W o STOCK
AAQLJGJO ANL-76-70
/
3
CLASS NOTES FOR A PL/I COURSE
by
Kenneth W. Dritz

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS
Prepared for the U. S. ENERGY RESEARCH

AND DEVELOPMENT ADMINISTRATION ;MASIER

under Contract W-31-109-Eng-38

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

The facilities of Argonne National Laboratory are owned by the United States Govern-
ment. Under the terms of a contract (W-31-109-Eng-38)between the U. S. Energy Research and
Development Administration, Argonne Universities Association and The University of Chicago,
the University employs the staff and operates the Laboratory in accordance with policies and
programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona Kansas State University The Ohio State University
Carnegie-Mellon University The University of Kansas Ohio University

Case Western Reserve University Loyola University The Pennsylvania State University
The University of Chicago Marquette University Purdue University

University of Cincinnati Michigan State University Saint Louis University

Illinois Institute of Technology The University of Michigan Southern Illinois University
University of Illinois University of Minnesota The University of Texas at Austin
Indiana University Universily of Missouri Washington University

lowa State University Northwestern University Wayne State University

The University of Iowa University of Notre Dame The University of Wisconsin

NOTICE

This report was prepared as an account of work sponsored
by the United States Government. Neither the United States
nor the United States Energy Research and Development Ad-
ministration, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any
warranty, express or implied, or assumes any legal liabil-
ity or responsibility for the accuracy, complcteness or use-
tulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe
privately-owned rights. Mention of commercial products,
their manufacturers, or their suppliers in this publication
does mot imply or connote approval or disapproval of the
product by Argonne National Laboratory or the U. S. Encrgy
Research and Development Administration.

Printed in the United States of America
Available from
National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22161
Price: Printed Copy $10.00; Microfiche $2.25

ANL-76-70

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

CLASS NOTES FOR A PL/I

T
-

COURSE

by

_Kenneth W. Dritz

Applied Mathematics Division

e e e e o e

NOTICE

This report was prepated as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Energy
and Devel Ad mini: ion, nor any of
their employees, nor any of their ocontractors,
suboontractors, or their employees. makes any
warranly, express or implied, or assumes any legal
tiability or ibility for the ”
o1 usefulness of any information, apparatus, product ot
process disclosed, or represents that its use would not
infringe privately owned rights.

L=

November 1975

Distribution Category:
Mathematics and Computers
(Uc-32)

DISTRIBUTION OF THIS DOCUMENT 1S UNLIMITED

W

~ THIS PAGE
- WAS INTENTIONALLY
LEFT BLANK

PREFACE

These notes were written for use as a supplement to a three-week PL/I
course taught by the author from October 20, 1975 to November 7, 1975 at
the Applied Mathematics Division of Argonne National Laboratory. The course
was intended to attract scientists and engineers from other Laboratory
divisions who contemplated using PL/I in their future programming. No
- special emphasis was placed on features useful in business applications.

In the preparation of these notes (and of the classes themselves), use:
was made of the fact that the scientists for whom they were intended could
be assumed to have had prior experience in programming with high level
languages (probably FORTRAN). This assumption is reflected in the absence
of frequent demonstrations of the practical application of language elements
to the solution of complete and realistic problems. The notes (and the
course) thus do not address the problem of teaching the non-programmer how
to program in PL/T; rather, they supply the practicing programmer with the
information needed to begin using PL/I to solve problems he is already
accustomed to solving in other languages.

That is not to say that the experienced FORTRAN programmer will neces-
sarily find the road to conversion to be free of holes and bumps. Certain
traps are lurking. Specifically, certain techniques and concepts of
FORTRAN, if translated in the obvious way to PL/I, result in incorrect _
programs. Special emphasis has been devoted to this problem. It is apparent,
for instance, in the discussions of the differences between fixed-point data
(in PL/I) and integer data (in FORTRAN); the differences between the respec-
tive roles of defining (in PL/I) and equivalencing (in FORTRAN); and the
proper, and very different, ways to pass and use variable dimension informa-
tion in the two languages.

These notes were written over the short period of five weeks. Because
of that rush, they are inevitably less polished than they could have been.
This is hopefully compensated by the very careful attention given to the
ordering of topics for effective learning. The chosen order of introduction
" of topics, which was worked out over a three-week period before writing
commenced, is intended to help the students avoid mental overload even when
classes - (corresponding to chapters) are taught on successive days.

The very frequent references to passages in IBM manuals (which are
keyed indirectly through the reference 1list following Chapter 15) are an
essential factor in keeping these notes as short as they are. For instance,
detailed syntax of statements is usually omitted from the notes, as are
certain tables of information easily found in the manuals. The notes
emphasize conccpts more than details. Unfortunately, the utility of the
references will be diminished in the future unless the page numbers can be
successfully updated to reflect such revisions as may have been incorporated
in the manuals by then.

iii

. The author has pointed out some differences between the ''current"
language and the proposed ANSI Standard for PL/I. The reader must be
cautioned, however, that not all of the differences have been documented.
(For instance, Chapter 1 does not mention the dropping of the I-to-N rule
for default arlthmetlc attributes, which is certainly very important.)

The absence.of a complete comparison is due to the fact that lists of
known differences were not constantly reviewed during the preparation of
these notes; differences were cited when they just happened to come to mind.

Structured programming advocates may be disappointed by the almost
total absence of orientation toward structured coding and development prac-
tices. The GO TO statement is taught. The reason is that this course is
about the PL/I language and its concepts; it is not a course in programmlng
methodology. Structured programming is a separate topic and can be (and in
the author's opinion should be) taught independently of any particular
language. The author has not, however, entirely ignored the question of
program correctness. His contrlbutlon has been to emphasize language purity
and to enhance transportability by carefully distinguishing between the
formal language definition and implementation-defined features. T1llegal
language is never demonstrated. No concessions are made to convenience.

Flnally, the author wishes to acknowledge the help of Matt Prastein
and April Heiberger in preparing Chapters 1 and 6 for text editing in TSO;
of the following secretaries in the Applied Mathematics Division for thelr
many weeks spent typing the copy:

Marge Visser

April Heiberger »

Judy Beumer a

Grace Krause

Nancy Piazza;
of Linda Clark and Sue Katilavas for handling all aspects of the class notes
after typing; of Graphic Arts for typing two chapters and printing all of
them; and of Paul Me551na, Lou Just, and Dean Davis for general administra-
tive support.

Kenneth W. Dritz ,
Applied Mathematics Division
Argonne National Laboratory
November, 1975

iv

11,

12.

13,

14,
15,
16.
17,

TABLE OF CONTENTS

. INTRGDUCTION TO PL/I COURSE

VARIABLES, ATTRIBUTES, AND DECLARATIONS; ARITHMETIC

DATA TYPES, ARITHMETIC EXPRESSIONS, PRECISION RULES °

STRING DATA TYPES; STRING AND LOGICAL EXPRESSIONS
AGGREGATES
BLOCK STRUCTURE AND SCOPE OF NAMES

~ STORAGE CLASS AND BLOCK INVOCATIONS

(a) CONTROL CONSTRUCTS
(b) CONDITIONS

- INTRODUCTION TO I/0; STREAM I1/0

INTRODUCTION TO RECORD I/0; CONSECUTIVE DATASETS
INDEXED AND REGIONAL DATASETS

(a) BUILTIN FUNCTIONS AND PSHJDO—VARIABLES
(b) INTERLANGUAGE COMMUNICATION

LIST PROCESSING AND LOCATE-MODE I/0

(a) MISCELLANEOUS FEATURES
(b) PREPROCESSOR

(a) ADVANCED JCL AND CQMPILER OPTIONS
(b) PROGRAM DEVELOPMENT AND DEBUGGING

MULTITASKING AND ASYNCHRONQUS 1/0
THE CHECKOUT CQMPILER IN TSO
REFERENCES

INDEX

PAGE
0-1

~ THISPAGE
WAS INTENTIONALLY
LEFT BLANK

ABSTRACT

Presented here are notes for a course in PL/I. They
‘might serve as a guide to others who are developing a course,
and indeed as class notes for that course. They might be
useful as a textbook independent of any course; as such a
textbook, however, they are not self-contained because of the
built-in assumption that they will supplement lectures and be
accompanied by manuals.

Very nearly the full language is taught here, with the
emphasis on concepts rather than practical details. The un-
orthodox order in which concepts are introduced is the deliber-
ate invention of the author. One effect of this is the complete
avoidance of any discussion of I/0 until roughly the midpoint of
the course. The hoped-for consequence for students is an- '
‘enhanced perception and understanding of the many concepts and .
their logical relationships.

The dawning of the age of transportability for PL/I pro-
_grams gives the user a reason, for the first time, to avoid
_convenient but illegal language. In their attention to this
issue, these notes should help the user appreciate the value of
sound coding practices and their negligible incremental cost at
‘the most important time — when he is first starting out.

vii

0.1.

0.2.

Introduction to PL/I course.
Welcome!
Welcome to the PL/I course!

It is hoped that over the next three weeks you will realize your

~goal of learning to write effective programs in PL/I.

Why so many class sessions? PL/I is a "massive' language. Even

if much of the bew11der1ng detail is stripped away, leaving the
major concepts, there is a lot to be taught and a lot to be learned.
We have, in fact, left out many of the subtleties and a lot of the
detail (rules, conventions, restrictions, interactions, etc.). No
one can remember all that, anyway. That's what we have reference
manuals for.

Although they are improving, reference manuals are st111 not very
good for teaching the broad concepts of a programming language!

That's why we have developed this course. In its planning we have

devoted particular emphasis to the choice of a logical order for

the introduction of successive concepts. We believe this is the
recipe for successful learning. A consequence of this is the
deferring of any discussion of I/0O until about the midpoint of the
course; since we don't wish to '"jump the gum,' examples and homework
problems are necessarily and unrealistically I/0-free until then.

But even when we finally get to I/O, we don't take an overdose.
Progressively more advanced aspects of I/0O are assigned to Lessons 7,
8, 9, 11, and 14.

Still, this is an ambitious undertaking. A college semester is being
crammed into three weeks! To receive full value from this course,
you will need to attend every lesson. Beyond that, you will need to
read the class notes and selected passages in the manuals and ‘you
are strongly urged to attempt the homework probleiis.

Goals of the course;

Sophisticated engineering applications in programming today are
characterized by the combination of properties and features they are
required to exhihit. For instance, a single, cohetrent application

‘program may need to combine scientific calculations, non-numerical

calculations (such as logical calculations or text manipulations),
large-scale aux111ary data management, and internal resource manage-
ment. And certain kinds of programs, particularly those modeling

physical systems, can benefit from more ''mnatural' ways of representing
. information, such as by time-varying "structural" or hierarchical

relatlonshlps between items of data. Because PL/I can satisfy all
these needs in a smooth and consistent way, the primary goal of the

PL/I course is to teach nearly all the major concepts of the language.:

0-2

(The only significant one omitted is ''teleprocessing,' which is
not available in our system anyway and which is not in the ANSI
standard.)

Experience has shown that PL/I programmers who have an incomplete
knowledge of the language are likely to use inappropriate, i.e.,
less than natural, language features to accomplish a particular
task. The result of this is frequently inefficiency in the object
program and, as a consequence, dissatisfaction with the language.

For many years people believed that PL/I was the sole province of
IBM. PL/I code interchange with non-IBM installations was out of
the question. Well, in 1975 PL/I has come a long way. A proposed
international ANSI-ECMA standard for PL/I is on ''final approach'
and likely to be accepted in 1976. Honeywell, Univac, and Burroughs
have viable PL/I compilers which have been aimed at the proposed
standard (a moving target) during their development. Even Control
Data, which abandoned its early efforts in PL/I years ago, appears
to be reviving its interest in the lauguage (perhaps they thought

it wouldn't catch on--and guessed wrong).

Thus, a second goal of the course is to prepare you for the day in
the not too distant future when you may be writing programs that
have portability requirements extending to other PL/I systems and
other hardware. This is done in two ways. First, we will point

out some significant differences between the IBM implementations of
PL/I and the proposed standard. Second, we will make a clear dis-
tinction between official language and current implementation.
Unfortunately, many programmers believe PL/T is whatever our compilers
let them do; that is, they write technically illegal language which
happens to give them a convenient and useful effect on our system.
They may feel justified in doing this because they have no intention
of exporting their programs to other installations with different
compilers. The hidden danger, though, is that they may have to
export their programs to themselves someday. There is no guarantee
that we will always have IBM equipment! We have already experienced
some of the problems that can be encountered with illegal language
because IBM has changed the implementation of certain language
features within their own progression of compilers over the years.
(They have also changed--improved--the language itself several times.
Unfortunately, this has made trouble even for honest programmers.

One more round of "'incompatible changes' must be expected with the
introduction of the ANSI standard, after which we should enter an era
of relative stability of the language.) So, on the theory that it is
preferable to learn how to do it legally from the beginning and avoid
possible problems later, we will emphasize language purity.

0.3.

0.4.

0.5.

0-3

Topics to be covered.

The following is a broad outline for the fifteen lessons (class sessions).

Variables, attributes, and declarations:
‘arithmetic data types, arithmetic expressions, precision rules.

String data types; string and logical expressions.
Aggregates

Block structure and scope of names.

Storage classes and block invocations.

(a) Control constructs.

(b) Conditions.

7. Introduction to I/0; stream I/0.

8. Introduction to record I/0; consecutive datasets.
9

0

(o)W, BN SR FA ¥ NV L

Indexed and regional datasets.
(a) Builtin functions and pseudo-variables.
(b) Interlanguage communication.

"11. List processing and locate mode I/0.

12. (a) Miscellaneous features.
(b) Preprocessor.

13. (a) Advanced JCL and compiler options.
(b) Program development and debugging.

14, Multitasking and asynchronous I/0 (optlonal)

15. Checker/TSO demonstration.

Class notes.

You are reading Chapter 0 of the class notes. A set of fairly extensive
notes will be handed out in each class. The notes will make it generally
unnecessary to take notes in class, and they will make it easy to review
the material later. The notes, however, are not a substitute for the
lectures. The lectures will provide more motivation than the notes and
different examples, though perhaps less detail. Some blank space is
provided for you to take extra notes, doodle, etc.

Manuals and outside reading.

Five manuals are being distributed with this introduction for your use
during and after the course. There are frequent references in the

class notes to passages in the manuals. Each manual is codified by an
ahhreviation in the refcrence, as follows:

- LRM - Language Reference Manual

CPG - Checkout Compiler Programmer's Guide

OPG - Optimizing Compiler Programmer's Guide

CTUG - Checkout Compiler TSO User's Guide

OTUG - Optimizing Compiler TSO User's Guide
The number that follows a manual code, as in LRM 57, is not a page
number but rather an entry number in a reference list which is being
supplied separately. The entries in the referencc list give page
numbers and text to identify the begimning and end of each passage.

0.6.

0-4

Manual references are made for two reasons: in a few cases, to
point you to well documented details that it would be silly to copy
in the class notes; more often, to point you to’ material you can
use for reV1ew and for a different perspective, after it is covered
in the notes. You are urged to read all the references, though time
may not permit you to read the longer passages during the course.

Unfortunately, you will find that the passages do not always correspond
in scope to the material treated in the notes; they will frequently
reference related topics that we won't cover until later, and they may
mention details that we don't cover at all. Be alert for terms we

haven't covered; try to skip, on the first reading, anything that looks
foreign.

If you do pursue most of the references, you will acquire a great deal
of familiarity with the manuals and with their organization. You won't
be afraid later to look something up, because you will have a pretty
good idea of where to look. Actually, that is another goal of the
course.

It would be a good idea for you to browse through the tables of
contents of the manuals now. You will notice a great deal of duplica-
tion in the two programmer's guides, and in the two TSO user's guides.

There is also a Messages Manual available for each compiler, though
these aren't essential to own. And if,'somehow, this course leaves

you gasping for more, go out and get the Execution Logic Manuals for
each compiler.

There are a few reasons why we don't generally recommend books on PL/I.
We haven't evaluated many. Those we have seen have been disappointingly
incomplete, erroneous, or obsolete more often than not. Several books
are in preparation by authors known personally by the instructor; it is
expected that these will be commendable.

Homework.

Each set of notes has several homework problems based on the material
taught in that class. The purposes of the homework are to allow you to
test your understanding of the material, to give you some experience
with the language concepts, and to lead you through a discovery of

some revealing insights that will, hopefully, influence your program
design and coding style. For thlS reason you are strongly urged to
attempt the homework problems in a timely manner. You will not be
required to turn in completed homework; however, if you do, the’
instructor will go over your work, make comnents, and return it to you.

0.7.

Running programs.

You are not generally asked to run programs as part of the homework;

for about half the course you are not even asked to write whole
programs. However, once you have learned enough to write a program,
you may find it instructive to run it." Follow these guldellnes

Use the Checkout Compiler in batch. It will be preferable for you to
punch your program and data on cards, for now.

Source programs can be free form. You can start a statement in any
colum within the source margins (see below). You can put as many
blanks as you want between language keywords, identifiers, constants,
and special symbols. A semicolon marks the end of a statement, which
may continue over as many cards as necessary. A comment, whlch is
any text surrounded by /* and */, can be written wherever arbitrary
blanks are permitted, as described above. :

Standard (default) source margins.are colums 2 and 72. Leave column 1
blank, and do not write source text beyond column 72.

Use the following JCL if your program consists of a single "external
procedure,' i.e., a main program that doesn't need to be link-edited
with any subroutines.
// job. card -- express limits are adequate
account card
// EXEC PLCCG (Note: not PLCCLG)
//SYSCIN DD * (Note: not SYSIN)

eource program (colum 1 blank)

/%
//GO.SYSIN DD #

. A _ Can be omitted
<.iata if no data.
/%

External procedures aren't mentioned until Lesson 4.

If your program has several external procedures, i.e., a main program
and subroutines to be link-edited together, use the following JCL.

0.8.

0-6

// job card

account card
// EXEC PLCCLG . (different cataloged procedure)
//SYSCIN DD * . :

@ain program
*PROC%SS; Ibi§_start5'in'c61umn 1!
%ubroutiné
*PROC%SS;
%ubroutine
/% .
//GO.SYSIN DD *
éata ‘ - Optional

/%

After the course.
Tet us hear from you! We want to know how you are dving. The
consultant can provide help with particular problems.

For FORTRAN-type computations, PL/I can be about as efficient at
run time as FORTRAN. Certain features, because of their power and

~generality, are inevitably and inherently less efficient, but then

many have no direct counterparts in FORTRAN. If you are unsatisfied
with the performance of your programs, the consultant might be able
to help you find some simple adjustments to make to tune it. There

_are a variety of optimization features you have to ask for explicitly.

The compilers themselves can be made more efficient if future use
warrants it.

If you encounter bugs in the compiler, report them to the consultant!
IBM wants to find them and fix them, because it strongly supports
PL/I. Anyway, chances are we have a later version of the compiler
around which we are checking before releasing it. We can tell you
how to STEPLIB to it.

0-7

Finally, after half a year or a year of eicperienée, you may find it
useful to reread the notes. You will be in a better position to
appreciate and utilize some of the advanced features of the language.

1-1

. X \ . . .
1. Variables, attributes, and declarations; arithmetic data types,
arithmetic expressions, precision rules. ‘

1.1. Variables

A variable has a name, which is an identifier. It is located

somewhere in storagqge, and it has a value..

Basically, identifiers may be up to 31 characters 1long. Examples
are:

TIME_OF_FLIGHT

CHANNEL#
COEFFICIENT_OF_EXPANSIOW
X21

Fules for identifiers are given at LRM 1, 1 lahguage keyword (such
~as DO) may be wused as ‘an identifier; 1langquage keywords are not
'reserved."

Much more will be said about variables 1later. We will look again at
variable names in Lesson 4 and at their locations in Lesson S.

1.2. MAttributes

In addition to a name, a location, and a value, eVery variable has
some attributes, which are characteristics that tell the systenm
exactly how the bits stored in its location represent its value.

See LRM 2 and LRM 3.
1.3. Declarations

‘Names and attributes are associated with variables by the process of
declaration. The DECLARE statement may he used to "declare" one or
more variables. Simple forms of the DECLARE statement wuseful for

1-2

present purposes are as follows:

DECLARE id attributes;
DECLARE «d, attributes ,

s s e g

id)) attributes; -
DECLARE (Adjse-spdd) attributes;

In the above, 4d is the name of the variable and attributes is a list
of attribute keywords. The.first form declares a single variable.
The second declares several, with potentially dJdifferent attributes,
in one DECLARE statement., The third declares several with a common
set of attributes. DECLARE may be abbreviated DCL, as in the
following examples:

DCL X FLOAT BINARY;
DCL Y FIXED DECIMAL,
-2 FLOAT BINARY;
DCL (U,V,W) COMPLEX FLOAT BINARY;

The definitive rules for the DECLARE statement, which go far bheyond
what we need now, are at LE™ 4, .

Types of declarations

Explicit: By use of DECLARE statement.

Contextual: Certain uses of identifiers, in the absence of an
explicit declaration, result in a contextual declaration of a
variable with that name and attributes deduced from context. The
contexts for which this is possible are those that require particular
attributes and cannot tolerate other alternatives. Arithmetic
attritutes are never deduced from context; there are many alternative
arithmetic attributeées, any of which van be used in any arithmetic
context. .)

Implicit: An didentifier which 1is neither explicitly declared . nor
used in a context resulting in a contextual declaration is implicitly
declared as the name of a variable, which is given certain default
attributes. The language specifies a set of defaults which are, in
fact, particular arithmetic attributes. The programmer can change
the defaults with the DEFAULT statement, which is considered in
Lesson U4, ' : : ‘

See LRM 5 and LRM 6. The latter text uses many terms and concepts
that we will not consider until Lesson 43 try tc ignore them for now.

1.5.

Arithmetic data types

As in FORTRAN, there are many arithmetic data types and corresponding.
attributes (many more, in fact). A1l arithmetic variables have four -
characteristics, chosen from four sets of alternatives. The sets are
as follows:

Mode: The choices are REAL and COMPLEX. VWote that, in FL/I, REAL
only means not COMPLEX; it does not mean floating-point, as it does
in FORTRAN.

Scale: The choices are FLOAT and FIXED. FIXED means the decimal
point is assumed to be in a fixed position relative to the internal
representatition of the variablet's value. However, that position
need not ne the right-hand edge; it can be, in which case you have
roughly the equivalent of FORTRAN's TNTEGER, but it may be specified
to be elsewhere. FLOAT means the assumed position of the decimal
point is not in a fixed place; it floats from place to place with the
gross magnitude of the variable's value (floating-point hardware is
used) .

Base: The choices are BINARY and DECIMAl, Any reference to digits
refers to either bits, if binary, or decimal digits, if decimal.
Precision: This is a numher specifying +the number of digits to be
used for the internal representation of the variable's value. For
fixed-point variables it specifies the exact number of digits that
participate in operations on the variable according to the rules of
the language. For floating-point variables it specifies the minimum
number of digits that participate in operations on the variable
according to the rules of the language. For fixed-point variables
(only), precision includes, in addition to the number of digits,
another number called the scale factor. This essentially denotes how
many of the digits are to the right of the assumed decimal point. A
scale factor of O means the value of the variable is always an
integer and that the smallest difference in two different values that
the variable can have 1is 1. A positive scale factor means the
decimal point 1is assumed to be so many digits left of the 1least
significant digit position. For instance, a scale factor of 1 means
the value of the variable always has one fractional digit; the
"resolution" of such a variable is thus one-half, if the base is
binary, or one-tenth, 1if decimal. A positive scale factor may even
exceed the number of digits specified for the variable, in which case
all of the digit positions between the high-order one (leftmost) and
the assumed position of the decimal point, which is even farther to
the left, are assumed always to contain zeroes., A negative scale
factor means the deciwmal point is assumed to be so many digits to the
right of the 1least significant digit position, with the intervening
digits assumed always to contain zeroes. Thus, with a scale factor
of -1, the resolution is two, for binary base, or ten, for decimal;
the value represented is always an integer. A better way of thinking
about the scale factor is as follows. Suppose the precision is
(p,q9), i.e., the number of digits is p and the scale factor is q.
Then first consider those p digits to represent a p-digit integer,
say U. Thke value of the variable is then actually U-b™d, where b is
either 2 or 10, according to the hase. :

1-4

Beware of the following differences from FORTRAN:

(a) In FORTRAN, REAL means floating-point and not complex. 1In
PL/I it only means not complex; the variable.may be either

fixed-point or floating-point,.

{(b) In FORTRAN, COMPLEX means floating-point and in the
complex, as opposed to real, domain. In PL/I it does not

imply floating-point.

(c) In FORTRAN, INTEGER means fixed-point integer in the real
domain. In PL/I you can have fixed-point integers in the

complex domain.
References will be given later.

Attributes and declarations for arithmetic data.

By example:

DCL X REAL FIXED BINARY (15,0):

The value of X is a real binary integer. The number of digif§
is 15; .the scale factor, 0. The range of the variable is -2

to +215-1, with a resolution of 1.

DCL X REAL FIXED BINARY(15);

Same as above, If omitted, the scale factor is assumed to be 0.

DCL Y COMPLEX FIXED BINARY (15);

Y has -both a real and an imaginary part, each with the

properties of X, above.
DCL Z FIXED DECIMAL(5,2) REAL;

The value of Z is a real decimal number with +two fractional

decimal digits and5
variable is -(10°-1-10 %, i.e., -99?.99, to +(107-1)
i.e., +999.99, with a resolution of 10 °.
DCL U FIXED DECIMAL(2,5) REAL: 5) s
U has a range of -(10°-1)-.10 to +(10°-1)-10 ", i.e., -
to +.00099, with a resolution of 1075, :
DCL T REAL DECIMAL FIXED(Zﬁ-S);
T has a range of -(107=1)-10
+9Y0000U, with a resolution of 197, :
DCL R REAL FLOAT BINARY{(21): :

5

three 19 the integral part. The rapge of the

=10,

. 00099

to ;(107-1)-105, 1.e., -9900000 to

The value of R is a real number represented in floating-point.
The range of the representable values is not a property of this
declaration; it is a property of the implementation, i.e., the
underlying hardware. For IBM 360/370 hardware this is
approximately -2252 to 42252, The resolution is not uniform
over this range. The absolute value of the smallest non-zero

number that can be represented 1is approximately 27?60

The

precision specification of 21 digits (bits) means that the most
significant 21 bits (and mayhe more) of the value are retained;
where the decimal point is in relation tc these is carried in
the information contained in the - exponent field in the hardware

realization of the value.

1.8.

DCL R1 REAL FLOAT BINARY(31);
R1 cannot be .less precise than R since the 31 most significant
bits (and maybe more) are retained. ' ‘

DCL S RFAL FLOAT DECIMAL(6);
The value of S 1is also a real nunber represented in
floating-point. On IBM 360/370, the range, expressed in decimal
terms, is approximately -1075 to +1075., The absolute value of
the smallest non-zero numbher +that can be represented is
approximately 10778, At least the 6 most significant decimal
digits are retained.

DCL C COMPLEX DECIMAL FLOAT(6);
The value of C is a complex number represented in
floating-point. The real and imaginary frarts each have the
rroperties of S, above.

‘Hardware implementation of arithmetic data

The intent of PL/I 1is tc free the progqrammer from the need to
consider the hardware representations of data. Ideally, precisions
should be chosen based on the requirements of the problen. The
precisions specified will then have the same implications on. the
behavior of the data. on all implementations (providing no maximum
precisions are violated). Often, however, the programmer 1is
interested 1in economy (storage or time) with respect to one
implementation, and precisions are chosen based on knowledge of the
amount of storage which that implies for that hardware. Such
programs are still portable, of course, but the efficiency
considerations may not match the "other" hardware very well.

For machine equivalents between FORTPAN and FL/T arithmetic data
types, see LRM 7. For a summary of storage requirements, see LRM 20,

Language defaultes for arithmetic attributes

If a variable is not declared explicitly or contextually, it acquires
the following attributes implicitly.

First letter of Identifier Default Attributcs
I-N : REAL FIXED BINARY (15)
Other REAL FLCAT DECIMAL (6)

If some, but not all four, of the arithmetic attributes (mode, scale,
base, precision) are explicitly declared, the remainder are chosen
from complicated defaults. The only one that may safely be omitted

1.10.

1.1,

1-6

is mode: REAL is always assunmed.

Default precisions are defined by the implementation, rot the
language; they may differ amongst implementations

For all the gory details, see LRM 8 - LRM 12,

Implementation maximum precisions

See LRM 12.
'Use of arithmetic data

Yew arithmetic values are “generated" by:
(a) Reference to arithmetic constants.
(b) Input operatiomns. . .
(c) Arithmetic operations on other arithmetic values.
(d) Certain operations on other thlngs.
They are propagated by assignment, _
They may be used in diverse ways, some of which are:
(2a) Arithmetic operations.
(b) Comparison operations (Lesson 2).
{(c) Output operations (Lessons 7-9).
(d) Subscripting (Lesson 3).

Arithmetic constants

Arithmetic constants denote, hy the way they are written, objects
that have (alvways) the 1iundicated arithmetic wvalue as well as ths
indicated attributes. It is important to realize that . all
arlthmetlf constants have attributes of mode, base, scale, and

prec151on which are determined by hoWw the constants are written.

REAL FIXED DECIMAL constants are comprised of the decimal digits, an
optional sign, and an optional decimal point. The numbcr of digits
of precision is the number of decimal digits written; the scale
factor is the number of them which are to the right of the decimal

point. Exanmples: o ’

Constant Precision
1 | (1,0) -

3.14159 (6,5)
-.008 ’ (3,3)

REAL FIXED BINARY constants are similar, except that one uses only
the binary digits and follows them with a B.

Examples:
Constant © PRrecision
18 - (1,0) ‘
101.11B (5,2)
-.0101B (4,4)

REAL FLOAT DECIMAL constants are written as REAL FIXED DECIMAL
constants followed by an E and an optionally =signed exponent. The

number of digits of precision 1is the number of digits written.
Examples: :

Constant Precision
1E0 (1)

1. 6U8E+24 sy .

-.0031E-37 1))

REAL FLOAT BINARY constants are similar, except that only the birary
digits are used to the left of the exponent and the exponent is

followed by a B. The exponent is written with decimal digits but is
interpreted as a power of 2. Fxamples:

-

Constant Precision
1E0B R
1110.0019E-3B (8
-.10001E+06B ' (5)

There are no complex constants in PL/T, but there are imaginary

constants. An imaginary constant is any real constant followed by
an I, Examples:

17

-.0101RI

3.UBE+511 .
-11.01E-228BT \

1-8

Constant complex values can be written as expressions, as in the .
following: ' L

3+u1 ‘
-.25F0+,75E01

A review of this material can be found at LRM 13. This reference
as well as LRM 12, covers default and maximum rrecisions,

Be aware of several differences from FORTRAN:

(a) A constant such as 5 denotes a binary integer in FORTRAN
and a decimal integer in PL/I. However, 1iL 1is not
necessary to write this constant as 1018 in PI/I if the
compiler can tell that a binary integer is needed (which
it almost always can); it will substitute the equivalent
binary integer. ,

(b) A decimal point is siitficlent Lu denote floating=point in

. FORTRAN. 5.0 is a fixed-point constant in PL/I; it has a
scale factor of 1 (remember, fixed-roint data can have
fractional parts). Rgain, if the compiler can tell that a
floating-point constant is required, it will substitute

) the equivalent floating-point constant. 4

(c) To get a double-precision floating-point constant vyou
merely write the required number of digits; there is no D
exponent character as in FORTRAN. TIf you have written'a
single-precision floating-point constant where
double-precision is required, the compiler =subkstitutes a
double-precision constant obtained by supplying low-order
zeroes. Thus, the nearest equivalent to FORTRAN's 0. 1D0
is 0.10C000E0 (on our implementation). (The fact that you
only need 7 digits, and not 16, the maximum for double-
precision, is a consequence of our implementation and not
the language rules.)

Do not Dbecome paranoid-over this! If you initially do what seems
natural, you will most often be right. Some knowledge of, and
experlence with, the precision and conversion rnles, as well as our
compilers, will prepare you for the few cases where what seenms
natural is not right.

Scalar arithmetic assignments .

Assignment of an. arithmetic value +to an arithmetic variable may

require conversion of that value to an "eguivalent" one having the

attributes of the target. The conversion occurs automatically and
is determined by conversion rules.

1-6

Forms of the assignment statement are:
variable = expression;
variable (geeee va/u'ﬂ.bi_en.: expression;

The letter form denotes multiple assignment cf the value of the
expression (which is only evaluated once) to each of the variables
(wvhich may have different attributes). See LRW 14,

Conversion rules for arithmetic assignments

In converting REAL to COMPLEX, a =zero imaginary part is supplied.
Going the other way, the imaginary part is just dropped. '

Other conversions are more or less obvious: they try to preserve
the value being assigned, if possible. If change of base 1is
required, low-order accuracy may he lost in gcing from decimal to
binary because some decimal fractions with finite representations do
not have finite binary representations. In general, with change of
base, one decimal digit corresponds to about 3.32 bhinary digits
(bits). The consequences of insufficient precision in the target
depend on whether the target is floating-point or fixed-point. If
it is floating-point, low-order accuracy may be 1lost. Examples of
this situaticn are: '

FLOAT DECIMAL(16) to FLOAT DECIMAL (6).

"FLOAT DECIMAL(1€) to FLOAT BINARY(21).

FIXED DECIMAL (8, x) to FLOAT DECIMAL (6)
for any scale factor x.

FIXED BINARY(31) to FLOAT DECIMAL(6).

That is, as lohg as the target is <floating-pcint, the consequences

~of insufficient precision 1in the target are nct influenced by bhase

or scale conversion. If the target is fixed-point, there , are two
possible consequences (which also are not influenced by base or
scale conversion). Loss of low-order accuracy is possible due to
the limited resolution implied by the scale factor of the target.
For instance, in assigning to an integer, i.e., a fixed-point
variable with a scale factor of 0, any fractional part is lost; this
is common in FLOAT to FIXED (integer) ccnversions. A worse

situation occurs when the target does not have encugh high-order
digit positions to accommodate all the non-zero high-order digits of
the value being assigned. Exactly what happens in this case will be
covered later (Lesson 6). This situation could easily occur in
FLOAT to FIXED conversions, regardless of the precisions involved,
because of the very 1large values that can be represented 1in

floating-point. : ’

The assignment of a constant to a variable is cone case in which theé

1.15.

1-10

compiler "converts" constants at compile time.

Arithmetic operations

As in FORTRAN, they are prefix and infix addition (+). and

subtraction), multiplication (¥}, division (Y, and
exponentiation (**).

A few differences from FORTRAN:
(a) Prefix + and - have the highest priority (equal to that of
*%) instead of the lowest (equal, in FORTRAN, to that of
infix + and -).

Fxample Interpretation in:
FORTR AN PL/I

A=-B*C - A== (B*C) A=(-R) *C

Ax==-B=-C A=(-D)-C A= (-B) -C

(b) A prefix operator may follow another operator, e.g., the

following are allowed in PL/T but not FORTRAN:
A+-B _ Ak%-R
A/-B --B

(c) In exponentiation of a complex value, the exponent (second
operand) may be complex. 1In FORTRAN it must be not only
not complex but also an integer,

(d) Division of fixed-point integers (i.e., values with a scale
factor of 0) does not necessarily yield an integer, as it
does in FORTRAN. (See below.) This often causes people
trouble. '

Conversion rules for arithmetic operations

The two operands of an infix operator (except exponentiation) must
have the same mode, scale, and base. If wmcde, base, or scale
differs, conversion occurs as follows: ‘
(a) If the modes of the operands differ, the REAL operand is
converted to COMPLEX by supplying a zero imaginary part.
(b) 1f the bases differ, the DECIMAL operand is converted to
BINARY (its précision being increased by a4 factur uf 3.32,
approximately, bhecause it will have +to repreeent bits
instead of decimal Adigits). Caution: if B is FIXED
BINARY in .1%B, +the FIXED DECIMAL constant .1 will be
converted (at compile time) to a FIXED RBRINARY constant
with a value of one-sixteenth, not cne-tenth, since its
precision will be (5,4). 1A value closer to one-tenth is
obtained if you write .10 or .100, etc.
(c) If -the scales differ, the FIXED operand 1s conveérted to
FLCAT having the same number of digits.

By the above rules we will have obtained operands that (may) differ

1. 16.

1-11

in precision only. The result will have the same mode, base, and
scale, aad a precision defined bv the precision rules for arithmetic
operatioas (see below). :

For exponentiation, see LRM 15.

The use of a constant as an arithmetic operand is ancther case in

‘which the compiler "converts" constants at ccmrile time.

Precision rules for arithmetic operations

These rles are concerned with the precision of the result of
addition, subtraction, multiplication, or division, when the
operands have the same mode, base, and scale.

FLOAT scale is easy: the precision of the result is the larger of
those of the operands (for all +the operations). Promotion of the
"shorter" operand from 'single to double precision, or double to
extended, is done by supplying low-order zeroes. '

The formulas for the fixed-point precision rules seem complicated,
but they derive from simple principles. Basically, the goal is to
retain as much precision as possible, both high-order and low-order,
without 2=2xcess precision.

In what follows, 1let the operands have precisions (g1, g1) and
(p2,92) respectively, and denote the precision of the result by
(p,q). For all sets of indices, let r=p-q (the number of digits to
the left of the decimal point) -

Addition and subtraction: If you were to write a ©pair of operands
one above the other, with decimal points aligned, you would see that
no precision is lust 1f the number of fractional digits of the
result is the greater of the numbers of fracticnal digits of the .
operands (i.e., g=max(g1,g2)) and if the number of inteqral diqgits
of the result 1is one more than the greater of the numbers of
integral digits of the operands (the additional digit allows for a
carry) (i.e., r=1+max(ril,r2)).

Example: ' XX XXXX
+ XXX.XX
XXXX . XXXX

Substituting for the r's, we get p= l+max(p1(h,pzqzymmx&h,qz)
If this formula yields a value of p in excess of the
maximum permltted by the implementation, for the glven

base, that maximum is used 1nstead

Multiplication: Playing the same game, you see that the

number of fractional digits of the result needs to be the
sum of the numbers of fractional digits of the operands,

and likewise for the 1ntegral digits. Example:

XX . XXXX
* XXX .XX
XXXXX XXXXXX

However, when you consider what happens in complex multi-
plication, you will see that one more digit is needed on
the high-order end. Thus, g=q;+q,, r=l+r;+r,. Therefore,
p=1+p;+p,, subject to the limitation on the implementation
maximum number of digits.

Division: This is the weird one. Clearly, the fractional
part of the quotient could go on forever. So, to retain
as much precision as possible the result must have the
maximum number of digits. As many as necessary for the
woret case are used for the integral digits with the rest
assigned to the fractional digits (thus determining the
scale factor). The worst case occurs with a maximum
dividend and minimum non-zero divisor, yielding r=r;+q,.
The final result is p=N (the maximum for the given base)
and g=N-((p;-9;)+g92). Notice the consequences of this.
A/2 in PL/I may have a fractional part, unlike FORTRAN.
(It ' will if A is FIXED BINARY(1%5), for example.) Further-
more, the fractional part will be exactly represented so
that A/2*2 will equal A and not A-1 (as it does in FORTRAN
when A is odd). Clearly, you can see that the PL/I rule
gives a more accurate result than the FORTRAN rule.

Note that the precision rule for division introduces a °
weak implementation dependence into the actual numerical
results that may be obtained, in fixed-point division,
although most realistic programs will not be affected by
it.

The resultant precision of exponentiation is given at
LRM 15,

1.17.

For additional information, see LRM 16,
OTHER 2.

1-13

OTHER 1, and

Arithmetic builtin functions

PL/I has a large set of builtin functions which are akin,
generally, to the FORTRAN "intrinsic functions." The .
general treatment of builtin functions is in Lesson 10;

however,

those applicable to arithmetic and mathematics

are initially covered now.

The arithmetic builtin functions perform certain basic

operations or conversions on arithmetic values.

. They are

"generic" in the sense that a wide variety of attributes

are permitted for the arguments.
result are,

The attributes of the
in many cases, derived from the attributes of

the arguments.

Detailed informatibn can be found at LRM 19 and relevant

portions of LRM 18.
brief indications of their use.

ABS

MAX
MIN
REAL
IMAG

MOD
SIGN

" COMPLEX

CONJG
FLOOR

CEIL

TRUNC

ROUND

BINARY,
DECIMAL,
FIXED,
FLOAT

- Sign of a real quantity (as +1,0,

The functions are listed below, with
See also LRM 29.

Absolute value of real quantity; modulus of
complex quantity.

Maximum of several real quantities.

Minimum of several real quantities.

Real part of complex quantity.

Imaginary part of a complex quantity (the
result is real).

Remainder on division of real quantities.

or -1).
a+bi for real quantities a and b.

Complex conjugate of a complex guantity.
Largest integer less than or equal to a real
quantity (result has same scale as argument).
Smallest integer greater than or equal to a
real quantity.

Truncation of a real quantity to an integer.
Truncation is towards zero, so TRUNC=FLOOR
for positive arguments and TRUNC=CEIL for
negative ones.

A real value rounded in the specified digit
position (not useful for floating-point).

_ -
Conversion to the indicated base or scale

with an optionally specified precision.
"If not specified, the conversion rules
determine the precision. Other attributes
remain unchanged. '

1-14

PRECISION Conversion to the given precision. Other
attributes remain unchanged.

ADD, Operations carried out in the given prec151on
MULTIPLY, instead of that determined by the precision
DIVIDE rules. See LRM 28. :

Note that the DIVIDE builtin function can be used to over-
come the (weak) dependency of fixed-point division on the
implementation maximum precision.

1.18. Arithmetic pseudo-variables

Some builtin functions can be used, with suitably restricted
argument.s, on the left-hand side of an assignment statement.
In that form they are known as pseudo-variables. The
restrictions on the argument (or arguments, in some cases)
guarantee that some portion of the storage belonging to a
variable is being addressed.

Three of the arithmetic builtin functions can also be used
as pseudo-variables:

REAL - For assignment to the real part (only) of a

complex variable, e, g- REAL (%)=1EQ;

IMAG As for REAL, but the imayinary part, Cig.,
IMAG (%)=5E~- Ol

COMPLEX For assignment of the real part of a complex

value to one real variable and the imaginary
part to another real variable, e.q.,

COMPLEX (X,Y)=%&.

Note: the proposed ANSI standard does not
include the COMPLEX pseudo-variable.

1.19. Guidelines on choice of arithmetic attributes

Use FLOAT when a variable has a very wide range of values,
and "enough" préc¢ision. There are no significant Aiffer-
ences between FLOAT BINARY and FLOAT DECIMAI in our
implementation asince both are implemented with the 360/70
"float hexadecimal" hardware.

There is both binary and decimal fixed-point hardware,

but binary is generally more "efficient" and is to be
preferred. Certain uses of arithmetic values, such as

for subscripting, require binary base (conversion is per-
formed, if necessary). Operations involving powers of ten
may indicate the use of decimal base.

1.21.

1-15

Mathematical builtin functions

The following mathematical builtin functions, some of
which have counterparts among the intrinsic functions
of FORTRAN, are available in PL/I:

ACOS . ERF " SINH
ASIN ERFC . " SQRT
ATAN EXP TAN
ATAND LOG "TAND
ATANH LOG2 TANH
Ccos LOG10

COSD SIN

COSH SIND

All operate on floating-point arguments (conversion is

"performed if necessary) and yield floating-point results.

These functions are generic in the sense that either base
or mode is allowed for the argument, the result having
the same base and mode; likewise, any precision is
allowed. (Certain of these requlre REAL arguments
example: ERF.)

Caution: As of September 19, 1975, the following mathe-
matical builtin functions are not in the proposed ANSI
standard for PL/I: ACOS, ASIN, ATANH, COSH, ERF, ERFC,
SINH, and TANH. There has been some effort to restore
them. 1If they are not restored, they will be available
in a particular implementation, as an extension, only if
the vendor sees fit to provide them. ’

See LRM 17 and relevant parts of LRM 18.

‘Unanswered questions

We have already posed the question "What happens when a
fixed-point assignment target has insufficient precision
to receive the high-order non-zero digits of a value being
assigned?" Other questions to be answered in Lesson 6
are: :

What happens when you try to compute a flxed-p01nt value
that is too "big" for the hardware’

Similarly, for a floating-point value.
Similarly, for a too-"small" floating-point value.
What happens when the argument of a mathematical builtin

function is "bad"? Example: a real (not complex) -1 for
SQRT. :

1.22. Homework problems

(#11)

(#1B)

(#1C)

(#1D)

What are the attributes (including precision) of
the following arithmetic constants?

629 . 6E-1
3478. 0.05E0
.1B . 11.E0B

What are the ranges and resolutlons of varlables
having thc' following attributes?

REAL FIXED DECIMAT, (3)

. REAL FIXED DECIMAL (3,2)
REAL FIXED DECIMAL (3,4)
REAL FIXED DECIMAL (3,-1)
REAL FIXED BINARY (4)
REAL FIXED ‘BINARY (4,3)
REAL FIXED BINARY (4,7)
REAL FIXED BINARY (4,-2)

In the following, what are the attributes of the
constants, as written, and to what attributes

will they be converted according to the conversion
rules? What are the values of the converted
constants? - -

N+1 . (N is FIXED BINARY(15))
X+1 (X is FLOAT BINARY (21))
.5*%X

.5*N
1.1*N
S5E-1*Y (Y is FLOAT DECIMAL(6))
5E-1%g (% is FLOAT DECIMAL(16))

What arithmetic builtin fune¢tions could you use in
a modification of I/2*2, for J FIXED BINARY(15),

- that would give the same results as FORTRAN (i.e.,

how can you force the division to behave like
FORTRAN's integer division)? Write the modified
expression. Note that there are several possi-
bilities. :

2.1.

2.2,

2.3,

2.4,

2-1

String data types; string and logical expressions}

- Character string values.

Character string . values are elementary values like arithmetic values
(i.e., they can be the operands or results of certain operations).
A character string value is a sequence of characters. In addition
to its identity (the sequence itself), a character string value has
another property: the length of a character string value is the
number of characters in the sequence. ABC is a character string
value of length 3. ‘ '

Bit string values.
Like character strlng values except that the sequence is a sequence
of 0 or 1 bits. 1010 is a bit string value of length 4.

String variables.

Character (bit) string variables are Varlables that can acquire
character (bit) string values. '

When string variables are declared, with the CHARACTER (abbreviation:
CHAR) or BIT attribute, the length of the string values to be stored
in the variables must be spec1f1ed Examples: :

DCL C CHAR (20);
DCL J CHAR (5);
DCL Q BIT (1);
DCL F BIT (33);

The maximum length of a string value in our implementations is 32767.

Another attribute applicable to string variables will be given later.

Use of character string data.
New character string values are ''generated' by:

(a) Reference to character string constants.

(b) Input operations.

(c) String operations on other character strlng values.
(d) Certain operations on other things.

2-2

They are propagated by a551gnment
They may be used in diverse ways, some of Wthh are:

(a) String operations.
(b) Comparison operations.
(c) Output operations. (Lessons 7-9)

Character string constants.

The string value is enclosed in single quotes If a single quote
is to be a character in the sequence constltutlng the string value,
it must be wrltten twice. Examples:

Constant Character string value
TTABCT ABC
B D (b is a blank)
'IT''S! " IT'S
'|'A'|') lA‘

A long constant which is the repetition of a shorter constant may
be written with a repetition factor, as in the fullowing examples:

Constant ‘Character strlng value -
3)'XY" - XYXYXY
(8)'d' bbbbbbth

(4)!"" Pt

Fixed-length scalar character string assignments.

The kinds of string var1ab1es described above are temed fixed-length
string variables, because their values always have exactly the length
"specified. In 3551gnment of a character string value to a fixed- -
length character string variable, using the assignment statement, the
character string value being aSQ1gncd is either truncated on the right,
or extended on the right with blanks, if necessary, to make it conform
~ ta the length of the target. Example

DCL C CHAR (6); ‘ .
C = 'AICD'; The value of C after a551gnment is fhP

6-character sequence ABCDbb.
C = 'ABCDEFG'; Here, it is ABCDEF.

To review, see LRM Z21.

2.7.

2.8.

2.9.

2-3

Use of bit string data.
New bit string values are ''generated' by:

(a) Reference to bit string constants.

(b) Input operations.

(c) String operations on other bit string values.
(d) Logical operations on other bit string values.
(e) Comparison operations.

(f) Certain operations on other things.

They are propagated by assignment.
They may be used in diverse ways, some of which are:

(a) String operations.

(b) Logical operations.

(c) Comparison operations.

(d) Output operations. (Lessons 7-9)

Bit string constants.

The string value, written with 0's and l's is enclosed in quotes‘
and followed by a B. Repetition factors are allowed. Examples:

Constant Bit string value
"1'B 1

'00110'B 00110
(2)'111'B 111111

Fixed-length scalar bit string assignments.

By analogy with fixed-length character string assignments, a bit
string value being assigned is either truncated ur extended on
the right, if necessary, to make it conform to the length of the
target. Extension is with 0-bits. Example:

DCL B BIT (5);
= (2)'1'B; The value of B after assignment is
the 5-bit sequence 11000.
= (2)'1100'B; Here, it is 11001.

To review, see LRM 22 and LRM 23.

2-4

" 2.10. Conversions between bit string and character string.

This conversion is required, for example, when assignment of a bit
_strlng value is made to a character string variable, or when
assigning a character string value to a b1t string Varlable

Bit-to-character conversion results in a string of the same
length with 0-bits becoming the character 0 and 1-bits becomlng
the character 1.

Character-to-bit cunversion proceeds as above, but in reverse.
Only the characters 0-and 1 are permitted in the character string
value being converted. In Lesson 6 we will see what happens when
this rule is violated, and what the program can do about it.

2.11, Conversions between string and arithmetic data.

If conversion from string to arithmetic is required, it proceeds
as follows:

. Bit string values are interpreted as unsigned binary integers.

Character string values must represent valid arithmetic constants
(possibly surrounded by blanks). The arithmetic constant represented
by the character string value will have a self-denoting mode, base,
scale, and precision. In a context where the target arithmetic.

. attributes are independent (such as in assignment), the conversion
occurs (interpretively) according to the rules of arithmetic conver-
sions for the specific source arithmetic type represented by the
character string value. However, in a context where any arithmetic
attributes would be permissible (such as. the operand of an arithmetic
operation), the aritlumetic constant reprcscented in the character
string value is first converted to DECIMAL FIXED (15,0), interpretively;
that intermediate target may require further conversion, depending on
the operation and its uther operand.

When arithmetic values are to be converted to string, the context may
or may not determine whether character strings or bit strlngb result
(some contexts permit either). In this case conversion is to bit
string if the base is binary and character string if it is decimal.

Conversion from arithmetic to.bit string proceeds by obtaining first
a binary integer from the arithmetic value (ignoring both the sign
and any fractional part). The precision of the binary integer depends
on the precision of the source. That integer is then considered to
be a bit string value.

2-5

Conversion from arithmetic to character string proceeds by obtaining
an equivalent decimal value (with the same mode and scale and the

- ‘derived precision). The decimal value is then expressed in the form
of a decimal arithmetic constant of the mode, scale, and derived
precision, with leading zeroes’ replaced by . blanks ThlS constant is
then embedded in a character string of a length determined from the
precision.

These rules, especially those for arithmetic to character string, are

- very complicated (see LRM 16 for all the details). A common case is
conversion of a fixed-point value with zero scale factor (i.e., a
binary or decimal integer value) to character. If the decimal precision
of the arithmetic value is (p,0), the resulting character string will
have a length of p+3. The arithmetic value will be assembled as the
equivalent decimal constant in the low-order (rightmost) p digits
(with leading zeroes replaced by blanks). The next character to their
left will either be a minus sign or a blank, and the rema1n1ng charac-
ters will be blanks.

. The important thing to realize is that there are defined conversions
- between all types of arithmetic and string data. (This generality can
be a convenience or the cause of unexpected results.) Both types are
often lumped together under a category called problem data because -
these are the only kinds of data that can be manipulated, or operated.
upon, in expressions; sometimes it seems the name is due to the problems
the conversion rules cause. :

2.12. String operations.

There is only one, concatenation. The infix operator is || (two
vertical bars). Concatenation may be applied to either bit strings
or character strings, yielding a result of the same string type.
(If one operand is bit string, and the other character string, the
bit string is converted to character strlng)

Concatenation juxtaposes the two string values yleldlng a strlng
value whose length is the sum of the lengths of the operands. Examples:

DCL A CHAR (3), B CHAR (4);
DCL C BIT (6), D BIT (2);

A = 'ABC';
B = 'DCFG',
C = '011011'B;
D = '00'B;
DCL AB CHAR (7), CD BIT (8);
.AB.= A || B; The value of AB after the a531gnment is the
: 7-character string ABCDEFG.
CD =D || C; The value of CD is the 8-bit string V0011011.

See LRM 26.

2-6

2.13. Logical operations.

The logical operations and (§), or (|3, and not (-) operate on bit
string values and produce a bit string result. Strings of any length
may be used, and the operation proceeds bit-wise on the operands If
the operands of § or | are of umequal length, the shorter is extended
on the right to the 1ength of the longer, with 0 b1ts Examples:

Value of first operand - Qp@ratlon Value of second operand Value of rcsult

011001 g 111100 011000
011001 |- - 111100 111101
10 _ § 1111 1000
10 - , 1111 - . 1111

101 - | | 010°

Note: —1is a prefix operator. See LRM 27.

2.14, Comparison operations

The comparison operations =, =, <, >, <=, >=, =<, => may be applied .
to any pair of operands of ''compatible' data type. If both operands
are arithmetic, the comparison is algebraic (only = and -= are allowed
for complex operands). If both operands. are string, the shorter is
extended on the right to the length. of the longer, if necessary, using
0-bits if they are bit strings and blanks if they are character strings;
the comparison then proceeds left to right in the strings using the
character collating sequence of the hardware for character strings and
the obvious comparison rules for bit strings. If the operands are not

immediately compatible, conversion occurs according to the rules glven
‘at LRM 24 and LRM 25. :

The result of a comparison operation (for any type of operand) is a
one-bit string whose value is the single bit 1 if the comparison is
true and 0 if it is false. (See LRM 24.) This definition permits
comparison operations to be intermixed with other logical operations
in an assignment statement. ‘The most common use of compariqon opera-
tions, however, is in the IF statement, as we shall see in Lesson 6.
In that case, the one-bit bit string may not actually be generated in
storage but may be represented in the state of the 'condition code'

of the hardware as it executes comparison instructions and conditional
branches.

We have now seen all of the operations that may be used in operational

r9951ons, i.e., computational expressions involving problem data.
KE in FORTRAN, any of the operations and any data types may be inter-
mixed in any expre551on For a discussion of the priority, or prece-
dence of operations in such mlxtures, see LRM 30 and LRM 31.

2.15.

2.16.

2.17.

C2-7

- One difference from FORTRAN should be noted: the 'not" opérator (—)

in PL/I has a different position in the hierarchy than its counter-
part (.NOT.). In PL/I it has the highest precedence (equal to that
of #* and prefix + and -) placing it, in particular, above the com-
parison operators. In FORTRAN it is below the comparison operators.
The PL/I equivalent of .NOT. A .LT. B is not — A<B, which means
GA) < B, but-ﬂ(A<B) Of course, this may be written instead as

"A-<Bor A > B (in FORTRAN it could have been written as A .GE. B)

Varying-length string variables.

An additional attribute, VARYING (abbreviation: VAR), may be specified
in declarations of character string and bit string variables. String
variables which have been declared with the VARYING attribute are
called varying-length string variables because the string values they
may acquire are not restricted to have always the length specified in
their declaration. They may acquire any string values of the declared
length or less (hence, the declared length of a varying-length strlng
variable is called its maximum length).

Varying-length scalar character and bit string assignments.

On assignment of a string value to a varying-length string variable,
padding (with blanks or 0-bits) does not occur (as it does in fixed-
length string assignments) if the string value being assigned is of
shorter length than that declared for the target variable; the target
variable receives the string value unpadded, and that is the value
that will be used on any subsequent reference to the variable. Note,
however, that if a string value longer than the declared (i.e.,
maximum) length of the target Variaﬁle is assigned, truncation to

that length occurs on the right, as in fixed-length string assignments.
Examples: ' ' ' '

DCL A CHAR (5), B CHAR (8) VAR;

'STREA'

A; The value of B is now the 5-character string STRSA.
B || 'ND'; Now it is the 7-character string STRSAND.

B || A; Now it is the 8-character string STRSANDS.

W =

The null string value and null string constant.

Remember that string values are sequences of characters or bits.
The sequence of length 0 is allowed; it is called the null string
(note that the null character string value and the null bit string
value have different data types).

2.18.

2-8

The character string constant representlng the null character string
value is written as''. The bit string constant representing the null
bit string value is written as''B. Examples

DCL A CHAR (5), B CHAR (8) VAR;

B =''; B now has the null character string value.
A = B; The value of A is the 5-character string bbbbb. Why?
B=A||' || A; B's value is now the 8-character str;ng Bbbibbbb .

‘It is 1mportant to note that VARYING is a property of string varlables

and not string values (i.e., not expressions). A string expression
involving string variables, some of which may be VARYING, has, for any
particular evaluation, a value which has a particular length VARYING
addresses the fact that variables may take on values of different
lengths at different times.

Whereas fixed-length string variables with declared length n require n
bytes (or bits) of storage, varying-length string. variables with
declared (maximum) length n require n bytes (or bits) plus two more
bytes. Storage is always reserved for the maximum length of the.
variable's value, and the additional halfword is used to record the
length of the variable's current value. There is no legal way in
PL/I to get access to bytes reserved for the value of a varying-length
string variable, but not actually part of (i.e., needed for) its
current value (there are lots of illegal ways!). It is entirely
imaginable that some other implementation of PL/I may use an entirely
different representation for varying-length string variables.

For additional intormation, see LRM 32 - LRM 36 (ignoring parts of .
LRM 36 involving things we haven't covered yet).

String-handling builtin functions.

One large group of builtin functions is concerned with string handling.
Cortain of these extend, in an essential way, the rather meager capa-
bilities afforded by assignment and concatenation. Others could be
programmed hy the user (using loops and other things we haven't seen),
so their existence is properly viewed as a matter of comvenience and
efficiency (the latter because of the tight in=line code usually

~ generated by the compiler).

Full detalls are given at LRM 37 and LRM 18, but essentlal features
are described here.

2-9

The LENGTH builtin function returns the length of the value of the
string-valued expression which is its argument. When its argument
is a fixed-length string variable, the result is the variable's
declared length. In the case of a varying-length string variable,
LENGTH returns the length of its current value. Examples

DCL U CHAR (10). VAR, B BIT (6) VAR;
DCL I FIXED BINARY; .

U = 'ABCDE';

I = LENGTH(U); Value of I is 5.

I = LENGTH(U || '.'); Value is 6.
B = '101'B;

I = LENGTH(B); Value is 3.

B = '"'B;

I = LENGTH(B); Value is 0.

The SUBSTR builtin function is one of the most essential. It allows
you to select a contiguous portion ("substring'') of a larger string.
One form of SUBSIR is ‘

SUBSTR (4 trning-expn, arith-expr-1, arith-expa-2).
Let stning-expr have a value of 1engtﬁ Let the values of aﬂ&ih sexpr-1
and arith-expr-2 be i and j respeeleely Then the result is the :
string of length j starting at the i-th character (or bit) of sting-expn.
(The first character or bit of a string value has position 1.) Con-
straints on i and j are as follows:

i must be >= 1-and <= n+1
j must be >= 0 and <=
i+j must be <= n+l, in add1t10n

These constraints guarantee that the substrlng lies within the ‘bounds

of the string itself (the case i =n+l, j =01is a degenerate, limiting -
case). It is illegal to reference outside the bounds of a string using
SUBSTR.

Note the following identities:

SUBSTR(x, 1, LENGTH(x)) = x for any x. .
SUBSTR(x, 4, 0) = the null string for any x and any <
between 1 and LENGTH(x) + 1. ‘
SUBSTR(x, 1, 1) is the first character (or bLit) of any x
whose 1ength is not 0.
SUBSTR(x, LENCTH(X) 1) is the last character (or bit)
of any such x.

2-10

Examples
DCL U CHAR (10) VAR, T CHAR (4) VAR;
U = 'ABCDEF'; S
T = SUBSTR(U, LENGTH(U), 1); Value of T is F.
T = SUBSTR(U, 1, 4); Value of T is ABCD.
T = SUBSTR(U H T, LENGTH(T) - 1, LENGTI-I(U) -1);
The above statement has the same effect as:
T —

SUBSTR('ABCDEFABCD', 3, 5); which assigns the 5- character
: str1ng CDEFA to T.

Another form of SUBSIR is
SUBSTR (s.ting-expr, anith-expn) -
The substrlng starts at the p031t10n given by the second argument
but in this case extends to the end of the str1ng Therefore,
SUBSTR(x, p) = SUBSTR(x, p, LENGTH(x) - p + 1).
Thus, while SUBSTR(x, 1, 1) picks off the [irst character (or bit)
of a string, SUBSTR(x, 2) returns everythlng after that.

The remaining functions are:

INDEX Find the location of a pattern in a string. :
VERIFY Find the location of the first character (or bit)
' _in a string which is not among a set of "acceptable"
characters (or bits).
TRANSLATE Map the characters (or bits) of a string as
specified. Useful in terminal-oriented programs -
to translate input from lower to upper case.

REPEAT Concatenate a string with 1tse1f a given number
of times.
HIGH Return a string of the specificd length cons1qf1ng

of repetitions of the highest character in the
collating sequence.

LOW Same for lowest character.

CHAR Convert to character string.

BIT Convert tu bit string.

BOOL Used to obtain any of the 16 boolean functlons of
two bit strings (e,g., 'implies,' "exclusive or,
etc.) .

STRING See Lesson 10.

UNSPEC See Lesson 10.

In the proposed ANSI standard, the function of REPEAT is taken over
by a new builtin function, COPY. Other new functions are:

BEFORE Return the portion of a string before the first
. occurrence of a specified pattern.

AFTER Same, but the portion after its occurrence.

DECAT Sort of generalized BEFORE and AFTER.

REVERSE Return the reverse of a string.

2-11

2.19. String-handling pseudo-variables.

SUBSTR, UNSPEC, and STRING can be used as pseudo-variables. UNSPEC
and STRING will be described in Lesson 10. :

SUBSTR(AWVLg uazmbf_e, ouwch expr-1, arith-expn-2), when used as a
- target in assignment, allows a string value (tﬁe rlght -hand side of
the assignment statement) to be a551gned to the Substring of stning-
varniable beginning at the position given by the value of arnith-expr-1
and extending for a number of characters (or bits) given by the

value of atith-expi-2. The designated substring must be within the
bounds of the string-variable (and if that is a varying-length string
variable, within the bounds implied by its current length). The
SUBSTR pseudo -variable may also be used 1n the two- argument form.

Examples:
DCL S CHAR (10) VAR;
S = 'ABCDEF'; ~ A
SUBSTR(S, 3, 2) = 'XY'; Value of S is now the 6-character

. string ABXYEF.
. SUBSTR(S, 5) = 'Z'; Now it is ABXYZb. Why?

~Note that the SUBSTR pseudo-variable cannot change the length of its
first argument, even when that is a varying-length string variable.

2.20. Pictured data.

Pictured data is a special form of character string data. There are
two varieties, character pictured data and numeric pictured data.
Which of these two is specified depends on details and contents of
the PICTURE attribute used to declare pictured data. See LRM 38.

| 2.21. Character pictured data.

Character pictured data is specified when the picture specification
given with the PICTURE attribute contains at least one A or X and

"no other picture characters except A, X, and 9. All of this is
explained by an example, which will also serve to show. the use and
meaning of character pictured data.

DCL CP PICTURE 'AXXX9',

In this declaration of the variable CP, the PICTURE attribute is
used. The keyword PICTURE (abbreviated PIC) is always followed by

a p1cture specification, which looks like a character string constant.
The picture specification here is 'AXXX9'. It uses the picture
characters A, X, and 9. '

2.22.

2-12

This declaration says:

(a)

)

(<)

(d)

(e)

()

CP is stored as a flxed—length character string
of length 5.

It may be used in the same ways as any character
string variable. Its value is indeed a S—Character
string.

The picture character A says that the first
character of the value of CP will always be an
alphabetic character.

The picture character 9 says that the last
character of the value of CP will always be a
numeric character or a blank. :
The three picture characters X say- that the
middle three chiaracters of the value of CP will
be any characters (no restrictions).

Whenever a value is assigned to CP, it is con-
verted, if necessary, to a character string of
length 5. The individual characters are then
checked for contormance to the picture as
specified above. It is an error to violate the
conformance requirements.

~ See LRM 39 - LRM 42.

Numeric pictured data.

Numeric pictured data is specified when the picture specification

~given with the PICTURE attribute does not contain the picture

characters A or X. Therc arc an incroedible number of picture
characters that may be specified, and we will not go into them
here. The important thlngs to note for numeric pictured dataare
as follows:

(a)

)

(c)

(d)

The data is stored as a fixed-length character
strin% whose length is 4 function of the picture
specification (same as character pictured data
so far).

When a reference i3 made to a numeric pictured
variable in a context where a character string
value is required, the character string value
(exactly as stored) is used.

The character string value stored will always

be capable of being interpreted as a numeric
(i.e., arithmetic) value, the interpretation
(i.e., the mapping from character representation
to arithmetic value) being carried out according
to the picture spec1f1cat10n

When a reference is made to a numeric plctured
variable in a context where an arithmetic value
is required, the arithmetic value is obtained
‘from the stored character string value by a
conversion that proceeds, as implied above,
according to the picture specification.

(e) In addition to directing the mapping from
character form to arithmetic form, the picture
specification always implies certain arithmetic
attributes. These attributes are the attributes
used. for the arithmetic value obtained by the
above conversion. The attributes implied by
the picture specification include scale and
precision; the base is always decimal.

(f) What guarantees that the character string value
stored will always be capable of being inter-
preted as a numeric value is the following:

~ on assignment of a value to a numeric pictured
variable, the value (whether arithmetic or

string) is converted, if necessary, to an

arithmetic value haV1ng the attributes implied
by the picture specification. The arithmetic
value is then converted to character form and
"edited'" (mapped) according to the picture
specification (the mapping it implies is thus -
b1d1rect10nal)

As you can see, the picture specification is used in quite a few ways.

One simple example will illustrate the above rules. The numeric
picture specification '9999', as in DCL NP PIC '9999', means
the following: :

(a) NP is stored as a fixed-length string of length 4.
(b) The arithmetic attributes implied by PIC 1'9999' are
REAL FIXED DECIMAL (4, 0). ‘
- (¢) On assignment of any value to NP, the value is
converted to REAL FIXED DECIMAL (4, 0) if it
does not already have those attributes. It is
an error if this conversion cannot occur. That
would be the case, for instance, if the character
string value ABC were being assigned.
(d) The REAL FIXED DECIMAL (4, 0) value is then
converted to a 4-character string and "edited"
as follows: The character representing the
least significant digit will be aligned on the
right-hand edge. Any leading blanks are changed
to the character 0. (The picture character 9
‘allows, during this editing process, only the
decimal numeric characters 0 through 9, and not
a blank.) If the arithmetic value is negative,
the minus sign will not appear in the edited
character representation (other numeric picture
characters can be used for that). For example,
if the arithmetic value is 12, it is stored in
NP as 0012. Notc that the usual conversion rules
for REAL "FIXED DECIMAL (4, 0) to CHARACTER:
would yield a string of length 7 containing, in
this case, bbbbbl2.

(e) If NP is referenced in character context, the
value used is the 4-character string 0012,

(f) If NP is referenced in arithmetic context,
its stored character value is converted to,
and interpreted as, REAL FIXED DECIMAL (4, 0)
having value 12.

Some of the numeric picture characters specify the insertion of
particular characters, like commas, periods, dollar signs, etc.,
into the character form during the editing that occurs on assign-
ment to a numeric pictured variable. These characters are part
of the character value used in character context, but they are
"'edited out," or ignored, when the arithmetic Value is obtained
for use in arlthmetlc context.

" Relevant references are LRM 43 - LRM 46 énd LRM 16.

2.23. Guidelines on choice of string attributes.

Use bit strings for logical (i.e., boolean-velued) data. This
~ includes program switches, binary state ('true" or "false', "on"
or "off") variables, etc. A length of one is most common. - .Bit

strings of greater length can conveniently represent f1n1te ordered
sets of boolean objects.

Use character strings to spruce up your output (page headers all
sorts of explanatory or descriptive fields, etc.). Of course,
character strings (usually varying-length) are most useful in non-
numeric applications such as text processors, compilers, symbollc
formula manlpulators, etc.

Because of the editing behavior of numeric¢ pictured data, that is
.most useful in commercial applications. Simple forms, Such as the
editing of leading blanks into leading zeroes shown earller, are

useful elsewhere.

2.24. Unanswered gusstions.
In Lesson 6 we will answer these questions:
What happens when an illegal conversion is attempted (i.e.,
character to arithmetic, where the character value is not the

image of an arithmetic constant; character to bit, where the
characters are other than 0's and 1's)?

2-15

What happens when a character string value being assigned
to a character pictured item does not conform to the
picture specification?

What happens when the arguments of SUBSTR define a sub-
string outside the hounds of the strlng?

2.25. Homework problems.

(#2A) What values are a551gned to B in the two assignments
to B, below?
’DCL B BIT (1); :
DCL S (?uuz (5) VAR;

S__hbt ‘ - :
B = LENGTH(S) 0; ¢ Note that the second =
B=S=1" is a comparlson operator.

What can you conclude about the ' 'proper' (i.e., ''safe')
way to determine whether or not the value of a varying-
length string variable is the null string?

(#ZB) What is the Value of each of the follow1ng?
' INDEX ('ABCDE', 'CD')
INDEX ('ABCDE', 'CF')
VERIFY('CD', 'ABCDE')
VERIFY('CF', 'ABCDE')
TRANSLATE ('ABCDE', '24', 'BD')
REPEAT ('b', 5) .
Read about these builtin functions at LRM 18.

(#2C) Assume you have entered a section of code in which a
variable S has already been declared as CHAR (100) VAR
and has already been given a value. Write a section
of program that will ”<quee7e out'" all the blanks in -
‘S, leaving the result in S. Declare as many additional
VariableS’as necessary. You will need to code a loop.
Code your loop in the following way:

DO WHILE (expr-1 ? expr-2);

body 0§ Zoop
" END;
where '"'?" is a comparison operator, such as -,-1— >, etc.
On arriving at the DO statement, the indicated comparlson
is performed. If the comparison holds, or is true, the
body of the loop is executed; on arriving at the END state-

ment, control is sent back to the DO statement where the
process repeats by d01ng the comparison again. When the

2-16

comparison is false, or doesn't hold, the body of the
loop is skipped and control passes to the statement
after the END statement. If you think you need IF or
GO TO statements, look them up; however, by employing
the proper builtin functions, you should need only
DECLARE statements, assignment statements and the DO
loop construction shown above.

3.1.

3.2.

3.3.

3-1

Aggregates
Element variables and aggregate variables.

All of the variables we have seen so far have been element variables,
i.e., scalar variables. An aggregate is a collection (aggregation)
of related element variables. An aggregate variable has identity as
a whole; in addition, one may focus on the constituerit elements.

There are two kinds of aggregate variables in PL/I: arrays and structures.

Arrays.

Arrays are multidimensional ordered.collections of elements all having
e same attributes. The collection as a whole has a name. The whole
may be referred to by that name or an element may be designated by

~giving its order in each dimension. For this purpose, a list of subscript
. expressions enclosed in parentheses is written after the variable name

just as in FORTRAN. For example, if A is a two-dimensional array having
5 elements in the first dimension (numbered, say, 1 through 5) and 3 in
the second (numbered 1 through 3), then we may refer to the whole 5x3

_ array by the name A; the element at the intersection of the 4th ''row'"

and 2nd "colum' is de51gnated.A(4 2).

There are no restrictions on subscript expressions in PL/I. They may be
of arbitrary complexity. The value of a subscript expression is con-
verted, if necessary, to a binary integer of default precision.

In PL/I, it is illegal to reference outside the bounds of an array. For
example,-a reference to A(4,4) is illegal. What happens when this is
attempted is deferred to Lesson 6.

The dimension attribute and declarations of arrays.

'The dimension attribute is used in-a declaration to specify an array.

The attribute must immediately follow the variable name, i.e., it must

- precede other attributes. By '"other attributes' is meant the data type

attributes specifying the common data type of the elements.

The dimension attribute is written as

(bounds »boundsy) .
where each b&undé is either bound or bound:bound. In the first form,
bound is taken as the upper bound of the dimension, with 1 being assumed
for the lower bound. In the second form, the two bound's are respectively
the lower and upper bounds for the dimension. For now, a bound must be
specified as a decimal integer counstant. ‘

3.4.

3.5.

les: .

DCL A (5) FIXED BIN (20);
A is a one-dimensional array of elements having the
attributes FIXED BIN (20). The lower and upper bounds
of the first (and only) dimension are 1 and 5.

DCL B (-1:1, 3, 0:2) BIT (2);
B is a three-dimensional array of 2-bit bit strings.
The lower and upper bounds of the three dimensions
are, respectively, -1 and 1, 1 and 3, and 0 and 2
for a total of 27 elements.

Caution: The current implementation limits the bounds and the values
of subscript expressions to the range -32768 to 32767. This may be a
serious restriction to some. :

There is generally no need to be concerned with how arrays are mapped
in storage. However, in our implementation, two-dimensional arrays‘
are stored "by row," i.e., in general the right-most subscript is the
one that varies most rapldly as we proceed .to successive elements in
storage. (This is just the opposite of FORTRAN.)

In our implementation, the maximum number'of dimensions is 15.

For review, see LRM 47 and LRM 48 (skipping parts of the 1atter that

‘don t look familiar).

Array assignments.

.One array can be a551gned to another. An assignment statement is an

array assignment if the target variable is an array. The right-hand
side need not be merely an array varlable as we will see shortly, it
may be an expression.

In array assignment, the dimensions and bounds of the array value on
the right must exactly match those of the target variable. The assign-
ment is carried out by iterdting over the range of subscript values

(in some cases the compiler may generate a loop, in others it may

~generate a 'bulk move," but the effect is the same in either case).

Arrays as operands in expressions.

The rlght -hand side of an array assignment statement may be an array

eﬁpre551on Essentially, any of the operands may be arrays (having

e same dimensions and bounds as the target variable). The array

assignment is interpreted as an iteration over the (common) bounds of

3-3

all the arrays. Scalar operands are also permitted, the value of
a scalar operand being used in each implied iteration. (In fact,
the entire right-hand side may be a scalar expression, in which
case its value is assigned to all elements of the array target.)

See LRM 52.

Examples:
DCL A (3) FLOAT,
B (3) FLOAT;

A(1) = 1; A(2) = 0; A(3) = 1;
- B(1) = 3; B(2) = 4; B(3) = 5;
DCL C (3) FLOAT; r
C = A+ B; The elements of C have values 4, 4, and 6.
C = 0; All the elements of C have value 0.
C =B+ 1; The elements of C have values 4, 5, and 6.
C=C*%*A; Cis now 4, 0, 6. Observe that corresponding

elements are multiplied, i.e., matrix multiplication"
is not used. , ‘ .
C/C(1); C is now 1, 0, 6. This statement is equivalent to:

(@]
1]

C(1) = C(1)/C(1); Sets C(1) to 1.

C(2) = C(2)/C(1); Divides by 1!

C(3) = C(3)/C(1); Ditto! A
The ANSI standard will make this behave as

TEMP = C(1);

C(1) = C(1)/TEMP;

C(2) = C(2)/TE™MP;

C(3) =-C(3)/TEMP;

By the way, the declarations of A and B may be written in either of
the following ways:
DCL (A (3), B (3)) FLOAT;
and DCL (A, B) (3) FLOAT;
(See LRM 49.)

Array expressions can appear in contexts other than assignment state-
ments. In a subroutine call, an actual argument may be an array
expression, as we will see.in Lesson 5. Certain builtin fumctions
‘take only array arguments (Lesson 10).

The builtin functions and pseudo-variables shown so far can be given
array arguments; they return similarly structured array results, the
operation being performed on an element-by-element basis. Their use
in more complicated array expressions and assignments is consistent
with this. For instance, if A and B are congruent arrays, A = SIN(B).
assigns the sine of each element of B to the corresponding element of
A, and B = SIN(A)**2 + COS(A)**2 is an expensive way of assigning 1
to each element of B (the individual elements of A are sined and
squared then added to the squares of their cosines). Similarly, if
Z is an array of COMPLEX elements, IMAG(Z) 0 sets all of their
imaginary parts to 0. See LRM 50.

3.6.

3.7.

Array cross sections.

A special notation can be used to denote a generalized ''slice' through
an array. The cross section notation A(*,I) means the Ith colum of A.
This is a one-dimensional array with bounds equal to those of A in the
first dimension. Another example: B(*,2,*) means the plane coincident
with the 2nd colum of B. This is a two-dimensional -array with bounds
in the first dimension equal to those of B in the first dimension and
bounds in the second equal to those of B in the third.

Note that A(*,...,*) denotes the array itself. Whenever a reference to"
an entire array 1s written, it is usually goud documentary practice to
write it as an identity cross section, i.e., the whole array. This
practice will be followed subsequently in these notes.

The following statement assigns the Ith row of A to the Jth column of B:
B(*,J) = A(I,*%);

For this statement to be legal, the bounds of A in its second dimension

must be identical to the bounds of B in its first.

Since arrays are stored by row in PL/I, A(I,*) occupies contiguous
storage locations. A(I,*) is said to be a connected reference. B(*,J),
on the other hand, does not occupy contiguous storage locations. It is
said to be an unconnected reference. Only connected references are
permitted in certaln contexts, as we shall see later. See LRM 51.

Structures.

A structure, like an array, is a collection of related data items which
is a551gnea a name. Unlike an array, each constituent item also has a
name, and the constituent items may all have different attributes.

In fact, a structure is, in general, a hierarchical collection of "things."

The things may be thought of as organized in a 'tree." The elements at
the ends of the 'branches' have names and data type attributes. Other
"nodes'" in the tree represent intermediate levels of the hierarchy; they
have names, but not data types.

Consider the following pictorial representation ofva‘structure:

3-5

LENGTH WIDTH HEIGHT

L

BUILDING - ROOM SIZE WEIGHT COLOR

IDENTIFICATION — LOGATION /’/////EBQPERTiES IS_SECURE

SAMPLE =

The base elements of this structure, and typical attributes they
may have, are as follows:

IDENTIFICATION CHAR (50) VAR

BUILDING CHAR (3)

ROOM . CHAR (4)

LENGTH FLOAT DECIMAL (3)
WIDTH FLOAT DECIMAL (3)
HEIGHT FLOAT DECIMAL (3)
WEIGHT FLOAT DECIMAL (5)
COLOR | CHAR (10) VAR

IS SECURE BIT (1)

This entire collection may be referred to with the name SAMPLE;

SAMPLE is called a major structure name. Subsets of the collec-

tion forming subtrees may also be referred to by their names, viz. .
LOCATION, SIZE, and PROPERTIES. These are names of minor structures. -
Minor structures are indeed structures, but they are not independent;
they belong to a major structure.

Suppose wc have another structure, called EXPERIMENT. An experiment

can have a location (i.e., a building and a room), too, so we might

like to have a substructure (minor structure) of EXPERIMENT called

LOCATION having, in turn, the same constituents as the LOCATION in

SAMPLE. How do we distinguish between references to SAMPLE's

LOCATION and EXPERIMENT's LOCATION, if we should need to? By

writing a qualified name. The name SAMPLE.LOCATION refers to the

" LOCATION in SAMPLE, while EXPERIMENT.LOCATION refers to that in

EXPERIMENT. Similarly, SAMPLE.LOCATION.ROOM and EXPERIMENT.LOCATION.ROOM
distinguish between the two element variables called ROOM.

One need not always write all levels of structure qualification in a
qualified name. The only requirement is to avoid ambiguity. Thus,
SAMPLE.ROOM and EXPERIMENT.ROOM are sufficient, but ROOM alone is not.
If the above two uses of ROOM were the only ones appearing in a program,
- the compiler would tell you that ROOM (unqualified) is ambiguous.
However, if you declared a scalar variable ROOM as well, then ROOM

3.8.

3.9..

unambiguously denotes that and there will be no message from the
compiler.

It is good practice to write out qualified names in full, even when

"~ not necessary.

Structure declarations.

" A declaration of SAMPLE might look like:

DCL 1 SAMPLE,
2 IDENTIFICATION CHAR (50) VAR,
2 LOCATION,
3 BUILDING CHAR (3),
3 ROOM CHAR (4),
2 PROPERTILS,
3 SIZE,
4 LENGTH FLOAT DEC (3),
4 WIDTH FLOAT DEC (3),
4 HEIGHT FLOAT DEC (3),
3 WEIGHT FLOAT DEC (5),
3 COLOR CHAR (10) VAR,
2 IS SECURE BIT (1); o
The numbers in front of the names are called level numbers. The
indentation is purely documentary; what is subordinate to what else
is uniquely determined by the sequence of level numbers.

- Factoring of attributes can be used here. A part of this declaration

could have been written
3 SIZE,
4 (LENGTH, WIDTH, HEIGHT)
FLOAT DEC (3), :
as described at LRM 49.

For a review of structures so far, see LRM 53,

‘The LIKE attribute.

A convenience feature that saves writing when similar structures are
declared is the LIKE attribute. In the declaration of EXPERIMENT,
one need not write out the details of the minor structure LOCATION.
If it is just like the one in SAMPLE, one could write -

DCL 1 EXPERIMENT

2.LOCATION LIKE SAMPLE.LOCATION,

. . ‘ , o :
The structuring and attributes are copied from the_declaration of SAMPLE.

3.10.

3.11.

Although LIKE is a great convenience, it does’ have many restrictions.
And certain attributes are not copied. Its use is not generally
recomnended, primarily because it tends to obscure facts. (That's
the same reason for fully qualifying all names.)

LIKE is further described at LRM 54 and LRM 55.

Structure mapping.

Structure base elements are mapped consecutively in storage. However,
since consecutive elements may have differing alignment requirements
(due to having different attributes), a small amount of padding, which
is unused space, may be allocated between consecutive base elements.
The padding is not accessible to the program, and its existence does
not cause a structure reference to be an unconnected reference.

Since alignment requirements are a property of the hardware (i.e., the
implementation), the amount of padding may vary from one implementation
to another. But so does the amount of storage allocated to element
variables, as we have seen. The only time this is likely to be of
concern to the programmer is when he is trying to figure out record
léngths for certain kinds of I/O (Lessons 8-9). A compiler option,

AG, which is "on" by default in our batch compilers and "off'" in our
conversat10na1 ones, can be used to show how each aggregate is mapped.
The listing is part of the compilation listing. See CPG 1 and CPG 2,
CTUG 1, OPG 1 and OPG 2, and OTUG 1. o

The algorithm our compilers use for structure mapping is described at
LRM 56.

ALIGNED and UNALIGNED attributes.

Reference has been made above to alignment of data. It is possible

to tell the compiler not to worry about alignment requirements during
mapping or allocation of data. When so told, it assigns most things
to the next available byte boundary (bit boundary in the case of bit
strings). The main purpose of this is to achieve greater data packing
in aggregales; it.may also be of use in certain I/0 situations. To
avoid machine errors in addressing data which is not known to be on a
"natural" boundary, the compiler generates extra code to move it.to or
from a properly aligned boundary. This can increase program size and

-execution time, so the feature shouldn't be used indiscriminately.

3.12..

3-8

Two mutually exclusive attributes, ALIGNED and UNALIGNED, select
these options. These attributes may be specified for any variable.
They apply to every variable, and, when not specified, language

. defaults are taken. All of the Varlables we have talked about so

far are subject to this default, though we have had no reason to
concern ourselves with it yet.

Basically, the default is UNALIGNED for string data and ALIGNED for
everything else. Alignmment of character string variables is a moot -
point; they begin on the next available byte boundary in either case
(fixed-length strings do, at least). UNALIGNED bit strings begin on
the next availahle bit boundary, while ALIGNED bit strings begin on
the next available byte boundary. Because of this, arrays of, say,
BIT (1) variables will occupy only one-eighth of the storage under
the default (UNALIGNED) as ' they would were ALIGNED specified, but
addressing elements of the array will be much slower (in general,
most unaligned bit references or operations are performed by library

routines, while aligned references and operations are done by in-line
code) .

The alignment attributes may be specified at any level in a structure
declaration. They apply to all of the constituent element variables
subordinate to that level except those which are subordinate to an
intermediate level which also specifies allgnment in which case the
latter specification is used. For example, in
NCL 1 STRUCTURE ALIGNED,
2 A UNALIGNED,
3B ALIGNED
3C,
2D,
3 E UNALIGNED,
3 F;

_the base elements are B, C, E, and F. B and E are clearly ALIGNED

and UNALIGNED, respectively. C is UNALIGNED (inherited from A). F -
is ALIGNED (Inherlted from D, Wthh inherited ALIGNED from STRUCTURE)

Far reference, see LRM 57 and LRM 58.

Structure assigiments.

One structure may be assigned to another. The hierarchical structuring
of the two structures must match at all levels. (It is not sufficient
to have just the same number and types of base elements.) However,

the names of matching levels of the hierarchy need not match, nor need
the attributes of corresponding base elements match. The assignment

statement is "expanded" into a sequence of scalar assigmment statements;_fv4

3.13.

Example:
"DCL 1 81,
2 A FIXED BIN,
2B,
3 C FLOAT DEC,
3D CHAR (5),
E BIT (1),

2
182
2 LOAT BIN,
2
X CHAR (8),
Y BIT (20),
2 Z FIXED DEC;
S1 = S2; This is equivalent to
S1.A
S1.B.
S1.B.
S1.E
In each of these scalar assignments,
different conversions will occur.
DCL 1 S3, ‘
2 A FIXED BIN,
2 C FLOAT DEC,

2
\
w,
3
3
z

] UO]

2'D CHAR (5),
: 2 E BIT (1);
S1. = S3; This is illegal.
DCL 1 S4

2 M FLOAT BIN,
2 N CHAR (6) VAR
S1.B = S4; This structure a551gnment is equivalent to
S1.B.C = S4.M;
S1.B.D = S4. N :
In other words, a substructure (minor structure)
is a structure in its own right.

Structures as opcrands in expressions.

By analogy with array expressions, structure expressions are expressions
whose operands are congruent structures (congruent in the sense of
structure a551gnments) Using the declarations of the previous section,
one could write S1 = S1 - SZ, for 1nstance This is equivalent to

S1.A = S1.A - S2.V;

S1.B.C = S1.B.C - SZ W.X;

S1.B.D = S1.B.D - S2.W. Y;

S1.E = S1.E - 52.Z;
Also, S4 = 0 is equivalent to
S4.M

N

3.14.

3-10

Structure expre551ons may also be actual arguments in subroutine
calls (Lesson 5). The builtin functions described so far cannot,
however, take structure arguments.

See LRM 59.

Structures of arrays and arrays of structures.

The two kinds of aggregation can be compounded The f0110w1ng
is an example of a structure of arrays, i.e., a structure with
some arrays at the deepest level.
DCL 1 T1,
2 A (10) FLOAT
2 B,

C (-1:3) CHAR (6) VAR,
D (2,4) BIT (7) ALIGNED;
. A structure of arrays such as
DCL 1 12,
2B (3),
2C (4);
is mapped in storage as follows:
2.B T2.B(2)
2)\ T2.B(3)
1T2.C(1)
y | T2.C(2)
L T2.C - TZ.C(3)
T2.C(4)

An example of an array of structures is:
DCL 1 13 OR

2 U,
2V,

An array of structureb can be thought of as a structure w1th the

dimension attribute ur (what is, of course, the same thing) an

array whose components are not element var1ab1es but structures.

T3 is mapprd, and its components: named as shown below.

/T by
L) B ey
OB OR
SO OR)

3.15.

3-11

A reference to T3.U (i.e., T3(*).U) is allowed. This designates
the one-dimensional array whose four elements are T3(1).U, T3(2).U,
T3(3).U, and T3(4).U. Note that this is another example of uncon-
nected storage. There are, however, some apparently poorly docu-
mented restrictions on the use of cross sections of arrays of
structures. :

Since T3.U is an array, as described above, you might ask whether
it is possible to write T3.U(1), T3.U(2), T3.U(3), T3.U(4) instead
of T3(1).U, étc.. The answer is yes, and they mean the same thing.
This seems to be an ill-advised flexibility because it tends to
obscure the real structure of T3 (again: when things "'ain't what
they seem,'" it's bad). _

Compounding of aggregatlon can be carried to ridiculous, seldom
needed, extremes, as in
DCL 1T5 (5),
2 A (3),
3B,

c,

D (3),
2 E,

F,

G

(8);
).A(1).D(2) is a legal reference, and the same as

NN W T

for which T5(
T5.A.D(3,1,2).

See LRM 60 and LRM 61.

BY NAME assignment.

Another type of structure assignment, BY NAME assignment, is obtained
by adding the BY NAME option to an assignment statement, as in '
variable. = exphression, BY NAME; The structure operands in a BY NAME
assignment statement need not be congruent, as in'a regular structure
assignment. Basically, the statement is expanded into a sequence
(ultimately) of scalar assignment statements, with the expansion
proceeding deeper and deeper in the structure only as long as all
structure operands. have items with the same names at the level being

considered. For example:
DCL 1A, - | DCL 1M, DCL 1 U,
2 B, ‘ 21, 2 E,
3C, - 3K, 3F, -
3D, 3J, 4 G,
2 E, 2 F, g 2T,
3 F, 3G, 3J,
4G, 3H, 2 B,
4 H, 2 B, ' 3 C,
21, 3Q, 3Z;
3J, 3C,
3K; 2 E,
3G;

3.16.

A =M* U, BY NAME; is expanded as follows:
A.B = M.B * U.B, BY NAME; (1)

A.E = M.E *# U.E, BY NAME; (2)

(1) is further expanded to

A.B.C = M.B.C * U.B.C; (3)

(2) is further expanded into nothing, since while both A.E and U.E
have. a component called F, M.E does not. Thus, the original state-
ment is equivalent to (3). : '

See LRM 62 and those parts of LRM 63 that look familiar.

Equivalencing of data.

PL/I provides facilities comparable to FORTRAN's EQUIVALENCE state-
ment for equivalencing data. Before proceeding to specifics, we

should take a good look at some very important' fundamental dlffeleuLes
in the concept between the two languages.

The FORTRAN EQUIVALENCE statement is provided to allow storage to be
shared amongst several variables. In standard FORTRAN the user is
not . supposed to rely on two equivalenced variables always having the
same values by virtue of occupying the same storage. Some opt1m1z1ng
compilers, in fact, may omit store instructions in certain circum-
stances, actually destroylng value-equivalence between storage- ,
equivalenced variables. Because it need not guarantee value-equivalence,
FORTRAN permits equivalenced variables to have different data types.

The PL/I DEFINED attribute allows several variables to share the same
storage. In this-case, the language guarantees value-equivalence,
i.e., the equivalenced variables become fully interchangeable.

Because of this, PL/I does not permit variables having different data
types to be equivalenced. This is an important point to understand
because it makes the PL/I analogs of several common FORTRAN construc-
tions illegal. Other fucilities are provided in PL/I for looking at

. storage in different ways--legally, less conveniently, and by rules

that are inevitably 1mp1ementat10n-dependent (Lesson 10).

'Because‘PL/I guarantees value-equivalence as well as storage-cquivalence,

the use of the DEFINED attribute can inhibit certain optimizations that.
might otherwise occur.

There are three different types of defining (i.e. equ1va1enc1ng) in
PL/I, depending on what .else is written with the DEFINED attribute.
Each serves a unique purpose. You will see that defining is actually
much more powerful than FORTRAN equ1va1enc1ng

3.17.

3-13

Simple defining.

Simple defining merely allows storage belonging to one variable to
be referred to by another name. However, several flexibilities are
permitted. Simple defining is illustrated by several examples.

. DCL A FLOAT BIN (21);

DCL B FLOAT BIN (21) DEFINED (A);

B is ''defined on'' A. Note that the data type
attributes of A are repeated in the declaration
of B. A and B are variables with the same
‘location and value (recall Lesson 1) but

different names.

DCL C(0:9) FIXED DEC (5);

DCL D FIXED DEC (5) DEFINED (C(I+3*J));

The defined variable is D. The base variable, -
i.e., the variable on which it is defined, is
an element of the array C. Both defined
variable and base variable are thus scalars.
The element of C to which D corresponds is
determined dynamically; on each reference to

D, I+3*J is evaluated to determine the proper
element of C.

DCL E (10,10) FLOAT;

DCL F (10,10) FLOAT DEFINED (E);

This needs no comment. Note, however, that the
dimension attribute for F may not have been
written as (100), because defined arrays must
have the same dimensionality as their base
array. One of the other kinds of defining
permits ''remapping'' of arrays.

DCL G (2:6, 3:8) FLOAT DEFINED (E);

Though the dimensionality of defined and base
item must be identical, the extent of a dimen-
sion of the defined variable may be less than
the extent-of the corresponding dimension of the
base array (it cannot be greater). A reference
to G(£,4) is identical tov a reference to E(L,f).
A reference to G(1,5) is illegal, even though E
has a (1,5) element, because G doesn't. Note
that G is an unconnected array, although E is
connected.

3.18.

3-14

DCL H (10) FLOAT DEFINED (E(*,I));
The base array is the Ith column of E, which
is an array of one dimension with bounds
(1:10). H has identical structuring and is,

- in fact, synonymous with the Ith colum of E.
A reference to H(L) is the same as a reference
to E(L I)

ISUB defining.

ISUB defining allows an array (the base array), or part of an array,

"to be addressed through another array (the defined array). The

dimensions may differ because, in fact, an arbitrary mapping from
elements of the defined array to elements of the base array is
specified. ISUB defining is also best explained with'examples.

DCL A (4) CHAR (1);

DCL B (3) CHAR (1) DEFINED (A(1SUB+1));

In the subscript list for the base array, the "'1SUB"
is a funny kind of variable; it stands for the value
of the 1lst subscript expression in any reference to
the defined array. That is, B(K) is the same as
A(K+1). : Pictorially,

AT A TAG) [AG)
B(1) | B(2) | B(3)

DCL C (2,3) BIT (3) UNALIGNED;
DCL D (6) BIT (3) UNAL

DEF (C((1SuB+2)/3 MOD(lSUB 1 3)+1)), ,
Note the abbreviations. D is mapped into C as shown below.

CLD [CLDT L3
D(1) D(2) D(3)
C(2,1) | C(2,2)] C(2,3)
D(4) D(5) D(6)

DCL E (10,10) FLOAT;

DCL F (2,2) FLOAl' DEF E(I+1SUB-1,I+2SUB-1);

Note that the purcntheses u11uuud¢ub the base variable may
be omitted. F is a 2 x 2 submatrix of E, whose upper left-
-hand element (F(1,1)) is coincident with E(I). I must
have a value between 1 and 9 for a reference to F(*,%*),
i.e., the whole array F, to be legal.

3.19.

3-15

DCL G (6) BIT (1) ALIGNED;
DCL H (2,3) BIT (1) ALIGNED
. DEF G(10-3"1SUB-25UB);
G(1) [G(2) G(S) | G(4) G(5) G(5)
H(z,z) H(2,2) | H(2,1) | H(1,3) | H(1,2) | H(1,1)

DCL T (2,3) BIT (1) ALIGNED DEF (G(1SUB));

Note that although I has two dimensions, the subscript
list for the base variable does not use 2SUB. Thus,
I1(1,1), I(1,2), and I(1,3) are all synonymous with
G(1), and 1(2,1), 1(2,2), I(2,3) are all synonymous
with G(2). Is I connected7 Actually, because isub-
defined variables can have non-linear subscripting
functions, the concept is inapplicable. Since they
cannot always be determined to be connected, they
may not be used where unconnected variables are pro-
hibited (as we shall see later).

String overlay defining.

. String overlay -defining allows strlngs or aggregates of strings,

to be overlayed on other element or aggregate string variables of
the same str1ng type (i.e., character or bit). If the base
variable is an aggregate, it must be connected and unaligned.

This guarantees that consecutive elements of the base variable
will be mapped consecutively. Therefore, the defined variable,
which will also have contiguous elements because it, too, may not
be aligned, need not have the same structuring as the base variable.
Examples follow.

DCL A CHAR (10);

DCL B (10) CHAR (1) DEFINED (A);

The ith element of B, which is a CHAR (1) item, is
synonymous with the ith character of A, i.e.,

B(4) = SUBSTR(A,L,1).

DCL C CHAR (10);
DCL D (5) CHAR (2) DEF C;
D(4{) is equivalent to SUBSTR(C,2*(-1,2).

3.20.

3-16

2 X BIT (1);

l@&kﬂe——&B£;wﬂ§——&&D;%q

L | 1 i) 1
¥ T ¥ 1 T 1

\e—T.U.V——3|¢—1.U.W—s—T.x—|

DCL E CHAR (8);
"DCL F CHAR (6) DEF (E) POSITION (3);
The POSITION attribute may be used in string
overlay defining to denote the offset of the
first character (or bit) of the defined item
from the first character (or bit) of the base
item. If it is omitted, POSITION (1) is
assumed (no offset). F is the last six
characters of E.

DCL F CHAR (6) DEF (E) POS (I+1);

‘The POSITION attribute (note the abbreviation)
may contain an expression I must have a
value betworn 0 nnd 2; otherwicse a3 reference
to F would yield an equivalent reference to E

outside of its bounds, i.e., F is the same as
SUBSTR (E,I+1,6).

Determination of type of defining.

1f isub variables are used, isub defining is in effect. If the
POSITION attribute is used, string overlay defining is in effect.
Otherwise, either simplc dcflnlng or string overlay defining is
in effect, depending on whether or not the attributes of the
defined 1tem match those of the base item (if they don't, they
must satisfy the constraints for string overlay defining, of
course). These rules are summarized at LRM 64 and LRM 65.
Defining in general is summarized and complctcly described at
LRM 66 and LRM 67, respectively.

3-17

3.21; Homework problems

(# 3A)

(#3B)

Con51der the f0110w1ng declaratlons which may legally
appear together.
DCL 1A,
2 B

4 A :
To what does each of the following references refer?
Which are ambiguous? For those that are ambiguous,
which items could they refer to, and how would you
write unambiguous references to those items?

A

Fedda
00

D.C . .

D.A (tricky) ‘
Try to state a rule for determining whether a reference
1s ambiguous or not (dlfflcult)

Consider the declarations
DCL 1 S (3),
2 U,
-2V,
DCL 1T,
2. W (3),
2 X (3); I
Is S.U = T.W legal? If so, what does it mean? If not,
why not? Answer the same questions for the assignment
S=T. : ' ’

(#3C)

. (#3D)

(#3E)

(#3F)

3-18

Consider the declarations
DCL 1

’

A
2
2

2 X;
Determme ‘the expansion of
A =M, BY NAME;

Let A be a 10 x 10 array. Write a tsingle assignment
statement that will assign 0 to all the elements of
A. Write a single assignment statement that will

- assign 1 to the diagonal elements (only) of A.

Hint: figure out how to use isub defining to :
declare a one-dimensional array synonymous with the -
diagonal of A. Show the declaration. '

Let U be a 3 x 3 array. Show how you can use isub
defining to declare an array V which is synonymous
with the transpose of U. ‘ ’

Let A have the attributes CHAR (10). Show how you
can reverse the value of A (leaving the result in A)
using only assignment statements. You will need to

declare some auxiliary variables using isub defining.- |

and string overlay defining. Note that the base
varlablo in a DEFINED a.ttrlbute may not be declarPd

XonYandYonZ

4.

Block structure and scope of names.

4.

1.

External procedures.

A PL/I external procedure is a segment. of a program that
may be separately compiled. It is entirely analogous to a

FORTRAN "program unit." A FORTRAN program consists of one
program unit which is a "main program" and possibly other
program units which are "subprograms." 1In the same way,

a PL/I program consists of one external procedure which is.

a "main procedure" and possibly other external procedures.

In FORTRAN, subprograms (other than BLOCK DATA subprograms)
represent common sequences of code that need to be executed
logically at several different points in the overall program.
By packaging them separately, they need only be written

once. Control can be transferred to them from each point

at which they are needed. The external procedures of a

PL/I program, other than the main procedure, serve the same
purpose. '

As in their FORTRAN analogs, external procedures can either
be executed for their effect or for their returned value.
This use corresponds to the two kinds of executable FORTRAN
subprogram, subroutine subprogram and function subprogram.
As in FORTRAN, when they are executed for their effect they
are invoked by a CALL statement, and when they are executed
for their returned value they are invoked by a "function
reference" in an expression. The dynamic aspects of PL/I

‘procedures will be covered in Lesson 5.

A PL/I external procedure starts with a PROCEDURE statement
and ends with an END statement. In between comes the body
of the procedure, i.e., executable and declarative state-
ments. The minimum content of a PROCEDURE statement is an
entry label (i.e., a procedure name), a colon, the keyword
PROCEDURE (abbreviation: PROC), and, of course, a semicolon.
Example:

MYPROG: PROC;

Lots of other things can be hung onto a PROCEDURE statement.
If the procedure is to be invoked with some arguments, a
parameter list must immediately follow the PROCEDURE keyword.
(We will save .arguments and parameters for Lesson 5.)

Several other options may tollow it (or the PROCEDURE keyword,
if there is no parameter list).. The RETURNS option indicates

that the procedure will return a value and must be invoked
as a function reference; thus, a PROCEDURE statement with
the RETURNS option is the equivalent of a FORTRAN FUNCTION
statement. If the RETURNS option is -omitted, the procedure
will not return a value back to the point of invocation and
must therefore be invoked by a CALL.statement. Thus, a
PROCEDURE statement without the RETURNS option is akin to a
FORTRAN SUBROUTINE statement.

Another option is the OPTIONS option. This is the keyword
OPTIONS followed by a parenthesized list of keywords for
options. The function of the OPTIONS option is to provide

a language-defined (i.e., standardizable) way of supplying
implementation-defined options to your particular system.
(Thus, exactly what can appear inside the parentheses, and
the meaning of what appears there, is implementation-defined,
not language-defined.) One of the options that can be used
in our system is MAIN. It designates that the external
procedure is a main procedure. Example:

MYPROG: PROC OPTIONS (MAIN) ;

Note that a FORTRAN main program does not start with any
particular kind of statement; the absence of a FUNCTION or
SUBROUTINE statment as the first statement implies the
program unit is a main proqram. In PL/I, one and only one
of the external procedures of a program can have, and must
have, OPULLIUNS (MAIN).

Other items that can appear on a PROCEDURE statement will
be introduced at relevant places.

We will catch up with references for the .above material a
little later.

Internal procedures.

An internal procedure is a procedure nested inside another
procedure. Internal procedures may be nested inside external
procedures or other internal procedures. A procedure nested
inside another procedure (the "containing procedure") has

its matching PROCEDURE and END statements, and the body of
code between them, contained within the body of code
delimited by the containing procedure's matching PROCEDURE

and END statements. Example:

MAIN: PROC OPTIONS (MAIN) ;

SUBR: PROC;
/* OF PROCEDURE 'SUBR'*/

END; /* OF PROCEDURE 'MAIN'*/ .

Like an external procedure, an internal procedure is used

to package common code that needs to be executed at many
places. (within the containing procedure). . Like an external
procedure, it may be invoked for its effect, with a CALL
statement, or invoked for its returned value, via a function
reference in an expression. (The one shown above, because
it does not use the RETURNS option, presumably is invoked by
CALL.) An internal procedure may not be a main procedure.

Internal procedures can be used in simple ways analogous to
FORTRAN "arithmetic statement functions." However, they '
are far more general and their generality has no counterpart
in FORTRAN. Differences between internal procedures and
arithmetic statement functions may be summarized (at least
partly) as follows: ‘

(a) Internal procedures may be invoked by a CALL statement
or a function reference. An ASF is only invoked by a
function reference. , '

(b) In either case, they may or may not take arguments.

An ASF (like all FORTRAN functions) must take at least
one argument.

(c)- They may embody arbitrary code, using arbitrary logic.
An ASF is restricted to a single expression.

(d) They may invoke themselves recursively.

(e) They need not be placed, in their containing procedure,
ahead of executable statements or after declarations.

An overview of procedures (going a little beyond the above
material) is at LRM 68 and LRM 69. :

Scope of a declaration.

We saw in Lesson 1 that a declaration associates a name and
some attributes with a variable. We will soon see that
declarations can associate names and attributes with certain
kinds of constants, too, called named constants. So we will
just be general and say that declarations associate names
and attributes with objects. And when we say "declare a
name..." we mean "declare an object named...".

A DECLARE statement, i.e., an explicit declaration, is said

to belong to the procedure in whose body it appears (or "to

which it 1s internal®). Note that if a proccdure named

INNER is nested inside a procedure named OUTER, and a DECLARE
statement is written between the PROCEDURE and END statements
of INNER, then the declaration'belongs to INNER and not to
OUTER That is, an explicit declaration belongs to the '
"nearest" containing procedure.

The scope of such a declaration is the procedure to which
it belongs, including any contained (i.e., nested or internal)
procedures, excluding any nested procedures (no matter how A
deeply nested) containing another explicit declaration for an
object with the same name. The object declared is known

(by its name) in the scope of its declaration, that is, any
reference to the name in that scope is a reference to the
object. As we will see soon, a reference to the same name

in the scope of a different explicit declaration may or may
not be a reference to the same object.

See LRM 70.

Contextual or implicit declarations (recall Lesson 1),

i.e., those resulting from uses of names not explicitly
declared, belong to the containing exlernal proucedure. In
other words, the scope of a contextual or implicit declara-
tion is the whole external procedure in which the name is
used, excluding any internal procedure (and its descendants)
where the name is explicitly declared. See LRM 71 and

LRM 72.

Although we will not be considering arguments and parameters
of a procedure in detail until the next lesson, there are
some things to be noted with respect to the scope of a

parameter declaration. (A parameter in PL/I is what is
called a. "dummy argument"” in FORTRAN. The names appearing
in the parameter list of a PROCEDURE statement are the names
of parameters)

A parameter name may or may not appear in a DECLARE state-
ment in the procedure of which it is parameter (that. is,

it is not required to appear in a DECLARE statement). If
it does appear in a DECLARE statement there, it is explicitly
declared with the given attributes. If it does not, it is
as if it had appeared there in a DECLARE statement w1th no
attributes. This is sufficient to establish an explicit
declaration, w1th all of the attributes taken from the
applicable defaults. Thus, parameters can never be contex-
‘tually declared, that is, they never acquire attributes
based on the context of their use. See LRM 73 and LRM 74.

INTERNAL and EXTERNAL attributes; scope of a name.

There is' another pair of alternative attributes which may

be given to any variable. Like the ALIGNED and UNALIGNED
attrlbutes, they apply to every variable and if they are

not given to it explicitly one or the other will be acquired
by default:. These are the INTERNAL attribute and EXTERNAL
~attribute, collectively called scope attributes. Thelr
abbreviations are INT and EXT. Unlike the alignment
attributes, the scope attributes apply to named constants

as well as variables. .

An object declared with the INTERNAL attribute (explicitly
or by default) is associated with its name in the scope of
the declaration and nowhere else. Thus, two different .
declarations of the same internal name, in different scopes,
establish different objects which happen to be known by the
same name. S

The effect of the EXTERNAL attribute is as follows. All
declarations of a given name (say E) having the EXTERNAL
attribute, i.e., of an external name, are linked together

so that they refer to the same object, rather than to-
different objects. It is then required that all such
declarations (of E in this case) specify identical attributes.
The linking occurs at link-edit time.

The scope of a name (say N) can now be defined, as follows.
If a declaration for N includes INTERNAL, the scope of the
name is the scope of the declaration. The scope of an
EXTERNAL name N is the union of the scopes of its declara-
tions (all of which must be identical). See LRM 75 and
LRM 76. :

Consider the following example. The nesting of procedures
and the occurrences of declarations is shown first. We
then show nested areas representing the nested procedures,
using different shadings to show the different scopes of
declarations. Off to the side we show the distinct vari-
ables, each one shaded to show the scope of its name.

EXTPRCl: PROC;
DCL N FLOAT EXT;
INTPRCl: PROC;
DCL N FLOAT INT;
INTPRC2: PROC;
DCL N FLOAT EXT;
END;
INTPRC3: PROC;
END;
INTPRC4 : PROC;
" DCL N FLOAT INT;
END;
END;
INTPRC5: PROC;
END;
- END;

EXTPRC2: PROC;
DCL N FLOAT INT;
INTPRC61 PROC)
DCL. N FLOAT EXNT)
END;
END;

in EXTPRC2

N < :
EXTPRCL. N WS \
AN AN \
~ N
] INTPRC1 ~
N +++++++++ 4+ AN
N+ + RGN
‘\\\ ++// //// T+
I N\J+ +//_/ + + \
\++'++++++++ I 1
\+,+++++++++ sziﬁied
+ o+ + +
INTPRC3 ..
++++++++_+’_+,><——/’mINTP13C1.
\++++++++++ ++ 1t 4
+ + + + \
\++++++++++\ R
' + o+ Fr N
N + + |INTPRC4 + o+ \ Inte 1
e o o e s nterna
+ + + + :
\++--'-- -.'++ —={ N declared
\++++++++++\ in INTPRC4
\\ ++++++++++,\
DN NN AN
NSRS <
“NNTPRGS \ External.
\ Lo + N declared in
O \ EXTPRC1,
k \ . INTPRC2,
\ \ \ \ \ *| and INTPRC6
W
NN //
NN
EXTPRC2 L
IR
INTPRC6 o
Internal
N declared

‘Note that there are six_declarations (in EXTPRC1, 1NTPRC1,

INTPRC2, INTPRC4, EXTPRC2, and INTPRC6). Hence there are
six distinct scopes of de¢larations, each shaded differently.
The scope of the declaration in EXTPRC1l includes INTPRCS.
The scope of the declaration in INTPRC1l includes INTPRC3.

Three of the six. declarations (in EXTPRC1l, INTPRC2, and
INTPRC6) use the EXTERNAL attribute. Hence their declara-
tions are linked, i.e., they all declare the same variable,
the scope of whose name is the union of the scopes of the
three declarations. The other three declarations all use
INTERNAL. They thus declare three different variables, the
scope of whose names are the scopes of their respective
declarationg.

Language defaults for the scope attribute call essentially .
for INTERNAL for all variables. As we shall see soon, the

. default scope attribute for certain named constants is
" EXTERNAL while that for others 'is INTERNAL.

‘Note that if a structure 'is EXTERNAL, the structuring and

attributes of its components must be the same in all of

its declarations, but the names of its components may differ.
Within the scopes of different declarations, references to
corresponding components of the structure are references to-
the same storage, even though the names may differ. The
scope attribute may not be applied to the names of components
of a structure; their names are always of INTERNAL scope,
even when the major structure is EXTERNAL. See LRM 77.

Also note that parameters may not be declared EXTERNAL.
Defined variables (recall Lesson 3) may not be declared
EXTERNAL, even if the base variable is external. Names of
parameters and defined variables can only have internal
scope. -

Use of external variables.

External variables permit communication via "global variables"

.amongst several separately compiled procedures. The same
‘communication can always be achieved by passing arguments,

but external variables are cleaner in many situations. For
instance, one procedure may initiate a chain of calls say

ten levels deep. It may need to pass a particular argument-
all the way through this chain to the procedure at its end.:
Even if the intermediate procedures had no use for the data

item, they would at least have to pass it on to the next
procedure. They thus all have to be aware of its exist-
ence; all the declarations would have to be just right,
and so on. By using external variables, only the first
and last procedures in the chain would have to be aware of
the data's existence, and declare it.

It should be noted that each external structure declaration
behaves like a complete FORTRAN "named common" specification.
Even external scalars behave like "named common" blocks--with

just one item in them.

Procedure names; entry constants.

Let us now look at procedure names in more detail. We have
not yet acknowledged the fact that they constitute the:first
use of names that we have seen other than for variables.

P: PROC OPTIONS (MAIN);
Q: PROC;
END;
CALL Q;

END;

Let us look first at the procedure name Q. It appears as

a label on a PROCEDURE statement, and as the name of a
procedure to be called on a CALL statement. Q is said to be
the name of an entry constant. The value of this constant
is the procedure which it names (or, more precisely, the
particular entry point into it, since there may be others).

So that we may talk about that constant, we gave it a name,
Q (jJust as the FIXED DECIMAL(l) constant with value "one"
is denoted by 1). The appearance of Q in

Q: PROC;
1s a reference of the constant which serves to establish
its value. The appearance of Q in :

CALL Q;
is a reference of the constant which does something with
its value, i.e., it invokes the procedure which is the con-
stant's value.

Declaration of entry constants.

We have talked about entry values (values which represent
entry points) and entry constants (objects whose permanent

value is an entry value). Indeed, we will see later that
there are entry variables (objects whose changeable value is
an entry value). Thus, "entry" is a legitimate data type.

'In fact, the attribute used for declaring entry variables

is the ENTRY attribute, but more about that later. Unlike,
say, character strings, we cannot manufacture new values

of type "entry" by operating on old ones. Thus, the number
of different entry values that can exist at any moment during
the execution of a program is exactly the number of different
entry points of procedures that there are in it--each one
named by an entry constant. Recall that we earlier called
data that can be operated upon in expressions "problem data."
In contrast to that, entry values constitute the first of
many types of program control data that we will see.

We have seen how declarations associate a name with an object
(and also associate some attributes with it). - We have at
hand a kind of constant that has a name, which is an identi-
fier like a variable name. In fact, the association of that
name with the constant named is also an act of declaration.
In this regard, Q: PROC; constitutes an explicit declaration
of an entry constant named Q. The scope of the declaration
is the procedure containing the declaration, i.e., P.
Attributes furnished by this declaration are ENTRY (the data
type of the value) and INTERNAL (the scope o[the namc)--the
latter because the procedure Q is an internal procedure. By

~the same logic, P: PROC OPTIONS (MAIN); explicitly declares

P to be an ENTEPNAL ENTRY constant, EXTERNAL because P is
an external procedure.

Carrying this discussion a little further, we may ask how
we may know that CALL P; appearing in some other external
procedure {(say %) refers to this external procedure P. For
that to be the case, P musl be Known, in 8, Lo ke an extarnal
entry constant. How is that achieved? Answer: by the
declaration, in %, DCL P ENTRY EXTERNAL;. Note that this
establishes P as an external entry constant; looking ahead,
we may have external entry variables, but you have to do -
something extra to declare them. The scope of this declara-
tion is the procedure % (and, of course, descendants in which
the name is not redeclared). The scope of the name is the
union of the scopes of all its declarations, including the

one resulting from its use as a label on a PROCEDURE state-
ment. All these declarations associate the name with the
same object, an entry constant.

Begin blocks.

Procedures 'are one kind of block. Anther kind is the begln

block. A begin block is dellmlted by a matching BEGIN state-

ment and END statement, as in
BEGIN;

body of begin block

END;

A begin block is sort of an unnamed procedure that takes no
arguments and doesn't return a value. Its body is thus

‘executed for its effect. If it is "like a procedure" then

presumably it gets executed by being invoked. If it doesn't
have a name, by what do we call it to invoke it? The answer
is we don't need to call it, because we don't do anything
special to invoke it. It is "invoked" (let us just say
executed) when control reaches it in the normal way, for
example, after executing the preceding statement. Thus,

the BEGIN statement is executable, unlike a PROCEDURE state-

.ment (if control should reach a PROCEDURE statement from

above, i.e., after executing the preceding statement, the
procedure is not invoked; control skips to the first execut-

. able statement after the procedure).

Why then have begin blocks? Wouldn't the effect be exactly

. the same if we deleted a BEGIN statement and its ‘matching

END statement?

One reason fbr begin blocks is that they delimit scopes just

like procedure blocks do. In fact, everywhere we have used

the word "proocdurc" in terms vl the concept of scope of-a
declaration, we should have used "block." Note that begin
blocks may be nested inside begin blocks or procedure blocks,
and internal procedure blocks may be nested inside begin
blocks as well as other procedure blocks. At the outermost

level we still have external procedure blocks; there are
no "external begin blocks." We will see another 51gn1f1-

- cant use of begin blocks in Lesson 5.

See LRM 78'and LRM 79.

- The DEFAULT statement.

In Lecosgson 1 we said that the programmer can change the stand-
ard system defaults used to furnish attributes in implicit
declarations or to complete partial declarations. The
DEFAULT statement provides this facility. We will illustrate
it by examples. (The abbreviation for DEFAULT is DFT.)

DFT RANGE (*) FIXED BINARY

RANGE (*) says this DEFAULT statement applies to all
variables. TIf they have no data type attributes they. get
FIXED BINARY (irrespective of the first letter of their
name). If they already have a scale or a base attribute, -
but not both, the other is FIXED or BINARY as needed.

This default is inapplicable to any varlable that already
has both scale and base attributes.

DFT RANGE (B:D) BINARY VARYING;

Thls specification is only applicable to variables whose
names begin with B, C, or D. The attributes shown may
-seem to be in conflict with each other. They are just

a list from which is taken, in order, any attributes that
don't conflict with what the variable already has. If
BINARY is taken, VARYING won't be. If the variable
already has CHARACTER, BINARY won't be taken but VARYING
will he.

DFT RANGE (XY3) VALUE (BIT(8)),

This specification only applies to variables whose names
begin with XY%. If the variable has BIT but no length
specification, .the length spec1f1catlon acquired is the
value 8. Though we didn't say so in Lesson 2, one can-
write DCL XYZAB BIT;. The system default for string
length is 1. ‘ i

The order in which DEFAULT statements are processed is
significant. 1If a variable belonging to a particular block

4.10.

needs more attributes to complete its description, the
DEFAULT statements of that block are examined, in top to
bottom order, first. TIf its description is still incomplete,
the block, if any, that contains that block has its DEFAULT
statements examined, and so on out to the external procedure
block. Thus, we may say that DEFAULT statements have a

scope of applicability related to the block structure, i.e.,
the nesting properties of blocks.

kY

Considerably more can be done with DEFAULT statements. See
LRM 80 through LRM 82.

In the ANSI standard, the syntax and capabilities of the
DEFAULT statement are almost totally changed--for the better.
The applicability of DEFAULT statements may depend on the
attributes a name already has or doesn't have. Additional
attributes, such as DIMENSION, NONVARYING, STRUCTURE, .
CONSTANT, etc., are also provided for use in defining the
universe of. applicability of a given DEFAULT statement.

It is also possible to default attributes of NONE, which
will make it necessary to explicitly declare all required
attributes, thus eliminating the danger of misspelling a
name. And there are other useful and exotic things that
can be done with it.

Unanswered questions.

How do we declare entry variables? How may they be used
(other than in assignments)? (We know how entry constantc
are used.) See Lesson 5.

What are the requirements for argument/parameter matching?
Also in Lesson 5.

Homework problems.

(#4A) Multiple declarations are not allowed. {For a
definition of multiple declaration, see LRM 83.)
" If there are multiple declarations in any of the
following, identify them.

(#4B)

(a) P: PROC;
DCL X FIXED BIN;
Q: PROC;
DCL X FLOAT BIN;
. END;
END;

" (b) P: PROC;

DCL X FIXED BIN;
Q: PROC;
DCL X FLOAT BIN EXT:
END;
END;
(c) P: PROC;
DCL X FIXED BIN EXT'
Q: FPROC;
DCL X FLOAT BIN EXT;
END;
END;
(d) Same as (a), but with the addition of DFT RANGE
(*) EXT; just after the PROCEDURE statement for P.
(e). Same as (d), but with the DEFAULT statement o
‘ added just after the PROCEDURE statement for Q.
(f) S: PROC;
.T: PROC;
Ts PROC;
END;
END;
END;
(g) S: PROC;
T: PROC;
END;
T: PROC;:
END;
END;

Suppose two different external procedures, El and Ez
needed to.call a third external procedure, E3. They
would each, of course, contain a declaration such ab
. DCL E3J ENUIRY EXT:

What do you think would happen if you forgot to write
E3 and link-edit it 'in with E1 and E2? If you have
linkage editor experience, describe what you think
the linkage editor would have to say. Also see if you.

can give an answer purely in PL/I terms (hint: What

kind of object is E3? What is its value?).

(#4C)

Write a DEFAULT statement that will cause all vari-
ables not explicitly declared with a scale attribute,
and all variables declared with FLOAT but no pre-
cision attribute, to default to double precision
floating-point. Make sure that double precision will
be used, even for variables explicitly declared with
one of the base attributes. 1In.the case where neither
base attribute is explicitly declared, make BINARY
the default. What is the effect of your DEFAULT
statement on the following?

DCL J;

DCL X;

DCL U BINARY;

DCL V DECIMAL;

DCL F FLOAT;

5.

Storage class and block invocations.

5.1.

Storage allocation and initialization.

Storage allocation means the process of acquiring storage
for a variable. There are several ways this may be carried

. -out in PL/I, depending on choices made by the programmer.
. The choices range from having the compiler "assign" storage

essentially at compile time (like in FORTRAN) to taking on
full responsibility for saying when, during execution,
storage should be acquired for a variable (and when it

" should be released). The latter extreme is an example of

dynamic storage allocation. See LRM 84.

So far we have not been concerned with the process of storage
allocation. It is sufficient to have thought in FORTRAN

terms up to now.

Initialization is the process of assigning initial values to
variables. 1In FORTRAN this is. carried out with the DATA
statement and BLOCK DATA subprograms. There are facilities
for initialization in PL/I which are a little more general.
To handle the requirements for initialization when ‘storage
is allocated dynamlcally, initialization occurs when (and
each time) storage is allocated. :

Storage class attributes.

The storage allocation technigque to be used for a specific
variable is selected by declaring one of four alternative

storage class attributes for it. Storage class is a property

of all (or essentially all) variables. With its study we
will complete the analysis of properties (data. type, aggre-
gate type, alignment, scope, storage class) that all vari-
ables have. .

The four storage class attributes are STATIC, AUTOMATIC
(abbreviation: AUTO), CONTROLLED (abbreviation: CTL), and
BASED. The last three designate different types of dynamic
storage allocation. BASED will not be considered until
Lesson 11. Static, automatic, and controlled storage are

described separately below,

INITIAL attribute.

First we will consider the common aspects of initialization,
since it will be appropriate to consider certain aspects of
it which differ with the storage class as the 1nd1v1dual
storage classes are studied.

Initial values are speéified by the INITIAL attribute. The
attribute may be used for scalars, arrays, and structure base
elements. Its abbreviation is INIT.

For a scalar or structure base element, the form is

INIT (initial=-value). wnitial-value may be any constant, aund
in some cases it may be a variable reference or function
reference or even an arbitrary expression (if it is au

. expression it must be surrounded by parentheses).

Examples:
DCL N FIXED BIN (31) INIT (0)
DCL X FLOAT INIT (1);
DCL 1 STRUC, -
2 PART1 CHAR (3) INIT ('ABC'),
2 PART2,

.3 PART2A BIT (2) INIT ('01'B),

3 PART3B CHAR (4) VAR INIT ('');
DCL Y FIXED DEC (7,2) INIT (X);
DCL % PIC '9999' INIT ((N**2-14));

For an array one form is _
‘ INIT (Znitial-value, ..., initial-value)
i.e., a list of initial values, one for each array element.
The order corresponds to successive elements of the array
M"by row," i.e.; with thc right-most subscript varying mnst
rapidly. For example, to 1n1t1allze a 3x2 array A to
10

-3 3

8 -1
we would write ‘

pcL A (3,2) INIT (1,0,-3,3,8,-1);

The number of initial values given may be less than the
number of elements in the array (in which case elements at
the end remain unitialized), but it may never be greater

(excess values are ignored). To denote that. a partlcular
element is not to be initialized, an asterisk may be used
instead of an initial value. For instance, if we did not
need to, or care to, initialize the second row of A we could
have written .

DCL A (3,2) INIT (1,0,*,*%,8,-1);

A sequence of similar initial values may be "factored out"
and preceded by a parenthesized iteration factor, which
denotes how many times the following item or list of items
is to be iterated. Examples:
DCL A (10) INIT (3,(9)0); ‘
A(l) is initialized to 3 and the remalnlng elements
are initialized to 0.
DCL B (3,3) INIT ((3)(0,1,2)); -
Each row of B is initialized to 0,1,2.
DCL C (3,3) INIT ((3)(0,(2)1));
Each row of C is initialized to 0,1,1l.
DCL D (10) INIT (0,(8)*,0); '
The first and last values of D are initialized
to 0; the middle eight values are uninitialized.

‘The INITIAL attribute may be specified in a DEFAULT statement.
Note that standard system defaults do not cause initialization
of any variables. It is illegal to use a variable in a con-
text where its value is required before it is assigned a

value (either by initialization, by assignment, or by an

input operation). Under the Optimizing compiler, reference
to an uninitialized variable will access garbage, and unpre-

dictable errors may result. The ‘Checkout’ compiler, however,
is able to detect and report use of uninitialized variables

{which is a very common errar).

See LRM 85 and LRM 86.

Note that if A and B are similar arrays, it is not legal to
write, say, ,

_ DCL A (3,2) INIT (B);

even though it may seem intuitively clear. Any references
in the INITIAL attribute must be references to element vari-
ables (scalars), and expressions must be element expressions
(those that evaluate to scalar quantities).

Adjustable extents.

All of the array bounds and string lengths we have shown

so far have been expressed as unsigned decimal integer con-
stants. Syntactically, they may, in general, be expressions
(element expressions), but this is permitted only with certain
storage classes, as we will see below. An array bound or
string length which is not constant is called an adjustable
extent. 1In Lesson 11 we will see another type of variable
which can have an adjustable extent. .

Static variables.

Variables declared with the STATIC storage class attribute
are fully mapped and logically allocated a place in storage
at compile time. In fact, this storage is just a part of
the "load module" containing the program itself. 1Initial
values are assembled right into this storage. '

When a program is loaded, static storage--already- initialiééd,
if required--is brought in with it. Static variables reta1n
their assigned locations throughout execution.

In order to permit full mapping and initialization at compile
time, static variables cannot have adjustable extents, and
initial values and iteration factors in any INITIAL attrlbute
must all be constants. See LRM 87.

Example:
P: PROC;
DCL #CALLS FIXED BIN STATIC INIT (0);
#CALLS = #CALLS + 1

END:

. In this example, the static internal variable #CALLS is used

to record the number of times P is invoked. Because #CALLS
has internal scope (by default), it is not accessible to

the program outside of the procedure P. However, it. con-
tinues to occupy its storage location, and its value, even
when control leaves P. It still has. the same location and
value when control re-enters P at a later time. Thus, static
variables may be used to maintain a "history" across procedur

~calls.

Automatic variables.

Variables declared with the AUTOMATIC storage class attribute
are allocated, and initialized, whenever control enters the
block that declares them. The storage is freed when that
block terminates. ‘

This is one of the types of dynamic storage allocation.

‘Since storage for an automatic variable is not allocated and

initialized until a certain point during execution, it may
have adjustable extents as well as expressions in ‘the INITIAL
attribute.

Example:
P: PROC;
DCL (L,M,N) FIXED BIN°
L = 3; '
M= 8;
N = 6;
BEGIN;
DCL C CHAR (L) AUTO;
DCL B BIT (L+1) VARYING AUTO
DCL A (M,N) BIT (L**2) AUTO;
DCL X (N) INIT ((N)O) AUTO;
DCL ¥ (L,M)
INIT ((L)(l,(M 1)0)) AUTO;
END;
END;
When the begin block is entered, C is established as a char-
acter string variable of length '3 (the value of L). B is

.established as a varying-length bit string of maximum length

4. A is established as an 8x6 array of bit strings of
length 9. X is a 6-element array all of whose elements are

initialized to 0. (Note that if we had wrltten
DCL X (N) INIT (0) AUTO;
only the first element would have been 1n1t1allzed)} Y is

a 3x8 array whose first column is initialized to 1 and whose
remaining elements are initialized to 0.

Note that the determination of adjustable extents and initial
values is determined exactly at block entry time, before any
statements are executed in the block. Also, even though the
variables used in extent expressions may have new values
assigned to them in the block, the bounds and string lengths
won't change, ’

Note that, since storage for automatic variables is freed
when their containing block terminates, they may not be

used to retain a history across block invocations. The next
time their declaring block is entered they will be assigned
fresh storage, which may be 'in a different location. See
LRM 88. :

Automatic storage is primarily used for local (i.e., internal)
variables with adjustable extents. It is also essential in
recursive procedures, as we shall seé later in this lesson,
and re-entrant procedures (Lesson 14).

Initialization of autumatic variables is carried ont by
generated code. If they have adjustable extents, storage
allocation is also carried out by generated code. However,
if they have fixed extents they come essentially for free:
since the compiler knows their extents, it assigns them
consecutive locations in one contiguous area which is not

~allocated until the declaring block is entered. The alloca-

tions are "free" since each block will need such an area any-
way, for housekeeping, even if it has no automatic wvariables.

Controlled variables.

Variables declared with the CONTROLLED storage class attribute
are allocated, and initialized, upon execution of an ALLOCATE
statement naming them, and they are released upon execution

of a FREE statement naming them. The allocation and freeing

3 need not occur in the same block.

Controlled variables can have several simultaneous generations

of storage. If a controlled variable beiny allocated already
has an allocation (called a ¢generatioun), Lhat former alloca-
tion is placed on a stack. All subsequcnt references to the
variable are references to the newly allocated generation of
1t until a FREE statement is executed. At that time the
current" generation is released and the one on top of the
stack replaces it. :

Example:

DCL X CTL;

ALLOCATE X;

X =1; .

ALLOCATE X; Stacks previous X (having value 1).
X = 2; . .

Y = X; Stores the value 2.

FREE X; Unstacks previous X.

Y = X; Stores the value 1.

FREE X; There are now no allocations of X.

It is an error to refer to a controlled variable for which

'no allocations exist.

Controlled variables are the thing to use, obviously, whenever
you need a real "pushdown" stack, or LIFO (last-in-first-out)
stack. .

Since the controlled storage class is one of the dynamic
storage classes, controlled variables can have adjustable
extents and variable initializations. An ALLOCATE statement
for a controlled variable may well appear in a block different
from the one containing its declaration. There may also-
appear in that block declarations of variables having the
same names as ones used, for instance, in extent expressions
in the declaration of the controlled variable. Upon alloca-
tion, the variables accessed during the evaluation of extent
expressions are the ones "known" in the block containing the
controlled declaration; the values used, however, are their
current values, i.e., not necessarily the ones in effect when
the declaring block was entered. A homework problem will
illustrate this.

In reading LRM 89, you will see that it is possible to over-
ride extent expressions, etc., given in the declaration, by
using different ones in the ALLOCATE statement (for this
purpose you have to write out the attributes in the ALLOCATE
statement). When extents are given in the ALLOCATE statement
they may be omitted (replaced by asterisks) in the declaration.
Use of the features described in this paragraph is not recom-

mended because they are not carried over to the ANSI standard.
¢

Combinations of storage class and scope attributes.

Static¢ variables may have either internal or external scope.

Automatic variables can have only internal scope. Since
automath\varlables only "exist" while the declaring block

is active, it is not meaningful to link the scopes of
different declarations so that they refer to.the same auto-
matic variable. Of course, automatic variables may be refer-
enced in blocks contained within the declaring block (because
the scope of the declaration contains the nested block).

There is no way for the declaring block not to be active

when such a reference is made.

Controlled variables can havc cither internal nr external
scope. With controlled external, the whole stack of alloca-
tiones is "shared" amongst the scopes of the various external
declarations of the variable.

In Lesson 4 we stated that external variables can conveniently
be used for communication amongst several external procedures.
Now consider that external variables can have either static
or controlled storage class, but not automatic. Since static
variables can not have adjustable extents, if a variable com-
municated amongst external procedures by giving it external
scope (as opposed to passing it as an argument) needs to have
extents determined during execution, it will obviously have
to be controlled. Note that there may be no need for the
general stacking capability in this case, i.e., only one
generation of the controlled variable is ever allocated.

This, in addition to LIFO stacks, is an "appropriate" use of
controlled variables. ‘ '

If the storage class attribute is omitted from a declaration,
standard defaults will supply AUTO for internal variables and
STATIC for external ones. Since INTERNAL is the standard
default when the scope attribute is omitted, most variables
will probably end up being automatic., Since additional execu-
tion time is incurred for certain uses of automatic variables,
it may well be worthwhile to say DFT RANGE (*) STATIC; to
change the default.

For a review, see LRM 90 ignoring (for now) all discussion
of the BASED attribute.

Parameters.

Names appearing in a parameter list in a procedure statement
are names .of formal parameters ("dummy arguments" in FORTRAN).

The process of invoking a procedure makes the formal param-
eters synonymous with the actual arguments in a CALL state-
ment or function reference. By synonymous is meant that
they designate the same storage and the same value, as with
defined variables (Lesson 3). Hence, an assignment to a
formal parameter may be instantly perceived as a change in
the value of the actual argument, assuming it is a variable.
And there are no restrictions on that variable (the actual
argument) like those of FORTRAN; specifically, the variable
may be another argument, as in '
CALL F(A,A,B);
or it may be an external variable to which the invoked
procedure has direct access. The price of this flexibility
is inhibited optimization. For instance, suppose in F an
assignment is made to the first formal parameter. The com-
. piler must be aware that the second parameter, which is a
different variable in F, can have its value changed by that
assignment. :

Note that formal parameters do not denote local variables
which are assigned the value of the actual argument on entry
and which are assigned back to the argument on return, as in
FORTRAN (for scalar arguments). This has consequences that
wWill be seen when we consider multiple entry points, later.

There is also no restriction against assigning to a formal
parameter whose actual argument is a constant. In this case
the constant is protected because the calling procedure makes
a copy of it just before the call and passes the copy instead.

Parameters generally cannot be declared with a storage class
attribute. They don't have storage of their own; they share
the storage of the actual argument. In this sense, "parameter"
may be considered an alternative to the other storage classes.
An exception is discussed immediately below.

When a controlled variable is passed as an argument, either
the current generation of the variable or the whole stack of
generations may be considered passed, depending on whether
the formal parameter does not, or does, have the CONTROLLED
attribute, respectively. This is the one exception to the
above prohibition of storage class for parameters. It is an
error -to pass a non-controlled variable to a controlled
parameter. Note that controlled parameters are not permitted
"in the ANSI standard.

Review and extension of DEFINED attribute.

Before proceeding with the sfudy of parameters we shall look
again at defined variables, first introduced in Lesson 3.

The first point to be made is occasioned by the comment
above that parameters don't have storage class. Neither
do defined variables. They share the storage of their base
variable. DEFINED, like "parameter," may be thought of as
an alternative to storage class. ’

The second point to be made is that defined variables, like
variables o6f any of the dyunamic storage clacocecc, can have
adjustable extents. The extent expressions, like those for
automatic variables, are evaluated on cntry to the declaring
block. Consider the following example: °

J = 3; Note: In the ANSI standard,
K=5; declarations of defined and
L=17; auto variables may not refer-
BEGIN; ence other defined or auto
DCL A (J,K,L) FLOAT; variables declared in the
DCL B (K,J) FLOAT ' same block. Hence, the

DEF A(2SUB,1SUB,I); declaration of B is in error.
: : It is corrected by enclosing
it in another begin block

END; ‘
In the begln block A is a 3x5x7 array. B is a 5x3 array
made coincident w1th the transpose of the I-th plane of A.
While the values of K and J are determined for purposes of
ascertaining B's extents once, on entry to the begin block,
the extents not subsequently tracking any changes in the
values of K and J, I is not evaluated at block entry but
rather on every reference to B. See LRM 91.

Argument/parameter matching requirements.

As you might expect by now, arguments and parameters must
have the same data type, i.e., it is illegal to pass a
floating-point argument to a fixed-point parameter, illegal
to pass a CHAR (4) argument to a BIT (32) parameter, and

so forth. You should expect this because of the matching
requirements we have seen for defined variables and .
external variables. 1In all cases, the reason is to guarantee
identical semantics for all implementations of PL/I; it just
cannot be done when one is allowed to relax these rules.-

-Suppose a parameter is declared FIXED BIN (15). If one.wants
to pass the constant "one" to this parameter, can one write
"1" for the actual argument? After all, "1" as written is
FIXED DEC (l1). The answer is yes, if. If you tell the
compiler what kind of value the invoked procedure expects.

If you don't, it will just pass a FIXED DEC (1) constant

and errors surely will result.

Actually, it is necessary to provide the compiler with
information about the invoked procedure's parameters, in the
calling procedure, only when the procedure being called is
an external procedure. An entry declaration is used for
this purpose. The reason it is not necessary (in fact, not
allowed) for internal procedures is because in this case the
compiler can look inside the procedure to be invoked while
it is compiling the calling procedure, and it can thus find
out what attributes are requlred

One essential freedom permittcd in these otherwise stringent
matching requirements in that array bounds and string lengths
of parameters need not be specified as unsigned decimal integer
constants. (They may be, however, and then they must agree
exactly with the array bounds or string lengths of their
actual arguments.) These extents can be expressed as
asterisks, which means that the extent of the formal parameter
is inherited from the actual argument. This permits arrays
with different bounds (but the same number of dimensions),

or strings with different lengths, to be passed as arguments,
at different times, to the same formal parameter.

For example: '

DCL S1 CHAR (5) INIT (' AAAAA)

DCL S2 CHAR (3) INIT ('BBB');

CALL INTPROC)S1):;

CALL INTPROC(S2):

INTPROC: PROC (S);

" DCL S CHAR (*);

I = LENGTH(S);

END;
The first time INTPROC is called, its parameter, S, behaves
like a CHAR (5) variable; in particular, 5 is assigned to I.
On the second invocation, S behaves like a CHAR (3) variable
and 3 is assigned to I.

Suppose we pass arrays with different extents to an array
parameter with asterisk extents. How are we to ascertain

the bounds of the parameter (i.e., those of the actual argu-
ment), if we should need .to (for instance, to iterate over
all elements of the array)? Certain builtin functions, in
the category called "array handllng builtin functions," serve
. this need.

If A is an array, HBOUND(A,t¢) is the upper bound ("high
bound") of A in the 7-th dimension. < may, in general, be

an expression, but it is usually a constant like 1 or 2.
Similarly, LBOUND(A,z) is the lower bound of A in the Z-th
dimension. DIM(A,Z) is equal to HBOUND(A,%z)-LBOUND(A,?Z)

+ 1, i.e., it is the number of elements in the i-th dimension
of A,

Example:
.P: PROC (A),
DCL A (*,*) FLOAT; .
DCL B (LBOUND(A,2): HBOUND(A,2))
FLOAT DEF A(I,*);

END; :
A is a two-dimensional array with bounds in both dimensions
inherited from the actual argument. B is defined on the I-th
row of A; in its one and only dimension, it has bounds equal
to those of the second dimension of A. .

Note ‘that "asterisk extents" are a type of adjustable eéxtent.
It is the only type permitted in:parameter declarations,
i.e., it is illegal to write :
P: PROC (A,I,J);
DCL A (I,J);

The FORTRAN programmer converting to PL/I must make a con-
scious effort not to think about array parameters.in terms
of the address of the first element. Array parameters can
only be associated with array arguments; they must have Lhe
same number of dimensions and the same bounds in each dimen-
sion. It is never necessary to pass the bounds separately.
It is just as illegal to refer outside the bounds of ‘a
parameter array as it is to reference outside the bounds of
any array. , :

Entry declarations. ' ‘

In Lesson 4 we saw that the ENTRY attribute can be used in
a declaration to declare a name as that of an external

procedure (i.e., an external entry constant). The declara-
tion may also describe the attributes of the formal parameters
of the external procedule.

Example:

DCL F ENTRY (FIXED BIN (15)) EXT; .
This says that F is an external entry constant, and that the
procedure F has one parameter, which in F is declared as
FIXED BIN (15). Having written the above declaration, you
can now write CALL F(l); without fear of having the wrong
data type for the actual argument. The compiler has the
information it needs to subutltute a FIXED BIN (15) coenstant
with value one. :

The conversion of argument type to parameter type occurs when-
ever it is necessary. For instance, in

' DCL J FLOAT BIN (10);

CALL F(J); _

J is converted from FLOAT BIN (10) to FIXED BIN (15). The
- result is placed in a "temporary," sometimes called a "dummy"
in PL/I, and it is the temporary which is passed as an argu-
ment. In this case, assignment of a value to the parameter
of F will not cause the value of J to change, because the
parameter is not associated with J but rather with an auxili-
ary variable containing the converted value of J. The compiler
tells you whenever ‘it creates a "dummy" for an argument in
order to get the matching required.

As you read LRM 92 and LRM 93, you will see that the descrip-
. tions for individual parameters may be omitted (replaced by
asterisks), in which case it is assumed that the argument as
passed is correct for the parameter (it is an error if it
isn't).. Indeed, the whole list of parameter descriptions,
and their enclosing parentheses, may be omitted (with the
same assumptions). However, it is good practice to declare
the parameter attributes of external procedures always, and
the ANSI version requires this. -

External entry constantsa must be declared in an entry
declaration, even if there are no parameters to describe.

You might well ask why. If a name appears in a CALL state-
ment, as in CALL SUBR, or in function reference context, as

in A=B+SIZE(C), why is not that name assumed to be. an external
entry, as in FORTRAN, when no array declaration (in the

latter case) or internal procedure (in either case) (in
FORTRAN this would be an arithmetic statement function) were
observed by the compiler? The answer is: to permit growth

of the language in the area of builtin procedures. (In

Lesson 12 we will see that there are some implementation-
defined builtin procedures that are subroutines, i.e., to be
invoked by CALL statements.) What would happen if SIZE (as
in the above example) were to be added to the language as a
builtin function tomorrow? If SIZE could be an external entry
without declaration, then the meaning of the program would
change after SIZE is added as a builtin function. (Though

it has not been emphasized, builtin functions generally do
not have to be declared. Exceptions to this rule are treated
in Lesson 10.) By declaring SIZE as an external entry, you
are prolecled even if BIZE is added as a builtin functlon
tomorrow.

The CONNECTED attribute.

" The CONNECTED attribute may be specified for aggregate

parameters. In general, the compiler may not assume that

a parameter which is an aggregate is connected. For example,
since arrays are stored by row in PL/I, passing a column,
such as A(*,I) to a one-dimensional array results in the
parameter being associated with unconnected storage. Even-
if the parameter is a structure, it can refer to unconnected
storage! A case in point is the passing of an element of an -
array of structures. The CONNECTED attribute tells the com-
piler that the associated aggregate argument actually is in
connected storage. Besides leading to certain efficiencies,
this information confirms a conditionh which is a prerequisite
for certain kinds of I/0 involving aggregate parameters
(Lessons 8-9) and for string overlay defining (Lesson 3) on

a parameter base. -

When the CONNECTED attribute is specified in a parameter
description in an ENTRY attribute, for instance

DCL P ENTRY ((*) FLOAT CONNECTED) ;
which says that P expects a one-dimensional connected array
of FLOAT elements, a copy vl the argumecnt is made in
connected temporary storage if the argument, as supplied,
is not connected. See LRM 94. .

'CONNECTED is not a part of the ANS1 standard. If you use

the features cited above as requiring connected references,
it is assumed that the connected condition is met; other-
wise, the program is in error.

Function references and the RETURN statement.

When a procedure is invoked as a subroutine reference, it
may return to the point of invocation either by executing

a RETURN statement that does not include an expression for
the returned value, or by executing (i.e., reaching) the END
statement of the procedure.

When a procedure is invoked as a function reference, the
latter mechanism is not available to it. It must execute a
RETURN statement that includes an expre531on giving the
returned value, as in

RETURN (B**2-4*A*C) ;
Note that the mechanism for specifying a returned value is
rather different from FORTRAN. Instead of assigning to a
variable which has the name of the function, then executlng
a RETURN statement later, we carry out both functions in a
single statement.

Returned values have data types. Both the calling and the
invoked procedure must agree on the data type of the returned
value. The rule is that the data type is inferred from the
first letter of the procedure's name (more precisely, the
name of the entry point), in the same way as for undeclared
variables and using the same defaults, unless specified '
otherwise. There are two places where other attributes may
be specified.

The first place. is on the PROCEDURE statement, in the RETURNS
option, '

P: PROC (X) RETURNS (CHAR (40));
specifies, for example, that P returns a value of type
CHAR (40). If you happen to write RETURN ('NONE') the given
value will be converted from CHAR (4) to CHAR (40), in the
invoked procedure, to conform to the CHAR (40) that you
have said must be returned.

The second place is in an entry declaration (for an external
. entry) on the calling side. The difference between
DCL P ENTRY (FIXED) EXT:
and
DCL P ENTRY (FIXED) RETURNS (CHAR (40)) EXT;
when P is invoked in function reference context, as in
S=1T || P(5); '
is that in the former case the attributes assumed for the
value returned depend on the first letter of the name (and
will be FLOAT DEC (6) in this case), whereas in the latter
case they are known to be CHAR (40).

5.15.

.In the ANSI version, the RETURNS option and RETURNS attri-

bute can be used if and only if the procedure is invoked in
function reference context, and they must be used then.

In the current language a returned value must be a scalar.
Furthermore, if it is a string it must have a non-adjustable
length (or maximum length, in the case of varying-length
strings). In the ANSI language, a returned value may be

an array or a structure and it can be specified to have
adjustable extents (using the asterisk notation only).

See LRM 95.
Recursive'procedures.

Recursive procedures are allowed. They must be identified
as recursive by the RECURSIVE option on the PROCEDURE state-
ment. The familiar example of FACTORIAL is given below.
(It uses an IF statement, which we will encounter in
Lesson 6.)
FACTORIAL: PROC (N) RETURNS (FIXED BIN (31)) RECURSIVE'
DCL N FIXED BIN (31);
IF N > 1 THEN RETURN (FACTORIAL(N-1));
ELSE RETURN (1);
END; :

If a recursive procedure needs any local variables, it is
essential that the automatic storage class be used for them.
The essential feature of a recursive procedure is that'
several invocations of it are active simultaneously. If
STATIC is used for local variables, all invocations would,
share the one "generation" of the static variable. With
AUTO, each active invocation has its own "generation" of
the local variable. o '

Multiple entry points and the ENTRY statement.

Like FORTRAN, PL/I provides for multiple entry points into
a procedure. The ENTRY statement is used to designate a
secondary entry point. The ENTRY statement looks basically
just like a PROCEDURE statement except that the ENTRY key-
word replaces the PROCEDURE keyword and certain options are
not allowed.

The different entry points of a procedure can have different
parameter lists. It is incorrect to refer, in the body of
a procedure, to a parameter appearing in some parameter list
but not the one at the entry point through which entry was
made. Example: ’

P: PROC (A,B,C);

Q: ENTRY (B,C,D);
pCcL (aA,B,C,D)...;
body of procedure
END;
If entry is made at P, references to A, B, and C are legal;
references to D are 1llegal. If entry is made at Q, refer-

-ences to B, C, and D are legal; references to A are illegal.

Note that this is in contrast to the FORTRAN technique of
establishing various values in parameters of the procedure

by entering once through an "initialization" entry point with
a long parameter list, and then making subsequent "high-speed"
entries through a different entry point having a much shorter
parameter -list, with subsequent references to the earller :
parameters.

The different entry points may return values with different
attributes. When a RETURN statement is executed, a "switch"
is tested by the compiled code to determine which entry point
was used; the code may need to branch on the outcome of this
test to different sections of code that convert: the returned
value to the appropriate attributes. Example:

P: PROC (X) RETURNS (FIXED),

Q: ENTRY (X) RETURNS (FLOAT);

RETURN (X/31Y);
END;
The value of the expression X/3+Y, which has certaln
attributes, will be converted to FIXED or FLOAT depending
on whether entry was made at P or at Q.

See LRM 96.
Generic procedures.

Recall in Lesson 1 we said that the mathematical builtin
functions were "generic" in the sense that they could
accept, under one name, arguments with a wide range of
different attributes.

It is possible to give the appearance of calling a user-
defined procedure with different types of arguments (maybe
even different numbers of arguments) in the different calls.
The name called is not itself an entry constant, that is,

a label on some procedure. .It will be replaced by an entry
constant selected from a list, based on the numbers and
types of the arguments. The GENERIC attribute is used for
this.

Example: /
DCL .E GENERIC
(E1 WHEN (*),
E2 WHEN (*,*));

DCL El1l ENTRY (FIXED) BEXT;

DCL E2 ENTRY (FIXED, FLOAT) EXT; .

A reference to E with one argument, as in CALL E (A+B);
resolves to El, i.e., the statement is the same as.
CALL El1(A+B). A reference to E with two arguments,
as in CALL E(A,B); resolves to E2,i.e., the state-
ment is the same as CALL E2(A B). -

DCL F GENERIC

(F1 WHEN (FIXED BIN),
F2 WHEN (FLOAT BIN),
F2 WHEN (FLOAT DEC)):

DCL F1 ENTRY (FIXED BIN: (15)) EXT;-

DCL F2 ENTRY (FLOAT DEC (6)) EXT;

CALL F (N+1l) resolves to Fl1 (if N is FIXED BIN)

CALL F (X+1) resolves to F2 if X is either. FLOAT BIN
or FLOAT DEC; conversion of the argument from FLOAT
BIN to FLOAT DEC occurs in the former case. ‘

Note that generic selection is carried out statically, i.e.,
the resolution occurs at compile time. See LRM 97.-

Review of procedure invocations.

For a complete review of the dynamic aspects of procédures;
see LRM 98 (which covers some material we will see later)
and LrRM 99,

5.19.

Homework problems.

(#5A)

 (#5B)

(#5C)

(#5D)

(#5E)

Assume S is a square array of CHAR (1) elements with
N rows and columns (N > 1). Write a declaration for
S that initializes the elements on the perimeter of
the array to '*' and those in the interior to 'W'.

What value is assigned to I?
DCL (I,N) FIXED BIN;

N = 3;

BEGIN;
DCL A (N) FLOAT AUTO;
N = 7;
I = HBOUND(A,l);

END;

Would the result be the same if the first two state—
ments after BEGIN were 1nterchanged° -

What values are assigned to I?
DCL (I,N) FIXED BIN;
DCL-A (N} FLOAT CTL;

N = 3;
BEGIN;
DCL N FIXED BIN;
N = 4;
ALLOCATE A;
I = HBOUND(A,l);
N = 5; ’
I = HBOUND{A,l);
. END;
N = 6;

I = HBOUND(A,1l);
ALLOCATE A;

I = HBOUND(A,l);
N = 7;

FREE A;

I = HBOUND(A,1);

Write a procedure, to be. called as a subroutlne,
which accepts a square array of any 51ze and sets all
the diagonal elements to 0. You won't need to code
any loops.

Suppoée you are designing a procedure to carry out
some transformation on an array. Suppose this trans-

- (#5F)

(#5G)

5~-20

formation requires "workspace" which is a function of"
the size of the array. Discuss how you would solve
this problem in FORTRAN (if you have FORTRAN experi-
ence) and in PL/I.

Write a procedure, to be called as a subroutine, which
accepts a square array of any size and assigns to that
array its own transpose. Do it without coding any
loops. '

Can you guess why the expression for the returned
value in a RETURN statement must be surrounded by
parentheses? That is, why is RETURN (A+B) required?
Why not just RETURN A+B? Hint: Suppose the outer
parentheses could be omitted in RETURN ((A+B)=1l).
What problems would be encountered? -

6.

(a) Contrecl constructs
(b) Conditions

IF Siatemenﬁ

The IF statement may be used to achieve conditional execution of a
statement or group of statements. :

There are two forms:
(1) IF expression THEN true-part;
(2) IF expressdion. THEN twue-pant;
' ELSE {alse-part; ' .

fwe-part and false-part are either single statements or dgroups of
statements, as we shall see below. They may be other IF statements,
begin blocks, etc. .)

expression . is evaluated and converted, if necessary, to a bit string
value. If any bit in the bit string 1is a 1, the Suwerpat is
executed, after which control goes to the next statement (case 1) or
the statement after the {false-part (case 2). If no bit 1is a 1, the
twe-pant 1is not executed. In case 1, control arrives at the next
statement without executing the twe-part. In case 2, the . false-parnt
is executed, then control goes to the statement after that.

The most common form for expression is a comparison operation, which
yields a BIT(1) result. Example: ' '

IF A < B THEN A = A + 1, :
Often, expression is a 1logical expression representing logical
operations on bit strings (usually obtained from - comparisons).
Example: : ‘

IF I <10 { J = I THEN CALL FOUL;

ELSE RETURN (J+2);
Another useful form is illustrated in

IF L THEN ...: . ,
where L is a bit string variable (BIT(1) probably) given a value in a-
previous assignment.

In Lesson 2 we saw bit string expressions in the context of
assigrment statements. Although the same kinds of expressions. are
employed in an IF statement, the code generated may be '‘quite

6.2.

different since here it has as its goal a conditional branch. An
optimizing compiler may not in fact need +to evaluate the whole
expression in order to determine the end result. ' However, that is
not something you should count on, because the language definition

-does not insist that the code stop evaluating an expression as soon

as the result is known; it merely permits it., Hence, the statement
IF I <= HBOUND({X,1) & X(I) = Y THEY ...
is at best risky; the proper way to. code this is
IF I <= HBOUND(X,1) THEN
" IF X(I) = Y THEN...;

It should be noted that the expression in the IF clause mnust be an
element expression (i.e., a scalar-valued expression). That means
that if A and B are congruent arrays, it is not possible to write IF
A = B THEN ...; (Recall +the discussion of aggregate expressions from
Lesson 3.) The result of A = R is a congruent array of BIT (1)
elements, each element having the bit value 1 or O depending on
whether or not the corresponding elements of A and B are equal.)
Certain builtin functions, which we shall see in Lesson 10, can be
employed to achieve what is probably desired here.

When IF statepents are nested, an ELSE clause is assumed to belong to
the pnearest "unmatched" THEN clause. That is, in ‘
IF B THEW :

IF C THEN action-1;

ELSE action-2; - : ‘
action-2 is executed when B is "true" and C is "false",' (Neither
action is executed if B is "false".) If it is intended that the ELSE
clause match the other THEN clause in this example, one solution is-
to match the inner THEN clause with a null statement, which is just a
semicolon. (You wouldn't believe how fast the generated code for a
null statement is!). Example:

IF B THEN
IF C THEN action-1;
ELSE;
ELSE action-2; D
Now action-? 1is executed if B is "false". If B is "true" and C is
"false'", nothing is executed.

See LRM 100 and LRM 101.
Non-iterative DO groups.

If either the bwe-part or galse-part ‘of an IF statement must be more
than a single statement, a pon-iterative DO group may be employed, as

in .
IF A > B THEN DO;
TEWMP = Aj;
A = B:
, B = TEMP;
END; . . : . '
The 1list of statements bracketed by DO...END becomes a single
syntactical unit that may be used wherever a single statement is

.allowed.

Thée problem solved earlier with the null statement may equally well
have been solved with a non-iterative DO group as follows-
IF B. THEN DO; . .
IF C THEN achon 1
END;
- ELSE action-2;

The difference between a non-iterative DO group and a begin block
(which could also have been used to achieve the desired statement
grouping) is that a DO group does not alter the "block structure,"
i.e., does not introduce a nested block inside which declarations may
have their own local scope. The 1limited ©purpose it 'serves ‘is
implemented much more efficiently than would be the case with a begin
block, even one devoid of local declarations and other things that
require special housekeeping actions during execution. ‘ :

See LRM 102.
Iterative DO groups.

There are two kinds of DO grouﬁs that ptovide for repetitive
execution of a group of statements, the WHILE-only DO _group and the
controlled (or 1ndexed) DO group. .

WHILE~-only DQ groupu.

This form of DO group is as follows:
DO WHILE {expression);
body of group
END; , .
The body of the group (a statement list) is executed as long as the;

o

expression evaluates to "true". The expression . is evaluated at the
top of the loop, so that if it is initjially "false" the body of the
loop is not executed at all. The expression 1is converted, if
necessary, to .a bit string value and interpreted to mean true or
talse exactly as in IF statements. That is, if any bit has the bit
value 1, it means true; otherwise, it means false.

Exanmples:

DO WHILE(A < B & -~DONE);

.

END;
DO WHILE('1'B);

END;

The second DU §Eoup will be executed forever. - Presumably, provision
is made to bhreak the loop by executing a RETURN statement somewhere
inside the 1loop which will immediately return control from the
containing procedure to its point of invocation.

See LRM 103.
Controlled (indexed) DO groups.

In its simplest,fofm this is analogous to the FORTRAN DO loop. For
example, o § :
DOI = 1 TO K:

END; ') . o
says that the body of the loop is repeated K times with I having the
values 1,...,K. Note that it K is 0 or negative, the body of the
loop is not executed at all since. the test is performed at the top of
the loop.- ' :

—— mem e —

than 1. The increment may be negative, in which case the 1loop
terminatés when the control variable (I in the example) exceeds the
final value in the neqgative direction; a simple, useful example is

DOI =K TO 1 BY -1;

END;

The initial and final values, and the increment, may be specified by
arbitrary element expressions; they need not be restricted to
constants or variables. The expressions are evaluated once and the
saved values are used in the test each time through the loop.

Another useful form is to employ the BY clause but not the TO clause.
This designates an infinite loop which must be broken by a RETURN
statement or a branch to a point outside the loop (as in DO
HHILE(*1*B) ;). . ' :

To any of the above forms may be added a WHILE clause (which has the
meaning as in a WHILE-only DO group). The while-test is performed
after thz comparison of the control wvariable with the final value,
and of course only if the final value has not been exceeded. If the
while-test fails, the loop is terminated. Example:

DO.I = 1 TO HBOUND(X,1) WHILE (X(I)=Y);

END; :)
This Yoop, which has an empty body, terminates either when I exceeds
the upper bound of X (with all elements of X equal to Y) or when an
element of X not equal to Y 1is found. By the way, the <control
variable may be used below the loop, after its termination; it has
the value it had when the loop terminated (e.g., in this case either
HBOUND (X,1) +1 or the smallest value £ between 1 and HBOUND(X,1) .such
that X(<) is.not equal to Y).

The different - forms shown above for what can come after the
assignment symbol in the DO statement are all referred to as torms of
a single DO specification. In general, any number of separate DO
specifications may be written. When one is "exhausted," the next one
is begun. For exanmple: :

.bO I = 1 70 J-1, J+1 TO K;

END;

Here we have two specifications, each of the form d to b; The effect.

of the above is to execute the body of the loop for all values of I
from 1 to K, except for the single value J. ‘

same

One final form for a DO specification is permitted. It is the fornm

without a TO clause or a BY clause { or a WHILE clause). This says

execute the body exactly once, namely with ' the control variable
taking on the initial value. This form is of use when several such
DO specifications are written. For example,

Do I = 1,10, 2;

END;
The body of the 1loop is executed exactly three times, with I taking
on the three values shown during successive 1iterations. Do not
confuse this with the FORTRAN DO loop! :

Note that the control variable can be any kind of element variable;
it 1is not restricted to being an "integer variable" (and
unsubscripted) as in FORTRAN.

See LRM 104.

An additional form

DO variable = 4initial-value REPEAT (expressdon);. :
is provided in the ANSI language.- expression 1is evaluated each-time
through the loop, after the first, and assigned: to variable.
Termination would be controlled by a WHILE clause (not shown). An
example is DO I = A(1) REPEAT (A(I)) WHILE (I -= 0); '

GO'To,statement and statement labels.

ement label is an identifier prefixed to a statement (other
PROCEDURE or ENTRY statement) with a colon, as in -~
LAB3: A = B-2; :
A statement label may be used in a GO TO statement to effect an
unconditional branch, as in GO TO LAB3; Statement labels and GO TQ
statements should be avoided in preference to the other control
constructs since their undisciplined use results in programs that are
harder to understand, harder to prove correct, and harder to modify.

. Label values; the LABEL attribute.

In Lesson 4 we .casually hinted at a data type called "entrcy",
explaining that procedure labels were. entry ~ constants, 1i.e.,
constants of that data type. We will explore that more fully below.

We have at hand another kind of program control (as opposed to
problem, or computational) data type: '"label", A statement label is
actually a label constant. (Like an entry constant, a label constant
is a kind of "named constant.") Label values originate with label
constants and may be propagated by assignment to label variables.
ILahel wvariables are. variables declared with +the LABEL data type
attribute., This information is essentially repeated in the next
paragraph in the form used in lessons 1 and 2 to introduce various
computational data types.’ :

New label values are "generated" by:

(a) * Reference to a label constant.
They may be propagated by assignment.
They may be used in the following ways:

(a) In GO TO statements.

{b) In comparison operations.

(c) In remote format items (Lesson 7).

The appearance of a statement label constitutes . an explicit
declaration of the name as a label constant, with scope rules that
should be familiar by now. Consider three examples: 3

BEGIN;
GO TO L1;
END;
L1: ...
END; . . :
Here, the scope of the name L1 is all of P, including the begin block
(assuming L1 is not redeclared therein). The GO TO transfers control

outside the begin block to the statement labeled L1 (what happens in
detail is described later). . :

BEGIWN;

GO TO L2;

END;
Here, there are two different label <constants denoting different
statements. The scope of 'the first is all of P except the begin
block. The scope of the second is the begin block. The first GO TO
is within the scope of the second and transfers to the statement
labeled by it. The second is within the scope of .the first and
transfers control ‘to the statement labeled by it.

P: PROC;

END;,

GO TO 13;

END; i . : :
The scope of the label constant L3 'is the begin block. The GO TO
statement is not within that scope, so the name L3 is unknown there.
The program is in error. :

It goes without saying that- everything that has been said about
variables in general applies to label variables,” too. They have

alignment, . scope, .storage class; you can have arrays of 1label
variables; they may be base eléments of structures; they can be
initialized. In comparison operations, only = and -~= are allowed for
label data. (This is true of all types of program control data,
i.e., algebraic comparisons are not defined for them.) The control
varlable of a controlled DO group may be a label variable, but the TO
and BY clauses may not be used (because no algebraic comparisons are
defined). An example where this is useful is:
DCL L LABEL; - Declares a label variable.
DO L = L1,12,1L3; . These are label constants.
GO TO L; Goes to either L1 or L2 or L3.
L1: ... : ’

GO TO COMMON;
L2: ...

‘GO TO COMMON;:
L3: e

COMMON: ...
. This code executed all three times.
END; .
Label values may be arguments, and obviously parameters can he label
variables. Procedures can return values of type "label", so that
what follows GO TO may be a function referernce.

Care must be exercised to ensure that a label variable, when used in
a GO TO statement, does not designate a statement in an ipactive
block. It 1is illegqal to transfer control into an inactive block.
For example, the GO TO statement in the followlng, if- executed,‘would
be illegal: :

DCL L LABEL;

BEGIN;

L1: . e

L =11

END; The begin block becomes inactive here.
GO TO L; The value of L, i.e., the statement labeied by 11, is in
an active block. : ‘ ’

Actually, the semantics of label values are a little more subtle than
they appear. They are composed o6f two parts: one 1is the statement
labeled (represented by its address), and the other is an indication
of +the activation (or invocation) of +the block <containing the .
statement labeled. Consider the following.

DCL L LABEL STATIC;

DO I = 1 T0 2;

BEGIN;

L)

IF T =1 THEN L = 11
ELSE GO TO L

END;
END; 4 o

The bedin block is invoked twice. The tirst time through, the label
.constant L1 is assigned to the label variable L. The value of the
label variable L now répresents the statement labeled Ly L1 and the
first invocation of the bhegin block. The second time through a new
value is not assigned to L. 1Its former value is used in the GO TO
statement. Because that designates a statement in an inactive block,’
it 1is 1illegal. This may not seem -intuitively necessary, but
hopefully the reason why will become clear shortly. . (We will later
recall this example as "Example Z".) o ' : '

Consider the following:
P: PROC;

BEGIV;

GO TO L:

END;

END; . , .
The label constant 1 in the GO TO statement represents a label value
designating the statement labeled by L together with the «current
invocation of P. When the GO T0 1is executed, two +things actually .
happen. All block invocations trom thé c&urrent one (the begin block)
up to, -but not including, the one contained in the label value (i.e.,
the current invocation of P) are terminated. There is no possibility
of re-entering the terminated blocks without re-invoking them. Note

that if the begin block had instead been a procedure invoked from a
function reference, control doe$ not go back to. the expression
containing the function reference (as it would on a.normal return):
evaluation of " that expression is discontinued, and control is
transferred to the labeled statement instead.

The significance of block invocations anad particularly their

termination by such a "GO 70 out of block" (referred to as a "GOO B")

relates to the fact that storage for automatic variables is released

as the blocks-are terminated. When we arrive back at the target
block, the automatic variables "in effect" will be the ones "in
effect" when control first descended out of that block into another

one {as by a procedure call or execution of a BEGIN statement).

Actually, in the last few sentences we should have been saying "block
invocation" instead of "block" as the following example involving

recursion should point out (the distinction is only apparent when_
recursion 1is 1involved, i.e., when a block can have several
simultaneously active invocations).

P: PROC RECURSIVE;
DCL ¥ STATIC INIT (0);
DCL A (N+1) FLOAT AUTO;
DCL I LABEL STATIC:
N =N+ 1; :
IF N = 2 THEN L = LX;
IP N = 4 THEN GO TO L:
ELSE CALL P;

LX: I = HBOUND(A,1):
Y = A (I);

, RETURN;

END;

Let's trace through what happens. Initially P is invoked fron
cutzide. On entry, W has initial ¥alue 0., An automatic array A with
one element 1is allocated. N 1is increased to 1. Since N does not
equal 2, LX is not assigned to L. Since ¥ does not eqgual 4, we skip
the GO T0., P is then called recursively. ‘

As P is entered the second time, N (which, significantly, is a static
variable) has the value 1. A new generation of A is allocated with:
upper bound 2. Throughout this second@ invocation of P, it is this
. generation of A which is addressed when A is referred to. Next, N is
increased to 2. As a result, ILX is assigned 'to the static label
variable L. The value assigned represents the statement labeled LX
and this current (i.e., second) invocation. of P. Since N does not
equal 4, the GO TO is again skipped and P is called recursively.

6-12

We go through yet another invocation of P, eventually (the fourth),
whereupon when we arrive at the'statement IF N = U4..., +things look
like the following. Each large box represents an invocation of P,
.Poxes inside these represent generations of automatic variables
belonging to the respective invocations. ‘The small boxes at the
bottom represent the static variables.

CALL P;:;-~|P:

,_jP: . / P ﬂ'P:
ELSE.CALL Py ELSE CALL P FLSE CAlLL PrA ELSE CALI P;
LX: ‘LX: ' LX: LX:

- (s

(a2 RAME@RG)] | ([mk @)))

. o

s et st 1. o

The statement GO T0 1., which is executed next, causes the third and
fourth invocations of P to be discarded, sincé the environment part
of the value of 1 indicates the second invocation of P. Control is
transferred to LX. The current environment is now that of the second
invocation of P, no 1longer that of the fourth, so I is assigned the
value 2 and Y is assigned the value of A(2). The RETURN statement
returns control to the point of the second invocation of P, i.e., the
CALL statement in the first. The next statement executed there is
the one labeled by LX (as a result of normal statement sequence, not
because of any GO TO). I is assigned the value 1 and Y is assigned
the value of A(1). Control then returns to the outside, original,
‘point of call of P. : ' : ‘

Though tﬁe above example 1is contrived and not realistic, it does
illustrate the meaning of the environment. part of a label value.

Now recall "Example Z". The reason execution of the GO TO statement
there is illegal is because it would require us to retrieve, or make
current, an environment containing possibly some automatic variables
that have long since been released. When they're gone, they‘'re gone!

As you read LRM 105, you will see that static label variables cannot
be initialized. This is because static variables are initialized at
compile time, while label values, because they carry an indication of -
an environment, don't exist until run time. As you read that and LRH
106, you will =see that statement labels can be subscripted with
constants, as in i .

L(4,7): Y=0;

In.the current implementation, this does not represent a subscripted
label constant; it denotes an alternate form of initialization of an
element of an array of 1label variables (in this case, the (4,7)
element of the array L). The element being initialized may of course
have its value changed subsequently by assignment, so that in this
example L(4,7) may denote a different statement later! The ANSI
language treats L as an array of label constants, which is different.

See LRM 108.

Entry variables,

.¥e have seen in Lessén 4 hLow the ENTRY attribute can be used in a’
. declaration of an‘external entry constant, and, in Lesson 5, how

parameter descriptions - and returned value descriptions can also be
given in such a declaration. We will now consider entry values in

general, and entry variables, "Entry" is a legitimate data type, -
like “label™. ' »

¥ew entry values are "generated" by:
(a) Reference to an ‘entry constant.
They are propagated by assignment.
They may be used in the following ways: :
(@) In a CAll statement or function reference, to denote the
- procedure to be invoked.
(b) In comparison operations.

An entry variable is declared by adding the VARIABLE attribute to the
types of entry declaratiors already demonstrated (without this:
attribute the declaration is that of an entry constant) Example:

DCL E ENTRY (CHAR(*)) RETURNS (BIT(1)) 3 '

VARIABLE EXT;: ' i
E is an entry variable whose name has extermnal -scope. Any entry
value which it may have must designate a procedure that accepts a
fixed-length character argument of any length and returns a one-bit
bit string. ©Entry variables may have any of the propertles (storage

class, etc.) attribunted to variables in general.

Entry values, 1like label values, consist of two parts: an entry
point (r2presented by 1its address), and an environment. The
environment is an indication of the activation (invocation) of the
block containing the entry-constant whose reference gave rise to the
entry value; this applies, .of course, only to internal entry

constants, since external entry constants have no «containing block,
i.e., no environment. : -

Considér the following:
E: PROC(J);
- DCL A (J) AUTO;
Q: PROC;

Y

1]

A(T);

END;

CALL Q;

EWD; A
No recursion is involved. When the internal procedure Q is invoked,
the entry constant Q is referenced. That entry constant Q inherits
the environment of its containing block, P. Thus, a reference inside
Q to A(I) is a reference to an element of the automatic array A
belonging to the one invocation of P in question (which is obviously
the one that was "current" when.. Q0 was referenced in the CALL

" statement) .

OlLserve in the following example the rolc of the environment of an
entry value when recursion is.involved. -
P: PROC (J) RECURSIVE;
DCL A (J) AUOTO;
DCL N FIXED BIN STATIC INIT (0);
DCL E ENTRY VARIABLE STATIC;
N =N + 1; '
IF N = 2 THEN E = Qj
IF N = 4 THEN CALL E;
ELSE CALL Q:
'IF N < 5 THEN CALL P(N)3:
RETURN;
Q- PRNOC:
Y = A(I);
END:
END; . . ‘
Notice that P calls itself recursively until five invocations of it
are active. Then N will equal 5 and the chain of "calls will start

returning. Each invocation of P has a generation of an automatic

-array with a different bound. 1In the second invocation of P (N=2),
the static entry variable E 1is assigned the value of the internal

entry constant Q. The environment which is part of this wvalue is
that of the second invocation of P. In all five invocations of P, Q
is called; it references an element of A and returns to the point of
call. 1In all invocations of P except the fourth, Q is called by
referring directly to the entry constant Q, and the environment of Q

Q's containing block, P. However, in the fourth invocation of P, Q

-is called by referencing the entry variable F, Because the

environment part of the entry value denotes the second invocation of
P, the reference to A inside Q is a reference to the generation of A
allocated at the time of the second invocation of P.

See LRM 107.

There are somewhat messy rules for determining when (except in
obvious cases) a reference to an entry constant or an entry variable
denotes the procedure itself and when it denotes the value returned
by invoking the procedure. See LRM 109 and LRM 110. The ANSI
standard uses different, but much simpler, rules for = this
determination. ‘

For a complete review of the ENTRY attribute, see LRM 111.

Program termination.

A program ends by executing a RETURN statement in the main procedure
or by reaching the END gtatement of the main pifocedure. It may also
end by executing a STOP statement in any vprocedure. The 1latter
mechanism is considered to be an abnormal termination of the program;
in our system it causes a step condition code, which may he tested in
JCL, of 1000 to be set. Information going beyond the above is in two
places: LRM 112 and LRM 113. :

Exceptional conditions.

In several of the earlier lessons we left for later consideration an
examination of what happens when an exceptional condition occurs.
An exceptional condition is a possible, though not -usually likely

()
|

16

(in the sense of being frequent), unusual outcome cf some operation
or requested action. PL/I does not require the programmer to test
constantly for wunusual outcomes of operations. It provides you a
way of being informed, in the program, when one cccurs in such a way
that you are not bothered when it doesn't. See LRM 114,

"Occurrence" of a condition.

PL/I defines and names a whole set of possible conditions, i.e.,
unusual outcomes of operations. It also defines what constitutes an
occurrence oft each condition. The list of conditions is given in
LRM 115, and individual conditions are described in LRM 116.
Certain of the conditions will be saved for later. A brief
definition of what constitutes an occurrence of those considered

here follows.

Computational conditions .
FIXEDOVERFLOW (abbrev. FOFL). This occurs when a fixed - point

operation produces a result that cannot be expressed in the
maximum number of digits of the implementation. For example,

note that the precision rule for addition " (Lesson 1) of two
FIXED BINARY (31,0) values would specify FIXED BINARY (32,0)
for the result, were it not for the implementation maximum
number of digits .of 31, for binary base. The substitution of
31 for 32 is a hint that POFL can occur -‘on addition of two
FIXED BINARY 631,0) nunbers; indeed, it will cccur when 230 ig
added to 230 (for example). ‘The result, 23!, requires a
non-zero digit in the 32nd position .from the right end.
Observe that FOFL cannot occur .on the addition of two FIXED
BINARY (15,0) values because the result precision, {16,0), 1is
well within the implementation maximum precision.

OVERFLOW (abhrev. OFL). This occurs when a floating-point oporatlon
produces a result with -a magnitude in excess of what the
hardware can represent. .

UNDERFLOW (abbrev. UFL). UFL occurs when a floating~ p01nt operation

) produces a result with a magnitude too small - for the -hardware
to represent. ’ , . , '

ZERODIVIDE (abbrev. ZD1V). This occurs on an attempt to divide by
zero. <o

SIZE. This occurs when an attempt is made to assign a value to a
fixed-point target variable that does nct have enough
high-order digit ©positions to accommodate non-zero high-order
digits of the value being assigned.

CONVERSION (abbrev. CONV). CONV is raised if a character string
value, which is the source value in a conversion operation,
contains an illegal character. CONV . also occurs on assignment
to a character pictured variable (Lesson 2) if the source value
does not conform to the picture specification, and it may occur
on certain kinds of input operations (Lesson 7). ‘

Progqram checkout conditions . .
SUBSCRIPTRANGE (abbrev. SUBRG). " This occurs when a reference is
made to an element of an array outside the bcunds of ary of its

dimensions. A -
STRINGRANGE (abbrev. STRG). This occurs whenever a reference to the
SUBSTR builtin function or pseudo-variable describes a

_substring which does not lie entirely within the bounds of the
string value which is its first argument. See lesson 2.

STRINGSIZE (abbrev. STRZ). This occurs whenever a string value
having a length in excess of +the length (or maximum length) of
a string variable is about to be assigned to that variable.

FINISH. This condition occurs as the result of any action that
would terminate the program. Examples are: execution of STOP
statement; execution of PETURN or END statement of main
procedure. Others will follow.

ERROR. ERROR occurs 1in many circumstances. ‘One categcry ~ of
circumstances is detection of an illegal argument to a
mathematical builtin function (e.g., the real .value -1 +to
SQRT) . Another is any error that an implementation may care to
detect for which no specific condition is provided. £ Others
will follow. : :

Enablement/disablement. of conditions,

Not all occurrences of conditions need’ be detected ‘and.reported.
For certain conditions, the programmer may chocose to ignore an
occurrence, -In such a case it is. important to note that the:
condition has occurred (because that may have consequences on the
meaning of the program's execution as defined by PL/I) even if the
programmer elects not to ke notified.

[}

Occurrences 6f certain conditions are detected by the hardware:
others, by compiled code. :

Whether the occurrence of a condition is detected cr nct depends on

whether the condition is enabled or disabled at the point in the .
program where it occurs. This proparty of a conditicn is called its

Certain conditions are enabled by default. Others are disabled by
default. A programmer may specify a particular:- status for a

condition to hold during the execution of a,statemeﬁt or of a whole
block, thus overriding +the default. There are a few conditions
whose default status may not be overridden.

An explicit status may be specified by a condition prefix. Examples
follow. ' ‘
(SIZE): I

I

3*J; SIZE is enabled during the execution.
of this statement.
SIZE is disabled for this one.

3 OFL is enabled, UFL disabled.

Y*Z; Same as above,
This statement has a label, too. (Tt
nust £ollow any &onditidén pretixes.)

(NOSIZE): B = C;
(OFL,NOUFL) : X = Y*Z
(OFL) : (NOUFL): X =
(OFL} ¢+ L: Y = 2%*X;

When a condition prefix i3 attached to a BEGIN or FPROCEDURE
statement, it applies to all statements in the ‘blcck except those to
which a complementary condition prefix is attached. It applies to
{1.e., 1s 1nherited by) anv nested blocks.

Note that status of a condition is a static property of a statement
that can be determined (like scope of a declaration) by the .
compiler. The status of a condition in an external procedure Q
called by procedure P, for example, has nothing to do with its.
status in P. : . '

The following table indicates the default atatus for the conditions
considered sc far, and whether they can be disabled.

Condition | Default status Can it be disabled?
FOFL Enakled Yes
OFL . | Enabled o " Yes
UFL , : Enabled : Yes
.2DIV : Enabled ; : Yes
SIzZE vigsabled :
_CoNv ° ~ Enabled : _ Yes -
SUBRG ‘ Nisahled , .
STRG Disabled .
STRZ Disabled !
TFINISH 7 T Enabled T | “No
No

ERROR : Enabled

See LRM 117 through LRY 120.

Estaklishment of conditions.

What happens when a conditiph occurs depends first c¢f all on whether
it is enabled or disabled. :

When any of the above conditions occurs while disabled, the result

of the operation that caused the condition to occur is undefined,
with two exceptions. The exceptions are as follows. When UFL is
disabled, the result of an operation that causes it to occur is
taken to be =zero. When STRZ is disabled, the source string is

-truncated on the right to make it fit the target variable, as we saw
in Lesson 2. :

When we say that the result is undefined, .we mean that the language
does not define a result. The result is.entirely determined by the
implementation; it may be useless (garbage) or useful, but it is not
guaranteed to be the same in another implementation. ©Note that
simple, wuseful random number generators are frequently designed
around the occurrence of a disabled FOFL condition.

When a condition occurs while enabled, the condition is said to be
raised The programmer can specify an action to be taken when a

———— =

The programmer specifies an action to be taken when a condition is
raised by establishing an on unit for +the condition. This 1is

accomplished by executing an ON statement prior to the raising of
the condition. '

An ON statement has the typical forp
ON condition on-unit; .
condition is the keyword naming the condition. ogn-unit is either a
single statement or a begin block. Examples: ' :
ON FOFL GO TO 13 :
ON UFL N = N + 1;
ON SIZE BEGIN;
5 = '00PSY;
GO TO DONE;
END;

6-20

Cnce an on unit has been established for a condition, in a block,
i.e., once an ON statement for that condition has been executed in
the block, subsequent raising of the condition in that block, or any
block invoked from it in which another o¢n wunit for +the same
condition .has not been established, causes the on unit to be
executed. "Subsequent"™ is in the sense of later in time.

Another way of describing which on unit gets control when a
condition is raised is as follows. If an on unit for the condition
has been established in the current. block, it is executed. 1If none
has been established there, the block that invoked the current block
is examined for an established on unit. The scarch for an on unit
proceeds in this way all the way out to the main procedure.

Sappose that a procedure P has an «xtahlished on unat; D calls Q;
and Q establishes "an on unit for +he same conditicn. The " on unit
established by P is "stacked". If the condition occurs subsequently
in Q, the on unit established in Q is executed. Once Q returns to
P, however, the on unit in Q is 1o longer 'in effect. Tf the
condition subsequently occurs in P, P's established cn unit gets
control.

If another ON statement is executed in the same block in which an on
unit (for the same condition) is already in ~effect, the on unit
specified in the new ON statement supplants that specified earlier,
i.e., it becomes the established on unit in the block. That is, the
new on unit 1is not stacked.

The on unit itself may e thought of as a parameterless internal
procedure. When a condition 1is raised, the current operation is
identified as the poipt of interrnpt, and it is just as if the
internal procadure represented by the on unit were invoked, the
point of invocation being the point of interrupt. The. on unit may
or may not reach its normal end.. If it does, control returns to the
point of interrupt and the program (usually) continues from there.
This is called normal return of the on unit. The cther choice is to
execute a GO TO out of block, transferring contrel from the on unit
to some labeled statement outside the on unit. A= in all GOOB's,
there is no possibility of going back to the point of invocation of
the klock (i.e., the point of interrupt). ‘

N

The view of on units as internal procedures "invoked" from the point
of interrupt is completed by noting that the environment part of the

entry value representing such a procedure is that denoting the
~invocation of the block containing the CN statement when it was

6-21

executed. Thus, refer