ...... r e g i o n  r e q u e s t  13.6 ... r e g i o n a l  d a t a s e t s  9 . 1 0  ...... s t e p  c o n d i t i o n  c o d e  

6. 9, 1 2 . 3  ...... SYSCfN D D  s t a t e m e n t  
13 .3 ,  1 3 . 7 ,  1 3 . 2 5  ....... SYSIN D D  s t a t e m e n t  
1 3 . 3 ,  13 .7  .... SYSITEXT D D  s t a t e m e n t  
13 .1 ,  13 .7  ...... SYSLIB D D  s t a t e m e n t  
1 3 . 1 1  ...... SYSOBJ D D  s t a t e m e n t  
13 .1  .... SYSPRINT DD s t a t e m e n t  
13 .14  

t e s t i n g  p r o g r a m s  d u r i n g  
t h e  c o u r s e  ....... 0 . 7  



17-9 . 

INDEX 

KEY 
c o n d i t i o n  ........... 9.12 
o p t i o n  .... 9.2. 9.6. 9.7. 

11 .14  
Key s e q u e n c e  ..... 8 .4 .  9.1. 

9 . 4  
Keyed 

d a t a s e t s  . . 8.2,  8 . 5 ,  9.1, 
9.8 . 

.. f i l e s  .............. 11 14 .............. r e c o r d s  8 . 2  
KEYED a t t r i b u t e  ........ 8.5 
KEYFROH o p t i o n  ......... 9 - 2  ................... Keys  8 .2  
KEYTO o p t i o n  ............ 9.2 
Known i n  ............... 4.3 

L a b e l  ............ c o n s t a n t s  6 .7  
v a l u e s  ............... 6 .8  ............ v a r i a b l e s  6 .7  

LABEL a t t r i b u t e  ........ 6.7 
L a b e l s  

entry ........... 4.1. 4 . 6  
on  a p r e p r o c e s s o r  ..... s t a t e m e n t  12.15.  

1 2 . 1 6  
s t a t e m e n t  ...... 6.6.  7 .21  ... L a n g u a g e  v i o l a t i o n s  1 1 . 3  .... L B O U N D  b u i l t i n  f u n c t i o n  

5 .11 .... LENGTH b u i l t i n  f u n c t i o n  
2  . 18. 5  . 11. 12.20 

L e v e l  n u m b e r s  .......... 3.8 
L i b r a r y  

APlDT..IB .............. 13 .1  
a u t o m a t i c  c a l l  ..... 13 .25  
FORTRAN ..... 10.10. 13.12 .... m a i n t e n a n c e  t e c h n i q u e  

1 3 - 2 5  
o f  e x e c u t a b l e  p r o g r a m s  ... 

13 .25  .... PL/I  l i b r a r i e s  i n  TSO 
15 .7  

s o u r c e  t e x t  ....... 12.19.  
13 .11  .. . SYS1 FORTLIB ....... 13.12 

SYS1 . PLIBASE ....... 13 .23  . SYS1 PLICMIX ....... 13 .23  
SYS 1 . PLITASK ....... 14 .20  

LIBRARY s y m b o l i c  p a r a m e t e r  . 
1 3 . 2 3  ......... L I K E  a t . t . r i b u t e  3.9 

L I N E  
f o r m a t  item ......... 7.20 
o p t i o n  .............. 7.22 ... L i n e  n u m b e r s  13.10.  15 .1  

.... LINEN0 b u i l t i n  f u n c t i o n  
10 .5  . LINESIZE o p t i o n  .I...... 7 11 

LINK command o f  T S O  ... i 5 . 7  
L i n k  e d i t i n g  .......... 12.2 
L i n k - e d i t  s t u b  . . ' 13.1, 15.2 ....... L i n k a g e  e d i t o r  13 .1 .  

13 .12 ,  13.13,  13.23,  
13.25 

L i n k e d  l i s t  ........... 11.6 
LIST o p t i o n  ..... 7.15. 7 .22  . L i s t  p r o c e s s i n g  ....... 11 6 
L i s t  s t r u c t u r e s  ....... 11.6 

ce loca tab le  ........ 11 .11  
L i s t - d i r e c t e d  t r a n s m i s s i o n  . 

7 .15 ,  13.20 
L i s t i n g  c o n t r o l  ..... 13 .10 .  

15.1  ... LMESSAGE c o m p i l e r  o p t i o n  
15.2  ........ L o a d e r  13.1. 13.12. 
13.13,  13.23,  13.25 ...... LOADGO command o f  TSO 
15.7  

LOCATE s t a t e m e n t  ...:. 11 .15  
L o c a t e - m o d e  

I/o .................. 11 .13  . i n p u t  .............. 11 14 
o u t p u t  ............. '1 1 . 15  

L o c a t o r  
q u a l i f i c a t i o n  ...:.. - 11.11 ... v a r i a b l e s  11.11. 13 .23  . ............. L o c a t . o r s  11 11 

L o c k e d  r e c o r d s  ........ 9.11 
LOG b u i l t i n  f u n c t i o n  .. 1 . 2 0  
L o g i c a l  o p e r a t i o n s  .$ . . 2 .13 ,  

6.1; 6.4 ...... LOG10 b u i l t i n  f u n c t i o n  
1 .20  ...... LOG2 b u i l t i n  f u n c t i o n  
1.20 

LOOP t e r m i n a t i o n  ........ 6 .5  
L o o p s  .................. 6 .5  
LOW b u i l t i n  f u n c t i o n  . . 2.18 

...... HACRO c o u ~ p i l e r  o p t i o n  
13.11 

M a c r o s  ................ 12 .6  ... Main p r o c e d u r e  4.1. 6.9.  
13 .5  ......... M B I N  s u b o p t i o n  4.1 ....... Major s t r u c t u r e s  3 .7  

Ha j o r  t a s k s  ..I.. 14.4.  14 .6 .  
14.9  

M a p p i n g  
of a r r a y s  ...... 3.3. 10 .7  .... of s e l f - d e f i n i n g  d a t a  



I N  DEX 

1 1 . 5  
of s t r u c t u r e s  ...... 3 . 1 0 ,  

1 1 . 1 4  
M a r g i n s  

s o u r c e  ............. 1 3 . 1 0  .... M A R G I N S  c o m p i l e r  o p t i o n  
1 3 . 1 0  

M a t c h i n g  
o f  a r g u m e n t s  a n d  

p a r a m e t e r s  ..... 5 . 1  1 ,  
1 2 .  17 

of a t t r i b u t e s  i n  b a s e d  ..... r e f e r e n c e s  1 1 . 3 ,  
1 1 . 1 4  

of a t t r i b u t e s  i n  d e f i n i n g  
3.20 

of  d a t a  l is ts  a n d  format 
l is ts  ........... 7 . 1 8  

of s i z e s  o f  r e c o r d  and 
r e c o r d  v a r i a b l e  . . 8 . 7  

Ma t h e m a t i c a l  b u i l t i n  
f u n c t i o n s  ....... 1 . 2 0  

M A X  b u i l t i n  f u n c t i o n  . . 1 . 1 7  
Maximum 

l e n g t h  .............. 1 2 . 8  ............ p r e c i s i o n  1 .9  
M e s s a g e  t o  t h e  o p e r a t o r  .... 

1 2 . 1 ,  1 4 . 1 2  
M I N  b u i l t i n  f u n c t i o n  .. 1 . 1 7  
M i n o r  s t r u c t u r e s  ....... 3 . 7  
M i x i n g  C h e c k e r  a n d  O p t i m i z e r  

c o d e  ... 1 3 . 1 5 ,  1 3 . 2 3 ,  
13.. 2 5 ,  1 5 . 7  

MOD b u i l t i n  f u n c t i o n  . . 1 . 1 7  
Node a t t r i b u t e s  ........ 1 . 5  
M o d e l  1 9 5  ............. 1 0 . 8  
Modes of stream t r a n s m i s s i o n  

7 . 1 4  
MONITOR subcommand uf PLIC . 

1 5 . 4  ........ Move-mode 1/0 1 1 . 1 3  
M u l t i p l e  

e n t r y  p o i n t s  ........ 5 . 1 6  
generations ... 5 . 7 ,  5.15, 

1 1 . 4 ,  1 1 . 6  
i n v o c a t i o n s  ... 5 . 1 5 ,  6 . 7 ,  

6 . 8 ,  1 4 . 4  
M u l t i p l e  a s s i g n m e n t  ... 1 . 1 2  
MULTIPLY b u i l t i n  f u n c t i u u  . . 

1 . 1 7  
M u l t i p r o g r a m m i a g  ..... 1 4 . 1 1  
M u l t i t a s k i n g  

d e f i n i t i o n  of ....... 1 4 . 0  
when t o  u s e  ......... 1 4 . 3  

NAME 
c o m p i l e r  o p t i o n  .... 1 3 . 2 5  

c o n d i t i o n  ........... 7 . 2 4  
Named c o n s t a n t s  .. 4 .3 ,  4 . 4 ,  

4 . 6 ,  6 . 7 ,  7 . 2  
Names 

s c o p e  of  ............. 4 . 4  
NCRL l i n k a g e  e d i t o r  o p t i o n  . 

1 3 . 2 5  
NCP s u b o p t i o n  ........ 14.  1 3  
N e s t i n g  ...... 4 . 2 ,  4 . 8 ,  6.2 
NOCHECK s t a t e m e n t  .... 1 3 . 1 8  
NODIAGNOSE c o m p i l e r  o p t i o n  . 

1 3 . 6  
NOFLOW s t a t e m e n t  ..... 1 3 . 2 1  
NOGONUHBEF c o m p i l e r  o p t i o n  . 

1 3 . 1 0  
NOGOSTNT c o m p i l e r  o p t i o n  ... 

1 3 . 1 0  
NOLOAD c o m p i l e r  o p t i o n  ..... 

1 3 . 7  
NOLOCK o p t i o n  . . 9 .1  1 ,  1 4 . 1 5  ...... N Q M A P  s u b o p t i o n  1 0 . 7 ,  

1 0 . 8  
NOMAPIN s u b o p t i o n  .... 1 0 . 7 ,  

1 0 . 8  
NOHAPOUT s u b o p t i o n  ... 1 0 . 7 ,  

1 0 . 8  
N o n - i t e r a t i v e  DO g r o u p  ..... 

6 . 2  
N o n - p r e p r o c e s s o r  t e x t  ...... 

1 2 . 7 ,  1 2 . 8 ,  1 2 . 1 0 ,  
1 2 . 1 4 ,  1 2 . 1 7  

NONUMBER c o m p i l e r  o p t i o n  ... 
1 3 . 1 0  

NOOFFSET c o m p i l e r  o p t i o n  ... 
13 .10  

NORESCAN o p t i o n  ...... 1 2 . 1 2  
Normal r e t u r n  ( f r o m  a n  o n  

u n i t )  .... 6 . 1 3 ,  6 . 1 6 ,  
1  [I . 1  '1 

Normal t e r m i n a t i o n  
of a p r o g r a m  ... 6 .9 ,  1 2 . 3  
of a task ... 1 4 . 3 ,  1 4 . 1 1 ,  

1 4 . 1 6  
NORUN compiler o p t . i n n  ....,. 

1 3 . 1  
NOSOURCE c o m p i l e r  o p t i o n  ... 

1 3 . 1 0  
NOSTMT c o m p i l e r  o p t i o n  ..... 

1 3 . 1 0  
Not r e a d y  ...... 1 4 . 5 ,  1 4 . 8 ,  

1 4 . 1 3 ,  1 4 . 1 8  
NULL b u i l t i n  f u n c t i o n  ...... 

1 1 . 6  
N u l l  s t a t e m e n t  .... 6 . 1 ,  6 . 2  
N u l l  s t r i n g  

c o l l s t a n t  ............ 2. 1 7  
v a l u e  ............... 2.17  

NUMBER c o m p i l e r  o p t i o n  ..... 



1 7 - 1 1  

I N D E X  

1 3 . 1 0  
Number o f  d i g i t s  a t t r i b u t e  . 

1 . 5  

OBJECT c o m p i l e r  o p t i o n  ..... 
1 3 . 1  

O b j e c t  m o d u l e  ......... 1 5 . 2  
O c c u r r e n c e  of a  c o n d i t i o n  . . 

6 . 1 1 ,  6 . 1 6 ,  14 .11  
OFFSET .......... a t t r i b u t e  11 .11  ... b u i l t i n  f u n c t i o n  1 1 . 1 2  .... c o m p i l e r  o p t i o n  13. 10 .............. O f f s e t s  1 1 . 1 1  
ON s t a t e m e n t  .. 6 . 1 3 ,  1 3 . 1 6 ,  

1 3 . 1 9 ,  1 3 . 2 4 ,  14. 1 1  
On u n i t s  ...... 6 . 1 3 ,  1 4 . 1 1 ,  

1 4 . 1 4  
ONCHAR 

b u i l t i n  f u n c t i o n  .... 1 0 . 5  
p s e u d o - v a r i a b l e  ..... 1 0 . 5  

ONCODE b u i l t i n  f u n c t i o n  .... 
1 0 . 5  ... ONCOUNT b u i l t i n  f u n c t i o n  
1 0 . 5  

ONFILF b u i l t i n  f u n c t i o n  .... 
1 0 . 5  

ONKEY b u l l t i n  f u n c t i o n  ..... 
1 0 . 5  

ONLOC b u i l  t i n  f u n c t i o n  ..... 
1 0 . 5  

O N S O U R C E  
b u i l t i n  f u n c t i o n  .... 1 0 . 5  
p s e u d o - v a r i a b l e  ..... 1 0 . 5  

OPEN s t a t e m e n t  ... 7 . 4 ,  7 . 8 ,  
7 . 1 1  

O p e n i n q  a  f i l e  .... 7 .4 ,  7 . 8  
O p e r a t i o n a l  e x p r e s s i o n s  .... 

2. 14 
O p e r a t i o n s  

a r i t h m e t i c  .......... 1 . 1 4  
.... c o m p a r i s o n  2 . 1 4 ,  6 . 1 ,  

6 . 4  ... l o g i c a l  2 .13 ,  6 .1 ,  6 . 4  
p r e c e d e n c e  o f  ....... 2 . 1 4  
p r i o r i t y  o f  ......... 2.14  
s t r i n g  .............. 2.12 

O p e r a t o r  ....... c o m m u n i c a t i n g  w i t h  
1 2 . 1 ,  1 4 . 1 2  ... r e p l y  t o  m e s s a g e  1 2 . 1 ,  
1 4 . 1 2  ... OPT c o m p i l e r  o p t i o n  1 3 . 9  

O p t i m i z a t i o n  .......... 1 3 . 9  ..... e f f e c t  o n  c o n d i t i o n s  
6 .  19 ... O P T I Y I Z E  c o m p i l e r  o p t i o n  

6 . 1 9  
O p t i m i z i n g  c o m p i l e r  ..... . c a t a l o g e d  p r o c e d u r e s  

1 3 . 7  ... c o m p i l e r  o p t i o n s  1 3 . 8 ,  
1 3 . 9  

d e b u g g i n g  .......... 1 3 . 2 4  
o p t i m i z e d  p r o d u c t i o n  c o d e  

1 3 . 1 5  
s t o r a g e  m a n a g e m e n t  . . 13.9 

O p t i o n s  
c o m p i l e r  ..... 1 3 . 5 ,  1 3 . 6 ,  

1 3 . 8 ,  1 3 . 9 ,  1 5 . 2  
OPTIONS 

a t t r i b u t e  ........... 1 0 . 8  
o p t i o n  .. 4 . 1 ,  1 0 . 7 ,  1 4 . 1 1  
subcommand of  P L I C  . . 1 5 . 4  
s y m b o l i c  p a r a m e t e r  ....... 

1 3 . 5 ,  1 3 . 8  
ORDER o p t i o n  .......... 6 . 1 9  
O t  h e r - l a n g u a g e  e n v i r o n m e n t  . 

1 0 . 9  
OUTPUT a t t r i b u t e  ..... 7 . 1 0 ,  

8 . 8  
O u t p u t  stream 

d a t a - d i r e c t e d  ....... 7 .16  
e d i t - d i r e c t e d  ...... 7 . 1 7 ,  

7 . 1 9 ,  7 . 2 0  
l i s t - d i r e c t e d  ........ 7 . 1 5  .... OVERFLOW c o n d i t i o n  6. 11 ..... O v e r l a p  of CPU a n d  1/0 

1 4 . 3 ,  1 4 . 1 3  
O v e r l a y s  .............. 1 2 . 2  

P  f o r m a t  item ......... 7 . 1 9  
P a g e  

f o o l i ~ ~ y s  ............ 7 . 2 4  
h e a d i n g s  ............ 7 . 2 4  

PAGE 
format item ......... 7'. 20 
o p t i o n  .............. ' 7 . 2 2  

PAGENO b u i l t i n  f u n c t i o n  .......... (ANSI) 10 .  5 ...... PLGESIZE o p t i o n  7 . 1 1 ,  
7 . 2 4  

P a r a l l e l  
c o m p u t a t i o n  ......... 1 4 . 0  .... e x e c u t i o n  1 4 . 4 ,  1 4 . 1 9  

P a r a m e t e r  a t t r i b u t e  
d e s c r i p t i o n s  ... 5 .3  1 ,  

5 . 1 2  
P a r a m e t e r  l ists  .. 4 . 1 ,  4 .3 ,  

5 . 1 6  ....... P a r a m e t e r s  4 .3 ,  5 . 9 ,  
5 . 1 1 ,  1 2 . 1 7  ..... d e c l a r a t i o n s  o f  4 . 3 ,  
5 . 9  
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.... P a r e n t  t a s k s  14.4, 14.5 ... P a r t i a l  d e c l a r a t i o n s  4.9 
P a s s i n g  a n  a r g u m e n t  t o  t h e  

ma in  p r o c e d u r e  . . 13.5 
P a s s i n g  c o n t r o l  t o  t h e  

t e r m i n a l  ....... 15.3, 
15.4, 15.5 

P h y s i c a l  e v e n t s  ..... 14.16, 
14.17 

P h y s i c a l  s e q u e n c e  ..... 8.4, 
9.9, 9.10 

P i c t u r e  
c h a r a c t e r s  .......... 2.21 
s p e c i f i c a t i o n  ....... 2 - 2 1  

PICTURE a t t r i b u t e  ..... 2.20 
P i c t u r e d  d a t a  ......... 2.20 

c h a r a c t e r  ........... 2.21 
n u m e r i c  ............. 2.22 

PLC s e r i e s  c a t a l o g e d  
p r o c e d u r e s  . . , . . 13.2, 

13.4, 13.23 
PLI d a t a s e t  t y p e  .... 13.10, 

15.1 
PLIC command o f  TSO ... 15.2 .... PLICKLGN l o g o n  p r o c e d u e  

15.2 
PLIDUMP 

b u i l t i n  p r o c e d u r e  . . 13.24 
D3 s t a t e m e n t  ....... 13.9, 

13.24 
PLIF  d a t a s e t  t y p e  ... 13.10, 

15 .1  
PLIRETC b u i l t i n  p r o c e d u r e  .. 

1 2 . 3  
PLISRTA b u i l t i n  p r o c e d u r e  . . 

12.4 
PLISRTB b u i l t i n  p r o c e d u r e  . . 

12.4 
PLTSRTC b u i l t i n  p r o c e d u r e  . . 

12.4 
PLISRTD b u i l t i n  p r o c e d u r e  . . 

12.4 
PLISTART ............. 13.13 
FLU series c a t a l u y e d  

p r o c e d u r e s  ..... 13.7, 
13.23 

P o i n t  o f  i n t e r r u p t  ... 6.13, 
14.14 

P o i n t e d  t o  by ......... 1 1 . 3  
P o i n t e r  

q u a l i f i c a t i o n  ....... 11.3 
v a l u e s  .............. 11.1 

POINTER 
a t t r i b u t e  ........... 11.1 
b u i l t i n  f u n c t i o n  ... 11.12 

P o i n t e r  q u a l i f i c a t i o n  
e x p l i c i t  ............ 11.3 
i m p l i c i t  ............ 11.3 

...... POLY b u i l t i n  f u n c t i o n  
10.5 ... POSITION a t t r i b u t e  3.19, 
3.20 

POSTLIB s y m b o l i c  p a r a m e t e r  . 
13.12 ... P r e c e d e n c e  o f  o p ~ r a t i o n s  
2.14 

P r e c i s  i o n  
a t t r i b u t e s  ........... 1.5 
r u l e s  ............... 1. 16 

PRECISION b u i l t i n  f u n c t i o n  . 
1.17 

P r e c i s i o n s  
d e f a u l t  .............. 1.8 
maximum .............. 1.9 

P r e p r o c e s s o r  ... 12.6, 13. 1 1 ... DO g r o u p s  12.13, 12.14 ........ express ions 12.9, 
12.13, 12.20 

p r b c e d u r e s  , ......... 12.17 
s c a n  ................ 12.7 
s t a t e m e n t s  . . 12.7, 12.13, 

12.17 
v a r i a b l e s  ........... 12.8 

PRINT 
a t t r i b u t e  ........... 7.10 
o p e r a n d  ............. 15.2 .... p r i n t  f i l e s  7.10, 7.15, 

7.20, 7.22, 7.23, 7 .26 '  
P r i o r i t y  

a s s i g n i n g  ........... 14.5 
c h a n g i n g  ...... 14.5, 14.6 
d e f i n i t i o n  o f  ....... 14.5 
d e t e r m i n i n g  ... 14.5, 14.6 
r e l a t i v e  . , . , . . 14.5, 14.6 
u s e d  i n  s c h e d u l i n g  t a s k s  . 

14.5 
PRIORITY 

b u i l t i n  f u n c t i o n  .... 14.6 
o p t i o n  .............. 14.5 
p s e u d o - v a r i a b l e  ..... 14.6 ..... P r i o r i t y  o f  o p e r a t i o n s  

2 -  14 
P r o b l e m  d a t a  .......... 2. 11  
P r o c e d u r e  

b l o c k s  ............... 4.8 
names  ................ 4.6 ... PROCEDURE s t a t e m e n t  4.1, 

4.8, 5.14, 5.15, 5.16, 
6.19 

P r o c e d u r e s  
e x t e r n a l  ....... 4.1, 4.3, 

5.11, 12.2, 13.4, 13.13, 
13.25 ... f e t c h a b l e  12.2, 13.13, 
13.25, 15.7 

g e n e r i c  ............. 5.17 
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i n t e r n a l  ............. 4.2 
m a i n  ...... 4.1,,6.9, 13.5 
p r e p r o c e s s o r  ....... 12.17 
r e c u r s i v e  ..... 5.6, 5.15, 

6.7, 6 .8  
PROD h u i l t i n  f u n c t i o n  ...... 

.10.5  
P r o g r a m  

a m e n d i n g  ............ 15.6 
d e v e l o p m e n t  ........ 13.1, 

13.15,  13.25 
t e r m i n a t i o n  o f  ....... 6.9 ....... P r o g r a m  c o n t r o l  d a t a  

2.11, 4.7, 7.2, 11.1, 
11.7, 11.10, 13 .20 , ' 14 .7  ... Programmed e v e n t s  14.17, 
14.19 

Programmer -named  c o n d i t i o n s  
6. 17 .............. P r o m p t e r  15.2 

P r o m p t i n g  f o r  i n p u t  ... 7.25 
P r o m p t s  .......... 15.3, 15.5 
P s e u d o - v a r i a b l e s  ...... 10.1 

a r i t h m e t i c  .......... 1. 18 ...... a r r a y  a r g u m e n t s  3.5 
c o n d i t i o n - h a n d l i n g  . . 10.5 
m u l t i t a s k i n g  ....... 14.9, 

1 4 . 1 7  
s t r i n g - h a n d l i n g  ..... 2.19 

PUT s t a t e m e n t  . . 7.12, 7.25, 
13.16,  13.20, 13.21 

Q u a l i f i e d  
c o n d i t i o n s  ..... 6.17, 7 -5,  

7. 24, .8.17, 9.12, 13.17 
n a m e s  ................ 3.7 

9 f o r m a t  item ......... 7.21  ...... R a i s i n g  of c o n d i t i o n s  
6. 13 

R e a c t i v a t i o n  o f  i n a c t i v e  
i d e n t i f i e r s  .... 12.12 

B E A D  s t a t e m e n t  ... 8.6, 8.7,  
8.9, 8.14, 8.15, 9.2, 
9 .5,  9.6, 9.9, 9.10, 
9.11, '11.14, 14.14, 
14 .15  ........... Ready 14.5, 14.8 

REAL 
a t t r i b u t e  ............ 1.5 .... b u i l t i n  f u n c t i o n  1.17 
p s e u d o - v a r i a b l e  ..... 1.18 

Record  
d a t a s e t s  ........ 7.9, 8.1 

. .... f i l e s  7.9, 8,1, 11.14 
v a r i a b l e s  ....... 8.1, 8.7 

RECORD ....... a t t r i b u t e  7.9, 8.'1 .... c o n d i t i o n  8.17, 1 4 . 1 4  
R e c o r d e d  k e y s  .... 8..2, 9.1, 

9.2, 9 .10  
R e c o r d s  ......... 8.2, 11 .14  
R e c u r s i o n  ... 6.7, 6.8, 14.4 
RECURSIVE o p t i o n  ...... 5.15 
R e c u r s i v e  p r o c e d u r e s  . . 5 . 6 ,  

5.15, 6.7, 6 . 8 .  
R e e n t r a n t  c o d e  ....... 14 .11  
REENTRANT s u b o p t i o n  . . 14 .11  
Refer o b j e c t  .......... 11. 5 
REFER o p t i o n  .... 11.5, 11.7 . 
R e g i o n  n u m b e r  .... 9.8, 9.9, 

9.10 
R e g i o n  request . . , 13.6, 15.2 
R e g i o n a l  d a t a se t s  

a l t e r i n g  ............. 9.9 
c r e a t i n g  ............. 9.9 
r , e t r i e v i n g  ........... 9.9 .... R E G I O N A L  s u b o p t i o n  8.11 ... R e g i o n a l  (1 )  d a t a s e t s  9.9 

R E G I O N A L  (1 )  s u b o p t i o n  . . 9.8 
R e g i o n a l  ( 2 )  d a t a s e t s  . . 9.10 
R E G I O N A L  ( 2 )  s u b o p t i o n  . . 9.8 
R e g i o n a l ( 3 )  d a t a s e t s  . . 9.10 
R E G I O N A L  (3 )  s u  b o p t  i o n  . . 9.8 
R e g i o n s  ................ 9.8 
R e l a t i v e  p r i o r i t i e s  . . 14,. 5, 

14.6, 14 .18  
RELEASE s t a t e m e n t  ..... 12.2 
R e l o c a t a b l e  P i s t  s t r u c t u r e s  

11,. 1 1 
Remote  format items . . 7.18, 

7 .21  
REORDER o p t i o n  . . 6.19, 13 .9  .... REPEAT b u i l t i n  f u n c t i o n  

2. 1 8  ..... R e p e t i t i o n  f a c t o r s  2.5 
R e p e t i t i v e  s p e c i f i c a t i o n s  , . . 

7.13 
R e p l a c e m e n t  .... o f  a c t i v e  i d e n t i  f i e r s  

12.10  
o f  a c t i v e  p r e p r o c e s s o r  

f u n c t i o n  ref e ~ e n c e s  . . 
12.17 

REPLY o p t i o n  ... 12. 1, 14. 12  .... REPORT e x e c u t i o n  o p t i o n  
13.9 ........ RESCAN o p t i o n  12. 1 2  ........... R e s c a n n i n g  12 .10  

. Re t u r n  c o d e s  ..... 6.9,. 12.3 ..... RETURN s t a t e m e n t  5.14,  
5.16, 6.9, 12.17, 14 ,9 ,  
14 .11  ....... R e t u r n e d  v a l u e s  4.1, 
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5. 14, 12.17 SINH b u i l t i n  f u n c t i o n  ...... 
RETURNS 1.20 

a t t r i b u t e  ........... 5.14 SIZE 
o p t i o n  .. 4.1, 5.14, 5.16, 

12.17 
REVERSE b u i l t i n  f u n c t i o n  

(ANSI) .......... 2.18 
REVERT s t a t e m e n t  ..... 6.15, 

14.11 
REWRITE s t a t e m e n t  . . , . . 8.6, 

8.7, 8.15, 9.2, 9.6, 
9.9, 9.10, 9.11, 11.14, 
14.14 

R e w r i t i n g  i n  p l a c e  .... 8.15 ..... ROUND b u i l t i n  f u n c t i o n  
1 .  17 

R u n - t i m e  e n v i r o n m e n t  .. 10.6 

....... S c a l e  a t t r i b u t e s  1.5 ..... S c a 1 ~  f a c t o r  a t t r i b u t e  
1.5 

S c h e d u l i n g  p o l i c y  ..... 14.5 
S c o p e  .................. 4.3 .... o f  a d e c l a r a t i o n  4 . 3 ,  

4.7, 4.8, 6.7 
o f  a name .... 4.4, 12.17, 

14.10 
S c o p e  a t t r i b u t e s  . . 4.4, 5.8 
s e l f - d e f i n i n g  d a t a  . , . . 11.5 
S e n d i n g  c o n t r o l  t o  t h e  

t e r m i n a l  ....... 15.3, 
1 5 . 4 ,  '15.5 ... SEQUENCE c o m p i l e r  o p t i o n  
13.10 ..... S e q u e n t i a l  a c c e s s  8.4, 
8.12, 9.1, 9.2, 9.4, 
9.5, 9.6, 9.8, 9.9, 
9.10, 11.14, 11.15 ... SEQUENTIAL a t t r i b u t e  8.4 .... SET o p t i o n  11.4, 11.14, 
11.15 

S h a r e d  
daLa ............... 14.10 ..... d a t a b a s e  9.11, 14.15 ....... f i l e s  14.10, 14.15 
v a r i a b l e s  .......... 14.10 ... S h a r i n g  d a t a  among t a s k s  

14.10 ...... SIGN b u i l t i n  f u n c t i o n  
1.17 ...... SIGNAL s t a t e m e n t  6.16 ..... S i g n a l i n g  a n  a t t e n t i o n  
15.5 

.... c o m p i l e r  o p t i o n  13.6, 
13.12. 14.20 .... c o n d i t i o n  6.11, 7.24, 
13.24 

SKIP 
f o r m a t  item ......... 7.20 
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