
CLASS NOTES FOR A PL/I COURSE

Kenneth W, Dritz

UdE.AUA.USERM

ARGONNE NATIONAL ,LABORATORY, A9RGONNE, ILLINOIS

Prepared for the U. S. ENERGY RESEARCH
AND DEVELOPMENT ADMINISTRATION
under Contract W-31-109-Enn-38

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

Distribution Category:
Mathematics and Computers

(UC- 32)

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, Illinois 60439

CLASS NOTES FOR A PL/I COURSE
-52, ?;

c 2

Kenneth W. Dritz

Applied Mathematics Division

r. .- - - - - - - --- . - -

chc United Stater nor the United S u t o Energy
R e a r c h and k v e l o p m n t Administration, nor any of

-..=-* . . -.

November 197 5

BTSTRIBUTION OF THIS DOCUMENT IS UNlLlMlJED n

THIS PAGE

WAS INTENTIONALLY

LEFT BLANK

PREFACE

These notes were written for use as a supplement t o a three-week PL/I
course taught by the author from October 20, 1975 t o November 7, 1975 a t
the Applied Mathematics Division of Argonne National Laboratory. The course
was intended to a t t rac t scientists and engineers from other Laboratory
divisions who contemplated using PL/I i n thei r future progranrning. No
special emphasis was placed on features useful i n business appiications.

In the preparation of these notes (and of the classes themselves), use.
was made of the fact that the sc ient is ts for whom they were intended could
be assumed to have had prior experience i n programming w i t h high level
languages (probably FORTRAN). This assumpti&l is reflected h the absence
of frequent demonstrations of the practical application of language elements
to the solution of complete and rea l i s t i c problems. The notes (and the
course) thus do not address the problem of teaching the non-programer how
to program in P L ~ rather, they'supply the practicing programmer w i t h the
information needed t o begin using PL/I t o solve prob'lems he is already
accustomed to solving i n other languages.

That is not to say that the experienced FORTRAN programmer w i l l neces-
sar i ly find the road to conversion to be free of holes and bums. Certain
traps' are lurking. Specifically , certain techniques and concepts of
FORTRAN, i f translated in the obvious way to PL/I, result i n incorrect
programs. Special e~~lphasis has been devoted to this problem. I t is apparent,
for instance, i n the discussions of the differences between fixed-point data
(in PL/I) and integer data (in FORTRAN) ; the differences between the respec-
t ive roles of defining (in PL/I) and equivalencing (in FORTRAN) ; and the

. proper, and very different, ways to pass and use variable dimension informa-
tion i n the two languages.

These notes were written over the short period of five weeks. Because
of that rush, they are inevitably less polished than they could have been.
This is hopefully.compensated by the very careful attention given to the
ordering of topics for effective learning. The chosen order of introduction
of topics, which was worked out over a three-week period before writing
commenced, is intended to help the students avoid mental overload even when
classes. (corresponding to chapters) are taught un successive days.

The vcry frequent references to passages i n IBM manuals. (which are
keyed indirectly through the reference . l ist following Chapter 15) are an
essential factor in keeping these notes as short as' they are. For instance,
detailed syntax of statements is usually omitted from the notes, as are
certain tables of information easily found i n the manuals. The notes
emphasize concc ts more tllasl details. Unfortunately, the u t i l i t y of the -+ references w i l l e diminished i n the future unless the page numbers can be
s u c c e s s f ~ l y updated to ref lec t sudr revisions as may have been incorporated
in the manuals by then.

. The author has pointed out some differences between the "current"
language and the proposed ANSI Standard for PL/I. The reader must be
cautioned, however, that .not - a l l of the differences have been documented.
(For instance, Chapter 1 does not mention the dropping of the I-to-N rule
fo r default arithmetic at tr ibutes, which is certainly very important .)
The absence. of a complete comparison is due to the fact that lists of
lcnown differences were not constantly reviewed during the preparation of
these notes ; differences were ci ted when they just happened. t o come to mind.

Structured programming advocates may be disappointed by the almost
t o t a l absence of orientation toward structured coding and development prac-
t ices. The GO TO statement is taught. The reason 'is that th is course is
about the PL/I language and i t s concepts ; it is not a course i n programming
methodology. Structured programming is a separate topic and can be (and in
the author's opinion should be) taught independently of any particular
language. 'fie author has not, however, entirely ignored the question of
program correctness. H i s contribution has been to emphasize language purity
and t o enhance transportabiliry by carefully dis tiriguishLig be tween the
formal language definition and implementation-defined features. I l legal
language , , 'is never demonstrated . No concessions are made to . convenience.

Finally, the author wishes t o acknowledge the help of Matt Prastein
and April Heiberger i n preparing Chapters 1 k d 6 fo r text editing i n T U ;
of the following secretaries i n the Applied Mathematics Division for thei r
many weeks spent typing the copy: . .

Marge Visser
April Heiberger
Judy Beumer i

Grace Krause
Nancy Piazza;

of Linda Clark and Sue Katilavas for handling a l l aspects of the class notes
a f t e r typing; of Graphic A r t s for typing two chapters and printing a l l of
them; and of Paul Messina, Lou Just , and Dean Davis for general administra-
t ive support.

Kenneth W. D r i t z
Applied Mathematics Division
Argonne National Laboratory
November, 19 7 5

TABLE OF CClK.EWTS

0. . INTRODUCTION TO PL/I COURSE

1. VARIABLES, A'ITRIBUTES, AND DECLARATIONS; ARITI-METIC
DATA TYPES, ARITWETIC 'EXPRESSIONS, PRECISION.RULES '

2 . SIRING DATA TYPES; SI'RING AND LOGICAL EXPRESSIONS

4. BLOCK STRUCTURE AND SCOPE OF NAMES

5. STORAGE C L A S S W RLOCK INVOCATIONS

6 . (a) CONTROL CONSIWCTS
(b) CONDITIONS

8. INI'RODUCTION TO RECORD I/O; CONSECUTIVE DATASETS

9. INDEXED ANU KEGIU~~AL UATASETS

10 . (a) BUILTIN FUNCTIONS AND PSEUDO-VARLABLES
(b) IWrERLANGUAGE C W I C A T I O N

11. LIST PROCESSING AND LOCATE-MODE 1/0

12. (a) MISCELMNEWS FEATURES
(b) PREPROCESSOR

13. (a) ADVANCED JCL AND C W I L E R OPTIONS
(b) PROGRAM DEVELOlMENI' AND DEBUGGING

14. MULTITASKING AND ASYNCHRONOUS 1/0

15. THE CHECKOUT CQMPILER IN TSO

16. REFERENCES

PAGE

0 -1

- 17. INDEX

THIS PAGE

WAS INTENTIONALLY

LEFT BLANK

Presented here are notes for a course in PL/I. They
might serve as a guide to others who are developing a course,
and indeed as class notes for that course. They might be
useful as a textbook independent of any course; as such a
textbook, however, they are not self-contained because of the
built-in assumption that they will supplement lectures and be
accompanied by manuals.

Very nearly the full 1a.nguage is taught here, with the
el~~phasis on concepts rather than practical details. The un-
orthodox order in which concepts are introduced is the deliber-
ate invention of the author. One effect of this is the complete
avoidance of any discussion of 1/0 until roughly the midpoint of
the course. The hoped-for consequence for students is an.
,enhanced perception and understanding of the many concepts and -
their logical relationships.

The dawning of the age of transportability for PL/I pro-
, grams gives the user a reason, for the first time, to avoid
, convenient but illegal language. In their attention to this
issue, these notes should help the user appreciate the value of
sound coding practices and their negligible incremental cost at
the most important time -when he is first starting out.

vii

0. Introduction to PL/I . course.

0.1,. Welcome !

Welcome to the PL/I course!

I t is hoped that over the next' three weeks you wi l l realize your
goal of learning to write. effective programs i n PL/I ;

Why so many class sessions? PL/I is a "massive" language. Even
i f much of the bewildering deta i l is stripped away, leaving the
major concepts, there is' a. l o t to be taught and a l o t to be learned.
We have, i n fact , l e f t out many of the 'subtleties and a l o t of the
detai l (rules, conventions, restr ict ions , interactions, etc.) . No
one can remember a l l that, anyway. That's what we have reference
manuals for.

Although they are improving, reference manuals are s t i l l not very
good for teaching the broad concepts of a programming language!
That's why we have developed this course. In i ts planning we have
devoted particular emphasis to the choice of a logical order for
the introduction of successive concepts. We beiieve th is is the
recipe for successful Learning. A consequence of th is is the
deferring of any discussion 'of 1/0 un t i l about the midpoint of the
course;' since we don' t wish to "jump the gun," examples. and homework'
problems are necessarily and unrealistically I/O-free u n t i l then.
But even when we f inal ly get to I/O, we don' t take an overdose.
Progressively more advanced aspects of 1/0 are assigned to Lessons 7 ,
8,' 9, ii, and 14.

S t i l l , th is is an ambitious ydertaking. A college semester is being
crammed into three weeks! To receive f u l l value from this course,
you w i l l need to attend every lesson. Beyond that , you w i l l need to,
read the class notes and selected passages i n 'the manuals, and you
are strongly urged t o attempt the homgwork probleir~.

0.2. Goals of the course.

Sophisticated engineering applications i n programming today are
characterized by the combination of c roper ties and 'features they are
required to exhihi t . For. instance, a sirigle, coherent applicat'ion
program may need t o combine sc ient i f ic calculations, non-numerical
calculations (such as logical calculations or t e x t rrianipulationsj ,
large-scale auxiliary data management, and internal resource manage-
ment. And certain kinds of programs, particularly those modeling
physical sys tems , can benefit 'from more "natural" ways of representing
information, such as by time-varying "structural" or hierarchical
relationships between items of data. Because PL/I can sa t is fy a l l
these needs i n a smooth and consistent way, the primary goal of the
PL/I course is to teach nearly a l l the major concepts of the language.:

(The only significant one omitted is "teleprocessing," which is
not available i n our system anyway and which is not i n the ANSI
standard .)

Experience has shown that PL/I programmers who have an incomplete
knowledge of the language are l ikely to use inappropriate, i . e. ,
less than natural, 'language features to accomplish a particular
task. The result of 'this is frequently inefficiency' in the object
program and, as a consequence, dissatisfaction w i t h the language.

For many years people believed that PL/I was the sole province of
I . PL/I code interchange w i t h non-IBM instal lat ions was out of
the question. Well, i n '19 75 PL/I has come a long way. A proposed
international ANSI-ECMA standard .for PL/I is on "final approach"
and l ikely to be accepted in 1976. Honeywell, Univac, and Burroughs
have viable PJ.,/I compilers which'have been aimed a t the proposed
standard (a moving target) during thei r development. Even Cont.ro1
Data, which abandoned' i ts early efforts i n PL/I years ago, appears
t o be reviving lits iliterest ill the lmguage (perhaps thoy thought
it wouldn't 'catch on--and guessed wrong)'.

Thus, a second goal of the course is to prepare you for the day in
the not too distant future when you may be writing programs that
have portabil i ty requirements extending to other PL/I' systems and
other hardware. This is done i n two ways. F i r s t , we w i l l point
u u t some significant differences between the IBM imple~nentations of
PL/I and the proposed standard. Second, we w i l l make a clear dis-
tinction betw;?en- o f f ic ia l language and~current implementation.
Unfortunately, many programmers believe PL/I is whatever our compilers
l e t them do; that is, they write t e chn ica l l y~ l l ena l l a n m n e which - -
happens to give them a convenient and usefuf ef fec i on our system.
They may fee l just if ied i n doing this because they have no intention
of exporting thei r programs to other installations with different
cmipilers. The hidden danger, though, is that they may have to
export t h e i r programs to themselves someday. There is no guarantee
that we w i l l always have IW equipment! We have already experienced
solne the problems that can be encountered with i l l ega l language
belause 1J.M has changcd tho implementation af rertai.n language
features within thei r own progression of compilers over the years.
(They have a1 so chan ed- -improved--the language i t s e l f several times.
Unfortunately, this g as made trouble even for honest proglmmers.
One more round of "incompatible changes" must be expected w i t h the
introduction of the ANSI standard, a f te r which we should enter an era
of relat ive s tab i l i ty of the language.) So, on the theory that it is
preferable to learn how t o do it legally from the beginning and avoid
possible problems la ter , we w i l l emphasize language purity.

0.3. Topics to be covered.

The following is a broad outline fo r the f i f teen lessons (class sessions).

.Variahl,es , attr ibutes, and declarations :

.arithmetic data types, arithmetic expressions, precision rules.
String data. types'; s tr ing and logical expressions.
Aggregates.
Block structure and scope of names.
Storage classes and block invocations.
(a) Control constructs .
(b) Conditions.
Introduction t o I/O; stream I /O .
Introduction t o record I/O; consecutive datasets.
Indexed and regional datasets.
(a) Builtin functions and pseudo-variables .
(b) Interlanguage communication.
L i s t proces'sing and locate mode I/O.
(a) Miscellaneous features.
(b) Preprocessor.
(a) Advanced JCL and compiler options.
(h) Program development and debugging.
Mu1 t i tasking and asynchronous I /O Cop tional) .
Checker/TSO demonstration.

0.4. Class notes.

You a re . re.ading Chapter 0 of the class notes. A s e t of fa i r ly extensive
not'es w i l l be handed' out i n each class. The notes w i l l make it generally
unnecessary to take notes i n class, and they w i l l make it easy 'to review
the material la ter . The notes, however, are not a substitute for the
lectures. The lectures w i l l provide more motivation than the notes and
different examples, though perhaps less detai l . Some blank space is
provided for you to take extra notes, doodle, etc.

0.5. Manuals and outside reading.

Five manuals are being distributed with this introduction fo r your use
during and a f t e r the course. There are frequent references i n the
class notes to passages i n the manuals. Each manual is codified by an
abbreviation i n the refcrence, as follows:

LRM - Language Reference Manual
CPG - Checkout Compiler Programmel-'s Guide
OPG - Optimizing Compiler Programmer's Guide'

. CTUG - Checkout .Compiler TSO User's Guide
OTUG - Optimizing Compiler TSO User's Guide

The number that follows a manual code, as in LRM 57, is not a page
number but rather an entry number i n a reference list which is being
supplied separ;ctely. The entries i n the referbncc list give page
numbers and text to identify the beginning and end of each passage.

M a n u a l references are made for two reasons: i n a few cases, t o
point you towel1 documented deta i ls that it would be s i l l y t o copy
i n the class notes;..more often, t o point you to.materia1 you can
use for review, and for a different perspective, a f te r it is covered
i n the notes.. You are urged' t o read a l l the' references, though time
may not permit you to. read the longer passages' during the course.

Unfortunately, you w i l l find that the passages do not always correspond
in scope to the material t rea ted ' in the notes; they w i l l frequently
reference related' topics that we won't cover un t i l l a te r , and they may
mention detai ls that we don't cover a t a l l . Be a l e r t for terms we
haven't covered; t r y t o skip, on the f i r s t reading, anything that looks
foreign. . .

If you do pursue most of the references, you w i l l acquire a great deal
of familiarity with the manuals and w i t h thei r organization. You wo~i't
be afraid l a te r ' to look something up, because you w i l l have a pret ty
good idea' of where t o look. Actually, that . is another goal of the
course.

I t would be a good idea for you t o browse through the tables of
contents of the manuals now. You w i l l notice 'a great deal of duplica-
t ion i n the two programmer's guides, and in the two TSO user's guides.

There is also a Messages Manual available for each compiler, though
these aren't essential t o own. And if,' somehow, th i s course leaves
you gasping for more, go out and get the Execution Logic Manuals for
each compiler.

There are a few reasons why we don't generally recommend books on PL/I.
We haven't evaluated many. Those we have seen have been disappointingly
jncomplete, erroneous, or obsolete more often than not. Several books
are i n preparation by authors hown personally by the instructor; it is
expected that these w i l l be commendable.

Each s e t of notes has several homework problems based on the material
taught i n that class. The purposes of the homework are to allow you to
t e s t your understanding of the material, to give you some experience
w i t h the language concepts, and t o lead you through a discovery of
some reveaiing insights that w i l l , hopefully, influence your program
design and coding 'style. For th is reason you are strongly urged t o
attempt the homework problems i n a timely manner. You w i l l not be
required t o turn in completed homework; hawver, i f you do, *'
instructor w i l l go over your work, make comments, and return it t o you.

0.7 .. Running programs.

You are not generally asked to run programs as part of the homework;
for about half the' course you a re not even' asked t o write whole
programs. However, once you have learned' enough t o write a program,
you may find it' instructive. to. run it: Follow these guidelines.

Use the Checkout Compiler i n batch. I t w i l l be preferable for you to
punch your program and data.on cards, for now.

Source programs can be free form. You can s t a r t a statement i n any
column within the' source margins (see' below). You can put as many
blanks as you want between' 'language keywords, identif iers , constants,
and special symbols. A semicolon marks the end of a statement, which
may continue over as many cards as necessary. A comment, which is
any text surrounded by /* and */, can be written wherever arbitrary
blanks are permitted, as described above.,

Standard (default) source margins .. are columns 2. and 72. Leave column 1
blank, ' and do not .wi te source text beyond column 72.

Use the following JCL i f your program consists of a single "external
procedure, " i . e. ? a main program that doesn ' t need to be link-edited
with arw subroutines.

//. job. card - - express limits are adequate
account card

// MEC PLCCG (Note: - not PLCCLG)
//SYSCIN DD * (Note: - not ,SYSIN)

source program (column 1 blank)

Can .be'. omitted'
data i f no data.

/ *
External procedures aren' t mentioned un t i l Lesson 4.

I f your program has several external procedures, i .e . , a main program
and subroutines' to. be' link-edited' together, use the following JCL.

// job card
account card

// EXEC PLCCLG , (different cataloged procedure)
//SYSCIN DD *

main program

*PROCESS ; This

subroutine

*PROCESS ;

subroutine

*

/*

data

s t a r t s . in column 1 !

I Optional

0.8. After the course.

let. ILS hear from you! We want to ' h o w how you are doing. The
consultant can provide help w i t h particular problems.

For FORTRAN-type computations, PL/I - can be about as eff icient a t
nm time as FORTRAN. Certain features, because of their power and
generality, are inevitably and inherently less eFLicient, but then
many have no direct counterparts i n FORTRAN. I f you are unsatisfied
with the performance of your programs, the consultant might be able
t o help you find some simple adjustments to make to tune it. There
are a variety of optimizatian features you have to ask fo r explicitly.
The compilers themselves can be made more eff icient i f f u tu r e use
warrants it.

I f you encounter bugs in. the compiler, report them to the consultant!
IBM wants t o find 'them and f i x them, because it strongly supports
PL/I. Anyway, chances'are we have a l a te r version of the compiler
around which we are checking before releasing it. We can t e l l .you
how to STEPLIR t o it.

Finally, a f te r h a l f a year or a year of experience, you may find it
useful to reread the"notes. You w i l l be i n a better position to
appreciate and ut i l ize : some of the advanced features of the language. . .

i
1. V a r i a b l e s , a t t r i b u t e s , a n d d e c l a r a t i o n s ; a r i t h m e t i c d a t a t y p e s ,

a r i t h m e t i c e x p r e s s i o n s , p r e c i s i o n r u l e s .

1.1. V a r i a b l e s

A v a r i a b l e h a s a gqfig, w h i c h i s a n i d e n t i f i e g . It i s l o c a t e d
s o m e w h e r e i n s t o r a g e , a n d i t h a s a pp&ge.,

B a s i c a l l y , i d e n t i f i e r s may b e u p t o 31 c h a r a c t e r s l o n g . E x a m p l e s
are:

T I ME-OF-FLIGHT
CHANNEL#
COEFFICIENT-OF-EXPANSIOP
X21

R u l e s f o r i d e n t i f i e r s a re g i v e n a t LRF 1. A l a n g u a g e k e y w o r d (s u c h
a s D O) may b e u s e d a s ' an i d e n t i q i e r ; l a n q u a g o k e y w o r d s a r e n o t
" r e s e r v e d . "

Puch more w i l l b e s a i d a b o u t v a r i a b l e s l a t e r . We w i l l l o o k a g a i n a t
v a r i a b l e n a m e s i n L e s s o n 4 a n d a t t h e i r l o c a t i o n s i n L e s s o n 5 .

I n a d d i t i o n t o a name, a l o c a t i o n , a n d a v a l u e , e v e r y v a r i a b l e h a s
s o m e a t t r i b u t e s , w h i c h a r e c h a r a c t e r i s t i c s t h a t t e l l t h e s y s t e m
e x a c t l y how t h e b i t s s t o r e d i n i ts l o c a t i o n r e p r e s e n t i t s v a l u e .

S e e LRM 2 a n d LRM 3 .

1.3. D e c l a r a t i o n s

'Vames a n d a t t r i b u t e s a r e a s s o c i a t e d w i t h v a r i a b l e s b y t h e p r o c e s s o f
d e c l a r a t i o n . T h e DECLARE s t a t e m g a t may h e u s e d t o I 1 d e e l a r e w o n e or --------- ------- '----
i l lore v a r i a b l e s . S i m p l e f o r m s o f t h e DECLARE s t a t e m e n t u s e f u l f o r

p r e s e n t p u r p o s e s a r e a s f o l l o w s :

DECLARE i d a t t t l i b u t u ;
DECLARE idl a t t h i b L L t u J , ...,

id, attrtibu;tef, ;
DECLARE (.*dl,. . , .id,? a t t h i b d u ;

I n t h e a b o v e , i d is t h e name of t h e v a r i a b l e a n d a t t h i b u R u i s a l is t
o f a t t r i b u t e k e y w o r d s . T h e . f i r s t f o r m d e c l a r e s a s i n g l e v a r i a b l e .
T h e s e c o n d dec l a r e s s e v e r a l , w i . t h p o t e n t i a l l y d i f f e r e n t a t t r i b u t e s ,
i n o n e DECLARE s t a t e m e n t . T h e t h i r d d e c l a r e s s e v e r a l w i t h a common
s e t n f a t t r i b u t e s . DECLARE may be a b b r e v i a t e d DCL, a s i n ' t h e
f o l l o w i n g e x a m p l e s :

DCL X FLOAT B I N A R Y ;
CCL Y FIXED DECJMAL,

. b FLOAT B I N A R Y ;
DCI. (U , V , W) CONPLEX FLOAT B I N A R Y ;

T h e d e f i n i t i v e r u l e s f o r t h e D E C L A R E s t a t e m e n t , w h i c h g o f a r b e y o n d
w h a t we n e e 4 now, a r e a t 1,I?i? 4.

1 . 4 . T y p e s o f d e c l a r a t i o n s

E x e l i c i t : By u s e o f DECLARE s t a t e m e n t . -- ----
C o n t e x t u a l : C e r t a i n u s e s o f i d e n t i f i e r s , i n t h e a b s e n c e o f a n ---------
e x p l i c i t d e c l a r a t i o n , r e s u l t i n a c o n t e x t u a l d e c l a r a t i o n o f a
v a r i a b l e w i t h t h a t name a n d a t t r i b u t e s d e d u c e d f r o m c o n t e x t . T h e
c o n t e x t s f o r w h i c h t h i s i s p o s s i b l e a r e those t h a t r e q u i r e p a r t i c u l a r
a t t r i b u t e s a n d c a n n o t t o l e r a t e o t h e r a l + e r n a t i v e s . A r i t h m e t i c
a t t r i b u t e s a r e n e v e r d e d u c e d f r o m c o n t e x t ; t h e r e a r e many a 1 L e 1 n a t i v . e
a r i t h m e t i c a t t r i b u t e s , a n y of vhluh cau Lve ' u s e d i n a n y a r i t h m e t i c
C O n t ex t .
Tm l i c i 2 : 9n i d e n t i f i e r wh ich i s n e i t h e r e x p l i c i t l y d e c l a r e d . n o r A,,,,
u s e d i n a c o n t e x t r e s u l t i n g i n a c o n t e x t u a l d e c l a r a t i o n i s i m p l i c i t l y '

d e c l a r e d a s t h e name o f a v a r i a b l e , w h i c h is g i v e n c e r t a i n d e f a u l t
a t t r i b u t e s . T h e l a n g u a g e s p e c i f i e s a s e t of d e f a u l t s wh ich a r e , i n
f a c t , p a r t i c u l a r a r i t h m e t i c a t t r i b u t e s . T h e p r o g r a m m e r c a n c h a n g e
t h e d e f i u l t s w i t h t h e DEFAU?.,? s t a t e m e n t , w h i c h i s c o n s i d e r e d i n
~ e s > o n 4.

See LRM 5 a n d L!ZM 6 . T h e l a t t e r t e x t u s e s many terms a n d c o n c e p t s
t h a t we w i l l n o t c o n s i d e r u n t i l T.,esson 4; t r y t c i g n o r e t h e m f o r now.

1.5. A r i t h m e t i c d a t a t y p e s

A s i n FORTRAN, t h e r e a r e many a r i t h m e t i c d a t a t y p e s a n d c o r r e s p o n d i n g .
a t t r i b u t e s (many more , i n f a c t) . A l l a r i t h m e t i c v a r i a b l e s h a v e f o u r
c h a r a c t e r i s t i c s , c h o s e n from f o u r s e t s o f a l t e r n a t i v e s . T h e s e t s a r e
a s f o l l o w s :

Vode: T h e c h o i c e s a r e REAL a n d COYPLEX. Note t h a t , i n FL/I , PEAL ---
o n l y m e a n s n o t COMPLEX: i t d o e s n o t mean f l o a t i n g - p o i n t , a s i t d o e s
i n FORTDAV.
S c a l e : T h e c h o i c e s a r e FLOAT a n d FIXED. FIXED m e a n s t h e d e c i m a l ---
p o i n t i s a s s u m e d t o b e i n a f i x e d p o s i t i o n r e l a t i v e t o t h e i n t e r n a l
r e p r e s e n t a t i t i o n o f t h e v a r i a b l e ' s v a l u e . H o u e v e r , t h a t p o s i t i o n
n e e d n o t a e t h e r i g h t - h a n d e d g e ; it gag b e , i n which c a s e y o u h a v e
r o u g h l y t h e e q u i v a l e n t o f FORTRAN's TNTEGER, b u t i t may b e s p e c i f i e d
t o b e e l s e w h e r e . FLOAT m e a n s t h e a s s u m e d p o s i t i o n o f t h e d e c i m a l
p o i n t is n o t i n a f i x e d p l a c e ; it f l o a t s f r o m p l a c e t o p l a c e w i t h t h e
g r o s s m a g n i t u d e o f t h e v a r i a b l e ' s v a l u e (f l o a t i n g - ~ o i n t h a r d w a r e i s
u s e d) .
Base: T h e c h o i c e s a r e B I N A R Y a n d DECIMAL. Any r e f e r e n c e t o d i g i t s ----
r e f e r s t o e i t h e r b i t s , i f b i n a r y , o r d e c i m a l d i g i t s , i f d e c i m a l .
P r e c i s i o n : T h i s i s a n u m h ~ r s p e c i f y i n g t h e n u m b e r p i dlgigs t o b e ---------
u s e d f o r t h e i n t e r n a l r e p r e s e n t a t i o n of t h e v a r i a b l e ' s v a l u e . F o r
f i x e d - p o i n t v a r i a b l e s i t s p e c i f i e s t h e e x a c t n u m b e r o f d i g i t s t h a t
p a r t i c i p a t e i n o p e r a t i o n s on t h e v a r i a b l e a c c o r d i n g t o t h e r u l e s o f
t h e l a n g u a g e . F o r f l o a t i n g - p o i n t v a r i a b l e s i t s p e c i f i e s t h e m i n i m u 2
n u m b e r o f d i g i t s t h a t p a r t i c i p a t e i n o p e r a t i o n s o n t h e v a r i a b l e
a c c o r d i n g t o t h e r u l e s of t h e l a n g u a g e . F o r f i x e d - p o i n t v a r i a b l e s
(o n l y) , p r e c i s i o n i n c l u d e s , i n a d d i t i o n t o t h e n u m b e r of d i g i t s ,

a n o t h e r n u m b e r c a l l e d t h e scale f a c t o r . T h i s e s s e n t i a l l y d e n o t e s how
many o f t h e d i g i t s a re t o t h e r i a h t o f t h e a s s u m e d d e c i m a l p o i n t . A
s ca l e f a c t o r o f 0 m e a n s t h e v a l u e of t h e v a r i a b l e i s a l w a y s a n
i n t e g e r a n d t h a t t h e smal les t d i f f e r e n c e i n t w o d i f f e r e n t v a l u e s t h a t
t h e v a r i a b l e c a n h a v e i s 1. A p o s i t i v e s ca l e f a c t o r means t h e
decimal p o i n t i s a s s u m e d t o b e s o many d i g i t s l e f t o f t h e l e a s t
s i g n i f i c a n t d i g i t p o s i t i o n . F o r i n s t a n c e , a sca le f a c t o r of 1 m e a n s
t h e v a l u e 0 5 t h e v a r i a b l e a l w a y s h a s o n e f r a c t i o n a l d i g i t : t h e
l l r e s o l u t i o n w o f s u c h a v a r i a b l e is t h u s o n e - h a l f , i f t h e b a s e i s
b i n a r y , o r o n e - t e n t h , i f d e c i m a l . A p o s i t i v e sca le f a c t o r may e v e n
e x c e e d t h e number of d i g i t s s p e c i f i e d f o r t h e v a r i a b l e , i n w h i c h case
a l l o f t h e d i g i t p o s i t i o n s b e t w e e n t h e h i q h - o r d e r o n e (l e f t m o s t) a n d
t h e a s s u m e d p o s i t i o n o f t h e d e c i m a l p o i n t , w h i c h i s e v e n f a r t h e r t o
t h e l e f t , a r e a s s u m e d a l w a y s t o c o n t a i n z e r o e s . A n e g a t i v e s c a l e
f a c t o r m e a n s t h e decimal p o i n t is a s s u m e d t o be s o many d i g i t s t o t h e
r i g h t o f t h e l e a s t s i g n i f i c a n t d i g i t p o s i t i o n , w i t h t h e i n t e r v e n i n g
d i g i t s a s s u m e d a l w a y s t o c o n t a i n z e r o e s . T h u s , w i t h a s c a l e f a c t o r
o f -1, t h e r e s o l u t i o n i s two, f o r b i n a r y b a s e , o r t e n , f o r d e c i m a l ;
t h e v a l u e r e p r e s e n t e d is a l w a y s a n i n t e g e r . A b e t t e r way o f t h i n k i n g
a b o u t t h e scale f a c t o r i s a s f o l l o w s . S u p p o s e t h e p r e c i s i o n i s
(p ,) , i . . , t h e n u m b e r o f d i g i t s i s p a n d t h e scale f a c t o r is q .

T h e n f i r s t c o n s i d e r t h o s e p d i g i t s t o r e p r e s e n t a p - d i g i t i n t e g e r ,
s a y U. Tte v a l u e o f t h e v a r i a b l e i s t h e n a c t u a l l y u - b - 9 , w h e r e b is
e i t h e r 2 o r 10 , a c c o r d i n g t o +he h a s e .

B e w a r e of t h e f o l l o w i n g d i f f e r e n c e s from FORTPA'N:
(a) I n FORTRAN, REAL m e a n s f l o a t i n g - p o i n t a n d n o t c o m p l e x . Tn

PL/ I i t o n l y m e a n s n o t c o m p l e x ; t h e v a r i a b l e . m a y b e e i t h e r
f i x e d - p o i n t o r f l o a t i n g - p o i n t .

(b) I n FORTRAN, COMDLEX m e a n s f l o a t i n g - p o i n t a n d i n t h e
c o m p l e x , a s o p p o s e d t o r ea l , d o m a i n . I n P L / I ' i t d o e s n o t
i m p l y f l o a t i n g - p o i n t .

(c) I n FORTRAN, INTEGER m e a n s f i x e d - p o i n t i n t e g e r i n t h e r e a l
d o m a i n . I n PL/T y o u c a n h a v e f i x e d - p o i n t i n t e g e r s i n t h e
c o m p l e x d o m a i n .

R e f e r e n c e s w i l l b e g i v e n l a t e r .

1 .6 . A t t r i b u t e s a n d d e c l a r a t i o n s f o r a r i t h m e t i c d a t a .

Ey e x a m p l e :

DCL X REAL FIXED BINARY (15,O) ;
T h e v a l u e o f X i s a r e a l b i n a r y i n t e g e r . The number o f d i g i f ?
is l 5 i 5 t h e s ca l e f a c t o r , 0 . T h e r a n g e o f t h e v a r i a b l e i s - 2
t o + 2 -1, w i t h a r e s o l u t i o n o f 1 .

DCL X REAL FIXED B I N A R Y (1 5) ;
Same a s a b o v e . I f o m i t t e d , t h e s ca l e f a c t o r i s a s s u m e d t o b e 0 .

DCL Y COMPLEX F I X E D BINARY (1 5) ;
Y h a s , b o t h a r e a l a n d a n i m a g i n a r y p a r t , e a c h w i t h t h e
p r o p e r t i e s o f X , a b o v e .

DCL Z FIXED DECIMAL(S,2) REAL;
T h e v a l u e o f Z i s a r e a l d e c i m a l n u m b e r w i t h two f r a c t i o n a l
d e c i m a l d i g i t s a n d 5 t h r e e iq t h e i n t e g r a l p a r t . T h e r a p g e o f t$e
v a r i a b l e is - (l o -1) ~ 1 0 - , i . e . , - 9 9 9 . 9 9 . t o + (I 0 - 1) . 1 0 - ,
i .e . , + 9 9 9 . 9 9 , w i t h a r e s o l u t i o n of 1 0 - .

DCL tl FIXED DECIMAL(2,S) RE9L:
U h a s a r a n g e of - (I 0 - 1) . 1 0 - * ~ t o + (1 @ ' - 1) - 1 0 - ~ , i . e . , - . 0 0 0 9 9
t o t . 0 0 0 9 9 , w i t h a k w s u l u b i u n of l n - 5 .

DCI. T REAL DECIMAL FIXED (2 5- 5) ;
5

T h a s a r a n g e of - (I 0 - l) - l ~ ~ t o 1 - I 1 , 1 . e . . - 9 9 0 0 0 0 0 t o
+ Y Y U U U U U , w i t h a r e s o l u t i o n of 1 9 .

DCL R REAL FLOAT B I N A R Y (21) :
T h e v a l u c l o f R i s a r e a l n u m b e r r e p r e s e n t e d i n f l o a t i n g - p o i n t .
T h e r a n g e of t h e r e p r e s e n t a b l e v a l u e s i s n o t a p r o p e r t y of t h i s
d e c l a r a t i o n ; i t i s a p r o p e r t y o f t h e i m p l e m e n t a t i o n , i. e., t 'he
u n d e r l y i n g h a r d w a r e . F o r I B V 36P/370 h a r d w a r e t h i s is
a p p r o x i m a t e l y - 2 2 5 2 t o + 2 2 5 2 . The r e s o l u t i o n i s n o t u n i f o r m
o v e r t h i s r a n g e . T h e a b s o l u t e v a l u e of t h e s m a l l e c t n o n - z e r o
n u m b e r t h a t c a n b e r e p r e s e n t e d i s a p p r c x f m a t e l y 2 --7 6 0 . T h e
p r e c i s i o n s p e c i f i c a t i o n of 2 1 d i g i t s (b i t s) m e a n s t h a t t h e most
s i g n i f i c a n t 2 1 b i t s (a n d m a y h e m o r e) o f t h e v a l u e a r e r e t a i n e d ;
w h e r e t h e d e c i m a l p o i n t i s i n r e l a t i o n t c t h e s e i s c a r r i e d i n
t h e i n f o r m a t i o n c o n t a i n e d i n t h e e x p o n e n t f i e l d i n t h e h a r d w a r e
r e a l i z a t i o n o f t h e v a l u e .

DCL R1 REAL FLOAT BINARY (3 1) ;
R1 c a n n o t b e . less p r e c i s e t h a n R s i n c e t h e 3 1 m o s t s i g n i f i c a n t
b i t s (a n d maybe more) a r e r e t a i n e d .

DCL S R E A L FLOAT DECIMAL (6) ;
T h e v a l u e o f S i s a l s o a r e a l n u m b e r r e p r e s e n t e d i n
f l o a t i n g - p o i n t . On I B M 36@/370 , t h e r a n g e , e x p r e s s e d i n d e c i m a l
terms, i s a p p r o x i m a t e l y t o The a b s o l u t e v a l u e o f
t h e smallest n o n - z e r o n u m b e r t h a t c a n b e r e p r e s e n t e d i s
a p p r o x i m a t e l y 1 0 - ~ a . A t l e a s t t h e 6 most s i g n i f i c a n t d e c i m a l
d i g i t s a r e r e t a i n e d .

DCL C COMPLEX DECIMAL FZOAT(6);
T h e v a l u e o f ' C i s a c o m p l e x n u m b e r r e p r e s e n t e d i n
f l o a t i n g - p o i n t . T h e r e a l a n d i m a g i n a r y parts e a c h h a v e t h e
p r o p e r t i e s o f S , a b o v e .

1 . 7 . . H a r d w a r e i m p l e m e n t a t i o n o f a r i t h m e t i c d a t a

T h e i n t e n t o f P L / I is t c f r e e t h e p r o q r a m m e r f r o m t h e n e e d t o
c o n s i d e r t h e h a r d w a r e r e p r e s e n t a t i o n s o f d a t a . I d e a l l y , p r e c i s i o n s
s h o u l d b e c h o s e n b a s e d o n t h e r e q u i r e m e n t s o f t h e p r o b l e m . The
p r e c i s i o n s s p e c i f i e d w i l l t h e n h a v e t h e same i m p l i c a t i o n s o n . t h e
b e h a v i o r o f t h e d a t a . o n a l l i . m p l e m e n t a t i o n s (~ r o v i d i n g no ma ximum
p r e c i s i o n s a r e v i o l a t e d) . O f t e n , h o w e v e r , t h e p r o g r a m m e r is
i n t e r e s t e d i n e c o n o m y (' s t o r a g e o r t i m e) w i t h r e s p e c t t o o n e
i m p l e m e n t a t i o n , a n d p r e c i s i o n s a r e c h o s e n b a s e d o n k n o w l e d g e o f t h e
a m o u n t o f s t o r a g e w h i c h t h a t i m p l i e s f o r t h a t h a r d w a r e . S u c h
p r o g r a m s a r e s t i l l p o r t a b l e , o f c o u r s e , h u t t h e e f f i c i e n c y
c o n s i d e r a t i o n s may n o t m a t c h t h e " o t h e r q v h a r d w a r e v e r y we l l .

F o r m a c h i n e e , q u i v a l e n t s b e t w e e n FORTPAN a n d FL/T a r i t h m e t i c d a t a
t y p e s , see LRM 7. F o r a summary o f s t o r a g e r e q u i r e m e n t s , see LFM 20.

1.8. L a n g u a g e Clef a u l t ~ f o r a r i t h i ~ ~ e t i c a t t r i b u t e s

If a v a r i a b l e is n o t d e c l a r e d e x p l i c i t l y . o r c o n t e x t u a l l y , i t a c q u i r e s
t h e f o l l o w i n g a t t r i b u t e s i m p l i c i t l y .

F i r s t l e t t e r of I d e n t i f i e r ---- ------ - D s a u l . ---- t ---------- Attributes
I- N REAL FIXED B I N A R Y (151
O t h e r REAL FLCAT D E C I M A L (6)

I f some, b u t n o t a l l f o u r , o f t h e a r i t h m e t i c a t t r i b u t e s (mode, sca le ,
b a s e , p r e c i s i o n) a r e e x p l i c i t l y d e c l a r e d , t h e r e m a i n d e r are c h o s e n
f e o m c o m p l i c a t e d d e f a u l t s . T h e o n l y o n e t h a t may s a f e l y b e o m i t t e d

i s mode: REAL is a l w a y s assumed.,

~ e 5 a u l t p r e c i s i o n s a r e d e f i n e d by t h e i m p l e m e n t a t i o n , p o t t h e
l a n g u a g e : t h e y may d i f f e r a m o n g s t i m p l e m e n t a t i o n s .

F o r a l l t h e g o r y d e t a i l s , see LRM 8 - LRM 1 2 .

1 .9 . I m p l e m e n t a t i o n maximum p r e c i s i o n s

See LRN 1 2 .

1.10. U s e of a r i t h m e t i c d a t a

N e w a r i t h m e t i c v a l u e s are l 9 g e n e r a t e d 1 * by:
(a) R e f e r e n c e t o a r i t h m e t i c c o n s t a n t s .
(b) I n p u t o p e r a t i o r i s .
(c) A r i t h m e t i c o p e r a t i o n s o n o t h e r : a r i t h m e t i c v a l u e s .
(d) C e r t a i n o p e r a t i o n s o n o t h e r t h i n g s .

They a r e p r o p a g a t e d by a s s i g . n m e n t .
They may b e u s e d i n d i v e r s e ways, some o f w h i c h a r e :

(a) A r i t h m e t i c o p e r a t i o n s .
(b) C o m p a r i s o n o p e r a t i o n s (L e s s o n 2) .
(c) ~ u t p u t ' o p e r a t i o n s (L e s s o n s 7-9) .
(dl S u b s c r i p t i n g (L e s s o n 3) .

1.11. . A r i t h m e t i c c o n s t a n t s

A r i t h m e t i c c o n s t a n t s d e n b t e , hy t h e way t h e y are w r i t t c n , o b j e c t s
t h a t h a v e (a l w a y s) t h e i l ~ l l i c a t t d a r i t h m e t i c valuo 2s well ~ t ;
i n d i c a t e d a t t r i b u t e s , It is i m p o r t a n t t o r e a l i z e t h a t a l l ------- -------
a r i t h m ~ t i c c n n s t a n t s h a v e a t t r i b u t e s o f mode, b a s e , scale, a n d
p r e c i s i o n w.hich a r e d e t e r m i n e d by how t h e c o n s t a ~ ~ t s : a r e written.

REAL F I X E D DECIMAL c o n s t a n t s a r e c o m p r i s e d o f t h e d e c i m a l d i g i t s , a n
o p t i o n a l s i g n , a n d a n o p t i o n a l aecimal p o i n k . The number o f d i g i t s
o f p r e c i s i o n is t h e number o f d e c i m a l d i g i t s w r i t t e n ; t h e s c a l e
f a c t o r i s t h e number o f them which a r e t o t h e r i g h t o f t h e d e c i m a l
p o i n t . Examples :

C o n s t a n t ------- ------- P r e c i s i o n
1 (1 , O) ,

R E A L F I X E D B I N A R Y c o n s t a n t s a r e s im i l a r , e x c e p t , t h a t o n e u s e s o n l y
t h e b i n a t y d i g i t s a n d fo l lows t h e m w i t h a 'B. Examples :

C o n s t a n t ------
1 B

101 .11R
- . 0 1 0 1 8

P r e c i s i o n --------
(1 , Q)

\

REAL FLOAT DECIMAL c o n s t a n t s a r e w r i t t e n a s REAL FIXED DECIMAL
c o n s t a n t s f o l l o w e d b y a n E a n d a n o p t i o n a l l y s i g n e d - e x p o n e n t . T h e
n u m b e r a f d i g i t s o f p r e c i s i o n is t h e n u m b e r o f d i g i t s w r i t t e n .
E x a m p l e s :

C o n s t a n t ------
1 EO

1 . 6 4 8 ~ + 2 4
- . 0 0 S l E - 3 7

P r e c i s i o n ------
(1)

REAL FLOAT BINARY c o n s t a n t s a r e s i m i l a r , e x c e p t t h a t o n l y t h e b i n a r y
d i g i t s a r e u s e d t o . t h e l e f t o f t h e e x p o n e n t a n d t h e e x p o n e n t i s
f o l l o w e d b y a B. T h e e x p o n e n t i s w r i t t e n w i t h d e c i m a l d i g i t s b u t i s
i n t e r p r e t e d a s a p o w e r o f 2. E x a m p l e s : ..

C o n s t a n t -------
1EOB

P r e c i s i o n -------
(11

T h e r e a r e n o c o m p l e x c o n s t a n t s i n P L / I , b u t t h e r e a r e i m a g i ~ a r y
c o n s t a n t s . An i m a g i n a r y c o n s t a n t i s a n y r e a l c o n s t a n t f o l l o w e d b y
a n I. E x a m p l e s :

C o n s t a n t c o m p l e x v a l u e s c a n b e w r i t t e n a s e x ~ r e s s i o n s , a s i n t h e .
. .

f o l l o w i n g : . .

A r e v i e w o f t h i s m a t e r i a l c a n b e f o u n d a t LRM 1 3 . T h i s r e f e r e n c e ,
a s well a s LRM 1 2 , c o v e r s d e f a u l t a n d maximum ~ r e c i s i o n s . . .

B e a w a r e o f s e v e r a l d i f f e r e n c e s f rom FORTRAN:
(a) A c o n s t a n t s u c h a s 5 d e n o t e s a b i n a r y i n t e g e r i n FORTRAN

a n d a d e c i m a l i n t e g e r i n P L / I . However, i L is n o t
n e c e s s a r y ' t o wr i te t h i s c o n s t , a n t a s lOle i n P L / I i ' f t h e
compilel: can t e l l t h a t a b i n a r y i .n teger i s n c e d e g (which
it almost a l w a y s c a n) ; i t w i l l s u b s t i t i r t e . t h e e q u i v a l e n t
b i n a r y i n t e g e r .

(b) A d e c i m a l p o i n t i s s i i f f t c i e ~ ~ t Cu d e n o t e f l ~ a t i n ~ - ~ o i & t i..n
FORTRAN. 5 . 0 i s a f i x e d - p o i n t c o n s t a n t i n PL/1 ; it h a s a
s c a l e f a c t o r o f 1 (remember , f i x e d - ~ o i n t d a t a c a n h a v e
f r a c t i o n a l p a r t s) . P.gain , i f . t h e c o m p i l e r c a n t e l l t h a t a
f l o a t i n g - p o i n t c o n s t a n t i s r e q u i r e d , i t w i l l s u b s t i t u t e
t h e e q u i v a l e n t ' f l o a t i n g - p o i n t c o n s t a n t .

(c) T o g e t a d o u b l e - p r e c i s i o n f l o a t i n g - p o i n t c o n s t a n t you
m e r e l y w r i t e t h e r e q u i r e d number o f d i g i t s ; t h e r e is n o D
e x p o n e n t c h a r a c t e r a s i n FORTFAR. I f you h a v e w r , i t . t e n 'a'
s i n g l e - p r e c i s i o n f l o a t i n g - p o i n t c o n ~ t a n t where
d o u b l e - p r e c i s i o n i s r e q u i r e d , t h e c o m p i l e r s u b s t i t u t e s a
d o u b l e - p r e c i s i o n c o n s t a n t o b t a i n e d by s u p p l y i n g l o w - o r d e r
z e r o e s . T h u s , t h e n e a r e s t e q u i v a l e n t t o FORTRAN's 0.1DQ
i.s 0 . 1 0 ~ 0 0 0 ~ 0 (o n o u r i m p l e m e n t a t i o n) . (The f a c t t h a t you
o n l y n e e d 7 d i g i t s , a n d n o t 16 , t h e m a x i ~ ~ ~ u r n for d o u b l e -

. p r e c i s i o n , i s a c o n s e q u e n c e o f o u r i m p l e m e n t a t i o n a n d n o t
t h e l a n g u a g e r u l e s .)

Do n o t become p a r a n o i d . o v e r t h i s ! I f y o u i n i t i a l l y d o what Seems
n a t u r a l , y o u w i l l m o s t o f t e n b e r i g h t . Some k n o w l e d g e o f , a n d
e x p e r i e n c e wi . th , t h e p r e c i s i o n , a n d c o n v e r s i o n r1.ll.e~. a s w e l l a s o u r
c o m p i l e r s . w i l l p r e p a r e y o u f o r t h e f e w c a s e s ,where wha t seems
n a t u r a l is n o t r i g h t ' .

1 .12 . S c a l a r a r i t h m e t i c a s s i g n m e n t s \.

A s s i g n m e n t o f a n a r i t h m e t i c v a l u e t o a n a r i t h m e t i c v a r i a b l e may
r e q u i r e s g n v e r s i o n o f t h a t v a l u e t o an " e q u i v a l e n t w o n e h a v i n g the
a t t r i b u t e s o f t h e t a r g e t . T h e c o n v e r s i o n o c c u r s a u t o m a t i c a l l y a n d
i s d e t e r m i n e d b y c o n v e r s i o n r u l e s .

F o r m s o f t h e a s s i q q m g q t s t a t e m e n t a re :
vahiabLe = expxab ion;
vahiabLe I , . . . , vahiabte,. = e x p k a d i o n ;

The l e t t e r form d e n o t e s m u l t i p l e a s s i g n m e n t cf t h e v a l u e o f t h e
e x p r e s s i o n (w h i c h i s o n l y e v a l u a t e d o n c e) t o e a c h of t h e v a r i a b l e s
(w h i c h may h a v e d i f f e r e n t a t t r i b u t e s) . S e e LRM 1 4 .

1 .13 . C o n v e r s i o n r u l e s f o r a r i t h m e t i c a s s i g n m e n t s

I n c o n v e r t i n g REAL t o COMPLEX, a z e r o i m a g i n a r y p a r t i s s u p p l i e d .
G o i n g t h e o t h e r way, . t h e i m a g i n a r y p a r t i s j u s t d r o p p e d .

O t h e r c o n v e r s i o n s a r e m o r e o r less o b v i o u s : t h e y t r y t o p r e s e r v e
t h e v a l u e b e i n g a s s i g n e d , i f p o s s i b l e . I f c h a n g e o f b a s e i s
r e q u i r e d , l o w - o r d e r a c c u r a c y may h e l o s t i n q c i n g f r o m d e c i m a l t o
b i n a r y b e c a u s e some d e c i m a l f r a c t i o n s w i t h f i n i t e r e p r e s e n t a t i o n s d o
n o t h a v e f i n i t e b i n a r y r e p r e s e n t a t i o n s . I n g e n e r a l , w i t h c h a n g e o f
base , o n e d e c i m a l d i g i t c o r r e s p o n d s t o a b o u t 3 . 3 2 h i n a r y d i g i t s
(b i t s) . T h e ' c o n s e q u e n c e s o f i n s u f f i c i e n t p r e c i s i o n . i n t h e t a r g e t
d e p e n d o n w h e t h e r t h e t a r g e t i s f l o a t i n g - p o i n t o r f i x e d - p o i n t . I f
it i s f l o a t i n g - p o i n t , l o w - o r d e r a c c u r a c y may h e l o s t . E x a m p l e s o f
t h i s s i t u a t i c n a r e :

FLOAT DECI HAL (1 6) t o FLOAT DECIMAL (6) .
'FLOAT DECIMAL (1 6) t o FLOAT BINARY (2 1) .
FIXED DECIMAL (8 , x) t o FLOAT DECIVAL (6)

f o r a n y s c a l e f a c t o r x.
FIXED B I N A R Y (3 1) t o FLOAT DECIPAL (6) .

T h a t is, a s l o n g as t h e t a r g e t is f l o a t i n g - p c i n t , t h e c o n s e q u e n c e s
o f i n s u f f i c i e n t p r e c i s i o n i n t h e t a r g e t a r e n c t i n f l u e n c e d b y b a s e

" o r s c a l e c o n v e r s i o n . I f t h e t a r g e t i s f i x e d - p o i n t , t h e r e . a r e t w o
p o s s i b l e c o n s e q u e n c e s (w h i c h a l s o a r e n o t influences b y base o r
s c a l e c o n v e r s i o n) . L o s s o f l o w - o r d e r a c c u r a c y i s p o s s i b l e d u e t o .

t h e l i m i t e d r e s o l u t i o n i m p l i e d b y t h e scale f a c t o r o f t h e t a r g e t .
F o r i n s t a n c e , i n a s s i g n i n g t o a n i n t e g e r , i .e . , a f i x e d - p o i n t
v a r i a b l e w i t h a s c a l e f ac to r o f 0, a n y f r a c t i o n a l p a r t i s l o s t ; t h i s
is common i n FLOAT t o FIXED (i n t e g e r) c c n v e r s i o n s . A worse
s i t u a t i o n ~ o c c u r s when t h e t a r g e t d o e s n o t h a v e e n c u g h h i g h - o r d e r
d i g i t p o s i t i o n s t o a c c o m m o d a t e a l ' l t h e n o n - z e r o h i g h - o r d e r d i g i t s of
t h e v a l u e b e i n g a s s i g n e d . E x a c t l y w h a t h a p p e n s i n t h i s c a s e w i l l b e
c o v e r e d l a t e r (L e s s o n 6) . T h i s s i t u a t i o n c o u l d e a s i l y o c c u r i n
FLOAT t o FIXED c o n v e r s i o n s , r e g a r d l e s s o f t h e p r e c i s i o n s i n v o l v e d , .
b e c a u s e o f t h e v e r y l a r g e v a l u e s t h a t c a n be r e p r e s e n t e d i n
f 1 0 , a t i n g - p o i n t .

The, a s s i g n m e n t o f a c o n s t a n t t o a v a r i a b l e ' is c n e case i n w h i c h t h e

c o m p i l e r t l c o n v e r t s v c o n s t a n t s a t c o m p i l e time.

3 . 1 4 . A r i t h m e t i c o p e r a t i o n s

A s i n FORTRAN, t h e y a r e p r e f i x a n d i n f i x g g d i t i o n (+) . a n d
subtraction (-1 , ---- m u l t i ~ l i c a t i o n -------- ' (*I , -------- d i v i s i o n I a n d
e x e o n e n t i a t i o n (**) . -- ----------

A few d i f f e r e n c e s from FORTRAN:
(a) P r e f i x + a n d - h a v e t h e h i g h e s t p r i o r i t y (e q u a l t o t h a t o f

**) i n s t e a d of t h e lowest (e q u a l ; i n FORTRAV, t o t h a t o f
i n £ i x + a n d ' -) .

E&?!!Q~ ----- I n t e r p r e t a t i o n - = - - ~ i n :
FORTR ATJ P r ~ z

A=- B*C A=- (B*C) A = (-5) * C
Az-R-C Am (-D) -C a= (-El) -C

(b) A p r e f i x o p e r a t o r may f o l l o w a n o t h e r o p e r a t o r , e . g . , t h e
f o l l o w i n g a r e a l l o w e d i n PL/T b u t n o t FOFTEAN:

A+-B R*a-R
A/- B -- B

(c) I n e x p o n e n t i a t i o n of a c o m p l e x v a l u e , t h e e x p o n e n t (s e c o n d
o p e r a n d) may be c o m p l e x . I n FOFTRAN it. m u s t h e n o t o n l y
n o t c o m p l e x b u t a l s o a n i n t e g e r .

(d) ~ i v i s i o n o f f i x e ' d - p o i n t i n t e g e r s (i . e . , v a l u e s w i t h a s c a l e
f a c t o r o f 0) d o e s not n e c e s s a r i l y y i e l d a n i n t e g e r , a s i t
d o e s i n FORTRAN. (S e e b e l o w .) T h i s o f t e n c a u s e s p e o p l e
t r o u b l e .

1.1 5. C o n v e r s i o n r u l e s f o r a r i t h m e t i c o p e r a t i o n s

T h e two o p e r a n d s of a n i n f i x o p e r a t o r (e x c e p t e x p o n e n t i a t i o n) m u s t
h a v e t h e same mode, s c a l e , a n d base. I f mcde, b a s e , o r s c a l e
d i f f e r s , c o n v e r s i o n o c c u r s a s f o l l o w s :

(a) I f t h e m o d e s o f t h e operands rlicfer, t h e REAL operand is
c o n v e r t e d t o COMPLEX b y s u p p l y i n q a zero i m a g i n a r y p a r t .

(b) I f t h e bases d i f f e r , t h e DECIMAL o p e r a n d i s c o n v e r t e d t o
BINARY (i t s p r e c i s i o n h e l n g Increased b y d L a u t u ~ uf 3.32,
a p p r o x i m a t e l y , b e c a u s e it w i l l h a v e t o r e p r o s e n t b i t s
i n s t e a d of ?eci.rnal. d i g i t s) . Caution: if B i s F I X E D
BINARY i n . l*B, t h e FIXFD DPCIMAL c o n s t a n t .I w i l l b e
c o n v e r t e d (a t c o m ~ i l e t i m e) t o a F I X E D B I N A R Y c o n s t a n t
w i t h a v a l u e of o n e - s i x t e e n t h , n o t c n e - t e n t h , s i n c e i ts
p r e c i s i o n w i l l be (5,4). A v a l u e c l o s e r t o o n e - t e n t h i s
o b t a i n e d i f y o u w r i t e . 1 0 o r .100, etc.

(c) I f t h e sca les d i f f e r , t h e F f t E B o p e r a n d 1s c o n v e r t e d t o
FLCAT h a v i n g t h e same n u m b e r o f d i g i t s .

By t h e a b o v e r u l e s we w i l l h a v e o b t a i n e d o p e r a n t l s t h a t (may) d i f f e r

i n p r e c i s i o n o n l y . T h e r e s u l t w i l l h a v e t h e s a m e mode, b a s e , a n d
s c a l e , a n d a p r e c i s i o n d e f i n e d b y , t h e p r e c i s i o n r u l e s f o r a r i t h m e t i c
o p e r a t i o ~ s (s e e b e l o w) .

F o r e x p o n e n t i a t i o n , see LRN 1 5 .

T h e u s e o f a c o n s t a n t a s a n a r i t h m e t i c o p e r a n d i s a n c t h e r c a s e i n
w h i c h t h e c o m p i l e r w c o n v e r t s a a c o n s t a n t s , a t c c m ~ i l e time.

1.16. P r e c i s i o n r u l e s f o r a r i t h m e t i c o p e r a t i o n s

T h e s e r , l e s a re c o n c e r n e d w i t h t h e p r e c i s i o n o f t h e r e s u l t o f
a d d i t i o n . s u b t r a c t i o n , m u l t i p l i c a t i o n , or d i v i s i o n , when t h e
o p e r a n d s h a v e t h e same mode, b a s e , a n d scale .

FLOAT s c a l e . i s e a s y : t h e p r e c i s i o n of t h e resul t i s t h e l a r g e r o f
t h o s e o f t h e o p e r a n d s (f o r a l l t h e o p e r a t i o n s) . P r o m o t i o n o f t h e
l t s h o r t e r " o p e r a n d f r o m . s i n g l e t o d o u b l e p r e c i s i o n , o r , d o u b l e t o
e x t e n d e d , is d o n e by s u p p l y i n g l o w - o r d e r z e r o e s .

T h e f o r m u l a s f o r t h e f i x e d - p o i n t p r e c i s i o n r u l e s seem c o m p l i c a t e d ,
b u t t h e y d e r i v e from s i m p l e p r i n c i p l e s . B a s i c a l l y , t h e g o a l is t o
r e t a i n a s much p r e c i s i o n a s p o s s i b l e , b o t h h i g h - o r d e r a n d l o w - o r d e r ,
w i t h o u t 2 x c e s s p r ~ c l s i o n .

117 w h a t f o l l o w s , l e t t h e o p e r a n d s h a v e p r e c i s i o n s (~ 1 , g l) a n d
(p 2 , q 2) r e s p e c t i v e l y , a n d denote t h e p r e c i s i o n o f the r e s u l t by
(~ , q) . F o r a l l se ts o f i n d i c e s , l e t r = p - q (t h e n u m b e r o f d i q i t s . t o
t h e --- l e f t o f t h e d e c i m a l p o i n t) -

A d d i t i o n a n d s u b t r a c t i o n : I f you were t o write a p a i r o f o p e r a n d s
o n e a b o v e t h e o t h e r , w i t h d e c i m a l p o i n t s a l i g n e d , y o u w o u l d see t h a t
n o p r e c i s i o n is l o s t If t h e number o f f r a c t i o n a l d i g i t s o f t h e
r e s u l t i s t h e g r e a t e r o f t h e n u m b e r s o f f r a c t i c n a l d i g i t s o f t h e
operands (i.e., q = m a x (q l , q 2)) a n d i f t h e n u m b e r o f i n t e g r a l d i s i t s
of the r e s u l t i s o n e m o r e t h a n t h e g r e a t e r o f t h e n u m b e r s o f
i n t e g r a l d i g i t s o f t h e . o p e r a n d s (t h e a d d i t i o n a l d i g i t a l l o w s f o r a
c a r r y) (i . e . , r = l + m a x (r l , r 2)) .

Example : XX. XXXX
XXX.XX

XXXX . XXXX
Substituting for the r ' sf we get p=l+max (pl-u.,p2-q2)+max(ql ,q2) .
If this formula yields a value of p in excess 'of'the
maximum permitted by the implementation, for the given
base, that maximum is used instead.

Multiplication: Playing the same game, you see that the
number of fractional digits of the result needs to be the
sum of the numbers of fractional digits of the operands,
and likewise for the integral digits. Example:

XX . XXXX
* XXX .XX
XXXXX.XXXXXX

However, when you consider what happens in comple'x multi-
plication, you will see that one more digit is needed on
the high-order end. Thus, q=ql+q2, r=l+rl+r2. Therefore,
p=l+pl+p2, subject to the limitation on the implementation
maximum number of digits.

Division: This is the weird one.. Clearly, the fractional
part of the quotient could go on forever. So, to retain
as much precision as possible.the result must have the
maximum number of digits. As many as necessary for the
worst. case are used far the inteqral digits with the rest
assigned to the. fractional digits (thus determining the
scale factor). The worst case occurs with a maximum
dividend'and minimum non-zero divisor, yielding r=rl+q2.
The final result is p=N (the maximum for the given base) .
and q=N-((pl-ql)+q2). Notice the consequences of this.
A/2. in PL/I may have a fractional part, unlike FORTRAN.
.(It. will if A is FIXED BINARY(lS), for example.) Further-,,
more, the fractiona'l part will be exactly represented so
that A/2*2 will equal A and not A-1 (as it does in FORTRAN
when 4 i .s odd). Clearly, you can see that the PL/I rule
gives a more accurate result than the F O R T W rule.

Note that the precision rule for division introduces a '

weak implementation dependence into the actual numerical
results that may be obtained, in fixed-point division,
although most realistic programs will not be affected by
it.

The resultant precision of exponentiation is given at
LRM 15.

For additional information, see LRM 16, OTHER 1, and
OTHER 2.

1.17. Arithmetic builtin functions

PL/I has a large set of builtin functions which are akin,
generally, to the FORTRAN "intrinsic functions." The .
general treatment of builtin functions is in Lesson 10;
however, those applicable to arithmetic and mathematics
are initially covered now.

The arithmetic builtin functions perform certain basic
operations or conversions on arithmetic values. -They are
"generic" in the sense that a wide-variety of attributes
are permitted for the arguments. The attributes of the
result are, in many cases, derived from the attributes of
the arguments.

Detailed information can be found at LRM 19 and rele&nt
portions of LRM 18. The funct,ions are listed below, with
brief indications of their use. See also LN.1 29.

ABS

MAX
Fl IN
REAL
INAG

MOD
SIGN
COMPLEX
CONJG
FLOOR

CEIL

TRUNC

ROUND

BINARY,
DECIMAL ,
FIXED,
FLOAT

Absolute value of real quantity; modulus of
complex quantity.
Maximum of several real quantities.
Minimum of several real quantities.
Real part of complex quantity.
Imaginary part of a complex quantity (the
result is real).
Remainder on division of real quantities.
Sign of a real quantity (as +1,0, or -1);
a+bi for real quantities a and b.
Complex conjugate of a complex quantity.
Largest integer less than or equal to a real
quantity (result has same scale as argument).
Smallest integer greater than or equal to a
real quantity.
Truncation of a real quantity to an integer.
Truncation is towards zero, so TRUNC=FLOOR
for positive arguments and TRUNC=CEIL for
negative ones.
A real value rounded in the specified digit
position (not useful for floating-point).

\ '

Conversion to the indicated base.or' scale
with an optionally specified precision..
'If not specified, the conversion rules
determine the precision. Other attrih~i~es
remain unchanged..

PRECISION Conversion to the given precision. Other
attributes remain unchanged.

ADD, Operations carried out in the given precision
MULTIPLY, instead of that determined by the precision
DIVIDE rules. See LWI 28.

Note that the DIVIDE builtin function can be used to over-
come the (weak) dependency of fixed-point division on the
implementation maximum precision.

Arithmetic pseudo-variables .

Some builtin functions .can be used,'with suitably restricted
arguments, on left-hand side of an assignment statement.
In that form they are known as pseudo-variables. The
restrict.i,ons on the argument (or arguments, in some cases)
guarantee that,some portion of the storage belonging to a'
variable is being addressed.

Three of the arithmetic builtin functiorle call also be used
as pseudo-variables :

REAL For assignment to the real part (only) of a
complex variable, e .g. , REAL (5) =1EO;

IMAG As for REAL, but the ir~~ayinal-y part c .g . ,
IMAG (5)=5E-01;

COMPLEX For assignment of the real part of a oomplex
value to one real variable and the imaginary

. . part to another real. variable, e .q. ,
COMPLEX (X ,Y) =5.
Note: the proposed ANSI standard does not
include the COMPLEX pseudo-variable.

Guidelines on choice of arithmetic attributes

Use FLOAT when a variable has a very widc range of values,
and "enough" pree9sion. T 1 1 e ~ e are no aignifisant d i f f e r -
ences between FLOAT BINARY and FLOAT DECIMAL i-n our
irr~ylea~entat i o n ni-nae both are implemented with the 360/7 0
"float hexadecimal" hardware.

There is both binary and decimal fixed-point hardware,
but binary is generally more "efficient" and is to be
preferred. Certain uses of arithmetic values, such as
for subscripting, require binary base (conversion is per-
formed, if necessary). Operations involving powers of ten
may indicate the use of decimal base.

1.20. Mathematical builtin functions

The following, mathematical builtin functions, some of
which have counterparts' among the intrinsic functions
of FORTRAN, are available in PL/I:

ACOS ERF
ASIN ERFC
AT AN EXP
ATALV D LOG
ATANH LOG2
COS LOG10
COSD SIN
COSH SIND

SINH
SORT
TAN
'TAND
TANH

All operate on floating-point arguments (conversion is
'performed, if necessary) and yield floating-point results.
These functions are generic in the sense that either base
or mode is allowed for the argument,'the result.having
the same base and mode; likewise, any precision is
allowed. (Certain of these require REAL arguments;
example: ERF.)

Caution: As of September 19, 1975, the following mathe-
matical builtin functions are not in the proposed ANSI
standard for PL/I: ACOS, ASIN, ATAVH, COSH, ERF, ERFC,
SINH, and TANH. There has been some effort to restore
them. If they are not restored, they will be available
in a particular implementation, as an extension, only if
the vendor sees fit to provide them.

See LWJI 17 and relevant parts of LN4 18.

1.21. 'unanswered questions

We have already posed the question "What happens-when a
fixed-point assignment target has insufficient, precision
to receive the high-order non-zero digits of a value being
assigned?" Other questions to be answered in.Lesson 6
are :

What happens when you try to compute a fixed-point value
that is too "5ig" for the hardware?

Similarly, for a floating-point value.

Similarly, for a too-"small" floating-point value.

What happens when the argument of a mathematical builtin.
function is "bad"? Example: a real (not, complex) -1 for.
S QRT .

1.22. Homework problems

(#1~) What are the attributes (including precision) of
the following arithmetic constants?

1 I

(#1B) What are the ranges and resolutions of variables
having khc following st.t.ributes?

REAL FIXED DECIMAT, (3)
REAL FIXED DECIMAL (3,2)
REAL FIXED DECIMAL (3,4)
REAL FIXED DECIMAL (3, -1)
REAL FIXED BINARY (4)
REAL FIXED BINARY (4,3)
REAL FIXED BINARY (4,7)
REAL FIXED BINARY (4, -2)

.(#lC) In the following, what are the attributes of the
constants, as written, and to what attributes
will they be converted according to the conversion
rules? What are the values of the converted
constants? . .

N+l . (N is FIXED BINARY (15))
X+1 (X is FLOAT'BINARY (21))
.5*X

. . .5 *N
l.l*N
5E-1*Y (Y is FLOAT DECIMAL(6))
5E-l*B (53 i s FLOAT DECIMAL(16))

(#ID) what arithmetic builtin functions could you use in
a modifiaation of J/2*2, for J FIXED BINARY (15) ,
that would give t ,he same results as FORTRAN (i.e.,
how can you force the division to behave like
FORTRAN's integer division)? Write the modified
expression. Note that there are ~ e v e r a l po3ai-
bilities .

2. String data types; s tr ing . . and logical expressions.

2.1. - .Character s tr ing values.

Character string.values are elementary values l ike arithmetic values
'(i . e . , they can be the operands. or results of certain operations) .
A character s tr ing value is a sequence of characters. In addition
to i ts identity '(the sequence i t se l f) , a ha rac t e r s tr ing value has
another.property: the length of a character s t r ing value is the
number of characters i n the sequence. ABC is ' a character s t r ing
value of length 3.

2.2. B i t s t r ing values.

Like character s tr ing values except that the sequence is a sequence
of 0 or 1 bits.. 1010 is a b i t s tr ing value of length 4.

2'. 3. String variables.

Character (bit) s tr ing variables are variables that can acquire
character (bit) s tr ihg values.

When str ing variables are declared, w i t h the CHARACTER (abbreviation:
CHAR) or BIT at tr ibute, the length of the s t r ing values to be stored
in the variables must be specified. Examples:'

E L C CHAR (20) ;
E L J CHAR (5) ;
DCL Q BIT (1) ;
DCL F BIT (33) ;

The maximum length of a str ing value in our implementations is 32767.

Another at tr ibute applicable to s t r ing variables w i l l be given la ter .

2.4. Use of character s t r ing data.

New character s tr ing values are "generated" by:

(a) Reference to character s t r ing constants.,
(b) Input operatioiis.
(c) String op.erations on other character s tr ing values.
(d) Certain operations on other things.

They are propagated by assignment.
They may be: used' i n diverse ways, some of which are:

(a) String operations.
(b) Coq'arison operations.
(c) Output operations. (Lessons 7-9)

2.5. Character string constants .
The string value is enclosed in single quotes. I f . .a single quote
is to be a character in the sequence constituting the string value,
it must be written twice. Examples,:

Constant Character string value
I 1 ABC
'5 l .t, f i j i s a b l d .)
'IT1 IS' IT'S
I I I A I I I 'A'

A. Long constant which is the.repetition of a shorter constant may ..

be written with a repetition factor, as iii tke following examples:

Constant
(31 'XY1

'Character string value
XYXYXY

2.6. Fixed-length scalar character string assignments.

The kinds of string variables' described above are teme'd fixed-length
string variables, because their values always have exactly the length -
specifi.ed. In Gsigmnent of a character string value to a fixed-' -
length character s'tring variable, using the a~sigm11eilL statement , the
character string val& being a.ssj.gned i s either tnmcated on the right,
or ~xtended on the right with bianks , . i f necessary, to make it. conform
tn t h e l e n g a of the target. Example: . .

. . .

E L C €HAR (6) ;
C = 'AEu=D1 ; The value of C ~ f t c r ,assignment i s t.he

6 -character sequence ABCB5.
C = 'ABCDEFG1; Here, it i s ABCDEF.

To review, see LRM 21.

. .

2.7. Use of b i t s t r ing data.

New b i t s tr ing values are "generated" by:

(a) Reference to b i t s tr ing constants.
(b) Input operations.
(c) String operations on other b i t s t r ing values.
(d) Logical operations on other b i t s t r ing values.
(e) Comparison operations.
(f) Certain operations on other things.

They are propagated by assignment.
They may b e used' i n diverse ways, so111e of which are :

(a) String operations.
(b) Logical operations.
(c) Comparison operations.
(d) Output operations. (Lessons 7-9)

2.8. B i t s t r ing constants.

The str ing value, written with 0's and l l s , is enclosed i n quotes
and followed by a B. Repetition factors are allowed. Examples:

Constant B i t s t r ing value .
' 1 ' B 1
'00110'B 00110
(2) ' 1 l l 1 B 111111

2.9. Fixed-length scalar b i t s tr ing assignments.

By analogy with fixed-length character s t r ing assignments, a b i t
s t r ing value being assigned is ei thcr t m e a t e l l ur extended on
the 'right, i f necessary, t o make it conform to' the length of the
target. Extension is w i t h 0-bits . Example:

DCL B BIT (5) ;
R = (2) ' l l B ; The value of B a f t e r assignment is

the 5-bit sequence 11000.
B = (2)'11001B; Here, it is 11001.

To review, see T,RM 22 and LRM 23.

2.10. Conversions between b i t s t r ing and character s tr ing.

This conversion is required, for example, when a s s i p ~ l e n t of a b i t
s t r ing value is made t o a character s t r ing variable, or when
assigning a character' s t r ing value t o a b i t s t r ing variable.

Bit-to-character conversion results i n a str ing of the same
length w i t h 0-bits becoming the character 0 and 1-bits becoming
the character 1.

Character-ro-bit curlveisiol~ proceeds as above, but in reverse.
Only th.e characters 0. and 1 are permitted i n the character s tr ing
value being converted. In Lesson 6 we w i l l see what happens when
th i s ru le is violated, and what the program can do about it:

2.11, Conversions between s t r ing and arithmetic data.

. If conversion from s t r ing to arithmetic is required, it proceeds I .

as follows:

B i t s t r ing values are interpreted as unsigned binary integers.

Character s t r ing values must represent valid arithmetic constants
(possibly surrounded by blanks). The arithmetic constant represented
by the character s t r ing value w i l l have a self-denoting mode, base,
scale, and precisiori.' In a context where the target 'arithmetic
at tr ibutes are independent (such as i n assignment), the conversiorl
occurs (interpretively) according to the rules o f . arithmetic conver-
sions for the specific source arithmetic type represented by the
character s t r ing value. Hawever, i n a context where any arithmetic
at tr ibutes would be permissible (such as. the operand of an arithmetic
operation), the arithlrlelic coilstant reprcscnted i n the character
s t r ing value is f i r s t converted to DECIMAL FIXED (15,0), interpretively;
tha t intermediate target may require further conversion, depeilding on
the operarion and iis other qerand.

Wen arithmetic v a l ~ ~ e s are t o be converted t o str ing, the context may
o r may not determine whether character strings or b i t strings result
(some contexts permit ei ther) . In this case conversion is to b i t
s t r ing i f the base is binary and character s t r ing i f it is decimal.

Conversion from arithmetic to . b i t s t r ing proceeds by' obtaining first- . ' . '

a binary 'integer from the arithmetic value (ignoring both. the' sign
and any fractional part) . The precision of the bi iary integer depends . .

on the precision of the source. That integer is then considered' t o
be a b i t s t r ing value.

Conversion from arithmetic to character s tr ing proceeds by obtaining
an equivalent decimal value (with the same mode and scale and the
'derived precision). The decimal value is then expressed i n the form
of a decimal arithmetic constant of the mode, scale, and derived
precision, w i t h leading zeroes' replaced' by .blanks. This constant is
then embedded in a character s t r ing of a length. determined from the
precision.

These rules, especially those for arithmetic to character s tr ing, are
very complicated (see LRM 16 for a l l the detai ls) . A common case i s
conversion 01 a fixed-point value with zero scale factor i i .e . , a
binary or decimal integer value) t o character. I f the decimal precision
of the arithmetic value 5s (p,O), the resulting character. s tr ing w i l l
have a length of p+3. The arithmetic value w i l l be assembled'as the
equivalent decimal constant i n the law-order (rightmost) p d igi ts
(with leading zeroes replaced by blanks). The next character to their
l e f t w i l l e i ther be a minus sign or a blank, and the remaining charac-
ters w i l l be blanks.

The important thing to realize is 'that there are defined conversions
between a l l types of arithmetic and str ing data. (This generality can
be a convenience or the cause of unexpected results.) Both- types are
often lumped together under a category called problem data because -

.

these are the only kinds of data 'that can be manipulated, or operated-
upon, i n expressions; sometimes it seems the name is due t o the problems
the conversion rules cause.

2.12. String operations.

There is only one, concatenation. The inf ix operator is [[. .(two
vert ical bars). Concatenation may be applied' t o either b i t strings
or character strings, yielding a result of the same str ing type.'
(If one operand is b i t s tr ing, and the other character s t r ing, the
b i t s t r ing is cuklverted to 'character s tr ing .)

Concatenation juxtaposes the two s t r ing values, yieldirlg a str ing
value whose length is the sum of the 'lengths of the operands.. 'Examples:

DCL A CHAR (3) , B CHAR (4) ;
DCL C .BIT (6), D BIT (2)'; . .

A = 'ABC' ;
B = "DEFG' ;
C = '011011'B;
D ' = 'OO'B;
DCL AB C I M (7), CD BIT (8) ;

. Al3, = A I I B; The value of AB af te r the assignment is the
7-character s t r ing ABCDEFG.

CD = D 1 1 . C; The value 01 CD 'is the 8-bit s tr ing UUO11011.

see LRM 26.

2.13. Logical operations.

The logical operations - and (6) ,. or (I) , and - not (-I) operate on b i t
s t r ing values and produce a b i t s t r ing result. Strings of any length
may be used, and the operation proceeds bit-wise on 'the operands. I f
the operands of 6 or I are of unequal length, the shorter is extended
on the right to the length of the longer, w i t h 0-bits. Examples:

Value of f i r s t operand . Operation Value of second operand Value of result
011001 G 111100 011000

Note: 7 is a prefix operator. See LRM 27.

2.14. Comparison operations

The comparison operations =, t=, <, , , <=, >=, 7 <, -I> may be applied
t o any pair of operands of "compatible" data type. I f both operands
are arithmetic, the comparison is algebraic (only = and I= are allowed
for complex operands) . I f both operands, are . str ing, the shorter is
extended on the r ight t o the length. of the longer, i f necessary, using . '

0-bits i f they are b i t 'strings and blanks i f they are character strings ;
the comparison then proceeds l e f t to right i n the strings using the
character collating sequence of the hardware for character strings and
the obvious comparison rules for b i t strings. I f the operands 'are not
immediately compatible, conversion occurs according to the rules given
a t LRM 24 and LRM 25.

The result of a comparison operation (for any type of operand) is a
one-bit s tr ing whose value is the single b i t 1 i f the comparison is
true and 0 i f it is false. (See LRM 24.) This definition permits
comparison operations to be intennixed w i t h other logical operations .

i n an assignment statenlent. 'l'he most common use of comparison opera-
tions, however, is i n the IF statement, as we shal l see inLesson 6.
In that ca.se, the one-bit b i t s t r ing m y not actually be generated i n
st.orage but my be represented i n the s t a t e of the "condition' code"
of the harctware as it- executes comparison ins tnictions and curl& t io i~a l
branches.

We have nuw seen a l l of the operations that may be used i n operational
ressions , i . e . , computational expressions involving problem data.
i n FORTRAN, any of the operations and any data types ray be in ter- *

mixed in any expression. For a discussion of the priori ty, or prece-
dence, of operations i n such mixtures, see LRM 30 and LRM 31..

One difference from FORTRAN should be noted: the "not" operator ,(i)
i n PL/I has a different position i n the hierarchy than its counter-
part (.NOT.) . In PL/I it has the highest precedence '(equal t o that
of ** and prefix + and -) placing it, i n particular, above the com-
parison operators. In FORTRAN 'it is below the corr@arison operators.
The PL/I equivalent of .NOT. A . LT.. B is not -t A<B , which means

A) < B, but -I (A<B) . Of course, this may be written instead as ' .

A i < B or A >= B (in FORTRAN it could have been written as A . GE . B 1 .

2.15. Vaiying-length str ing variables.

An additional at tr ibute, VARYING (abbreviation: VAR) , may. be specified
i n declarations of character s tr ing and b i t s tr ing variables. String
variables which have been declared w i t h the VARYING at tr ibute are
called varying-length str ing variables because the str ing values they
may acquire are not restr icted to have always the length specified i n
thei r declaration. They may acquire any str ing values of the declared
length or less (hence, the declared length of a varying-length str ing
variable is called i ts maximum length)'.

.;

2.16. Varying-1ength.scalar character and b i t s tr ing assignments.

On assignment of a str ing value t o a Varying-length str ing variable,
padding (with blanks or 0-bits) does - not occur (as it does i n fixed-
length str ing assignments) i f the str ing value being assigned i s of
shorter length than that declared for 'the target variable; ' the target
variable receives the str ing value unpadded, and that is the value
that w i l l be used on any subsequent reference t o the variable. Note,
however, that i f a string,value lon e r than the declared (i .e . ,
maximum) length of the 'target varia -f- l e is assigned, truncation to
that length occurs on the right, as irl fixed-length str ing assignments.
Examples :

DCL A CHAR (5) , B CHAR (8) ' VAR;
- 1STRu';

B = A; The value of B is now the 5-character s tr ing STRSA.
B = B I I N ' ' ; Now it is the 7-character s tr ing STRSAND ;
B = B 1 I A ; Now it is the 8-character s tr ing STRSANDS .

2.17. The null s tr ing value and null s tr ing constant.

Remember that s tr ing values are sequences of characters or bi.ts.
The sequence of 16ngth 0 is allowed; it is called the null s tr ing
(note that the null character s tr ing value and the null bi.t s tr ing
value have clifferent data types). '

The character s t r ing constant representing the null character s tr ing
value is written as 1 I . . The b i t s tr ing constant representing the null
b i t s t r ing value is written' .as tB . Examples ':

DCL A CHAR (5) , B CHAR (8) VAR;
B = 1 1 . , B now has the null character s tr ing value.
A = B; The value of A is the 5-character s tr ing %MI%. Why?
B = A I I , . " [[. A ; B's value is now the 8-character s tr ing I3bb66bbl5.

I t is important t o note that VARYING is a property of str ing variables
. and' not s t r ing values (i . e . , not expressions) . A str ing expression

involving str ing variables, some 'of which may be VARYING, has, for any
part icular evaluation, a value which has a particular length. VARYING
addresses the fact that variables may take on values of 'different
lengths a t different times.

Whereas fixed-length s t r ing variables with declared length n require n
bytes (or b i t s) 'of storage, varying-length str ing variables with
declared (maximum) length n require n bytes (or b i ts) plus two more .

bytes. Storage is always reserved for the maximum length of the
.variable:'s value, and the additional halfword is used to record the
length of the variable's current value. There is no legal way i n
PL/I to get access to bytes reserved for the value of a varying-length
s t r ing variable, but not actually part of (i .e. , needed for) i ts
current value (there are lo ts of i l l ega l ways!). I t is. entirely
imaginable that some other implementation of PL/I may use an entirely
different representation for varying- length str ing variables.

For additional infornation, see LRM 32 - LRM 36 (ignoring par[s ~ J E
LRM 36 involving things we haven' t covered yet) .

2.18. String-handling hu i l t in functions.

One large group of bui l t in fmct io~ls is concerned with str ing handling,
Certain of these extend, i n an essential way, the rather meager capa-
b i l i t i e s afforded by assignment and concatenation. Others could be
programmed hy the user (using loops and other things we haven't seen),
so the i r existence is properly viewed as a matter of corlvenience and
efficiency [the l a t t e r because sf thc t igh t in-line codc usually
generated by the compiler).

F1.1l.l detai ls are given a t LRM 37 and LRM 18, but essential features
are described here.

The LENGTH bui l t in function returns the length of the value of the
string-valued expression which is its. argument.. When i ts argument
is a Eixed-length str ing var5able , ' the 'result is the variable's
declared length. In the case of a varying-length. s tr ing variable,
LENGTH returns the of i ts current value. Fixan@les :

DCL U CHAR (10). v&, B BIT (6) VAR;
DCL I FIXED BINARY;,
u = 'ABCDE ' ;
I = LENGTH (u) ; Value of I is 5.
I = LENGTHOJ 1 1 . . I . ') ; ' Value is 6.
J3 = '101'B;
I = LENGTH (B) ; Value is 3.
B = "B;
I = LENGTH(B) ; Value i s 0.

The SUBSTR bui l t in function is one of the most essential. I t allows
you to select a contiguous portion ("substring") of a larger str ing.
One form of SUBSTR is

SUBSTR(4;trLing- expk, ' m y exp- 1 an i th - exp- 2)
Let ~ X n g - e x p k have a value of leig& n. Let the values of a&L&~$exp- 7
and akith-expk-2 be i and j respeitively. Then the result is the ,'
s t r ing of length j' start ing a t the i - t h character (or b i t) of '~Mng-exph .
(The f i r s t character or b'it of a s tr ing value has position 1.) Con- ,

s t ra ints on i and j are as follows:

i must be >= l . and <= n+l.
j must be >=' 0 and <= n.
i + j must be <= n+l, i n addition.

These. constraints guarantee that the substring l t e s within the.bounds
of the str ing i t s e l f (the case i = n+l, j = 0 is a degenerate, limiting .

case) . I t i s i l l ega l t o reference outside the bounds of a str ing using
SUBSTR .

Note th.e following identities:

sUBSTR(~, I, LENGTH(x)) = x f o r a n y x .
SUBSTR(x, i, 0) = the null s tr ing fo r any x and any i

between 1 and LENGTH(x) + 1.
SUBSTR(x, 1, 1) is the ' f i r s t character (or b i t) of angT x

whose length is not 0.
SUBSTRCx, LENGTH(x) , 1) 'is the l a s t character (or b i t)

of any such x .

Examples :

DCL U CHAR (:lo) VAR, T CHAR (4) VAR;
U = ,'ABCDEF1 ;
T = SUBSTR(U, LENGTH (u) , 1) ; value bf T i s F .
T = SUBSTR'W, 1 ,. 4) ; Value of T is ABCD . .
T = SlJBSTR(U I 1.. T; LENGTH(T) - 1, LENGTH(U) - 1) ;
The above statement has the same effect as:
T = SUBSTR('ABCDEFABCD , 3, 5) ; which assigns the 5-character

s tr ing CDEFA t o T.

Another form .of SUBSIX is
SUBSTR(bRning-expa, ani;th-exptr)

The substring s t a r t s a t the position given by the second argument
but i n this' case exterlrls t o the end 'of the st.ri.ng . Therefore,

SIJBSWCx, p) = SUBSTR (X , . p , LENGTH(x) - p '+ 1) .
Thus, while SUBSTR(x, 1, 1) p ~ c k s off the first character (or bit.)
of a str ing, SURSTR(x, 2) returns everything a f te r that .

1 %

The remaining functions are:

TRANSLATE

REPEAT

HIGH

LOW
CHAR
BIT
WOL

S ' r n I N G
UNSPEC

Find the location of a pattern i n a str ing.
Find the location of the f i r s t character (or b i t)
i n a s t r ing which is not among a s e t of "acceptable"
characters (or b i t s) .
Map the characters (or b i ts) of a str ing as
specified. Useful i n ter&nal-orien tea prograrlls
to translate input from lower to upper case.
Concatenate a s t r ing w i t h i t s e l f a given number
of times.
Return a s t r ing of the specified length consj qting
of repetitions of the highest character i n the
collating sequence.
Same for lowest character.
Convert t o character s tr ing.
Convert tu bit str ing.
Used t o ohtain any of the 16 boolean functions of
two bit -itrings (e , ~ . , "implies ," "exclusive or,"
etc.) .
See Lesson 10.
See Lesson 1 U .

In the proposed ANSI standard, the. function of REPEAT is taken over
by a new'builtin function, COPY. Other new $unctions are:

BEFORE Return the portion of a str ing before the f i r s t
occurrence of a specified pattern.

AFTER Same, but the portion a f te r its occurrence.
DECAT Sort of generalized BEFORE and AFTER.
REVERSE Return 'the reverse of a string.

SUBSTR, UNSPEC, and STRING can be used as pseudo-variables. UNSPEC
and STRING w i l l be described' i n Lesson 1 0 .

SUBSTR(sMing-vakiable, U h - e x p h - 1, ahith-ex h-2) , when used as a
ti target i n assignment, allows a s t r ing value '(e right-hand side of .

the assignment statement). to be assigned t o the substring of b&g-
"&able beginning a t the position given by the value of 4hi;th-exph-1
and extending for a number of characters (or bits)' given by the
value of &h-exph-2. The designated substring must be within the
bounds of the sMing-vakiabte (and i f that is 'a varying-length s t r ing
variable, w i t h i n the bounds implied by its current length)'. The
SUBSTR pseudo-variable may also he ~rsed. i n the two-argument form.
Examples :

DCL S CHAR (10) VAR;
S = 'ABCDEF ' ;
SUBSTR(S, 3, 23 = 'XY1; Value of S is now the 6-character

. ' string.ABXYEF. . .
SUBSTR(S, 5) = ' Z ' ; Now it i s ABXYZ5'. Why?

Note that the SUBSTR pseudo-variable cannot change the length of its
f i r s t argument, even when that is a varying-length s t r ing variable..

2.20. Pictured data.

Pictured data i s a special form of character s tr ing data. There are
two varieties, character pictured data and numeric pictured data.
Which of these two is specified depends on detai ls and contents of
the PICTURE attr ibute used t o declare pictured data. See LRM 38.

2 . 2 1 . Charact.er pi ctured da ta .

Character pictured data is specified when the picture specification
given with the PICTURE attr ibute contains a t l e a s t one A or X and

' no other picture characters except A, X , and 9. A l l of this is
exp1ained.b~ an example, which w i l l also serve to show.the use,and .
meaning of character pictured data.

DCL CP PICTURE 'AXXX9';

In this declaration of the variable CP, the PICI'URE attr ibute is
used. The keyword PICTURE (abbreviated PIC) is always followed by
a picture specification, which looks l ike a character s tr ing constant.
The picture specification here is 'AXXX9'. I t uses the picture
characters A, X, and 9.

This declaration says:

(a)' CP is stored as a fixed-length character string
of length 5.

(b) I t may be used' in the' same ways as any character'
string variable.' Its value is indeed a 5-character
string .

.(c) The picture character A says that the f i r s t
character of the value of CP w i l l always be an '

alphabetic character.
(d) The picture character 9 says ' that the las t

character of the value of CP w i l l always be a
aunei-ic character or a blank.

(e) The three picture characters X say-that the
11uddle (flree dlaiacters of the value sf CP w i l l
be any characters (no restrictions) .

(f) Whenever a va.lue j.s a.sj.gned t o CP , . it is con-
verted, i f necessary, to a character string of
length 5. The individual characters are then
checked for conformance to the picture as
specified above. I t i s an error to violate the
conformance requirements . '.

See LRM 39 - LRM 42.

2.22. Numeric pictured data.

Numeric pictured data is specified when the picture specification
given with the PICTURE attribute does not contain the picture
character- A or X. Thcrc arc an incrodiblo number of picture
characters that may be specified, and we w i l l not go in to them
here. The important things to note for numeric pictured data are
as follows:

(a) Tlle data is stored as a fixed- length character
whose length i s a function of the picture

speci ication (same as character pictured data
so Tar) .

(b) When a reference is made t o a numcric picturod
variable in a context where a character string
value i s requi red, the character string value
(exactly as stored) i s used.

(c) The character string value stored w i l l always
be capable of being interpreted as a numeric
(i .e. , arithmetic) value, the interpretation
(i . e . ,. the mapping from character representati on
to arithmetic value) being carried out according
to the picture specification.'

(d) When a reference i s made to a numeric pictured
variable i n a context where an arithmetic value
is required, the arithmetic value is obtained
from the stored character string value by a
corlversion that proceeds, as implied above,
according to the picture specification.

(e) In addition t o directing the mapping from
character' form to. arithmetic form,' the picture
specification always implies'certain arithmetic
attributes'. . These attributes' are 'the' attributes
used. for the arithmetic value bbtained' by, the
above conversion. The a t t r ibu tes implied' by
the picture specification include scale and
precision; the ,base is always decimal.

(f) What guarantees that the character s tr ing value
stored'wil l always be capable of being ' inter-

. preted as a numeric value is the foilwing:
on assignment of a value t o a numeric pictured
variab'le, the value (whether arithmetic or
string) is converted, i f necessary, to an
arithmetic value having the at tr ibutes implied
by *e picture specification. The arithmetic
value is then converted to character form and
"edited" (mapped) according to the picture
specification (the mapping it implies 'is thus
bidirectional) .

As you can see, the picture specification is used i n quite a few ways.

One simple example w i l l i l lus t ra te the above rules. The numeric
picture specification '9999', as i n DCL NP PIC '999g1, means
the following:

(a) NP is stored as a fixed-length s t r ing of length 4.
(b) The arithmetic at tr ibutes 'implied by PIC "9999' are

REAL FIXED DECIMAL (4, 0).
. (c) On assignment of any value to NP, the value is

converted to REAL FIXED DECIMAL (4, 0) i f it
does not already have those attributes. I t is
an error i f this conversion cannot occur. That
would bc the case, Ior ira.tance, i f the character
s tr ing value ABC were being assigned.

(d) The REAL FIXED DECIMAL (4, 0)' value is then
converted t o a 4-character s tr ing and "edited"
as follows: The character representing the
leas t significant d ig i t w i l l be aligned on the
right-hand edge. Any leading blanks are changed
e'o t l ~ e d ~ a r i c t e r 0. (The picture character 9
allows, during this editing process, only the
dccimal .numeric d luac te rs 0 through 9, and not
a blank.) If the .arithmetic value is negative,
the minus sign w i l l not appear i n the edited
character representation (other numeric picture
characters can be used for that) . For example,
i f the arithmetic value is 1 2 , it is stored i n
NP as 0012. Note that the 'usual coriversion rules
for REAL, ' FIXED DECIMAL (4, 0) t o CHARACTER
would yield a str ing of length 7 containing,in
this case, BbMbl.2.

(e) If NP is referenced in character'context, the
value used is the 4-character'string 0012.

(f) If NP is , referenced' in arithmetic 'context,
its stored character' value is converted' to.;
and interpreted' as, REAL FIXED DECIMAL (4', 0)
having value 1 2 . . .

Some of the numeric picture characters specify the insertion of
particular characters, like commas, periods, dollar signs, etc. ,
into the character form during the editing that occurs on assign-
ment to a numeric pictured variable. These characters are part
of the character' value used in .character context, but they are
"edited out," or ignored, when the ar:i.thmetic value is obtained
for use in arithmetic context.

Relevant references are LRM 43 - LRM 46 and LRM 16.

2 . 2 3 . Guidelines on choice of string attributes.

Use b i t strings for logical (i .e. , boolean-valued) data., This
includes program switches, binary s tate ("truet1 or "false" , 0011"
or "off ') variables, etc. A length of. one is most common. . . B i t
strings of greater length can conveniently represent f ini te ordered
se ts of boolean objects.

Use character strings to spruce up your output (page headers, a l l
sorts of explanatory or descriptive fields, etc.)'. Of course,
character strings itmially varying - 1e1lg 1.l I) ale illus t useful , in non- .
numeric applications such as text processors, compiler's, symbolic
formula manipulators, etc.

Because of the editing behavior of numeric pictured' &La, that is
lllvst useful in conumircial applications. Simple form?, ~ .uch as the
editing of leading blanks into leading zeroes'shown earlier', are
useful elsewhere.

2.24. Unuwwel~d questions.

In Lesson 6 we w i l l answer these questions:

What happens when an i l legal conversion is attempted (i . e . ',
character t o arithmetic, where the character value i s not the
image of an arithmetic constant; character to b i t , where the
characters are other than 0 ' s and l ' s) ?

What happens when a character s t r ing value being assigned
t o a character' pictured item' does' not conform 'to the
picture specification? . .

What happens when the arguments of SUBSTR define a sub-
str ing outside the bonds of the string?

2.2 5. Homework problems .
\

(#2A) What values are assigned t o B in the two assignments
to B , below?

DCL B BIT (1) ;
DCL S W (5) VAR;
s = ' 6 ' .
B = LEN~TH(S) = 0;) Note that the second =
B = . s = ' 1 . is a comparison operator.

What can you co&lude about the 'proper" (i .e. , "safe")
way to determine whether or not the value of a varying-
length str ing variable is the null s tr ing?

. a.

(#2B) What is the value of eacll ,of the following'?
INDEX('ABCDE1, 'CD')
INDEX('ABCDE1, 'CF')
VERIFY('CD1, 'ABCDE')
VERIFY ('I CF , ABCDE)
TRANSLATE('ABCDE1, ' 2 4 ' , 'BD')
REPEAT ('5 ' , 5)

Read about the.se. bui l t in functions a t LRM 18.

(#2C) Assume you have entered a section of code i n which' a
variable S has already been declared as CHAR (100) VAR
and has already been given a value. Write a section
of program that wi 11.' "squeeze out" a l l the bl;u.lks ill
.S, leaving the result in S. Declare as many additional
variables as necessary. You w i l l need t o code a loop. ,

Code your 10.0~ i n the following way: .

DO WHILE (expt- 1 ? e x p - 2) ;

where "?" is a comparison operator, such as =, i= ,, >, etc. . ' .
On arriving a t the DO statement, the iridicated comparison
is performed. I f the comparison holds, or is true ,' the
body of the loop is executed.; on arriving a t the END s ta te-
ment, control is sent,back to the DO statement where the
process repeats by doing the comparison again. When the

comparison is false, or doesn't hold, the body of the
loop is skipped and control passes to. the statement
af ter ' the' END statement. If you think you need IF or
GO TO statements, look them up ; however, by employing
the proper buil t in. functions, you should need only
DECLARE statements,assignment statements, and the DO
loop construction shown above.

3. Aggregates . . .

3.1. Element variables and aggregate variables.
. .

A l l of the variables we have seen so f a r have been element variables,
i . e . , scalar variables. An aggregate is a collection (aggregation)
of related eleme111: variables. An aggregate variable has identity as
a whole; i n addition, one may focus-& the constituent elements .'

There are two kinds of . . aggregate . variables i n PL/I: arrays and structures.

3.2. Arrays.

Arra s are mt~ltidimensionol ordered collections of elements a l l having '

&e attributes. The collection as a whole has a name. The whole
may be referred to by that name or an element may be designated by
giving its order i n each dimension. For th is purpose, a l is t of subscript

, ' expressions enclosed in parentheses is written a f t e r the variable name
just as i n FORTRAN. For example, i f A is a two-dimensional array having
5 elements i n the f i r s t dimension (numbered, say, 1 through 5) and 3 ih
the second (numbered 1 through 3) , then we may refer to the whole 5x3
array by the name A; the element a t the intersection of the 4th "row"
and 2nd "column1' is designated A (4,Z) .

There are no restrictions on subscript expressions in PL/I . They may be
of arbitrary complexity. The value of a subscript expression is con-
verted, i f necessary, to a binary integer of default precision.

In PL/I, it i s i l l ega l to reference outside the bounds of an array. For
example, . a reference to A (4,4) is i l l ega l . What happens when th is is
attempted i s deferred to Lesson 6.

3.3. The dimension at tr ibute and declarations of arrays.

The.dimension a t t r ibute is used i n . a declaration t o specify an array.
The - attr ibute must +ediately follow the variable name, i..e. , it must
precede other at tr ibutes. By "other attributes" is meant the data type
at tr ibutes specifying the common data type of the elements.

The dimension at tr ibute is written as
(bound 9 . . , ~ o u M & ~)

where each dun& is ei ther bound or bound: bound. In the first form,
bound is taken as the upper4 bound of the dimension, with 1 being assumed
for the lower bound. In the second form, the two bound's are respectively
the lower and upper bounds for the dimension. For now, a bound must be
specified as a decimal integer corfitant.

Example4 ; . .

DCL. A (5) FIXED BIN (20) ;
A is a one-dimensional array of elements having the
a t t r ibutes FIXED BIN (20). The lower and upper bounds
of the f i r s t (and only) dimension are 1 and 5.

DCL B (- 1 ~ 1 , 3, 0 2) BIT (2);
B is a three-dimensional array of 2-bit b i t 'strings.
The lower and upper bounds of the three diniensions
are, respectively, -1 and 1, 1 and 3, and 0 and 2
fo r a t o t a l .of 27 elements.

Caution: Thc current implementation limits the bounds and the values
of subscript expressiolls to the range -32768 t o 32767. This may be a
serious res t r ic t ion t o some.

There is generally no need t o be concerned with liow 'arrays are mapped
i n storage. However, i n our implementation, two-dimensional arrays '
are stored "by I-w," i .e : , i n general the right-most subscript is the
one that varies most rapidly 'as we proceed :to successive elements i n
storage. (This is just the apposite of FORTRAN.)

In our implementation, the maximum number of dimensions is 15.

For review, see LHM 47 and LRM 48 (skipping parts of the l a t t e r that
don ' t look familiar) .

3.4. Array assignments .
.One array can be assigned t o another. An assignment statement is an
array assignment i f 'the target variable is an array. The right-hand
side need not be merely an array variable; as we w i l l see shortly', it
may be an expression.

In array assignment, the dimensions and bounds of the array, value on.
the right mist. exactly match those of the target variable. The assign-
ment 'is carried out by i terat ing over the range of subscript values
(insome cases the compilermay gemrate a loop, i r i u,l.lrers i t m y .
generate a "ulk move," but the effect is the same in ei ther case).

3.5. Arrays a s nperands in expressions.

The right-hand side of an array assignment statement may be an array
Essentially, any of t h e operands may be arrays (having

and bounds as the target variable) . The ' array
assignment is interpreted as an i terat ion over the (common) bounds ,of

a l l the arrays. Scalar operands are also permitted, the value of
a scalar operand being used i n each implied iteration. (In fact ,
the ent i re right-hand side may be a scalar expression, i n which
case i ts value is assigned' to a l l elements of the array target.)

See LRM 52.
Examples :

DCL A (3) FLOAT,
B (3) FLOAT;

A(l) = 1 ; A(2) = 0; A(3) = 1;
B(1) = 3; B(2) = 4; R(3) = 5;
DCL C (3) FLOAT;
C = A + B; The elements of C have values 4, 4, and 6.
C = 0; A l l th.e elements of C have value 0.
C = B + 1; The elements of C have vafues'4, 5 , and 6. - -
C = C * A; C is now 4, 0, 6. Observe that corresponding

elements are multiplied, i .e. , matrix mult<plication
is not used.

C = C/C (1) ; C is now 1, 0, 6. This statement ' is equivalent to :
C(1) = C(l)/C(l); Sets C(1) to 1.
C (2) = C (2) /C (1) ; Divides by 1 !
C(3) =. ~ (3) / ~ (1) ; Ditto!

The ANSI standard w i l l make this behave a s
TEMP = C(1);
c (1) = c (I)/TEMP;
C(2) = C(Z]/TEMP;
C(3) =.C(3)/TEMP;

By the way, the declarations of A and B may be written in ei ther of
the following ways:

DCL (A (3) , B (3)) FLOAT;
and DCL (A, B) (3) FLOAT;
(See LRM 49 .)

Array expressions can appear i n contexts other than assignment s ta te-
ments. In a subroutine cal l , an actual argument may be an array
expression, as we w i l l see. i n Lesson 5. Certain buil t in f~mctions
take only array arguments (Lesson 10).

The bui l t in functions and pseudo-variables shown so f a r can be given
array arguments; they return similarly structured array results , the
operation being performed on an element-by-element basis. Their use
i n more complicated array expressions and assignments is consistent.
with th.i.s . 'For instance, i f A and B are congruent arrays, A = SIN(B)
assigns the sine of each element of B to .the corresponding element of
A, 'and B = SIN (A)**2 + COS (A) **2 is an expensive way of assigning 1
to each element of B (the individual elements of A are sined and
squared, then added t o the sqila.ses of thei r cosines). Similarly, if
Z i s an array of COMPLEX elements, IMAG(Z) = 0 sets a l l of . thei r
imaginary parts to 0. See LRM 50.

3 . 6 . Array cross sections.

A special notation can be used t o denote a generalized "slice" through
an array. The cross section notation A(*,'I) means the Ith column of A.
This is a one-dhensional array with bounds equal t o those of A i n the
f i r s t dimension. Another example : ' B (* , 2 ,*) means the plane coincident
with the 2nd column of B. This is a two-dimensional.array with bounds
i n the f i r s t dimension equal 'to those of B in the f i r s t dimension and
bounds in the second equal to those,of B i n the third.

Note that A(*,...,*). denotes the array i t s e l f . Whenever a reference t o
an entire array is written, it Is usually gvud documentary practicc t o

. ' write it as an identi ty cross section, l .e . , the whole array. This
practice w i l l be followed subsequently i n these notes.

The following statement assigns the Ith row' of A t o the J'th column of B:
B(",J) = A(I,*).;

For this statement to be legal, the bounds of A in its second dimension
must be identical to the bounds of B in i ts f i r s t .

Since arrays are stored by row in PL/I , A(I ,*) occupies contiguous ' I

storage locations. A(1, *) is said to be a connected reference. B (* ,J) ,
on the other hand, does not occupy contiguous storage locations.., I t is
said to be an unconnected reference. Only connected references are
permitted'in certain contexts, as we shall see la ter . See LRM 51.

3 . 7 . Structures.

A structure, l ike an array, is a collection of related data items which
is assigned a name. Unlike an array, each constituent item also has a
name, and the constituent items 6 a l l have different attributes.

In fact , a structure is, i n general, a hierarchical collection of "things."
The things riuy be thought of as organized in a "tree." The elements a t
the ends of the "branches" have ranas a1111 data type attributes. Other
"nodes" in the t ree represent intermediate levels of the hierarchy; they
lliive names, but not &ta types.

Consider the following .pictorial representation of a structure:

LENGTH WIDTH HEIGHT

A/

PROPERTIES IS SECURE
., .-.------

The base elements of th is structure, and typical attributes they
m y have, are as follows:

IDENTIFICATION
BUILDING
ROOM
LENGTH
WIIYrH
HEIGHT
WEIGHT
COLOR
IS - SECURE

CHAR (50) VAR
CHAR (3)
CHAR (4)
FLOAT DECIMAL (3)
FLOAT DECIMAL (3)
FLOAT DECIMAL (3j
FLOAT DECIMAL (5)
CHAR (10) VAR
BIT (1)

This entire collection may be referred t o with the name SAMPLE:
SAMPLE is called a major ktructure name. Subsets of the collec-
tion forming subtrees may also be referred to by thei r names. viz.
LOCATION, SIZE, and PROP~RTIES. These are name's of minor sti-uctures .
Minor stnlc.tures are indeed structures, but they are not independent;
they belong to a major structure.

Suppose wc have anotl~er s.tructure, cailed EXPERIMENT. An experiment
can have a location (i .e . , a building and a room), too, so we might
l ike to have a substructure (minor 'structure) of EXPERIMENT cailed
LOCATION having, i n turn, the same constituents as the LOCATION in
SAMPLE. How 'do we distinguish between references to SAMPLE'S
LOCATION and EXPERIMENT1's LOWTION, i f we should need to?
writing a qualified name. The name SAMPLE.LOCATION refers to t h e
LOCATION i n SAMPLE, while WERIMENT.LOCATION refers to that i n
EXPERIMENT. Similarly, SAMPLE.LOCATION.ROOM and EXPERIMENT.LOCATION.ROC7M
distinguish be~weei-I the two element variables called ROOM.

One need not always write a l l levels of structure qualification i n .a
qualified name. The only requirement is t o avoid ambiguity. Thus,
SAMPLE.ROOM and EXPERIMENT.ROCJM are sufficient, but ROOM alone is' not.
I f the above two uses of ROOM were the only ones appearing i n a program,
the compiler would t e l l you that ROOM (unqualified) is ambiguous.
However, i f you declared a scalar variable ROOM as well, then ROOM

unambiguously denotes that and there w i l l be no message from the
compiler.

I t is good practice t o write out qualified names' in f u l l , even when
not necessary.

Structure declarations.

A declaration of SAMPLE might look like:
DCL 1 SAMPLE,

2 IDENTIFPCATION CHAK (SO) V R ,
2 LOCATION,

3 BUILDING CHAR (31,
3 ROOM CHAR (4),

2 PROPERTIES,
3 SIZE,

4 LENGTH FLOAT DEC (3) ,
4 WIDTH FLOAT DEC (31,
4 HEIGHT FLOAT DEC (31,

3 WEIGHT FLOAT DEC (5) ,
3 COLOR CHAR (10) VAR,

2 IS SECURE BIT (1) ;
The numbers in Front of the names are called level numbers. The
indentation is purely documentary; what is subordinate to what e lse
is uniquely determined by the sequence of level numbers.

Factoring of at tr ibutes can be used here. A part s f th is declaration
could have been written

3 SIZE,
4 (LENGTH, WIDTH, HEIGHT)

FLOAT DEC (3) ,
z described a t LRM 49.

For a review of structures so fa r , see L W 53.

3.9. . 'l'he LIKE at tr ibute. , .

A convenience feature that saves writing when similar structures are
declared is the LIKE attr ibute. In the declaration of EXPERIMENT,
one need not write out the detai ls of the minor structure LOCATION. . .

I f it is just l ike the one i n SAMPLE, one could write .

DCL 1 E X P E R r n ,

2 . LOCATION LIKE SAMPLE. LOCATION, , . . .

- . .
9

. The structuring and at tr ibutes are copied from the declaration of ,WE.
. .

Although LIKE is a great convenience, ' it does' have many restr ict ions.
And certain a t t r ibutes 'are not copied. Its use is not generally
recommended, primarily because it tends to obscure facts . (That's
the same reason for ful ly qualifying a l l names'.)

LIKE is further described a t LRM 54 and LRM 55.

3.10. Structure mapping.

Structure base elements are mapped consecutively i n storage. However,
since consecutive elements may have differing alignment 'requirements
(due to having different at tr ibutes) , a small amount of padding, which
is unused space, may be aliocated between cunskcutive base elements.
The padding is not accessible t o the program, and its existence does
not cause a structure reference to be an unconnected reference.

Since alignment requirements are a property of the hardware (i .e . , the . I

implementation), the amount of padding may vary from one implementation
to another. But so does 'the amount 'of storage al,l.ocated to element
variables, as we have seen. The only time'this is likely to be of
concern to the programmer is when he is trying t o figure out record
lengths for certain kinds of 1/0 (Lessons 8-'9). A compiler option,
AG', which is "on" by default i n our batch compilers and "off" i n our
conversational ones, can be used t o show how each aggregate is mapped.
The l i s t ing is part of the compilation l i s t ing. See CPG 1 and CPG 2 ,
CI'UG 1, OPG 1 and OPG 2, and OTUG 1.

The algorithm our compilers use for structure mapping is described a t
LRM 56.

3.11. ALIGNED and UNALIGNED attributes.

Reference has beyen made above to alignment of data. I t is possible
t o t e l l the compiler not t o worry about alignment requkrernents during
mapping or allocation of data. When so told, it assigns most things
to the next available byte boundary (bi t boundary i n the case of b i t
strings) . The main purpose of this is to achieve greater data packing
i n aggi-ega~es; it.may also be of use i n certain 1/0 situations. ' To
avoid machine errors i n addressing data which is not known to be on a
"natural" bouiidary, the compiler generates extra code to move i t . to or
from a properly aligned boundary. This can increase program size and
.execution time, so the feature shouldn't be used indiscriminately.

Two mutually exclusive at tr ibutes, ALIGNED and UNALIGNED, select
these options. These.attributes'may be specif ied 'for any variable.
They apply to. every variable,' and, when' not specified, language
defaults are taken. All ' of the variables we have talked 'about so
f a r are subject to . ' th is default, though we have had no reason t o
concern ourselves w i t h it yet.

Basically, the default is UNALIGNED for s t r ing data and ALIGNED for
everything else. Alignment of character s tr ing variables is a moot .

point; they begin on the next available byte boundary i n ei ther case
(fixed- length str ings do, a t least) . UNALIGNED b i t s tr ings begin on
the next. ami.l.ahle b i t boundary, while ALIGNED b i t strings begin on
the next available byte boundary. Because of th is , arrays of, say,
BIT (1) variables w i l l occupy only one-eightli of the storage under
the default (UNALIGNED) as . they would were AL1,GNED specified, but
addressing elements of the array w i l l be much slower (in general,
most unaligned b i t references or operations are perfolmed by library
routines ,' while aligned references and operations are done by ' in- l ine
LO&).

The alignment at tr ibutes may be specified a t any level i n a structure
declaration. They apply t o a l l of the constituent element variables
subordinate t o that level except those which are subordinate to an
intermediate level which also specifies alignment, i n which case the
l a t t e r specification is used. For example, i n

WL 1 S T R U W ALIGNED,
2 A UNALIGNED,

3 B ALIGNED,
3 c,

2 D,
3 E UNALIW,
3 F;

the base elements are B, C , E, and F. B and E are clearly ALIGNED
and UNALIGNED, respectively. C is UNALIGNED (inherited from A). F
is ALIGNED (inherited from D, which inherited ALIGNED from STRUCI'URE).

For reference, see LRM 57 and LKM 58.

3.12.. Structure assigiments.

One structure may be assigned to another. The hierarchical structuring
of the two structures &t match a t a l l levels. (I t is not sufficient
t o have just the same number and types of base elements.) However,
the names of matching levels of the hierarchy need not match, 11or need
the at tr ibutes of corresponding base elements match. The assignment
statement is "expanded" into a sequence of scalar assignment' statements.

~xarnpie: ' '

DCL '1 Sl , '
. 2 A FIXED BIN,
2 B , '

3 C FLOAT DEC,
3 D a-Wi (5) ,

2 E BIT (I) ,
1 S2,

2 V FLOAT BIN,
2 W,

3 x CI-IAR (81,
3 Y BIT (20),

2 Z FIXED DEC;
S1 = S2; This is equivalent t o

S1.A = S2.V;
S1.B.C = S2.W.X;
S1.B.D = S2.W.Y;
S1.E = S2.Z;

In each of these sca lar assignments,
different conversions w i l l occur.

DCL 1 S3,
2 A FIXED BIN,
2 C FLOAT DEC,
2 . D CHAR (5),
2 E BIT (1) : . < ,

S1. = S3; This is i l l ega l .
E L 1 S4.

2 M FLOAT BIN,
2 N CHAR (6) VAR;

S1.B = S4; This s tructure assignment is equivalent t o
S1.B.C = S4.M:
S1.B.D = S ~ . N ;

In other words, a substructure (minor structure)
is a structure i n i ts own r ight .

3.13. Stnictilres as opcrands i i i expressions.

By analogy with array expressions, structure expressions are eqress ions
whose operands are congruent structures (congruent in the sense of
s tructure assignments') . Using, the declarations o f the previous section,
one could write S1 = S1 - SZ, f o r instance. This i s equivalent t o

S1.A = S1.A - S2.V;
S1.B.C = S1.B.C - S2.W.X;
S1.B.D = Sl.B..D - S2.W.Y;
S1.E = S1.E - 52.2;

Also, S4 = 0 is equivalent t o
S4.M = 0;
S4.N = 0;

and S4 = 3 * S2.W is equivalent t o .

S4.M = 3 * S2.W.X; . ,

S4.N = 3 * S2.W.Y;

Structure expressions may also be actual arguments i n subroutine
ca l l s (Lesson 5). The bui l t in functions described so f a r cannot,
however, take structure arguments . -

See LRM 59.

3.14. Structures of arrays .and arrays of structures.

The two kinds of aggregation can be compounded. The following
is an example of a structure of arrays, i .e., a structure with
some arrays a t the deepest level.,

DCL 1 T1,
2 A (10) FLOAT,
2 B,

3-C (-1:3) CHAR (6) VAR,
3 D (2,4) BIT (7) ALIGNED;

. A structure of arrays such as
. DCL 1 '1'2,

2 B (31,
2 c (4) ;

is mapped i n storage as follows:

An 'example of an array of structures is:
DCL 1 '1'3 (41 .

An array of-st*ctures ca i be thought of as a stnlct.11re , w i t h the
dimension at tr ibute ur. (~liat is , of course, the same thing) an
array whose co~nponents are not element vari.ables but s'tructures .
T.3 is mapped, and its components; named, as shown beluw.

.

A reference to T3.U (i.e. , T3(*)..U) is a l l d d . his designates
the one-dimensional array whose four elements are T3(1) .U, T3(2) .U,
T3(3).U, and T3(4).U. Note that th is i s another example of uncon-
nected storage. There are,'however, some apparently poorly docu-
mented restrictions on the use of cross sections of arrays of
structures .

Since T3.U is an array, as described above, you might ask whether
it is p o s s i ~ e to write T3.U(1), T3.U(2), T3.U(3)', T3.U(4) instead
of T3(1) .U, etc: The answer is yes, and they mean the same thing.
This seems to be an ill-advised f lexibi l i ty becauke it tends t o
obscure the real structure of T3 (again: when things "ain ' t what
they seem," i t ' s bad).

Compounding of aggregation can be carried t o ridiculous, seldom
needed, extremes', as i n

DCL 1 T5 (5) ,
2 A (31, ,

3 B,
3 c ,
3 D. (31,

2 E,
3 F,
3 G (8) ;

for which TS(3) .A(l) .D(2) is a legal reference, and the same as
T5.A.D(3,1,2).

See LRM 60 and LRM 61.

3.15. BY NAME assignment.

Another type of structure assignment, BY NAME assignment, is obtained
by adding the BY NAME option 'to an assignment statement, as in
watLiabCe = exptreba.ion, BY NAME ; The structure o~erands i n a BY NAME
assignment statement need not be congruent, as i.; a regular structure
ass'ignment. Basically, the statement is expanded into a sequence
(ultimately) of scalar assignment statements, with the expansion

. proceeding deeper and deeper. in the structure only as long as a l l
structure operands. have items w i t h the same names a t the level being
considered. For example:

DCL 1 A, .

2 B,
3 c,
3 D,

2 E,
3 F,

4 G ,
4 H,

2 1,
3 J,
3 K;

DCL 1 M, : DCL 1 U , ,
2 I , . . 2 E ,

3 K, 3 F,
3 J, : 4 G ,

2 F, j 2 T ,
3 G , i 3' J ,
3 H, ! 3 . 2 B,

. .
2 B, 3 C ,

3 Q 9 . 3 Z;
3 C , ;

2 E,
i 3 G; :

I
. - 8

A = M * U, BY NAME; is expanded as follows:
A.B = M.B * U.B, BY NAME; (1)

(2) A.E = M.E * U.E, BY NAME;
(1) is further expanded to

A.B.C = M.B.C * U.B.C; (3)
(2) is further expanded into nothing, since while both A.E and U .E
have.a component called F, M.E does not. Thus, the original s ta te-
ment , is equivalent t o (3) .

See LRM 62 and those parts of LRM 63 that look familiar.

3.16. Equivalencing of data.

PL/I provides f ac i l i t i e s comparable to FORTRAN's EQUIVALENCE sta te-
'

ment for equivalencing data. Before proceedhg to specifics, we
should take a good lobk a t some very mportarit ,fimiLunental differellces
i n the concept between the two languages.

The FORTRAN EQUIVALENCE statement is provided to allow storage to be
shared amongst several variables. In standard FORTRAN the ' k e r is
not supposed to rely on two equivalenced variables always having the
same values by vir tue of occupying the same storage. Some optimizing
compilers, i n fact , may omit store .instructions 'in certain cirnrm-
stances, actually destroying value-equivalence between storage-
equivalenced variables. Because it need not guarantee value-equivalence ,
FORTRAN permits equivalenced variables to have different data types.

The PL/I DEFINED at t r ibute allows several variables t o share the same
storage. >'ln--this. ease, rhe language gki~iuitees value -equivalcncc , .
i . e .', the equivalenced variabies become fully interchangeable.
Because of th is , PL/I does - not permit variables having different data
types to be equivalenced. This i s an important point t o understand
because it makes the PL/I analogs of several common FORTRAN construc-
tions i l legal . Other facilitiks are provided i n PL/I fo r loolting a t
storage i n different ways - -legally, less conveniently, and by rules
that are inevitably implementation-dependent (Lesson 10).

Because 'PL/I guarantees value-equi'valence as well as storage-eyuivulexlce,
the use of the DEFINED attr ibute can inhibit certain optimizations that. ;
might otherwise occur. . .

There are three different types of defining (i .e., equivalencing) in
PL/I , depending on what .else is written with the DEFINED attr ibute.
Each serves a unique purpose. You w i l l see that defining is actually
much more powerful than FORTRAN equivalencing.

3.17. Simple defining.

Simple defining merely allows storage belonging to one variable t o
be referred to by another name. However. several f l ex ib i l i t i e s are
permitted' ~ impie defining is i l lustratkd by several exagles .

DCL A FLOAT BIN (21) ;
DCL B FLQAT BIN (21) DEFINED (A) ;
B is "defined on" A. Note that the data type
at tr ibutes ' of A are repeated i n the declaration
of B. A and B are variableswith the same
location and value (recall Lesson 1) but
different names.

DCL C (0 : 9) FIXED DEC (5) ;
DCL D FIXED DEC (5) DEFINED (C (1+3*J)) ;
The defined variable is D. The base- variable,
i .e . . the variable on which it is defined. is
an eiement of the array C. Both defined '
variable and base variable are thus scalars.
The element of C to which U corresponds is
determined dynamically; on each reference t o
D, .I+3*J is evaluated to determine the proper
element of C.

DCL E (10,lO) FLOAT;
DCL F (10,lO) FLOAT DEFINED (E) ;
This nee& no comment. Note, however, that the
dimension at tr ibute for F may not have been
written as (loo), because defined arrays must
have the same dimensionality as thei r base
array. One of the other kinds of defining
permits "remapping" of arrays.

DCL G (2:6, 3:8) FLOAT DEFINED (E);
Though the dimensionality of defined and base
item mt be. identical, the extent of a dimen-
sion of the defined variable may be less than
the extent- of the corresponding dimension of the

'

base array (i t cannot be greater). A reference
to C (i , j) is identical t o a reference t o E (i , j) .
A reference t o G (1,s) is i l l ega l , even though E
has a (1,s) element, because G doesn't. Note
that G is an unconnected array, although E is
connected.

DCL H (10) FLOAT DEFINED (E (* , I)) ;
The base array is the Ith column of E, which
is an array of one dimension w i t h bounds
(1: lO) H has identical structuring and is,
i n fact , synonymous with the I t h column of E.
A rezerence t o H(i) is the same as a reference,
t o E(i, I) .

, <;.

3.18. ISUB defining.

ISUB defining allows an array (the base array), or part of an array,
t o be addressed through another array (the defined array). The
dimensions may d i f fe r because, i n fact , an arbitrary mapping from
elements of the defined array to elements of the base array is
specified. ISUB defining is also best explained with examples.

DCL A (4) CHAR (1) ;
DCL B (3) CHAR (1) DEFINED (A (1SUl3+1)) ; ,

In the subscript l i s t f o r the base array, the "1SUBW
is a funny kind of variable; it stands for the value
of the 1st subscript expression i n any reference to
the defined array. That is, B(K) is .the same as
A (K+l) . : Pictorial ly,

DCL C (2,3)' BIT (3) UNALIGNED;
DCL D (6) BIT' (3) UNIU, , .

DEF (C((lSUB+2)/3,MOD(ISUB-1,3)+1)) ;
Note the abbreviations. D is mapped into C as shown below.

E L E (lo, lo) FLOAT;
BCL F (2,2) FLUAI' UEE E(I+lSUB-1,1+2SUB-1);
N6te thar the purcnt9lct;ct; s u i ~ ~ l u i c l i f i g tile base variable 'may
be omitted. F is' a 2 x 2 submatrix of E, whose upper l e f t -
hand element (F (1,l)) is coincident w i t h E (I , I) . I r m . t
have a value between 1 and 9 for a reference t o F (*, *) ,

' i . e . , the whole array F , t o be legal.

DCL G (6) BIT (1) ALIGNED;
DCL H (2,3) BIT (1) ALIGNED

. .
DEF G (10 - 3* SUB-- SUB)) ;

.

DCL I (2,3) BIT (1) ALIGNED DEF (G (1SUB)) ;
.Note that although I has two dimensions, the subscript
l is t for the base variable does not use 2SUB. Thus,
I (1,l) , I .(I, 2) , and I (1,3) are a.11 synonymous w i t h
G(1), and I(2,1), I(2,2), 1 (2 , 3 c r e - a l l synonymous
w i t h G (2) . Is I connected? Actually, because isub-
defined variables can have.non-linear subscripting
functions, tfie concept is inapp1.i.cabl.e. Since they
cannot always be determined t o be connected, they
may not be used where unconnected variables are pro-
hibited (as we shal l . see later) .

G (1
H(2),3)

3.19. String overlay defining . -.

. .

String overlay.definillg alluws strings, or aggregates of s tr ings,
to be overlayed on other element or aggregate str ing variables of
the same str ing type (i .e. ? character or b i t) . If the base
variable is an aggregate, it must be connected and unaligned.
This guarantees 'that consecutive elements of the'base variable
w i l i be mapped consecutively. Therefore, the defined variable,
which w i l l also have contiguous elements because it, too, may not
be aligned, need not have the same structuring as the base variable.
-'les follow.

G (2
H(212)

DCL A CHAR. (10) ;
DCL B (10) CHAR (1) DEFINED (A) ;
The i t.h element of B, which is a CHAR (11 item, is
synonymous w i t h the ith character of A, , i .e . ,
B(i) = SUBSTR(A,i,l).

DCL C CHAR (10) ;
DCL D (5) CHAR (2) DEF C ;
D(i) is equivalent t o SUBSTR(C,2*i.-l,2).

G 3
Ht211)

G(4)
H(1,3)

G (5)
H(1,2)

ti (b)
H(1,l

DCL 1 S,
2 A BIT (1) ,
2 B,

3 C BIT (2),
3 D BIT (2) ;

DCL 1 T DEF S,
2 u,

3 V BIT (2),
3 W BIT (2),

2 X BIT (1) ;

DCL E CHAR (8) ;
DCL F CHAR (6) DEF (E) POSITION (3) ;
The POSITION attr ibute may be used i n str ing
overlay defining t o denote the o f f s e t of ,the
f i r s t character (or b i t) of the .defined item
from the f i r s t character (or b i t) of the base
item. . I f it is omitted,, POSITION (1) is
assumed (no offset) . F is the l a s t s i x
characters of E.

DCL F CHAR (6) DEF (E) POS (1+1)';
'l'he YUSl'l ' iON a t tribute (note t h e abbrevia Liuli)
may contain an expression. I must have a
value bcfiln?r.n n n.nd.'2j ot.honiise a reference
to F would yield equivalent reference t o E
outside of i ts bounds, i .e . , F is the same as
SUBSTR(E, I+1,6).

3.20. Determination of type of defining.

If isub variables are iised, fs& definirig is irl e I I e ~ t . I T tile ' ,

POSITION at t r ibute is used, s tr ing overlay defining is i n effect .
Otl~erwisc, e i ther simplc dcfining o r s t r ing overiay defining i s
i n effect, depending on whether or not the at tr ibutes of the
defined item match those of the base item (i f they don't, they
must sa t is fy the constraints for s tr ing overlay defining, of
course) . These rules are summarized a t LRM 64 and LRM 65.

' Defining i n general is summarized and complctcly described a t
LRM 66 and LRM 67, respectively.

3.21. Homework problems.
. .

(#a) Consider the following declarations, which may legally
appear together.

DCL 1 A, '

2 B,
3 C ,
3 A,

2 'D,
3 C,

. .
4 A,

3 E,
2 A;

DCL 1 D,
2 c , "

2 , F , . . .

3 G , ,
4 A;

To what does each of the following references refer?
Which are ambiguous? For those 'that are ambiguous,
which items. could they refer to, and how would you
write unambiguous references to those items?

A
A. C
A.C.A
A. A

. .

. .
D
D.C
D. A (tricky)

Try to s ta te a ni le for determining whether a reference
is ambiguous or not (difficult) .

(# 3B) Consider the declarations
DCL 1 S (3),

2 u,
2 v;

DCL 1 T,
2 w (31,
2 X (3) ;

Is S.U = T.W legal? If so, what does it mean? If not,
why not? Answer the same questions for the assignment
S = T.

(#X) Consider the declarations

.. .
DCL 1 A,

2 B ,
2 C, '

3 D ,
3 5
4 F,

5. G;
DCL 1 M,

2 c, . .

3 N,
4 D, . .

, . . . , 5 C,
2 X; . ,

Determine the expansion of
A = M, BY NAME;

(#3D) Let A be a 10 x 10 array. Write a single assif lent
statement t ha t -w i l l assign 0 t o a l l the elements of
A. Write a single assigrlment statement that w i l l .
assign 1 t o the diagonal elements (only) of A.
Hint: figure out how to use isub defining t o
declare a one-dimensional array synonymous w i t h the
diagonal of A. Show the declaration. . .

. .

. .
(#.3E) Let U be a 3 x 3 array. Show how you can use isub

defining to declare an array V which is synonymoui
with the transpose of U.

(#3F) Let A have the at tr ibutes CHAR (10). Show how you
can reverse the value of A (leaving the result i n A)
using only assignment statements. You w i l l need to
declare some auxiliary variables using isub defining
and str ing overlay defining. Note that the base
variablo i n a DEFINE) at tr ibute may not be declared
with the DEFTNET) a t t r i h l ~ t e , i . e., you can't define
X on Y and Y on Z .

4 . Bloclc s t r u c t u r e and scope of names.

4 . 1 . E x t e r n a l p r o c e d u r e s .

A PL/I e x t e r n a l p r o c e d u r e i s a. s e g m e n t . o f a program t h a t
nay b e s e p a r a t e l y compi led . I t i s e n t i r e l y ana loqous t o a
FORTRAN "program- un i t : " A FORTRAN program- c o n s i s t s of one
program u n i t which i s a "main program" and p o s s i b l y o t h e r
program u n i t s which a r e "subprograms." I n t h e same way,
a PL/I program c o n s i s t s of one e x t e r n a l p r o c e d u r e which .is.
a "main p r o c e d u r e " and p o s s i b l y o t h e r e x t e r n a l p r o c e d u r e s .
I n FORTRAN, subprograms (o t h e r t h a n BLOCK DATA subprograms)
r e p r e s e n t common sequences o f code t h a t need t o be e x e c u t e d
l o g i c a l l y ak s e v e r a l d i f f e r e n t p o i n t s i n t h e o v e r a l l program.
By packag ing them s e p a r a t e l y , t h e y need o n l y be w r i t t e n
once . C o n t r o l can be t r a n s f e r r e d t o them from e a c h p o i n t
a t which t h e y a r e needed. The e x t e r n a l p r o c e d u r e s o f a
PL/I program, o t h e r t h a n t h e main p r o c e d u r e , s e r v e t h e same
purpose .

A s i n t h e i r FORTRAN a n a l o g s , e x t e r n a l p r o c e d u r e s can e i t h e r
b e e x e c u t e d f o r t h e i r e f f e c t o r f o r t h e i r r e t u r n e d v a l u e .
T h i s u s e c o r r e s p o n d s t o t h e two k i n d s of e x e c u t a b l e FORTRAN
subprograin, s u b r o u t i n e subprogram and f u n c t i o n subprogr'am.
A s i n FORTRAN, when t h e y a r e e x e c u t e d f o r t h e i r e f f e c t t h e y
a r e invoked by a CALL s t a t e m e n t , and.'when t h e y a r e e x e c u t e d
f o r t h e i r r e t u r n e d v a l u e t h e y a r e invoked by a " f u n c t i o n
r e f e r e n c e " i n a n e x p r e s s i o n . The dynamic a s p e c t s of PL/I
, p r o c e d u r e s w i l l b e covered i n Lesson 5 .

A PL/T e x t e r n a l ~ r o c e d u r e s t a r t s w i t h a PROCEDURE s t a t e m e n t '
and e n d s w i t h END s t a t e m e n t . I n between comes t h e body
of t h e p r o c e d u r e , i . e . , e x e c u t a b l e and d e c l a r a t i v e s t a t e -
ments . - T h e minimum c o n t e n t of a PROCEDURE s t a t e m e n t i s a n
e n t r y l a b e l (i . e . , a p r o c e d u r e name) , a c o l o n , t h e keyword
PROCEDURE (a b b r e v i a t i o n : PROC) , a n d , of c o u r s e , a semico lon .
Example :

MYPROG: PROC;

L o t s of o t h e r t h i n g s c a n be hung o n t o a PROCEDURE s t a t e m e n t .
I f t h e p r o c e d u r e i s t o be invoked w i t h some a rguments , a
p a r a m e t e r l i s t must immedia te ly f o l l o w t h e PROCEDURE keyword.
(W e w i l l s a v e arguments and p a r a m e t e r s f o r Lesson 5 .)
S e v e r a l o t h e r o p t i o n s may t o l l o w it (o r t h e PROCEDURE keyword,
i f t h e r e i s no p a r a m e t e r l i s t) . . The RETURNS o p t i o n i n d i c a t e s

that the procedure will return a value and must be invoked
as a function reference; thus, a PROCEDURE statement with
the RETURNS option is the equivalent of a FORTRAN FUNCTION
statement. If the RETURNS option is .omitted, the procedure
will not return a value back to the point of invocation and
must therefore be invoked by a CALL.statement. Thus, a
PROCEDURE statement without the RETURNS option is akin to a
FORTRAN SUBROUTINE statement.

Another option is the OPTIONS option. This is the keyword
OPTIONS followed by a.parenthesized list of keywords for
options. The function of the OPTIONS option is to provide
a language-defined (i.e., standardizable) way 05 supplying
implementation-defined options to your particular system.
(Thus, exactly what can. appear inside the parentheses, and
the meaning of what appears there, is implementation-defined,
not language-defined.) One of the options that can be used
in our system is MAIN. It designates that the external
procedure is a main procedure. Example:

MYPROG : PROC OPTIONS (MAIN) ;

N0t.e that a FORTRAN main program does not start with any
particular kind of statement; the absence of a FUNCTION or
SUBROUTINE statment as the first statement implies the
program unit is a,main proqram. In PL/I, one and only one
of the external procedures of a program can have, and must
have, UP'YIUNS (MAIN).

Other items that can appear on a PROCEDURE statement will
be introduced at relevant places.

We will catch up with references for thel.above material a
little later.

4.2. Internal procedures.

An internal procedure is a procedure nested inside another
procedure. Internal procedures may bgnested inside external
procedures or other internal procedures. A procedure nested
inside another procedure (the "containing procedure") has
its matching PROCEDURE and END statements, and the body of
code between them, contained within the body of code
delimited by the containing procedure's matching PROCEDURE

and END statements. Example:

MAIN : PROC OPTIONS (MAIN) ;

SUBR: PROC;

..
m u ; /* OF PROCEDURE 'SUBR'*/

END; / * OF PROCEDURE 'MAIN' */

Like an external procedure, an internal procedure is used
to package common code that needs to be executed at many
places (within the containing procedure). Like an external
procedure, it may be invoked for its effect, with a CALL
statement, or invoked for its returned value, via a function . .
reference in an expression. (The one shown above, because
it does not use the RETURNS option, presumably is invoked by -
CALL.) An internal procedure may not be a main procedure.

Internal procedures can be used in simple ways analogous to
FORTRAN "arithmetic statement functions." However, they
are far more general and their generality has no counterpart
in FORTRAN. Differences between internal procedures and
arithmetic statement functions may'be summarized (at least
partly) as follows:

(a) Internal procedures may be invoked by a CALL statement
or a function reference. An ASF is only invoked by a
func . t i u r r ref ererice.

(b) In either case, they may or may not take arguments.
An ASF (like all FORTRAN functions) must take at least
one argument.

(c) They may embody arbitrary code, using arbitrary logic.
An ASE' is restricted to a single expression.

(d) They may invoke themselves recursively.
(e) They need not be placed, in their containing procedure,

ahead of executable statements or after declarations.

. An overview of procedures (going a little beyond the above
material) is at LRM 68 and.Lm4 69.

4.3. Scope of a declaration.

We saw in Lesson 1 that a declaration associates a name and
some attributes with a variable. We will soon see that
declarations can associate names and attributes with certain
kinds of constants, too, called named constants. So we will
just be general and say that declarations associate names
and attributes with objects. And when we say "declare a
name..." we mean "declare an object named...".

A DECLARE statement, i.e., an explicit declaration, is'said
to belon to the procedure in whose body it.appears (or "to
whic T+ ~t 1 s internalii) . Note that if .a-procedure named
INNER is nested inside a procedure named- OUTER, and a DECLARE
statement is written between the PROCEDURE and END statements
of INNER, then the.declaration'.belongs to INNER and not to
OUTER. That is, an explicit declaration belongs to the '

"nearest" containing procedure.

The.scope of such a declaration is the procedure to'which
it belongs, including any contained (i.e., nested or internal)
procedures, excluding any nested procedures (no matter how
deeply nested) containing another explicit declaration for an
object with the same name. The object declared is known
(by its name) in the scope of its declaration, that is, any
reference to the name in that scope is a reference to the
object. As we will see soon, a reference to the'same name ,

in the scope of a different explicit declaration may or may
not be a reference to the same object.

See LRY '7U.

Contextual or implicit declarations (recall Lesson 1) ,
i.e., those resulting from uses of names not explicitly
declared, belong to the containing exLernal prucedure. In
other words, the scope of a contextual or' implicit declara-
tion is the whole external procedure in which the name is
used, excluding any internal procedure. (and its descendants)
where the name is explicitly declared. See LRM 71 and
L&Y 72.

Although we will not be considering arguments and parameters
of a procedure in detail until the next lesson, there are
some things to be noted with respect to the scope of a

parameter declarati,on. (A parameter in PL/I is what is .
called aWdumxiy argument" in FORTRAN. The names appearing
in the parameter 1is.t of a PROCEDURE statement are the names
of parameters'.) . . .

A parameter name may or may not appear in a DECLARE state-
ment in 'the procedure of which it is parameter (that is,
it is,not required to appear in a DECLARE statement). If
it does appear in a..DECLARE statement there, it is explicitly
declared 'with the qiven attributes. If it does not. it is - ~

as if it had appea;ed there in a DECLARE statement kith no
attributes. This is sufficient to establish an explicit
declaration, with, all of the attributes taken from the
applicable defaults. Thus, parameters can never be contex-
'tually declared, that is, they never acquire attributes
based on the context of their use. See LRM 7 3 and LRM 7 4 .

. .

4.4. INTERNAL and EXTERNAL, attributes,; scope of a name.

There is another pair of alternative attributes which may
be given to any variable. Like the ALIGNED and UNALIGNED
attributes, they apply to every variable and if they are
not given to it explicitly one or the other will be acquired
by default. These are the INTERNAL attribute and EXTERNAL
attribute, collectively called scope attributes. Their
abbreviations are INT and EXT. Unlike the alianment
attributes, the scope attributes apply to named constants
as well as variables.

An object declared with the INTERNAL attribute (explicitly
or by default) is associated with its name in the scope of
the declaration and nowhere else. Thus, .two different
declarations of the same internal name, in different scopes.,
establish different objects which happen to be known by the

. .

same name.

The effect of the EXTERNAL attribute is as follows. All
declarations of a given name (say E) having the EXTERNAL
attribute, i.e., of an external name, are linked together --
so that they refer to the same object, rather than to
different objects. It is then required that all such
declarations (of E in this case) specify identical attributes.
The linking occurs at link-edit time.

The scope of a name (say N) can now be defined, as follows.
If a declaration for N includes INTERNAL, the scope of the
name is the scope of the declaration. The scope of an
EXTERNAL name N is the'union of the scopes of its declara-
tions (all of which must be identical). See LRLV 75 and
LrZM 76.

Consider the following example. The,nesting of procedures
and the occurrences of declarations is shown first. we'
then show nested areas representing the nested procedures,
using different shadings to show the different scopes of
declarations. Off to the s.ide we show the distinct vari-
ables, each one shaded to show the,scope of its name.

EXTPRC1: PROC;
DCL N FLOAT EXT;
INTPRC1 : PROC;
DCL N FLOAT INT;
INTPRCZ: PROC;
DcL N FLOAT EXT;

END;
INTPRC3 : PROC;
END;
INTPRC4: PROC;
DCL N FLOAT INT;

END;
END;
INTPRCS : PROC;
END;

END ;

EXTPRC2 : PROC;
DCL N FLOAT INT;
INTPRC6 t PROC j

PCL M FLOAT EXTj
END ;

END;

N declared

. . -. 1______ . . , , ." . .

'Note that there are six declarations (in EXTPRC1, INTPRC~,
INTPRC2, INTPRC4, EXTPRC2, and INTPRCG) . ' Hence there are
six distinct scopes of declarations, each shaded di'fferently.
The scope of the declaration in EXTPRCl includes INTPRC5.
The scope of the declaration in INTPRCl includes INTPRC3.

,Three of the six.declarations (in EXTPRCl, INTPRC2, and
INTPRCG) use the EXTERNAL attribute. Hence their declara-
tions are linked, i.e., they all declare the same variable,
the scope of whose name is the union'of the scopes of the,
three declarations. The other three declarations all use
INTERNAL. They thus declare three different variables, the
scope of whose names are the scopes of their respective , : . .

dcclarationp.

Language default's for the scope attribute call 'essentially
for INTERNAL for all variables. As we shall see soon, the
default scope attribute for certain named constants is
EXTERNAL while that for others .is INTERNAL.

Note that if a structure'is EXTERNAL, the structuring and .
attributes'of its components must be the same in all of
its declarations, but the names of its components may differ.
Within the scopes of different declarations, references ,to
correspondinq components of the structure are references to' '
the same storage, even though the names may differ. The
scope attribute may not be applied to the names of components
of a structure; their names are always of INTERNAL scope,
even when the major structure is EXTERNAL. See LRM 77.

Also note that parameters.may not Be declared EXTERNAL.
Defined variables (recall Lesson 3) may not be declared
EXTERNAL, even if the, base variab'le is external'. Names of
parameters and defined variables can only have internal
scope.

4.5. Use of external variables.

External variables permit communication via "global variables"
.amongst several separately compiled procedures. he same
communication can always be achieved by passing arguments,
but external variables are cleaner in many situations. For
instance, one procedure may initiate a chain of calls say
ten levels deep. It may need to pass a particular argument
all the way through this chain to the procedure at its end.,
Even if the intermediate procedures had no use for the data

i t e m , t h e y would a t l e a s t have t o p a s s it on t o t h e n e x t
p rocedu re . They t h u s a l l have t o be aware of i t s e x i s t -
ence ; a l l t h e . d e c l a r a t i o n s would .have t o be j u s t r i g h t ,
and s o on. By u s i n g e x t e r n a l v a r i a b l e s , o n l y t h e f i r s t
and l a s t p rocedu re s i n t h e c h a i n would have t o b e aware of
t h e d a t a ' s e x i s t e n c e , and d e c l a r e it.

I t shou ld be n o t e d t h a t e ach e x t e r n a l s t r u c t u r e d e c l a r a t i o n
behaves l i k e a complete FORTRAN "named common" s p e c i ' f i c a t i o n .
Even e x t e r n a l s c a l a r s behave l i k e "named common" blocks--wi th
j u s t one i t e m i n them.

Procedure names; e n t r y c o n s t a n t s .

L e t u s now look a t p rocedu re names i n more d e t a i l . . W e have
n o t y e t acknowledged t h e f a c t t h a t t h e y c o n s t i t u t e t h e : ' f i r s t
u s e o f names t h a t w e have seen o t h e r t h a n f o r v a r i a b l e s . .

P : PROC OPTIONS (M A I N) ;
Q: PROC;

' END;
CALL Q ;

END;

L e t u s l ook f i r s t a t t h e p rocedure name Q. I t a p p e a r s a s
a l a b e l on a PROCEDURE s t a t e m e n t , and a s t h e name of a
p rocedu re t o b e c a l l e d ' o n a CALL s t a t e m e n t . Q is s a i d t o be,
t h e name of a n e n t r y c o n s t a n t . The v a l u e o f t h i s c o n s t a n t
i s t h e p rocedure which it names (nr, more p r e a i s e l y , t h e
p a r t i c u l a r e n t r y p o i n t i n t o i t , s i n c e t h e r e may be o t h e r s) .

So t h a t w e may t a l k abou t t h a t c o n s t a n t , w e gave' it a name,
Q (j u s t as t h e FIXED DECIMAI, (1) c o n s t a n t w i t h v a l u e "one"
i s deno ted by 1) . The appearance o f Q i n

Q: PROC;
i s a r e f e r e n c e o f t h e c o n s t a n t which s e r v e s t o e s t a b l i s h '

i t s v a l u e . The appearance - . of Q i n
CALL Q;

i s a r e f e r e n c e o f t h e c o n s t a n t which does something w i t h
i t s v a l u e , i . e . , it invokes t h e p rocedu re which i s t h e con-
s t a n t ' s v a l u e .

4.7. ~eclaration of entry constants.

We have tallted about entry values (values which represent
entry points) and entry constants (objects 'whose permanent
value is an entry value). Indeed,,we will see later that
there are entry variables (objects whose changeable value is
an entry value). Thus, "entry" is a legitimate data type.
In fact, the attribute used for declaring entry variables
i.s the ENTRY attribute, but more about that later.. unlike,
say, chnrnctcr strings, we cannot manufacture new values
of type "entry" by operating on old ones. Thus, the number
of different entry,values that can exist at any moment during
the execution of a program is exactly the number of different
entry points of procedures that there. are in it--each one
named by an entry constant. Recall that we earlier called
data that can be operated upon in expressions "problem data."
In contrast to tha,t, entry values constitute the first of
many types of program control data that we will see.

We have seen'how declarations associate a name with an object
(and also associate some attributes'with it). - We have at
hand a kind of constant that has a name, which is an identi-
fier like a variable name. In fact, the association of that
name with the constant, named is also an act of declaration.
In this regard, Q: PROC; constitutes an explicit declaration
of an entry constant named Q. The scope of the declaration
is the procedure containing the declaration, i.e., P.
Attributes furnished by this declaration are ENTRY (the data
type of. the value) and fNTEFWAL (the scope of the namc) --the
latter because the procedure Q is an internal procedure. By
the same logic, P: PROC OPTIONS (MAIN); explicitly declares
P to be nn EXTEPNAL ENTRY constant, EXTERNAL because P is
an external procedure.

Carrying this discussion a little further, we may ask how
we may know that CALL P; appe'aring in some other external
procedure (say 5) refers to .this external procedure P. Fun
that to be the ease, P rnusL be known, iri 8, Lo be An cut.r.rnal
entry constant. How is that achieved? Answer: by the
declaration, in 0 , DCL P ENTRY EXTERNAL;. Note that this
establishes P as an external entry constant; looking ahead,
we may have external entry variables, but you have to do
something extra to declare them. The scope of this declara-

. tion is the procedure.5 (and, of course, descendants in which
the name'is not redeclared). The scope of. the name is the
union of the scopes of all its declarations, including the

one r e s u l t i n g from i t s u s e as a l a b e l on a PROCEDURE s t a t e -
ment. A l l t h e s e d e c l a r a t i o n s a s s o c i a t e t h e name w i t h t h e
same o b j e c t , an e n t r y c o n s t a n t .

4 . 8 . Begin b locks .

P r o c e d u r e s ' a r e one k ind of b lock . Anther k ind i s t h e ' beg in
b lock . A beg in b lock i s d e l i m i t e d by a matching BEGIN s t a t e -
ment and END s t a t e m e n t , a s i n

BEGIN ;

. .
body o f b e g i n ' b l o c k

END ;

A beg in b lock i s s o r t o f an unnamed procedure t h a t t a k e s 'no
arguments and d o e s n ' t r e t u r n a v a l u e . I t s body i s t h u s

' execu t ed f o r i t s e f f e c t . I f it i s " l i k e a p rocedu re" t h e n
presumably it g e t s execu t ed by b e i n g invoked. I f it d o e s n , ' t
have a name,, .by what do w e c a l l it t o invoke i t ? The answer
i s w e d o n ' t need t o c a l l i t , be,cause w e d o n ' t do any th ing
s p e c i a l t o invoke it. It , i s "invoked" (l e t u s j u s t s a y
execu t ed) when c o n t r o l r e a c h e s it i n t h e normal way, f o r
example, a f t e r e x e c u t i n g t h e p r eced ing s t a t e m e n t . Thus,
t h e BEGIN s t a t e m e n t i s e x e c u t a b l e , u n l i k e a PROCEDURE s t a t e -
ment (i f c o n t r o l shou ld r e a c h . a PROCEDURE s t a t e m e n t from.
above, i . e . , ' a f t e r e x e c u t i n g t h e p r eced ing s t a t e m e n t , t h e
p rocedure i s n o t invoked; c o n t r o l s k i p s t o t h e f i r s t execu t -
a b l e s ta tem'ent a f t e r t h e p rocedu re) ..

Why t h e n have beg in b locks? Wouldn' t t h e e f f e c t be e x a c t l y
. t h e same i f w e d e l e t e d a BEGIN s t a t e m e n t and i t s matching

END s t a t e m e n t ?

One r e a s o n f o r beg in b locks i s t h a t t h e y d e l i m i t scopes j u s t
' l i k e p rocedure b l o c k s do. I n f a c t , everywhere w e have used
the word "proocdu~rc ' ' i n t e r i~~s 01 ,tile concep t of scope of - a
d e c l a r a t i o n , w e shou ld .have used " b l o c k . " N o t e . t h a t beg in
b l o c k s may be' n e s t e d i n s i d e beg in b locks o r p rocedure b l o c k s ,
and i n t e r n a l p rocedu re b locks may be n e s t e d i n s i d e beg in
b l o c k s a s w e l l as o t h e r p rocedure b locks . A t ' t h e ou te rmos t

level we still have external procedure blocks; there are
no "external begin blocks." We will see another signifi-
cant use of begin blocks in Lesson 5.

See Lm1 78, and LRM 79.

4.9. . The DEFAULT statement.

In Lesson 1 we said that the programmer can change the stand-
ard system defaults used to furnish attributes in implicit
declarations or to complete partial declarations. The
DEFAULT statement provides this facility. We will illustrate
it by examples. (The abbreviation for DEFAULT is DFT.)

DFT RANGE (*) FIXED BINARY; .

RANGE (*) says this DEFAULT statement applies to all
' ' variables. If they have no data - type attributes they. get

FIXED BINARY (irrespective of the first letter of their
name). If they already have a scale or a base attribute,. .
but not both, the other is FIXED or BINARY as needed.
This default is inapplicable to any variable that already
has both scale and base attributes.

DPT WINCE (B:D) BINARY VAR'I'ING;
This specification is only applicable tu variables whose
names begin with B, C, or D. The attributes shown may
.seem to be in conflict with each other. They'are just
a list from which is taken, in order, any ,attributes that
don't conflict with what the variable already has. If
BINARY is taken, VARYING won't be. If the variable
already has CHARACTER, BINARY won't be taken, but VARYING
wi,J , , l . he"

DFT KANGE (XYZ) VALUE (BIT(8));
This specification only applies to variables whose names
begin with XYB. If the variable has BIT but no length
specification, the length specification acquired is the
value 8. Though we didn't say so in Lesson 2, one can
write DCL XYBAB BIT;. The system detault for string
length is 1.

The order. in which DEFAULT statements are processed is
significant. If a variable belonging to a particular block

.... . .
. .

needs more attributes to complete its description, the
DEFAULT statements of that block are examined, in top to
bottom order, first. If its description is still incomplete,
the block, if any, that .contains that block'has its DEFAULT
statements examined, and so on out to the external procedure
block. Thus, we may say that DEFAULT statements have a
scope of applicability related to the block structure, i.e.,
the nesting properties of blocks.,

8

Considerably more can be done with DEFAULT statements. See
LRM 80 .through LFU4 82.

In the ANSI standard, the syntax and capabilities of the
DEFAULT statement are almost totally changed--for the better.
The applicability of DEFAULT statements may depend on the
attributes a name already has or doesn't have. Additi%orial
attributes, such as DIMENSION, NONVARYING, STRUCTURE, ,

CONSTANT, etc., are also provided for use in defining the
universe of.applicability of a given DEFAULT statement.
It is also possible to default attributes of NONE, which
will make it necessary to explicitly declare all required
attributes, thus eliminating the danger of misspelling a
name. And there are other useful and exotic things that.
can be done with it.

4.10. Unanswered questions.

How do we declare entry variables? 'How may they be used
(other than in assignments)? (We know how entry constantc
are used.) See Lesson 5.

What are the requirements for argument/parameter matching?
Also in Lesson 5.

4.11. Homework problems.

(.#4A) Multiple declarations are not allowed. (For a
definition of multiple declaration, see LRM 83.)
If there are multiple declarations in any of the
following, identify them.

P i PROC;
DCL X F I X E D B I N ;
Q: PROC;

DCL X FLOAT B I N ;
END;

END;
P : PROC;

DCL X F I X E D B I N ;
Q: PROC;

DCL X FTtOAT B I N EXT;
END;

END ;
P : PROC;

DCL X F I X E D B I N EXT;
0: PROC;

DCL X FLOAT B I N EXT;
E19B ;

END;
Same as (a), but with the addition of DFT RANGE
(*) EXT; just after the PROCEDURE statement for P.
Same as (d), but with the DEFAULT statement
added just after the PROCEDURE statement for Q.
S: PROC;

T: PROC;
7': PHOC;
END;

END;
END ;
S: PROC;

T : PROC;
END ;
T : PROC;
END;

END;

(#4B) Suppose two different external procedures, El and E2,
needed to call a third external procedure, E 3 . They
would each, of course, contain a declaration such as

DCL E3 17N81'l<~ EXT:
What do you think would happen if you forgot to write
E 3 and link-edit it in with E l and E 2 ? If you have
Linkage editor experience, describe what you think
the linkage editor would have to say. Also see if you
can give an answer purely in P L / I terms (hint: WilaL
kind of object is E 3 ? What is its value?).

: (# 4 C) Write a DEFAULT statement that will cause all vari-
ables not'explicitly declared with a scale attribute,
and all variables declared ,with FLOAT but no pre-
cision attribute, to default to double precision
floating-point. Make sure that double precision will
be used, even for variables .explicitly declared wi.th
one of the base attributes. In.the case where neither ' .

base attribute'is explicitly declared, make BINARY . .

the default. What is the effect of your DEFAULT

. . statement on the following?
DCL J;
DCL X ;
DCL U BINARY;
DCL V DECIMAL;
DCL F' FLOAT;

J

5. Storage class and block invocations.

- 5.1. Storage allocation and initialization.

Storage allocation means the process of acquiring storage
for a variable. There are several ways this may be carried

. .out in PL/I, depending on choices made by the programmer.
.The choices range from having the compiler "assign" storage
essentially at compile time (like in FORTRAN) to taking on
full responsibility for saying when, during execution,
storage should be acquired for a variable (and when it
should be released). The latter extreme is an example of
dynamic storage allocation. See LRM 84.

So far we have not been concerned with the process of storage
allocation. It is sufficient to have thought in FORTRAN
terms up to now.

Initialization is the process of assigning initial values to
variables. In FORTRAN this is.carried out with the DATA
statement and BLOCK DATA subprogr.ams. There are facilities

. for initialization in PL/I which are a little more general.
To handle the requirements for initialization when .storage
is allocated dynamically, initialization occurs when (and
each time) storage is allocated.

5.2. Storage class attributes.

The storage allocation technique to be used for a specific
variable is selec'ted by declaring one of four alternative
storage class attributes for it. Storage class is a property
of all (or essentially all) variables. With its studv we
will complete the analysis of properties (data type, iggre-
gate type, alignment, scope, storage class) that all vari-
ables have.

The four storage class attributes are STATIC, AUTOMATIC
(abbreviation: AUTO), CONTROLLED (abbreviation: CTL), and
BASED. The last three designate different types of dynamic
storage allocation. BASED will not be considered until
Lesson 11. Static, automatic, and controlled storage are
described separakely below.

5.3. INITIAL attribute.

First we will consider the common aspects of initialization,
since it will be appropriate to consider certain aspects of
it which differ with the storage class as the individual
storage' classes are studied.

Initial values are specified by the INITIAL attribute. The
attribute may be used for scalars, arrays, and structure base
elements. fts abbreviation is INIT. . ' -

For a scalar or si-.rl~at.ure base element, the form is
. INIT (initiaz-value) . znitial-0alii.e may be any corista~~t,

in some cases it may be a variable reference or function
reference or-even an arbitrary expression (if it is
expression it must be surrounded by 'parentheses).

Examples :
DCL N FIXED BIN (31) INIT (0) ;
DCL X FLOAT INIT (1) ;
DCL 1 STRUC,

2 PART1 CHAR (3) INIT ('ABC ') ,
2 PART2,
3 PART2A BIT (2) INIT ('01'B) ,
3 PART3B CHAR (4) VAR INIT (") ;

#) DCL Y FIXED DEC (7,2) INIT (X) ;
DCL 0 PIC '9999' INIT ((Nk*2-14)) ;

For an array one form is
INIT (initial-value , . . . , initial-value)

i.e., a list of initial values, one for each array element.
The order corresponds to successive elements of the array
"by row," i . ~ . wikh thc right-most subscript varying most
rapidly. For example, to initialize a 3x2 array A to

I 0
-3 3
8 -1

we would write
DCL A (3,2) INIT (1,0,-3,3,8,-1);'

The number of initial values given may be less than the
number of elements in the array (in which case elements at
the end remain unitialized), but it may never be greater

(excess values are ignored). To denote that.a particular
element is not to be initialized, an asterisk may be used
instead of an initial value. For instance, if we did .not
need to, or care to, initialize the second row of A we could
have written

DCL A (3,2) INIT (1,0,*,*,8,-1);

A sequence of similar initial values may be "factored out"
and preceded by a parenthesized iteration factor, which
denotes how many times the followinq item or list of items -
is to be iterated. Examples:

DCL A (10) INIT (3 , (910) ;
A(1) is initialized to 3 and the remaining elements

are initialized to 0.
DCL B (3,3) INIT ((3) (0,1,2)) ;

Each row of B is initialized to 0,1,2.
DCL C (3,3) INIT ((3) (0,(.2)1)); .

Each row'of C is initialized to O,1,1.
DCL D (10) INIT (0, (8) * ,0) ;

The first and last values of D are initialized
to 0; the middle eight values are uninitialized.

.The INITIAL attribute may be specified in a DEFAULT statement.
Note that standard system defaults do not cause-initialization
of any variables. It is illegal to use a variable in a con-
text where its value is required before it is assigned a
value (either by initialization, by assignment, or by an
input'operation). Under the optimizing compiler, reference,
to an uninitialized'variable will access garbage, and un re- P dictable errors may result. Thecheckout compi er, however,
is able to detect and report use of uninitialized variables
.(wh i ,ch i s a very cnmmnn errnr) .

See LRM 85 and LRM 86.

Note that if A and B are.similar arrays, it is not legal to
write, say,

DCL A (3,2) INIT (B);
even though it may seem intuitively clear. Any references
in the INITIAL attribute must be references to element vari-
ables (scalars), and expressions must be element expressions
(those that evaluate to scalar quantities).

5.4. Adjustable extents.

All of the array.bounds and string lengths we have shown .

so far have been expressed as unsigned decimal integer con-
stants. ~yntact'icall'y , they may, in general, be expressions
(element expressions), but this is permitted only with certain
storage classes,. as we will see below. An array bound or
string length'which is not constant is called an adjustable
extent. In Lesson 11 we will see another type of variable
which can have an adjustable extent.

5.5. Static variables.

Variables declared with the STATIC storage class attribute
dre fully mapped and Logically allocated a place in storage
at compile time. In fact, this storage is just a part of
the "load module" containing the program itself. Initial
values are assembled right into this storage.

When a program is loaded, static storage--already initialized,
if required--is brought in'with it. Static variab1e.s retain
their assigned locations ,throughout execution.

In order to permit full mapping and initialization at compile
time, static variables cannot have adjustable exten ts , and
initial values and iteration factors in any INITIAL attribute
must all be constants. See LRM 87.

Example :
P: PHOC;

DCL #CALLS FIXED BIN STATIC INIT (0);
#CALLS = #CALLS + 11

END;
In this example, the static internal variable #CALLS is used
to record the number of times P is invoked. Because #CALLS
has internal scope (by default), it is not accessible to
the program outside of the procedure P. However, it con-
tinues to occupy its storage location, and its value, even
when control leaves P. It still has the same location and
value when control re-enters P at a later time. Thus, static
variables may be used to maintain a "history" across procedur
calls.

5.6. Automatic variables.

Variables declared with the AUTOMATIC storage class attribute
are allocated, and initialized, whenever control enters the
block that declares them. The storage is freed when that
block terminates.

This is one of the types of dynamic'storage allocation.
.Since storage for an automatic variable is not allocated and
initialized until a certain point during execution, it may
have adjustable extents as well as expressions in .the INITIAL
attribute.

Example :
P: PROC;

DCL (L,M,N) FIXED BIN;
L = 3;
M = 8;
N = 6;
BEGIN;

DCL C CHAR (L) AUTO;
DCL B BIT (L+l) VARYING AUTO;
DCL A (M , N) BIT (L**2) AUTO;
DCL X (N) INIT ((N) 0) AUTO;
DCL Y (L,M)

INIT ((L) (1, (M-I) 0)) AUTO;
END;

END;
When the begin block is entered, C is established as a char-
acter string variable of length 3 (the value of L). B is
established as a varying- lengL11 bit string of maximum length
4. A is established as an 8x6 array of bit strings of
length 9. X is a 6-element array all of whose elements are
initialized to 0. (Note that if we had written

DCL X (N) INIT (0) AUTO;
only the first element would have been initialized.) Y is
a 3x8 array whose first column is initialized to 1 and whose
remaining elements are initialized to 0.

Note that the determination of adjustable extents and initial
values is determined exactly at block entry time, before any
statements are executed in the block. Also, even though the
variables used in extent ,expressions may have new values
assigned to them in the block, the bounds and string lengths
won't change.

Note that, since storage for automatic variables is freed
when their containing block terminates, they may not be
used to retain a history across block invocations. The next
time their declaring block is entered they will be assigned
fresh storage, which may be ,in a different location.' See
LRM 88. . .

. .

Automatic storage is primarily used for local (i.e., in.ternal)
variables with adjustable extents. It is also essential in
recursive procedures, as we shall see later in this lesson,
,and re-entrant procedures (Lesson 14).

Initialization of autw~~~atic variables is carried o11t by
generated code. If they have adjustable extents, storage
allocation is also carried out by generated code. However,
if they have fixed extents they come essentially for free:
since the compiler knows their extents, it assigns them
consecutive locations in one contiguous area which is not
allocated until the declaring block is ente~ed. The alloca-
tions are "free" since each block will need such an area any-
way, for housekeeping, even if it has no automatic variables.

5.7. Controlled variables.

Variables declared with the CONTROLLED storage class attribute
are allocated, and initialized, upon execution of an ALLOCATE
statement naming them, and they are released upon execution
of a FREE statement naming them. The allocation and freeing
need not occur in the same block.

Controlled.variables can have several'simultaneous~ generations
of storage. If a controlled variable beilly allocated already
has an alfocation. (called a cjeneratiul~), L k a t formcr ablaca-
tion is placed.on a stack. All subsequcnt references tn'the
variable are references t.n the newly allocated generation of
it, until a FREE statement is executed. At that time the
"current" generation is released and the one on top of the
stack replaces it'.

Example :

DCL X CTL;
ALLOCATE X;
x = 1;
ALLOCATE X; Stacks previous X (having value 1).
x = 2;
Y = X; Stores the value 2.
FREE X; Unstacks previous X.
Y = X; Stores the value 1.
FREE X; There are now no allocations of X.

It is an error to refer to a controlled variable for which
no allocations exist.

Controlled variables are the thing to use, obviously, whenever
you need a real "pushdown" stack, or LIFO ('last-in-f irst-out)
stack.

Since the controlled storage class is one of the dynamic
storage classes, controlled variables can have adjustable
extents and variable initializations. An ALLOCATE statement
for a controlled variable may well appear in a block different
from the one containing its declaration. There may also.
appear in that block declarations of variables having' the
same names as ones used, for instance, in extent expressions
in the declaration of the controlled variable. Upon alloca-
tion, the variables accessed during the evaluation of extent
expressions are the ones "known" in the block containing the
controlled declaration; the values used, however, are their
current values, i.e., not necessarily the ones in effect when
the declaring block was entered,. A homework problem will
illustrate this.

In reading L&V 89, you will see that it is possible to over- '

ride extent expressions, etc., given in the declaration, by
using different ones in the ALLOCATE statement (for this
purpose you have to write out the attributes in the ALLOCATE
statement). When extents are given in the ALLOCATE statement
they may be omitted (replaced by asterisks) in the declaration.
Use of the features described in this paragraph is not recom-
mended because they are not carried over to the ANSI standard.

c

5.8. Combinations of storage class and scope attributes. . .

Static variables may have either internal or external scope.

Automatic variables can have only internal scope. Since
automatic\variables only "exist" while the declaring block
is active, it is not meaningful to link the scopes of
different declarations so that they refer to,.the same auto-
matic variable. Of course, automatic variables may be refer-
enced in blocks contained within the declaring block (because
the scope of the declaration contains the nested block).
There is no way for the declaring block not to be active
when such a reference is made.

Controlled variables can kavc cithor internal nr external
scope. With controlled external, the whole stack of alloca-
tions is "shared" amongst the scopes of the various external
declarations of the variable.

In Lesson 4 we stated that external' variables can conveniently
be used for communication amongst several external procedures.
Now consider that external variables can have either static
or .controlled storage class, but not automatic. Since static
variables can not have adjustable extents, if a variable com-
municated amongst external procedures by giving it external
scope (as opposed to passing it as an argument) needs to have.
extents determined during execution, it will obviously have
to be controlled. Note that there may be no need for the .
.general stacking capability in this case, i.e., only.one
generation of the controlled variable is ever allocated.
T h j . s , .i.n addition to LIFO stacks, is an "appropriate" use of
controlled variables.

If the storage class attribute i..s omitted from a'declaration,
sta.n.dard defaults will supply AUTO for internal variables and
STATIC for external ones. since INTERNAL is the standard
default when the scope attribute is omitted, most variables
w.ill.probably ond up being au.tomatic. Since additional execu-
tion time is incurred for certain uses of automatic variables,
it may well be worthwhile to say DFT RLVGE (*) STATIC; to .

change the default.

For a review, see LRM 90 ignoring (for now) all discussivn
of the BASED attribute.

. 5 . 9 . Parameters.

Names appearing in a parameter list in a procedure statement
are names of formal parameters ("dummy arguments" in FORTRAN).

The process of invoking a procedure makes the kormai.param-
eters synonymous with the actual arguments in a CALL state-
ment or function reference. By synonymous is meant that.
they designate the same storage and the same"value, as with
defined variables (Lesson 3). Hence, an assignment to a
formal'parameter may be instantly perceived as a change in
the value of the actual argument, assuming it is a variable.
And there are no restrictions on that variable (the actual
argument) like those of FORT~AN; specifically, the variable
may be another argument, as in

CALL F (AIAIB) ;
or it may be an external variable to which the invoked
procedure has direct access. The price of this flexibility
is inhibited optimization. For instance, suppose in F an
assignment is made to the first formal parameter. The com-
piler must be aware that the second parameter, which is a
different variable in F, can have its value changed by that
assignment.

Note that formal parameters do not denote local variables
- .

which are assigned the value of the actual argument on entry
and which are assigned back to the argument on return, as in
FORTRAN (for scalar arguments). This has consequences that
will be seen when we consider multiple entry points, later.

Ther.e is also no restriction against assigning to a formal
parameter whose actual argument is a constant. In this case
the constant is protected because the calling procedure makes
a copy of it just before the call and passes the copy instead.

Parameters generally cannot be declared with a storage class
attribute. They don't have storage of their own; th,ey share
the storage of ,the actual argument. In this sense, "parameter"
may be considered an alternative to the other storage classes!
An' exception is discussed immediately below.

When a controlled variable is passed as an argument, either
the current generation of the variable or the whole stack of
generations may be conside~ed passed, depending on whether
the formal parameter does not, or does, have the CONTROLLED
attribute, respectively. This is the one exception to the
above prohibition of storage class for parameters. It is an
error to pass a non-controlled variable to a controlled
parameter. Note that controlled parameters are not permitted
in the ANSI standard.

5.10. Review and extension of DEFINED attribute.

Before proceeding with the study of parameters we shall look
again at defined variables, first introduced in Lesson 3.

The first point to be made is occasioned by the comment
above that parameters don't have storage class. Neither
do defined variables. They share,the storage of their base
variable. .DEFINED, like "parameter," may be thought of as
an alternative to storage class.

The second point to be made is that defined variables, like
variables of any of the clyl~ai i l ic storage claoocc, oan have
adjustable extents. The extent expressions, like those.for
automatic variables, q ~ e evaluated on cntry to the declaring
block. Consider the following example: '

J = 3;' Note: In the ANSI standard,
I< - 5; declarations of defined and
L .= 7; auto variables may not refer-
BEGIN; ence other defined or auto

DCL A (J,K,L) FLOAT; variables declared in the
DCL B (K,J) FLOAT same block. . Hence, the

DEF A (2SUF3,ISUB ,I) ; declaration of B is in error.

END; . ,

It is corrected by enclosing
it in another begin 'block.

In the begin block, A is a 3x5~7 array. B is a 5x3 array
made coincident with the transpose of the.1-th plane of A.
While the values of K and J are determined for purposes of
ascertaining B's extents once, on entry to the begin block,
the extents not subsequently tracking any changes in the
values of K and J, I is not evaluated at block entry but -
rather on,every reference to B. See LRM.91.

,,

5.11. Argument/parameter matching r eyu i remen , t s .

As you might expect by now, arguments and parameters must
have the same data type, i.e., it is illegal to pass a
floating-point argument to a fixed-point parameter, illegal
to pass a CHAR (4) argument to a BIT (32) parameter, and
so forth. You should expect this because of the matching
requirements we have seen for defined variables and
external variables. In all cases, the reason is to guarantee
identical semantics for all implementations of PL/I; it just
cannot be done when 'one is allowed to relax these rules.

.Suppose a parameter is declared FIXED BIN (15). If one.wants
to pass the constant "one" to this parameter, can one write
"1" f'orthe actual argument? After all, "1" as written is

. . FIXED DEC (1) . The aqswer is yes, if. If you tell the
. compiler what kind of value the invoked procedure expects.

If you don't, it w.ill just pass a FIXED DEC (1) constant
and errors surely will result.

Actually, it is necessary to provide the compiler with
information about the invoked procedure's parameters, in the
calling procedure, only when the procedure being called is
an. external procedure. An entry declaration is used for
t k ~ i s purpose. The reason it is not necessary (in £act, not
allowed) for internal procedures is'because in this case the
compiler can look inside the procedure to be invoked while
it is compiling the calling procedure, and it can thus find
.out what' attributes are required.

One essential freedom permittcd in these otherwise stringent
matching requirements in that array bounds and string lengths
of parameters need not be specified as unsigned decimal integer
constants. (They may be, however, and then they must agree
exactly with the array bounds or string lengths of their
actual arguments.) These extents can be expressed as
asterisks, which means that the extent of the formal parameter
is inherited from the actual argument. This permits arrays
with different bounds (but the same number of dimensions),
or strings with different lengths, to be passed as arguments,
at different times, to the same formal parameter.

For example:
DCL S1 CHAR (5) INIT ('AAAAA') ;
DCL S2 CHAR (3) INIT ('BBB');
CALL INTPROC) S1) ;

' . CALL INTPROC (S2) ;
INTPROC: PROC (S.) ;

DCL' S CHAR (*) ;
I = LENGTH (S) ;

END;
The first time INTPROC is called, its parameter, Sf behaves
like a CHAR (5) variable; in particular, 5 is assigned to I.
On the second invocation, S behaves like a CHAR (3) variable
and 3 is assigned to I.

Suppose we pass arrays with different extents to an array
parameter with asterisk extents. How are we to ascertain

the bounds of the parameter (i.e.,.those of the actual argu-
ment), if we should need:to (for instance, to iterate over
all elements of the array)? Certain builtin functions, in
the category called "array-handling builtin .functions," serve

. this need.

If A is an array, HBOUND(A,i) is the upper bound ("high
bound") of A in the i-th dimension. i may, in general, be
an expression, but it is usually a constant like 1 or 2.
Similarly, LBOUND(A,i) is the lower bound of A in the i-th
dimension. DIM (A,i) 'is equal to HBOUND (A,i) -LBOUND (A,;)
+ 1, i.e., it is the number of elements in the i-th dimension
of A.

Example :
. P: PROC (A) ;

DCL A (* , *) FLOAT;
DCL B (LBOUND(A,~): HBOUND(A,2))

FLOAT DEF A(I,*) ;

. .
END; .

A is a two-dimensional array with bounds in both'dimensions
inheri.ted.from the sctual.argument. B is defined on the I-th
row of A; in its one and only dimension, it has bounds equal
to those of the second dimension of A.

Note .that "asterisk extents" are a type of adjustable extent.
It is the only type permitted in:parameter declar.ations,
i.e., it is illegal to write

P: PROC (A,I,J);
DCL A (1,J.);

The FORTRAN programmer converting to PL/I must make a con-
scious effort not to think about array parameters in terms
of the address of the first element. Array parameters can
,only be associated with array argiimetlts; they. must h a v e Lhe
same number of dimensions and the same bounds in each dimen-
sion.' It is never necessary to pass the bounds separately.
It is just. as illegal to refer outside the bounds of 'a
parameter array as it is to reference outside.the bounds of
any array.

,5.12. Entry declarations. I

In Lesson 4 we saw that the ENTRY attribute can be used in
a declaration.to declare a name as that of an external

procedure (i.e., an external entry constant). The declara-
tion may also describe the attributes of the formal parameters
of the external pracedure.

Example:
DCL F ENTRY (FIXED BIN (15)) EXT;

This says that F is an external 'entry constant, and that the
procedure F has one parameter, which in E' is declared as
FIXED. BIN (15) . Having written the above declaration, you
can now write CALL F(1); without fear of having the wrong
data type'for the actual argument. The compiler has the
information it needs to substitute a FIXED BIN (15) constant
with value "one. "

The conversion of argument type to parameter type occurs when-,
ever it is necessary. For instance, in

DCL J FLOAT BIN (10);
CALL F (J) ;

. J is converked from FLOAT BIN (10) to FIXED BIN (15) . The
result is placed in a "temporary," sometimes called a "dummy"
in PL/I, and it is the temporary which is passed as an argu-
ment. In this case, assignment of a value to the parameter
of F will not cause the. value of J to change, because the -
parameter is not associated with J but rather with an auxili-
ary variable containing the cpnverted value of J. The compiler
tells you whenever it creates a "dummy" for an argument in
order to get the matching required.

. . As you read LRM 92 and LRM 93, you will see that the descrip-
tions for individual parameters may be omitted (replaced by
asterisks), in which case it is assumed that the argument as
passed is correct for the parameter (it is an error if it
isn't).. Indeed, the whole list of parameter descriptions,
and their enclosing parentheses, may be omitted (with the
same assumptions). However, it is good practice to dec.lare
the parameter attributes of external procedures always, and
the ANSI version requires this. '

External ent.ry constants,must be declared in an entry
declaration,, even if there are no parameters to describe.
You might well ask why.' If a name appears in a CALL state-
ment, as in CALL SUBR, or in function reference context, as
in A=B+SIZE(C), why is not that name assumed to be an external
entry, as in FORTRALY, when no array declaration (in the
latter case) or internal. procedure (in either. case) (in
FORTRAN thiswould be an arithmetic statement function) were
observed by the compiler? The answer is: to permit growth

of the 1anguage.h the area of builtin procedures. (In
Lesson 12 we will see that there are some implementation-
defined builtin procedures that are. subroutines, i.e., to be
invoked by CALL statements.) What would happen if SIZE (as
in the above example) were to be added to the language as a
builtin function tomorrow? If SIZE could be an external entry
without declaration, then the meaning of the program would
change after SIZE is added as a builtin function. (Though
it has not been emphasized, builtin functions generally do
not have to be declared. Exceptions to this rule are treated
in Lesson 10.) By declaring SIZE as an external entry, you
are prutecled even if SIZE i s added as a builtin function
tomorrow.

5.13. The CONNECTED attribute.

The CONNECTED attribute may be specified for aggregate
parameters. In general, the compiler may not assume that
a parameter which is an aggregate is connected. For example,
since arrays are stored by row in PL/I, passing a column,
such as A(*,I) to a one-dimensional array results in the
parameter being associated with unconnected storage. Even
if the parameter is a structure, it can refer to unconnected
storage! A case in point is the passing of an element of a n .
array of structures. The CONNECTED attribute tells the com-
piler that the associated aggregate argument actually is in
connected storage. Besides leading to certain efficiencies,
this information confirms a condition which is a prerequisite
for certain kinds of 1/0 involving aggregate parameters
(Lessons 8-9) and for string overlay defining (Lesson 3) on
a parameter base.

When the CONNECTED attribute is specified in a parameter
description in an ENTRY attribute, for instance

DCL P ENTRY ((*) FLOAT CONNECTED) ;
which says that P expects a one-dimensional connected array
of FLOAT elements, a copy uL the argumcnt is made in
connected temporary storage if the argument, as supplied,
is not connected. See LRM 94.

CONNECTED is not a part of the A N S l standard. If you use
the features cited above as requiring connected references,
it is assumed that the connected condition is met; other-
wise, the program is in error.

5.14. Function references and the RETURN statement.

When a procedure is invoked as a subroutine reference, it
may return to the point of invocation either by executing
a RETURN statement that does not include an expression for
the returned value, or by executing (i.e., reaching) the END
statement of the procedure.

When a procedure is invoked as a function reference, the
latter mechanism is not available to it. It must execute a
RETURN statement that includes an expression giving the
returned value, as in

RETURN (B**2-4*A*C) ;
Note that the mechanism for specifying a returned value is
rather different from FORTaJ. Instead of assigning to a
variable which has the name of the function, then executing
a RETURN statement later, we carry out both functions in a
single statement.

Returned values have data types. Both the calling and the
invoked procedure must agree on the data type of the returned
value. The rule is that the data type is inferred from the
first letter of the procedure's name (more precisely, the
name of the entry point), in the same way as for undeclared
variables and using the same defaults, unless specified
otherwise. There are two places where other attributes may
be specified ..

The first place is on the PROCEDURE statement, in the RETURNS
option.

P: PROC (X) RETURNS (CHAR (40)) ;
specifies, for example, that P returns a value of type
CHAR (40) . If you happen to write RETURN ('NONE') the given
value will be converted from CHAR (4) to CHAR (40)) in the
invoked procedure, to conform to the CHAR (40) that you
have said must be returned.

The second place is'in an entry declaration (for an external
, entry) on the calling side. The difference between

DCL P ENTRY (FIXED) EXT:
and

DCL P ENTRY (FIXED) RETURVS (CHAR (40)) EXT;
when P is invoked in function reference context, as in

S = T 1 1 P(5);
is that in the former case the attributes assumed for the
value returned depend on the first letter of the name (and
will be FLOAT DEC (6) in this case), whereas in the lattez.
Case they are known to be CHAR (40).

.In the ANSI version,-the RETURNS option and RETURNS attri-
bute can be 'used if and only if the procedure is invoked in
function reference context, and they must be used then.

In the current language a returned value must be.a scalar.
Furthermore, if it is a string it.must have a non-adjustable
length (or maximum length, in the case of varying-length
strings). In the ANSI language, a returned value may be
an array or a structure and it can be specified to have
ad justable extents (using the asterisk notation 'only.) .

See LRM 95.

5.15. Recursive procedures.

Recursive procedures are allowed. They must be identified
as recursive by the RECURSIVE option on the PROCEDURE state-
ment'. The familiar example of FACTORIAL is given below.
(It uses an IF statement, which we will encounter in
Lesson 6.)

FACTORIAL: PROC (N) RETURNS (FIXED BIN (31)) RECURSIVE;
DCL N FIXED BIN (31);
IF N > . 1 THEN FU3TURN (FACTORIAL (N-1)) ;
ELSE RETURN (1) ;

END;

If a recursive procedure needs any local variables, it is
ess,ential that the automatic storage class be used for them.
The essentia.1 feature of a recursive procedure is that'
several invocations of it are active simultaneously. If
STATIC is used for local variables, all invocations would,
share the one "generation" of the static variable. With
AUTO, each active invocation has its own "generation'" of
the local variable.

5.16. Multiple entry points and the.ENTRY statement.

Like FOHTKAN, PL/I provides for multiple entry points into
a procedure. The ENTRY statement is used to designate a
secondary entry point. The ENTRY statement looks basically
just like a PROCEDURE statement except that the ENTRY key-
word replaces the PROCEDURE keyword and certain options are
not allowed.

The d i f f e r e n t ' e n t r y p o i n t s of a p rocedure can have d i f f e r e n t
pa r ame te r l i s t s . I t i s i n c o r r e c t t o r e f e r , i n t h e body of
a p rocedu re , t o a pa ramete r a p p e a r i n g i n some parameter l i s t
b u t ' n o t ' t h e one a t t h e e n t r y p o i n t th rough which e n t r y was
made. Example:

P: PROC (A , B , C) ;

Q: ENTRY (B , C , D) ;
DCL (A , B , C , D) . . .;
body o f p rocedu re

END;
I f e n t r y i s made a t P , r e f e r e n c e s t o A , B , and C a r e l e g a l ;
r e f e r e n c e s t o D a r e i l l e g a l . I f e n t r y i s made a.t Q , r e f e r -

, e n c e s t o B , C , and D a r e l e g a l ; r e f e r e n c e s t o A a r e i l l e g a l .
Note t h a t t h i s i s i n c o n t r a s t t o t h e FORTRAN t e c h n i q u e o f
e s t a b l i s h i n g v a r i o u s v a l u e s i n pa r ame te r s o f - t h e p rocedure
by e n t e r i n g once th rough a n " i n i t i a l i z a t i o n " e n t r y p o i n t w i t h
a l ong pa r ame te r l i s t , and t h e n making subsequen t "high-speed"
e n t r i e s th rough a d i f f e r e n t e n t r y p o i n t hav ing a much s h o r t e r
p a r a m e t e r . l i s t , w i t h subsequen t r e f e r e n c e s t o t h e e a r l i e r 2.'

pa rame te r s .

The d i f f e r e n t e n t r y p o i n t s may r e t u r n v a l u e s w i t h d i f f e r e n t
a t t r i b u t e s . When a RETURN s t a t e m e n t i s e x e c u t e d , a " s w i t c h "
i s t e s t e d by t h e compiled code t o de t e rmine which e n t r y p o i n t
was used ; t h e code may need t o b ranch on t h e outcome of t h i s
t e s t t o d i f f e r . e n t s e c t i o n s o f code t h a t c o n v e r t . t h e r e t u r n e d
v a l u e t o t h e a p p r o p r i a t e a t t r i b u t e s . Example:

P : PROC (X) RETURNS (FIXED).;
Q: ENTRY (X) RETURNS (FLOAT) ;

RETURN jx/3-1 Y) ;
END;

The v a l u e o f t h e e x p r e s s i o n X/3+Y, which ha s c e r t a i n
a t t r i b u t e s , w i l l be conve r t ed t o FIXED o r FLOAT depending
on whether e n t r y was made a t P o r a t Q .

See Lmq 96.

5.17. Gener ic p rocedu re s .

R e c a l l i n Lesson 1 w e s a i d t h a t t h e mathemat ica l b u i l t i n
f u n c t i o n s w e r e " g e n e r i c " i n t h e s e n s e t h a t t h e y cou ld

- a c c e p t , under one name, arguments w i t h a wide range of
d i f f e r e n t a t t r i b u t e s .

I t . i s p o s s i b l e t o g i v e t h e appearance o f c a l l i n g a u s e r -
d e f i n e d p rocedu re w i t h d i f f e r e n t t y p e s of arguments (maybe
even d i f f e r e n t numbers of arguments) i n t h e d i f f e r e n t c a l l s .
The name c a l l e d i s n o t . i t s e l f an e n t r y c o n s t a n t , t h a t i s ,
a l a b e l on some procedure . . I t w i l l be r e p l a c e d by an e n t r y
c o n s t a n t s e l e c t e d from a l i s t , based on t h e numbers and
t y p e s of t h e arguments. The GENERIC a t t r i b u t e i s used f o r
t h i s .

Example : I

DCL E GENERIC
(E l WHEN (*) ,
E2 WHEN (* , *)) ;

DCL EI EN'.~*HY (FJ.XEU) EXIT;
DCL E2 ENTRY (FIXED, FLOAT) EXT;
A r e f e r e n c e t o E w i t h one argument, a s i n CALL E (A + B) ;

r e s o l v e s t o E l , i . e . , t h e s t a t e m e n t i s t h e same a s
CALL E l (A + B) . A r e f e r e n c e t o E w i t h two arguments ,
as i n CALL E (A , B) ; r e s o l v e s t o E 2 , i . e . , t h e s t a t e -
ment i s t h e same a s CALL E2(A,B).

DCL F GENERIC
(F1 WHEN (FIXED B I N) ,
F2 WHEN (FLOAT B I N) ,
F2 WHEN (FLOAT DEC)) ;

DCL F1 ENTRY (FIXED B I N (1 5)) EXT;
DCL F2 ENTRY (FLOAT DEC (6)) EXT;
CALL F (N + l) r e s o l v e s t o F1 (i f N i s FIXED B I N) .
CALL F (X + l) r e s o l v e s t o F2 i f X i s e i t h e r FLOAT B I N

o r FLOAT DEC; conve r s ion of t h e argument from FLOAT
B I N t o FLOAT DEC o c c u r s i n t h e former c a s e .

Note t h a t g e n e r i c s e l e c t i o n i s c a r r i e d o u t s t a t i c a l l y , i . e . ,
t h e r e s o l u t i o n o c c u r s a t compi le t i m e . See LRM 9 7 .

5.18. Review o f . . p r o c e d u r e i n v o c a t i o n s .

For a complete review o f t h e dynamic a s p e c t s of procedures ' ,
see LRM 98 (which c o v e r s some m a t e r i a l we w i l l see l a t e r) .
and Lwq 9 9 .

5.19. Homework problems.

(#5A) Assume S is a square array of CHAR (1) elements with
N rows and columns (N > I).. Write a declaration for
S that initializes the elements on the perimeter.of
the array to I*' and those in the interior to 'PI.

, (#5B) what value is assigned to I?
DCL (1,N) FIXED BIN;
N = 3;
BEG 1.N ;

DCL A (N) FLOAT AUTO;
N = 7;
I = HBOUND(A,l);

END;
Would the result be the. same if the first two state-

'. ' ments after BEGIN were interchanged?

(#5C) What values are assigned to I?
DCL (1,N) FIXED BIN;
DCL A (N) FLOAT CTL;
N. = 3;
BEGIN ;

DCL N FIXED BIN;
N = 4;
ALLOCATE A;
I = HBOUND(A,l);
N = 5;
I = HBOUND(A ,1) ;

END ;
N = 6;
I = HBOUND(A,l);
ALLOCATE A;
I = HBOUND(A,l) ; .
N = 7;
FREE A;
I = HBOUND(A,l);

#5D) Write a procedure, to be called as a subroutine,
which accepts a square array of any size and sets all
the diagonal elements to 0. You won't need to code
any loops.

(# 5 ~) Suppose you are designing a procedure to carry out
some transformation on an array. Suppose this trans-

formation requires ."workspace" which is a function of
the size of the array. Discuss how.you -would solve
this problem in FORTRAN (if you have FORTRAN experi-
ence) and in PL/ I .

(# 5 F) Write a procedure, to be cal'led as a subroutine, which
accepts a square array of.any size and assigns to that
array' its own transpose'. Do it without coding any
loops.

(#5G) Can you guess why the expression for the returned
value in a RETURN statement must be surrounded by
~arerltheses? Thst is, why is PdTURN (A+B) required?
Why not just RETURN A+B? Hint: Suppose the outer
parentheses could be omitted in RETURN ((A+B)=l).
What problems would be encountered? .

6 . (a) C o n t r o l c o n s t r u c t s
(b) C o n d i t i o n s .

6 .1 . IF S t a t e m e n t

T h e 21 s ta tement may b e u s e 3 t o a c h i e v e c o n d i t i o n a l e x e c u t i o n o f a
s t a t e m e n t o r g r o u p o f s t a t e m e n t s .

T h e r e a r e t w o f o r m s :
(1) I F e x r ~ ~ ~ b ~ a ~ THEW &e-p&;
(2) I P P . X ~ & Q ~ A ~ . O M .. THEN . tue-putt;

ELSE d & e - p a ;

h e - p a k t a n d , j&e-pant a r e e i t h e r s i n g l e s t a t e m e n t s o r g r o u p s o f
s t a t e m e n t s , a s we s h a l l see b e l o w . T h e y may b e o t h e r I F s t a t e m e n t s ,
h e g i n b l o c k s , etc.

e x p t r u n i o ' n . is e v a l u a t e d a n d c o n v e r t e d , i f n e c e s s a r y , t o a b i t s t r i n g
v a l u e . I f g n y b i t i n t h e b i t s t r i n g i s a 1 , t h e &ueFpcuLA: i s
e x e c u t e d , a f t e r w h i c h c o n t r o l g o e s t o t h e n e x t s t a t e m e n t (case 1) o r
t h e s t a t e m e n t a f t e r t h e da4ne-pan;t (c a s e 2) . I f 11-0 b i t is a 1 , t h e
sue-paht i s n o t e x e c u t e d . I n case 1,. c o n t r o l a r r i v e s a t t h e n e x t
s t a t e m e n t w i t h o u t e x e c u t i n g t h e h e - p & . I n case 2 , t h e . d & e - p W
i s e x e c u t ~ d , t h e n c o n t r o l g o e s t o t h o s t a t e m e n t a f t e r t h a t .

T h e m o s t common f o r m f o r e x p k u s i o n i s a c o m p a r i s o n o p e r a t i o r ! , w h i c h
y i e l d s a B I T (1) r e s u l t . E x a m p l e :

I F A < B TIIEN A = A + I;
O f t e n , e x p & u d i o n i s a l o y i c a l e x p r e s s i o n r e p r e s e n t i n g l o g i c a l
o p e r a t i o n s o n b i t s t r i r i g s (u s u a l l y o b t a i n e d f r o m c o m p a r i s o n s) .
E x a m p l e :

I F I < 1Q 1 J = I TFEN CALL FOU%;
ELSZ RETURV ((5+2) ;

A n o t h e r u s e f u l f o r m i s i l l u s t r a t e d i n
IF L THEN .. .:

where L i s a b i t s t r i n g v a r i a b l e f R I T (1) p r o b a b l y) g i v e n a v a l u e i n a
p r e v i o u s a s s i g n m e n t .

Tn L e s s o n 2 we saw b i t s t r i n g e x p r e s s i o n s i n t h e c o n t e x t o f
a s s i g n m e n t s t a t e m e n t s . A l t h o u g h t h e same k i n d s o f e x p r e s s i o n s . a re
e m p l o y e d i n a n I F s t a t e m e n t , t h e c o d e g e n e r a t e d may b e q u i t e

d i f f e r e n t s i n c e h e r e i t h a s a s i t s g o a l a c o n d i t i o n a l b r a n c h . An
o p t i n i z i n g c o m p i l e r .may n o t i n "fact n e e d t o e v a l u a t e t h o w h o l e
e x p r e s s i o n i n o r d e r t o d e t e r m i n e t h e e n d . r e s u l t . However, t h a t is
n o t s o m e t h ' i n g y o u s h o u l d c o u n t o n , b e c a u s e t h e l a n g u a g e d e f i n i t i o n

. d . o e s n o t i n s i s t t h a t t h e c o d e s t o p e v a l u a t i n g a n e x p r e s s i o n a s s o o n
a s t h e r e s u l t i s known; i t m e r e l y p e r m i t s it. H e n c e , t h e g t a t e m e n t

IF I <= HBOUND (X , 1) E X (I) = Y THEY . . . ;
is a t b e s t r i s k y ; t h e p r o p e r way t o . c o d e t h i s i s

I F I <= H B O U N D (X. , 1) THEN
IF X (I) = Y THE??. . .;

I t s h o u l d b e n o t e d t h a t t h e e x p r e s s i o n i n t h e I F c l a u s e m u s t b e a n
e l e m e n t e x p r e s s i o n (i. e . , a scalar - v a l u e d e x p r e s s i o n) . T h a t m e a n s
t h a t i f A a n d B a r e c o n g r u e n t a r r a y s , i t i s n o t p o s s i b l e t o write IF
A = B CREN . . .: (R e c a l l t h e d i s c u s s i o n o f a g . g r e g a t e e x p r e s s , i o n s f r o m
L e s s o n 3 .) T h e r e s u l t of A = R is a c o n g r u e n t a r r a y o f B I T (1)
e l e m e n t s , e a c h e l e m e n t h a v i n g t h e b i t v a l u e 1 o r 0 d e p e n d i n g o n
w h e t h e r o r n o t t h e c o r r e s p o n d i n g e l e m e n t s o f A a n d B a re e q u a l .)
C e r t a i n b u i l t i n f u n c t i o n s , w h i c h we s h a l l see i n ~ e s s o n 10, c a n b e
e m p l o y e d t o a c h i e v e w h a t i s p r o b a b l y d e s i r e d h e r e .

When I F s t a t e m e n t s a r e n e s t e d , a n ELSE c l a u s e is a s s u m e d t o b e l o n q t o
t h e n e a r e s t lQunmatched"l T H E N c l a u s e . T h a t is, i n

I F B THEN
I F C THEN action-.].;
E L S E action-2;

ac t ion-2 i s e x e c u t e d when R i s " t r u e v a n d C i s " f a l s e u ; ' (N , e i t h e r
a c t i o n is e x e c u t e d i f B i s wfa l s e l l .) I f i t i s . i n t e n d e d t h a t t h e ELSE
c l a u s e m a t c h t h e o t h e r THEN c l a u s e i n t h i s e x a m p l e , o n e s o l u t i o n is
t o m a t c h t h e i n n e r THEN c l a u s e wit:h a n u l l s t a t e m e n t , w h i c h is j u s t a
s e m i c o l o n . (You w o u l d n ' t b e l i e v e how , f a s t t h e g e n e r a t e d c o d e f o r a
n u l l s t a t e m e n t is!) . Example :

I F B THEN
I F C T HEN. action-];
ELSE; . . .

ELSE a d o n - 2 ;
Now aoCiofi-2 is e x e c u t e d If B is I1falaeu. I f B i s " t r u e 1 ' a n d C i s
l * f a l s e " , n o t h i n g i s e x e c u t e d .

S e e LRM 100 a n d LRM 101.

6.2. Non- i t e r a t i v e DO g r o u p s .

I f e i t h e r t h e Rnue-pmA. o r . da8.6erpM of a n I F s t a t e m e n t m u s t ' b e m o r e
t h a n a s i n g l e s t a t e m e n t , a m g - i t e r a t . i v e grmu_E may b e e m p l o y e d , ' as

.. . .

i n
IF A > B THEN DO;

TEMP = A ;
A = B;
B = TEMP;

E N D ;
T h e l i s t o f s t a t e m e n t s b r a c k e t e d b y D O . . . E N D b e c o m e s a s i n g l e
s y n t a c t i c a l u n i t t h a t may b e u s e d w h e r e v e r a s i n g l e s t a t e m e n t i s
a l l o w e d .

'

T h e p r b b l e . s o l v e d e a r l i e r w i t h t h e n u l l s t a t e m e n t ' may e q u a l l y w e l l
h a v e b e e n ' s o l v e d w i t h a n o n - i t e r a t i v e DO g r o u p a s f o l l o w s :

I F B . THEN DO;
IF C THEN a d o n - 1 ;

E N D ; . ,

. ELSE &n-2;

T h e d i f f e r e n c e b e t w e e n a non- i t e r a t i v e DO g r o u p a n d a b e g i n - b l o c k
(w h i c h c o u l d a l s o h a v e b e e n u s e d t o a c h i e v e t h e d e s i r e d s t a t e m e n t
g r o u p i n g) i s t h a t a D O g r o u p d o e s n o t a l t e r t h e " b l o c k s t r ~ c t u r e , ~
i . e . , d o e s n o t i n t r o d u c e a n e s t e d b l o c k i n s i d e wh ich d e c l a r a t i o n s may

-,
h a v e t h e i r own l o c a l s c o p e . T h e l i m i t e d p u r p o s e i t . s e r v e s is
i m p l e m e n t e d much more e f f i c i e n t l y t h a n w o u l d b e t h e case w i t h a b e g i n
b l o c k , e v e n o n e d e v o i d o f l o c a l d e c l a r a t i o n s a n d o t h e r t h i n g s t h a t
r e q u i r e s p e c i a l h o u s e k e e p i n g a c t i o n s d u r i n g e x e c u t i o n .

S e e LRN 102 .

6 .3 . f t e r a t i v e DO g r o u p s .

T h e r e a r e t w o k i n d s o f DO g r o u p s t h a t p r o v i d e f o r r e p e t i t i v e
e x e c u t i o n o f a g r o u p o f s t a t e m e n t s . , t h e WHILE-only DO g r o u p a n d t h e
c o n t r o l l e d (o c i n d e x e d) DO g r o u p .

. .

.6.4, KHILE-only DC! g r o u p s .

T h i s form o f DO g r o u p i s as ' f o l l o w s :
DO WHILE (,&%x@u~.&M);

b o d y o f g r o u p , .

E N D ;
T h e body o f t h e g r o u p (a s t a t e m e n t list) i s e x e c u t e d ' a s l o n g as t h e

a
,'a

,W
 C

c4
J

C
 C

0
 .rl

4
J

4
J

A

a,

4
'W

r
d

a
,

m
 o

a
 k

c

a,
Y

Y

'0

h
4

J

a
,lo

c
c

m

4

J
O

Q
)

C
.

d

A
 >

.A

1

=
a
,

d
a

,
O

G
+

'

m
c

u

.,-I
.

>
*

O

A

a,
4J

-
W

~
i

'
~

a

3
.d

lo

a,

(d
l
'

d

. . .$
W

$

g
w

.3
 U

.
d

d

.c;=
,a

m

k

.w

-h
a

a
,rn

a

d
 S

4
J

.d
 rn

3%

",
3 a

d

Id
a,

4J
r

C
lC

fi
.
d

Q
)
F

F
'

o
c

c
m

C
,

C
.

d
W

.d

'

h
 W

a,

10 .
.d

.

.
A

d
W

=

Y
r

l
 m

a
,.rl

0
.
d

d
 b

E

3

1

IU

Q
,k

w

m

+
a

,
4

C
 m

C

=
+

.rl4
J

4
J

c

r
(

d
C

I
m

0
'

crl
4J

O
C

rn

F
..

.
H

@

Q
,

d

W
O

4
J

Y

L
I

a,
rn

1
V

-i C
4

J

*
U

.Q
.4

m

0

1
 4

X
I

d
W

C

r
i
a

@
 .

e
m

. 0

a,
>

o
*

 o
 s

*e

a
,r

l
0

4
J

d

C

4
J
+

,
cv

r
u

.4

C

*
a

.&

4
L

IX

-
-
9

.d

Id

a, -
d

W

vl
a,

cv'
N

O
 U

d
r

l

X
O

l
O

 a,
Id

(d

c
v

a
w

U

 G
a
,

0

a,
O

A

+
+

'
C

 c. 4J
a

4
~

 ,-I
w

trw
 0

0

rn .d

G
O

Y

a

.rf'
m

a
a

a
,

P

a,

+
'c

 o
l

d

m
 h

.c

c
4

 u a

a

@
a
,

C
 C

 r
l

o
.d

+

a

4J
fi

.F
.d

'
e

0
.
4
 rn

Q
P

'0

 .d

H

 m

W
Y

-

a,
b
 ~

a
,1

2
1

a, d

l 01

0
 c

 A
l.d

l
n

d
l*

l
rd

.d
l U

I
a,

k
I 01

a, A

(d
l L

II
c

b
I.4

1

+
J
h

a
t

m
d

0

E

 ol
arl

Y

k
l *I

4
Jl.d

l
a
 +

,
a
t*t

cv
C

 01 (61
a
 a

,o
ld

a
 e

cvl

(d
O)

E
l

k
 cv

'3
D

C
 01

A
C

4
.

d

.d

4'1
s*

E

a

a.'
GI

e

c
 -4

1

A
t

@

I@

a,
rnt

w
3

1
1

Q

) d

m

*
c

,
m

4
1
-

a

p

U

I
a

d
 r

(
n

1
C

a
 (d

m

lcd
6
-1

 C

C

(U

.I+

e
4

J
C

IV
-r

T h e i n i t i a l a n d f i n a l v a l u e s , a n d t h e i n c r e m e n t , may b e s p e c i f i e d by
a r b i t r a r y e l e m e n t e x p r e s s i o n s ; t h e y n e e d n o t b e r e s t r i c t e d t o
c o n s t a n t s o r v a r i a b l e s . . The e x p r e s s i o n s .are e v a l u a t e d o n c e a n d t h e
s a v e d v a l u e s a r e u s e d i n t h e ' t e s t e a c h t'ime t h r o u g h t h e ' l o o p .

A n o t h e r u s e f u l f o r m is t o e m p l o y t h e B Y c l a u s e b u t n o t t h e T O c l a u s e .
T h i s d e s i g n a t e s a n i n f i n i t e l o o p w h i c h m u s t , b e b r o k e n by a R E T U R N
s t a t e m e n t o r a b r a n c h t o a p o i n t . o u t s i d e t h e l o o p (as i n DO
!G.f31LE(a 1' B) ;) .

T o a n y o f t h e a b o v e f o r m s may b e a d d e d a WHILE c l a u s e (w h i c h h a s t h e same
m e a n i n g a s i n a SJHILE-only DO g r o u p) . T h e w h i l e - t e s t i s p e r f o r m e d
a t e r t h s c o m p a r i s o n o f t h e c o n t r o l v a r i a b l e w i t h t h e f i n a l v a l u e ,
a n d o f c o u r s e o n l y i f t h e f i n a l v a l u e h a s n o t b e e n e x c e e d e d . I f t h e
w h i l e - t e s t f a i l s , t h e l o o p is t e r m i n a t e d . E x a m p l e :

D O . I = 1 TO HBOUBD (~ , ' 1) WHILE (X (I) = Y) ;
END;

T h i s l o o p , w h i c h h a s a n e m p t y b o d y , t e r m i n a t e s e i t h e r when I e x c e e d s
t h e u p p e r b o u n d o f X (w i t h a l l e l e m e n t s o f X e q u a l to Y) o r when a n
e l e m e n t o f X n o t e q u a l t o Y i s f o u n d . By t h e way, t h e c o n t r o l '
v a r i a b l e may b e u s e d b e l o w t h e l o o p , a f t e r its t e r m i n a t i o n ; i t h a s
t h e v a l u e i t h a d when t h e l o o p t e r m i n a t e d (e . g . , i n t h i s case e i t h e r
H B O U N D (X , l) +I o r t h e s m a l l e s t v a l u e i b e t w e e n 1 a n d HBOUND (X, 1) . s u c h
t h a t X(i) i s . n o t e q u a l - t o Y) .

T h e d i f f e r e n t - f o r m s shown a b o v e f o r w h a t c a n come a f t e r t h e
a s s i g n m e n t s y m b o l i n t h e DO s t a t e m e n t a.re a l l r e f e r r e d t o a s f o r m s of
a s i n g l e 12 ~pec i f i c a t i oq . I n g e n e r a l , a n y n u m b e r o f s e p a r a t e DO
s p e c i f i c a t i o n s may b e w r i t t e n . When o n e is t t e x . h a u s t e d , l @ t h e n e x t o n e
i s b e g u n . F o r e x a m p l e :

. D O I = 1 TO J - 1 , J+1 TO K:

. .

END;
Here w e h a v e t w o s p e c i f i c a t i o n s , e a c h of t h e f o r m a t o 6. T h e e f f e c t
o f t h e a b o v e is t o e x e c u t e t h e b o d y . of t h e l o o p f o r a l l v a l u e s o f I
f r o m 1 to K, e x c e p t f o r t h e s i n g l e v a l u e J.

One f i n a l f o r m f o r a DO s p e c i f i c a t i o n i s p e r m i t t e d . I t is t h e f o r m
w i t h o u t a TO c l a u s e _o_r a BY c l a u s e (2; a WHILE c l a u s e) . T h i s s a y s

e x e c u t e t h e body e x a c t l y o n c e , n a m e l y w i t h t h e c o n t r o l v a r i a b l e
t a k i n g on t h e i n i t i a l v a l u e . T h i s f o r m i s o f u s e when s e v e r a l s u c h
DO s p e c i f i c a t i o n s a r e w r i t t e n . F o r e x a m p l e ,

DO I = 1 , 1 0 , 2 ;

. .
E N D ;

T h e b o d y o f t h e l o o p i s e x e c u t e d e x a c t l y t h r e e times, w i t h I. t a k i n g
o n t h e t h r e e v a l u e s shown d u r i n g s u c c e s s i v e i t e r a t i o n s . D o 222
c o n f u s e t h i s w i t h t h e FORTRAN DO l o o p !

K o t e t h a t t h e c o n t r o l v a r i a b l e c a n b e a n y k i n d o f e l e m e n t v a r i a b l e ;
i t i s n o t r e s t r i c t e d t-o b e i n g a n ' ' f i n t e q e r v a r i a b l e m (and
u n s u b s c r i p t e d) a s i n FORTRAN.

See LRN 194.

An a d d i t i o n a l f o r m
DO uaniable = ini; t ide-vdue REPEAT (exp/re?lsion);.

i s p r o v i d e d i n t h e ANSI 1 a n g u a . g e . . exp/re?ls&n i s e v a l u a t e d e a c h ' . t i m e '

t h r o u g h t h e l o o p , a f t e r ' t h e f i r s t , a n d ' a s s i g n e d . t o v a r i a b l e .
~ e r m i n a t i o n w o u l d b e c o n t r o l l e d b y a WHILE c l a u s e (n o t s h o w n) . An
e x a m p l e i s DO I = A (1) REPEAT (A (I)) WHILE (I -= 0) ;

6. 6. G O ' TO, s t a t e m e , n t a n d s t a t e m e n t l a b e l s .

A s t a t e m e n t l a b e l i s an i d e n t i f i e r p r e f i x e d t o a s t a t e m e n t (o t h e r
t h a n a PROCEDURE or ENTRY s t a t e m e n t) w i t h a c o l o n , a s i n

LAB3: A = B - 2 ;
A s t a t e m e n t l a b e l may b e u s e d i n a GQ %Q ~_tg_tem_enf t o e f f ec t a n
u n c o n d i t i o n a l b r a n c h , a s i n G O T O LAB3; S t a t e m e n t l a b e l s a n d G O ?'Q
s t a t e m e n t s s h o u l d b e a v o i d e d i n p r e f e r e n c e t o t h e o t h e r c o n t r o l
c o n s t r u c t s s i n c e t h e i r u n d i s c i p l i n e d u s e r e s u l t s i n p r o g r a m s t h a t a r e
h a r d e r t o u n d e r s t a n d , h a r d e r t o p r o v e c o r r e c t , a n d h a r d e r t o m o d i f y .

6 .7 . . L . a b e l v a l u e s ; t h e LABEL a t t r i b u t e .

I n L e s s o n 4 w e . c a s u a l l y h i n t e d a t a data . t y p e ca l l ed " e l l t ~ . ~ " ,

e x p l a i n i n g t h a t p r o c e d u r e l a b e l s . were. e n t r y ' c o n s t a n t s , i. e. ,
c o n s t a n t s of t h a t d a t a t y p e . We w i l l e x p l o r e t h a t more f u l l y below.

We h a v e a t h a n d a n o t h e r k i n d o f p r o g r a m c o n t r o l (a s o p p o s e d t o
p r o b l e m , o r c o m p u t a t i o n a l) d a t a t y p e : l l l a b e l l * . A s t a t e m e n t l a b e l is
a c t u a l l y a l a b e l c o n _ s t a n t . (L i k e a n e n t r y c o n s t a n t , a l a b e l c o n s t a n t
i s a k i n d o f l1named c o n s t a n t . l l) L a b e l . v a l u e s o r i g i n a t e w i t h l a b e l
c o n s t a n t s a n d may b e p r o p a g a t e d by a s s i g n m e n t t o Jabel _variables .
1 , a h e l v a r i a b l e s a r e . v a r i a b l e s d e c l a r e d w i t h t h e LABEL d a t a t y p e
a t t r i b u t e . T h i s i n f o r m a t i o n is e s s e n t i a l l y r e p e a t e d i n t h e n e x t
p a r a g r a p h i n t h e f o r m u s e d i n L e s s o n s 1 a n d 2 t o i n t r o d u c e v a r i o u s
c o m p u t a t i o n a l d a t a t y p e s . '

New l a b e l v a l u e s a r e l l g e n e r a t e d l ' by:
(a) . R e f e r e n c e t o a l a b e l c o n s t a n t .

They may b e p r o p a g a t e d by a s s i g n m e n t .
T h e y may b e u s e d i n t h e f o l l o w i n g ways :

(a) I n G O TO s t a t e m e n t s .
(b) I n c o m p a r i s o n o p e r a t i o n s .
(c) I n r e m o t e f o r m a t items (L e s s o n 7) .

: T h e a p p e a r a n c e o f a s t a t e m e n t l a b e l c o n s t i t u t e s . an' e x p l i c . i t
d e c l a r a t i o n o f t h e name a s a l a b e l c o n s t a n t , w i t h s c o p e r u l e s t h a t
s h o u l d b e f a m i l i a r b y no+. C o n s i d e r t h r e e e x a m p l e s : . ,

P: PROC;

BEGIN;

E N D ;

END;
H e r e , t h e s c o p e o f t h e name L 1 is a l l o f P , i n c l u d - i n g t h e b e g i n b l o c k
(a s s u m i n g L1 is n o t r e d e c l a r e d t h e r e i n) . T h e GO: T O t r a n s f e r s c o n t r o l

o u t s i d e t h e b e g i n b l o c k t o t h e s t a t e m e n t ' l a b e l e d L1 (w h a t h a p p e n s in
d e t a i l i s d e s c r i b e d l a t e r) .

P: PROC;

B E G IF;

END;
P

GO TO La;

END; ~.
Here, t h e r e . a r e two d i f f e r e n t l a b e l c o n s t a n t s ' d e n o t i n g d i f f e r e n t
s t a t e m e n t s . T h e s c o p e o f ' t h e f i rs t i s a l l o f P e x c e p t t h e b e g i n
h l o c k . T h e s c o p e of t h e s e c o n d i s t h e . b e g i n b l o c k . T h e f i r s t G O TO
i s w i t h i n t h e s c o p e o f t h e s e c o n d a n d t r a n s f e r s t o t h e s t a t e m e n t
l a b e l e d . b y it. T h e s e c o n d i s w i t h i n t h e s c o p e o f . . t h e f i r s t a n d ,
t r a n s f e r s c o n t r o l , t o t h e s t a t e m e n t l a b e l e d by &A.

P: PROC;
,. .

END;
T h e s c o p e o f t h e l a b e l c o n s t a n t ' L 3 ' i s t h e b e g i n b l o c k . T h e G O TO
s t a t e m e n t i s n o t w i t h i n t h a t s c o p e , s o t h e name L 3 is unknown t h e r e .
T h e p r o g r a m is i n e r r o r .

. .

1t g o e s ' w i t h o u t s a y i n g that : e v e r y t h i n g t h a t h a s b e e n s a i d a b o u t
v a r i a b l e s i n g e n e r a l a p p l i ' e s t o l a b e l v a r i a b l e s , . t o o . T h e y , h a v e

a l i g n m e n t , . s c o p e , . s t o r a g e ' c lass ; you c a n h a v e a r r a y s o f l a b e l
v a r i a b l e s ; t h e y may b e b a s e e l . 6 m e n t s o f s t r u c t u r e s ; t h e y c a n b e
i n i t i a l i z e d . I n c o m p a r i s o n o p e r a t i o n s , o n l y = a n d -= a re a l l o o ~ e d , f o r
l a b e l d a t a . (T h i s i s t r u e o f a l l t y p e s of p rogr , am c o n t r o l d a t a ' ,
i . e . , a l g e b r a i c c o m p a r i s o n s - a r e n o t d e f i n e d f o r t h e m .) T h e c o n t r o l
v a r i a b l e of a c o n t r o l l e d DO g r o . u p may b e a l a b e l v a r i a b l e , b u t t h e TO
a n d 9 Y ' c l a u . s e s may n o t b e u s e d (b e c a u s e no ' a l g e b r a i c c o m p a r i s o n s a r e
d e f i n e d) . An e x a m p l e w h e r e t h i s i s u s e f u l is:

DCL L LABEL; Declares a l a b e l ' v a r i a b l e .
DO L = L l ; L 2 , L 3 ; . T h e s e a r e l a b e l c o n s t a n t s .

:GO TO L; Goes t o e i t h e r L 1 o r L2 o r L 3 .
L1: ...

G O TO COMMON;
L2: .. .

GO TO COMMON;
L3: . . .

COMMON: ...
T h i s c o d e e x e c n t e d a l l t h r e e times.

E N D ;
L a b e l v a l u e s may be a r g u m e n t s , a n d o b v i o u s l y p a r a m e t e r s c a n
v a r i a b l e s . P r ~ c e d u r e s c a n r e t u r n v a l u e s o f t y p e f 8 1 a b e l f f ,
w h a t f o l l o w s GO TO may b e a f u n c t i o n r e f e r e n c e .

h e l a b e l
so t h a t

Care m u s t b e e x e r c i s e d t o e n s u r e t h a t a l a b e l v a r i a b l e , when u s e d i n
a G O TO s t a t e m e n t , d o e s n o t d e s i g n a t e a s t a t e m e n t i n a n i n a c t i v e
b l o c k . ' 1 . t i s i l l e g a l t o t r a n s f e r c o n t r o l i n t o a n i n a c t i v e b l o c k . ----
F o r e x a m p l e , t h e G O TO s t a t e m e n t i n ' t h e f o l l o w i n g , i f . e x e c u t e d , w o u l d
b e i l l e g a l :

DCL L LABEL; '

B E G 1 N ;

END; T h e b e g i n b l o c k b e c o m e s i n a c t i v e h e r e .

G O TO L ; The v a l u e of L , i . e . , t h e s t a t e m e n t l a b e l e d by L 1 , i s i n
a n a c t i v e b l o c k .

A c t u a l l y , t h e s e m a n t i c s o f l a b e l v a l u e s a r e a l i t t l e m o r e s u b t l e t h a n
t h e y a p p e a r . T h e y a r e c o m p o s e d d f tw_o ~ a r t s : o n e is t h e s t a t e m e n t
l a b e l e d (r e p r e s e n t e d b y i t s a d d r e s s) , a n d t h e o t h e r is a n i n d i c a t i o n
o f t h e a _ c _ t i v a t i o n (o r i n v o c a t i o n) o f t h e b l o c k c o n t a i n i n g t h e
s t a t e m e n t l a b e l e d . C o n s i d e r t h e f o l l o w i n g .

DCL .L LABEL S T A T I C ;
DO I = 1 TO 2;

BEGIN;
6

IF I = 1 THEN L = T,1;
ELSE GO TO L ;

L1 : ...

END;
END;

T h e b e g i n b l o c k i s i n v o k e d twice. T h e f i rs t time t h r o u g h , t h e 1 d L e l
c o n s t a n t L1 i s a s s i g n e d t o t h e l a b e l v a r i a b l e L . T h e v a l u e o f t h e
l a b e l v a r i a b l e L now r e p f esents rhe s t a t e m e u t l a b e l e d Ly L I t h e
f i r s t i n v o c a t i o n o f t h e h e g i n b l o c k . The s e c o n d time t h r o u g h a new -----
v a l u e is n o t a s s i g n e d t o L . Its f o r m e r v a l u e i s u s e d i n t h e G O TO
s t a t ~ m e n t . B e c a u s e t h a t d e s i g n a t e s a s t a t e m e n t i n a n i n a c t i v e b l o c k ,
i t i s i l l e g a l . T h i s may n o t seem i n t u i t i v e l y n e c e s s a r y , b u t
h o p e f u l l y t h e r e a s o n why ' w i l l b ecome c l e a r s h o r t l y . . (We w i l l l a t e r
r e c a l l t h i s e x a m p l e a s "Example Z " .)

c 0 n s i d e . r t h e f o l l o w i n g :
P: PROC;

BEGIP ;

END;

END;
T h e l a b e l c o n s t a n t L i n t h e G O TO s t a t e m e n t r e p r e s e n t s a l a b e l v a , l u e
d e s i g n a t i n g t h e s t a t e m e n t l a b e l e d by L t o g e t h e r w i t h t h e c u r r e n t
i n v o c a t i o n o f P . When t h e GO T O i s e x e c u t e d , .two t h i n g s a c t u a l l y
h a p p e n . A l l b l o c k i n v o c a t i o n s f r o m t h e c u r r e n t one (t h e b e y i n b l o c k)
u p t o , . b u t ' n o t i n c l u d i n g , t h e o n e c o n t a i n e d . i n t h e l a b e l v a l u e (i . e . ,
t h e c u r r e n t i n v o c a t i o n o f P) a r e t e r m i n a t e d . T h e r e is n o p o s s i b i l i t y
o f r e - e n t e r i n g t h e t e r m i n a t e d b l o c k s w i t h o u t r e - i n v o k i n g t h e m . . N o t e

t h a t i f t h e b e g i n b l o c k h a d i n s t e a d b e e n a p r o c e d u r e i n v o k e d f r o m a
f u n c t i o n r e f e r e n c e , c o n t r o l does no.t g o b a c k t o . t h e e x p r e s s i o n
c o n t a i n i n g t h e f u n c t i o n r e f e r e n c e (a s it w o u l d o n a . n o r m a 1 r e t u r n) ;
e v a l u a t i o n o f ' t h a t e x p r e s s i o n i s d i s c o n t i n u e d , a n d c o c t r o l is
t r a n s f e r r e d t o t h e l a b e l e d s t a t e m e n t " i n s t e a d .

T h e s i g n i f i c a n c e o f b l o c k i n v o c a t i o n s a n d p a r t i c u l a r l y t h e i r
t e r m i n a t i o n b y s u c h a '!GO T O o u t o f b l o c k v v (r e f e r r e d t o a s a v l ~ O O ~ l l)
r e l a t e s t o t h e f ac t t h a t s t o r a g e f o r a u t o m a t i c v a r i a b l e s is r e l e a s e d
a s t h e b 1 0 c k s . a r e t e r m i n a t e d . When we. a r r i v e b a c k a t t h e t a r g e t
b l o c k , t h e a . u t o m a t i c v a r i a b l e s I f in e f fec t f f w i l l b e t h e o n e s "in
e f f e c t v v when c o n t r o l f i r s t d e s c e n d e d o u t o f t h a t b l o c k i n t o a n o t h e r
o n e (a s b y a p r o c e d u r e c a l l o r e x e c u t i o n o f a REGIN s t a t e m e n t) .
A c t u a l l y , i n t h e l a s t few s e n t e n c e s we s h o u l d h a v e b e e n s a y i n g @ ! b l o c k
i n v o c a t i o n " i n s t . e a d o f " b l o c k v v a s t h e f o l l o w i n g e x a m p l e , i n v o l v i n g
r e c u r s i o n s h o u l d p o i n t o u t (t h e d i s t i n c t i o n is o n l y a p p a r e n t when .,
r . e c u r s i o n i s i n v o l v e d , i. e . , when a b l o c k c a n h a v e s e v e r a l
s i m u l t a n e o u s l y a c t i v e i n v o c a t i o n s) .

P: PHOC RECURSIVE;
DCL N STATIC I N I T (0) ;
DCL A (!!+I) FLOAT, AUTO;
D C L L' LABEL STATIC'; . .

. . N = N + l ;
I F N = 2 THEN L = LX;
I F H = 4 THEN G O TO L;
ELSE CALL P;

L X : I = H B O U N D (A , I) :
Y = A(1);
R E T U R N ;

EN'D;

L e t ' s t r a c e t h r o u g h w h a t h a p p e n s . I n i t i a l l y P is i n v o k e d from
o u t s i d e . On entry, 17 h a s i n i t i a l V a l u e I). An a u t o m a t i c a r r a y A w i t h
o n e e l e m e n t i s a l l o c a t e d . N i s i n c r e a s e d t o 1 . S i n c e N d o e s n o t
e q u a l 2 , LX i s g p t a s s i g n e d t o L. S i n c e N d o e s n o t e q u a l 4 , wte s k i p
t h e G O TO. P i s t h e n c a l l e d r e c u r s i v e l y .

As P is e n t e r e d t h e s e c o n d time, N (w h i c h , s i g n i f i c a n t l y , is a s t a t i c
v a r i a b l e) h a s t h e v a l u e 1 . A new g e n e r a t i o n o f A i s a l loca ted w i t h
u p p e r b o u n d 2. T h r o u g h o u t t h i s s e c o n t ! i n v o c a t i o n of P, it i s t h . i . s
g e n e r a t i o n o f A wh.ich i s a d d r e s s e d when A i s r e f e r r e d t o . N e x t , N i s
i n c r e a s e d t o 2. AS a r e s u l t , I , X i s a s s i g n e d . t o t h e s t a t i c l a b e l
v a r i ' a b l e L . T h e v a l u e . a s s i g n e d r e p r e s e n t s t h e s t a t e m e n t l a b e l e d LX
a n d t . h i s c u r r e n t (i . e . , s e c o n d) i n v o c a t i o n . o f P. S i n c e N d o e s n o t , ---
e q u a l 4, t h e GO TO is a g a i n s k i p p e d a n d P' i s c a l l e d r e c u r s i v e l y .

We g o t h r o u g h y e t a n o t h e r i n v o c a t i o n o f P, e v e n t u a l l y (t h e f o u r t h) ,
w h e r e u p o n when we a r r i v e a t t h e ' s t a t e m e n t I F N = 4.. . t h i n g s l o o k
l i k e t h e f o l l o w i n g . Each l a r g e b o x r e p r e s e n t s a n i n v o c a t i o n o f P.
F o x e s i n s i d e t h e s e ' r e p r e s e n t g e n e r a t i o n s of a u t o m a t i c v a r i a b l e s
b e l o n g i n g t o t h e r e s p e c t i v e i n v o c a t i o n s . T h e smal l b o x e s a t t h e
b o t t o m r e p r e s e n t t h e s t a t i c v a r i a b l e s .

T h e s ta tement G O '1'U la, w h i c h i s e x e c u t e d . n e x t , c a u s e s t h e t h i r d a n d
f o u r t h i n v o c a t i o n s of P t -o b e d i s c a r d e d , s i n c e t h e g n v i r o n m e n t p a r t
o f t h e v a l u e o f L i n d i c a t e s t h e s e c o n d i n v o c a t i o n o f P . C o n t r o l i s
t r a n s f e r r e d t o LX, T h e c u r r e n t e n v i r o n m e n t i s now t h a t o f t h e s e c o n d
i n v o c a t i o n of P , n o l o n q e r t h a t o f t h e f o u r t h , s o I i s a s s i g n e d t h e
v a l u e 2 a n d Y is a s s i g n e d ' t h e v a l u e of A (2) . The R . E T U R N s t a t e m e n t
r e t u r n s c o n t r o l t o t h e p o i n t . o f t h e s e c o n d i n v o c a t i o n o f P, i. e., t h e

I

,CALL s t a t e m e n t i n t h e f i r s t . T h e n e x t s t a t e m e n t . e x e c u t e d t h e r e is
t . h e o n e l a b e l e d by L X (a s a r e s u l t of n o r m a l s t a t e m e n t s e q u e n c e , n o t
b e c a u s e of a t iy G O TO) . I i s a s s i g n e d t h e v a l u e 1 a n d Y is a s s i g n e d
t h e v a l u e o f A t l) . C o n t r o l t h e n r e t u r n s t o t h e o u t s i d e , o r i q i n a l ,
, p o i n t o f c a l l of P .

cALLp;-ar-rip: E L S E . C A L L P;
LX :

' .- ~(13 * I - . -

T h o u g h t h e a b o v e e x a m p l e is c o n t r i v e d a n d n o t r e a l i s t i c , i t d o e s
i l l u s t r a t e t h e m e a n i n g o f t h e e n v i r o n m e n t . p a r t o f a l a b e l v a l u e .

Nov r e c a l l "Example Z N . T h e r e a s o n e x e c u t i o n o f t h e GO TO s t a t e m e n t
t h e r e is i l l e g a l i s b e c a u s e it w o u l d r e q u i r e u s t o r e t r i e v e , or make
c u r r e n t , a n e n v i r o n m e n t c o n t a i n i n g p o s s i b l y s o m e a u t o m a t i c v a r i a b l e s
t h a t h a v e l o n g s i n c e b e e n released. When t h e y ' r e g o n e , t h e y ' r e gone !

. , rrr'p: ELSE CALL P: ELSE CALL P:'
LX: LX:

. . .,,. .--.
(I):A(~II IA (1) 1 ~ . (2) 1 ~ (3)1

A s y o u read LRPI 1 0 5 , y o u w i l l see t h a t s t a t i c l a b e l v a r i ' a b l e s c a n n o t
be i n i t i a l i z e d . T h i s i s b e c a u s e s t a t i c ' v a r i a b l e s a r e i n i t i a l i z e d a t
c o m p i l e t ime, w h i l e l a b e l v a l u e s , b e c a u s e t h e y c a r r y a n i n d i c a t i o n o f
an environmeiit, d o n g t e x i s t u n t i l r u n time. A S y o u r e a d t h a t a n d LRM
1 0 6 , you w i l l see t h a t s t a t e m e n t l a b e l s c a n b e s u b s c r i p t e d w i t h
c o n s t a n t s , a s i n

L (4 , 7) : Y = O ;

ELSE CALI, P;
LX:

.
(A (1 1111 (2111 (3) [~ (4)J

\ - ... :.,. , -.
.-.-./-,

I n . t h e c u r r e n t implementation, t h i s d o e s n o t r e p r e s e n t . a s u b s c r i p t e d
l a b e l c o n s t a n t . : i t d e n o t e s a.n a l t @ r n a t e form o f i n i t i a l i z a t i o n o f an
e l e m e n t o f a n a r r a y o f l a b e l v a r i a b l e s (i n t h i s case, t h e (4,7)
e l e m e n t o f t h e a r r a y L) . T h e e1 ,ement b e i n g i n i t i a l i z e d may of c o u r s e
h a v e i ts v a l u e c h a n g e d s u b s e , q u e n t l y b'y a s s i g n m e n t , s o t h a t i n t h i s
examp3.e L (4,7) may d e n o t e a d i f f e r e n t ' s t a t e m e n t l a t e r ! T h e ANSI
l a n g r i a g e t r e a t s L a s a n a r r a y o f l a b e l c o n s t a n t s , w h i c h is d i f f e r e n t .

S e e Ll?M 108.

6 .8 . E n t r y v a r i a b l e s .

.Ke h a v e s e e n i n L e s s o n 4 how t h e EYTRY a t t r i b u t e c a n be u s e d i n a '
d . e c l a r a t i o n of a n : e x t e r r i a l e n t r y c o n s t a n t , a n d , i n ~ e s s o n 5 , how
p a r a m e t e r d e s c r i p t i o n s a n d r e t u r n e d v a l u e d e s c r i p t i o n s c a n a l s o be
g i v e n i n s u c h a d e c l a r a t i o n . We w i l l now c o n s i d e r e n t r y v a l u e s i n

' e g e n e r a l , a n d e n t r y v a r i a b l e s . " E n t r y M i s a l e g i t i m a t e d a t . a t y p e , r.
l i k e " l a b e l " .

. .

N e w e n t r y v a l u e s a r e " g e n e r a t e d g 1 by:
(a) R e f e r e n c e t o a n e n t r y c o n s t a n t .

T h e y a r e p r o p a g a t e d by a s s i g n m e n t .
T h e y may b e u s e a i n t h e f o l l o w i n g ways :

(a) I n a CALL s t a t e m e n t o r f u n c t i o n r e f e r e n c e , t o d e n o t e t h e
p r o c e d u r e t o b e i n v o k e d .

(b) I n c o m p a r i s o n o p e r a t i o n s .

An e n t r y v a r i a b l e i s d e c l a r e d b y a d d i n g t h e VARIABLE a t t r i b u + e t o t h e
t y p e s o f e n t r y d e c l a r a t i o r k s a l r e a d y d e m o n s t r a t e d (wit.hni1.t t h i s
a t t r i b u t e t i l e d e c l a r a t i o n 1s t h a t o f a n e n t r y c o n s t a n t) . E x a m p l e :

DCL E ENTRY (C H A R (+)) RETURNS (R I T (1))
VARIABLE EXT :

E is a n e n t r y v a r i a b l e w h o s e name h a s e x t e r n a l s c o p e . Any e n t r y
v a l u e w h i c h it may h a v e m u s t d e s i g n a t e a p r o c e d u r e t h a t a c c e p t s a
f i x e d - l e n g t h c h a r a c t e r a r q u m e n t o f a n y l e n g t h a n d r e t u r n s a o n e - b i t
b i t s t r i n g . E n t r y v a r i a b l e s may h a v e a n y o f t h e p r o p e r t i e s (s t o r a g e
c l a s s , e t c .) a t t r i h l ~ t e d t o v a r i a h l c s i n g e n e r a l .

E n t r y v a l u e s , l i k e l a b e l v a l u e s , c o n s i s t o f t w o p a r t s : a n e n t r y
p o i n t (r a p r e s e n t e d by i ts a d d r e s s) , a n d a n e n v i r o n m e n t . T h e
e n v i r o n m e n t i s a n i n d i c a t i o n o f t h e a c t i v a t i o n (i n v o c a t i o n) o f t h e
b l o c k c o n t a i n i n g t h e e n t r y - c o n s t a n t w h o s e . r e f e r e n c e g a v e r i s e t o t h e
e n t r y v a l u e : t h i s a p p l i e s , ' - o f c o u r s e , o n l y t o , i n t e r n a l e n t r y

. .

c o n s t a n t s , s i n c e e x t e r n a l e n t r y c o n s t a n t s h a v e n o c o n t a i n i n g b l o c k ,
i . e . , no e n v i r o n m e n t .

C o n s i d e r t h e f o l l o w i n g :
F: PROC(J) ;

. . DCL A (J) A U ' T O ; .

Q : PROC;

Y = A (T) ;

E N D ;

CALL Q;

E N D ;
No r e c u r s i o n i s i n v o l v e d . When t h e i n t e r n a l ' p r o c e d u r e Q 1s i n v o k e d ,
t h e e n t r y c o n s t a n t Q i s r e f e r e n c e d . T h a t e n t r y c o n s t a n t Q i n h e r i t s
t h e e n v i r o n m e n t o f i t s c o n t a i n i n g b l o c k , P . T h u s , a r e f e r e n c e i n s i d e
Q t o A (I) is a r e f e r e n c e ' to a n e l e m e n t o f , t h e a u . t o m a t i c a r r a y A
b e l o n g i n g t o t h e o n e i n v o c a t i o n o f P i n q u e s t i o n (w h i c h i s o b v i o u s l y
t h e o n e t h a t was " c u r r e n t w when. Q was r e f e r e n c e d i n t h e CALL
s t a t e m e n t) .

O b s e r v e i n t h e f o l l o w i n g example t h e r o l e o f Chc e n v i r o n m e n t o f a n
e n t r y v a l u e when r e c u r s i o n i s . i n v o l v e d .

P: PROC (J) RECURSIVE;
DCL A (J) A U T O ;
DCL N FIXED B I N STATIC I N I T (0);
DCL E ENTRY VARIAELE STATIC;
N = N + 1 ; . .,
I F N ' Z THEN E - Q;
IF N = 4 THEN CALL E ;
ELSE CALL Q;
I F N < 5 THEN CALL P (N) ;
RETURN;
Q: PRCIC;

Y = A (I) ;

E N D :
E N D ;

N o t i c e t h a t P c a l l s i t s e l f r e c u r s i v e 1 . y u n t i l . f i v e i n v o c a t i o n s o f i t
a r e a c t i v e . T h e n N w i l l e q u a l 5 a n d t h e c h a i n . o f ' c a l l s . w i l l s t a r t

r e t u r n i n g . E a c h i n v o c a t i o n o f P h a s a g e n e r a t i o n o f a n a u t o m a t i c
- a r r a y w i t h a d i f f e r e n t b o u n d . I n t h e s e c o n d i n v o c a t i o n o f P (N=2) ,
t h e s t a t i c e n t r y v a r i a b l e E i s a s s i g n e d t h e v a l u e o f t h e i n t e r n a l
e n t r y . c o n s t a n t Q. T h e e n v i r o n m e n t w h i c h is p a r t o f t h i s v a l u e is
t h a t . o f t h e s e c o n d . i n v o c a t i o n o f P. I n a l l f i v e i n v o c a t i o n s o f P , Q
i s c a l l e d ; i t r e f e r e n c e s a n e l e m e n t of A a n d r e t u r n s t o t h e p o i n t o f
c a l l . I n a l l i n v o c a t i o n s o f P e x c e p t t h e f o u r t h , Q i s c a l l e d by
r e f e r r i n g . d i r e c t l y t o t h e e n t r y c o n s t a n t Q , a n d t h e e n v i r o n m e n t o f Q
u s e d i n t h e r e f e r e n c e t o A i n s i d e Q i s t h u s t h e p g g ~ t i n v o c a t i o n o f
Q a s c o n t a i n i n g b l o c k , ,P. However , i n t h e f o u r t h i n v o c a t i o n o f P, Q

. i s c a l l e d b y ' r e f e r e n c i n g t h e e n t r y v a r i a b l e E. B e c a u S e t h e
e n v i r o n m e n t p a r t o f t h e e n t r y v a l u e d e n o t e s t h e s e c o n d i n v o c a t i o n o f
P , t h e r e f e r e n c e t o A i n s i d e Q is a r e f e r e n c e t o t h e g e n e r a t i o n o f A
a l l o c a t e d . a t t h e time o f t h e s e c o n d i n v o c a ' t i o n o f P .

S e e L B N 1 0 7 .

T h e r e a r e s o m e w h a t m e s s y r u l e s f o r d e t e r m i n i n g when (e x c e p t i n
o b v i o u s c a s e s) a, r e f e r e n c e t o . a n e n t r y c o n s t a n t o r a n e n t r y v a r i a b l e
d e n o t e s t h e p r o c e d u r e i t se l f a n d when it d e n o t e s t h e v a l u e r e t u r n e d
b y i n v o k i n g t h e p r o c e d u r e . S e e LRM 1 0 9 a n d LRM 1 1 0 . T h e A N S I
s t a n d a r d u s e s d i f f e r e n t , b u t much s i m p l e r , r u l e s . f o r ' t h i s
d e t e r m i n a t i o n .

F o r a c o m p l e t e r e v i e w o f t h e ENTRY a t t r i b u t e , see LRM 1 1 1 .

. ,

6 . 9 . P r o g r a m t e r m i n a t i o n .

A p r o g r a m e n d s by e x e c u t i n g a R E T U R N s t a t e m e n t i n t h e m a i n p r o c e d u r e
o r by r e a r h i n g t h e E N D , z t n t e n e n t ol: t h e main p r o c e d u r e . It may a l s o
e n d b y e x e c u t i n g a SrQg s t a t e m e n t i n a n y p r o c e d u r e . The l a t t e r
m e c h a n i s m is c o n s i d e r e d t o b e an a b n o r m a l t e r m i n a t i o n o f t h e , p r o g r a m ;
i n o u r s y s t e m it c a u s e s a s t e p c o n d i t i o n c o d e , w h i c h may b e t e s t e d i n
J C L , o f 1 0 0 0 t o b e s e t . I n f o r m a t i o n g o i n g b e y o n d t h e a b o v e i s i n t w o
p l a c e s : LRM 1 1 2 a n d LRM 1 1 3 .

6 . 1 0 . ' E x c e p t i o n a l c o n d i t i o n s .

I n s e v e r a l o f t h e e a r l i e r l e s s o n s we l e f t f o r l a t e r c o n s i d e r a t i o n a n
e x a m i n a t i o n o f w h a t h a p p e n s when a n e x c e p t i o n a l c o n d i t i o n o c c u r s .
An e ~ c g p t & o n a l c o n d i t i o n i s a p o s s i b l e , t h o u g h n o t . u s u a l l y l i k e l y

(i n t h e s e n s e o f b e i n g f r e q u e n t) , u n u s u a l o u t c o m e cf some o p e r a t i o n
o r r e q u e s t e d a c t i o n . PL / I d o e s " n o t r e q u i r e t h e p r o g r a m m e r t o t e s t
c o n s t a n t l y f o r u n u s u a l o u t c o m e s o f o p e r a t i o n s . I t p r o v i d e s you a
way o f b e i n g i n f o r m e d , i n t h e p r o g r a m , when o n e c c c u r s i n s u c h a way
t h a t you a r e n o t b o t h e r e d when it d o e s n ' t . S e e LRN 1 1 4 .

P L / I d e f i n e s a n d n a m e s a w h o l e s e t o f p o s s i b l e c o n d i t i o n s , i . e . ,
u n u s u a l o u t c o m e s o f o p e r a t i o n s . It a l s o d e f i n e s w h a t c o n s t i t u t e s a n
o c c u r r e n c e o d e a c h c o n d i t i o n . T h e l i s t of c o n d i t i o n s i s g i v e n i n ---------
L R N 1 1 5 , a n d i n d i v i d u a l c o n d i t i o n s a r e d e s c r i b e d i n LRN 1 1 6 .
C e r t a i n o f t h e c o n d i t i o n s w i l l be s a v e d f o ~ l a t e r . , A b r i e f
d e f i n i t i o n o f w h a t c o n s t i t u t e s a n o c c u r r e n c e o f t h o s e c o n s i d q r e d
h e r e f a l l o w s .

C o m ~ u t a t i o n a l c o n d i t i o n s --- -------- ----------
FIXEDOVERFLOW (a b b r e v . FOFL) . T h i s o c c u r s wh'en a f i x e d - p o i n t

o p e r a t i o n p r o d u c e s a r e s u l t t h a t c a n n o t b e e x p r e s s e d i n t h e
maximum n u m b e r o f d i g i t s of t h e i m p l e m e n t a t i o n . F o r e x a m p l e ,
n o t e t h a t t h e p r e c i s i o n r u l e f o r a d d i t i o n (L e s s o n 1) o f two
FIXED B I N A R Y (31 ,O) v a l u e s w o u l d s p e c i f y F I X E D B I N A R Y (32 ,O)
f o r t h e r e s u l t , were i t n o t f o r t h e i m p l e m e n t a t i o n maximum
n u m b e r o f d i g i t s . o f 31, f o r b i n a r y b a s e . T h e s u b s t i t u t i o n of
31 f o r 32 is a h i n t t h a t FOFL c a n o c c u r ' o n a d d i t i o n o f . two
FIXED B I N A R Y 3 1 , 0) n u m b e r s ; i n d e e d , it ' ' w i l l c c c u r when 230 is
a d d e d t o 2 (f o r e x a m p l e) . T h e r e s u l t , 2 3 1 , r e q u i r e s a
n o n - z e r o d i g i t i n t h e 3 2 n d p o s i t i o n . f r o m t h e right e n d .
o b s e r v e t h a t FOFL c a n n o t o c c u r . o n t h e a d d i t i o n of two FIXED
B I N A R Y (15 ,D) v a l u e s b e c a u s e t h e r e s u l t p r e c i s i o n , (1 6 , @) , i s
wel l w i t h i n t h e i m p l e m e n t a t i o n maximum p r e c i s i o n .

OVERFLOW (a b h r e v . OFL) . T h i s o c c u r s when a f l o a t i n g - p o i n t o p e r a t i o n
p r o d u c e s a r e s u l t w i t h a m a g n i t u d e i n e x c e s s o f w h a t t h e
h a r d w a r e can r e p r e s e n t .

UNDERFLOW (abbrev . UFL). UFL o c c u r s when a f l o a t i n g - p o i n t o p e r a t i o n
p r o d u c e s a r e s u l t w i t h a m a g n i t u d e t o o sma l l . f o r t h e - h a r d w a r e
t o r e p r e s e n t .

Z E K U L I I V I D E (abbrev . zurv) I his occurs on an attempt ' to Q i v i d e by
z e r o . . .

S I Z E . T h i s occnrs when a.n a t . t e m p t i s mafie t.0 a . s s i g n a va l .ue t.o a.
f i x e d - p o i n t t a r g e t v a r i a b l e t h a t d o e s n c t h a v e e n o u g h
h i g h - o r d e r d i g i t p o s i t i o n s t o a c c o m m o d a t e n o n - z e r o h i g h - o r d e r .
d i g i t s o f t h e v a l u e b e i n g a s s i g n e d .

CONVERSION (a b b r e v . C O N V) . CONV i s r a i s e d i f a c h a r a c t e r s t r i n g
v a l u e , w h i c h i s t h e s o u r c e v a l u e i n a c o n v e r s i o n o p e r a t i o n ,
c o n t a i n s a n i l l e g a l c h a r a c t e r . . C O N V . a l s o o c c u r s o n a s s i g n m e n t
t o a c h a r a c t e r p i c t u r e d v a r i a b l e (L e s s o n 2) i f t h e s o u r c e v a l u e
d o e s n o t c o n f o r m t o t h e p i c t u r e s p e c i f i c a t i o n , a n d i t may o c c u r

. , o n c e r t a i n k i n d s o f i n p u t o p e r a t i o n s (L e s s o n , 7) .

P r o y r a m c h e c k o u t c o n d i t i o n s --- --- -------- ---------
SUBSCRIPTRANGE (a b b r e v . SU-BRG) . " T h i s o c c u r s when a r e f e r e n c e i s

made t o a n e l e m e n t o f a n a r r a y . o u t s i d e t h e b c u n d s o f a r?y o f i t s
d i m e n s i o n s .

STRINGRANGE (a b b r e v . S T R G) ' . T h i s o c c u r s w h e n e v e r a r e f e r e n c e t o t h e . '

SUBSTR b u i l t i n f u n c t i o n o r p s e u d o - v a r i a b l e d e s c r i b e s a
s u b s t r i n g w h i c h d o e s n o t l i e e n t i r e l y w i t h i n t h e b o u n d s o f t h e
s t r i n g v a l u e w h i c h i s i t s f i r s t a r g u m e n t . S e e L e s s o n 2.

STRINGSIZE (a b b r e v . STRZ). T h i s o c c u r s w h e n e v e r a s t r i n g v a l u e
h a v i n g a 1 e n g t h . i . n e x c e . s s of t h e l e n g t h (o r maximum l e n g t h) o f
a s t r i n g v a r i a b l e i s a b o u t . t o b e a s s i g n e d t o t h a t v a r i a b l e .

S y S t e m a c t i o n c o n d i t i o n s - --- ------ ----------
FINISH. T h i s c o n d i t i o n o c c u r s a s t h e r e s u l t o f a n y a c t i o n t h a t

wou ld t e r m i n a t e t h e p r o g r a m . E x a m p l e s a re : e x e c u t i o n o f STOP
s t a t e m e n t ; e x e c u t i o n o f FETURnl o r E N D s t a t e m e n t o f m a i n
p r o c e d u r e . O t h e r s w i l l f o l l o w .

E R R O R . E R R O R o c c u r s i n many c i r c u m s t a n c e s . One c a t e g c r y o f
c i r c u m s t a n c e s i s d e t e c t i o n o f a n i l l e g a l a r g u m e n t t o a
m a t h e m a t i c a l b u i l t i n f u n c t i o n (e . g . , t h e r e a l v a l u e -1 t o
SQRT) . A n o t h e r i s a n y e r r o r t h a t a n i m p l e m e n t a t i o n may care t o
d e t e c t f o r w h i c h n o s p e c i f i c c o n d i t i o n is p r o v i d e d . . O t h e r s
w i l l f o l l o w .

6 .12 . E n a b l e m e n t / d i s a b l e m e n t o f c o n d i t i o n s .

N o t a l l o c c u r r e n c e s o f c o n d i t i o n s n e e d be d e t e c t e d a n d r e p o r t e d .
F o r c e r t a i n c o n d i t i o n s , t h e p r o g r a m m e r may c h o o s e t o i g n o r e a n
o c c u r r e n c e . I n s u c h a c a s e i t is i m p o r t a n t t o n o t e t h a t t h e
c o n d i t i o n h a s o c c u r r e d (b e c a u s e t h a t may h a v e c o n s e q u e n c e s o n t h e
m e a n i n g o f t h e p r o g r a m ' s e x e c u t i o n a s d e f i n e d by PL/ I) e v e n i f t h e
p r o g r a m m e r e l e c t s n o t t o h e n o t i f i e d .

O c c u r r e n c e s o f c e r t a i n c o n d i t i o n s a r e d e t e c t e d b y t h e h a r d w a r e ;
o t h e r s , b y c o m p i l e d c o d e .

W h e t h e r t h e o c c u r r e n c e o f a c o n d i t i o n i s ' d e t e c t e d c r n c t d e ~ e n d s o n
w h e t h e r t h e c o n d i t i o n i s e n a b l e d o r d i s a b l e d a t t h e p o i n t i n t h e
p r o g r a m w h e r e it o c c u r s . T h i s p r o p s r t y o f a c o n d i t i c n i s c a l l e d i t s
s t a t u s . -----

C e r t a i n c o n d i t i o n s a r e e n a b l e d b y d e f a u l t . O t h e r s a r e d i s a b l e d b y
d e f a u l t . A p r o g r a m m e r may s p e c i f y a p a r t i c u l a r s t a t u s f o r a

c o n d i t i o n t o h o l d d u r i n g t h e e x e c u t i o n o f a s t a t e m e n t o r o f a w h o l e
b l o c k , t h u s o v e r r i d i n g t h e d e f a u l t . . T h e r e a re a f e w c o n d i t i o n s
w h o s e d e f a u l t . s t a t u s may n o t b e o v e r r i d d e n .

An e x p l i c i t s t a t u s may b e s p e c i f i e d b y a c o n d i t i o q ~ ~ e f j x . Z x a m p l e s
f o l l o w .

(S I Z E) : I = 3*J; S I Z E is e n a b l e d d u r i n g t h e e x e c u t i o n
o f t h i s s t a t e m e n t .

(NOSIZE) : B = C ; S I Z E is d ' i s a b l e d f o r t h i s o n e .
(OFL, NOUFL) : X = Y * Z ; CFL i s e n a b l e d , UFL d i s a b l e d .
(OFL) : (NOUFL): X = Y*Z; Same a s a b o v e .
(OFL) : L : Y = 2**X; T h i s s t a t e m e n t h a s a l a b e l . , t oo . (it.

must fo l low a n y c o r i d i t i ~ n p r e t l x e s .) '

Whcn a c o n d i t i o n p r e f i x i s a t t a c h e d t o a B E G I N o r PROCEDURE
s t a t e m e n t , i t a p p l i e s t o a l l s t a t e m e n t s i n t h e . b l c c k e x c e p t t h o s e t o
w h i c h a c o m p l e m e n t a r y c o n d i t i o n p r e f i x i s a t t a c h e d . , I t a p p l i e s t o
(l.e., 1s l n h e r l t . e d b y) a n y n e s t e d b l o c k s .

N o t e t h a t s t a t u s o f a c o n d i t i o n i s a s t a t i c p r o p e r t y o f . a s + . a t e m e n t
t h a t c a n b e d e t e r m i n e d ' (l i k e s c o p e o f a d e c l a r a t i o n) by t h e
c o m p i l e r . The s t a t u s o f a c o n d i t i o n i n a n . e x t e r n a l p r o c e d u r e Q
c a l l e d by p r o c e d u r e P, f o r e x a m p l e , h a s n o t h i n g t o ' d o w i t h i t s
s t a t u s i n P .

T h c r ' f o l l o w i n g t a b l e i n d i c a t e 3 thc d e f a u l t status f o r t h e c o n d i t i o n s :
c o n s i d e r e d s c f a r , a n 3 w h e t h e r ' t h e y c a n b e d i s a b l e d . .

C o n d i t i o n ---------
' FOFL

OFL ,

U FL
. Z D I V
sEze
C O N V : ,. - . . -
SiJBRG
STRG
STRZ . . . - , .--.
FINISH
E R R OR

: : _______ D e f a u l t ______ s t a t u s Cgq L t b f g A ~ a b l e d ?
E n a b l e d Yes
E n a b l e d Yes ! , .
E n a b l e d Yes
E n a b l e d Yes
u i s a b l e d

Yes - -

D i s a b l e d . I

D i s a b l e d . - -. . . - -
~ n a b . l e d 1 N o
E n a b l e d No

!

S e e LRM 117 t h r o u g h Lily 120 .

6 .13 . E s t a b l i s h m e n t o f c o n d i t i o n s .

What h a p p e n s when a c o n d i t i o n o c c u r s d e p e n d s f i r s t c f a l l o n w h e t h e r
i t i s e n a b l e d o r d i s a b l e d .

Bhen a n y o f t h e a b o v e . c o n d i t i o n s o c c u r s w h i l e d i s a b l e d , t h e r e s u l t
o f t h e o p e r a t i o n t h a t c a u s e d t h e c o n d i t i o n t o o c c . u r i s u n d e f i n e d ,
w i t h two e x c e p t i o n s . T h e e x c e p t - i o n s a re a s f o l l o w s . When UFL i s
a i s a b l e a , t h e r e s u l t of a n o p e r a t i o n t h a t c a u s e s i t t o o c c u r i s
t a k e n t o b e z e r o . When S T R Z i s d i s a b l e d , . t h e s o u r c e s t r i n g is'
t r u n c a t e d o n t h e r i g h t t o make i t f i t t h e t a r g e t v a r i a b l e , as 'we saw
i n L e s s o n 2.

When we s a y t h a t t h e r e s u l t i s u n d e f i n e d , -we mean t h a t t h e l a n g u a g e
d o e s n o t d e f i n e . a r e s u l t . T h e r e s u l t i s . e n t i r e l y d e t e r m i n e d b y t h e
i m p l e m e n t a t i o n ; i t may b e u s e l e s s (g a r b a g e) o r u s e f u l , h u t it is n o t
g u a r a n t e e d t o b e t h e same i n a n o t h e r i m p l e m e n t a t i o n . N o t e t h a t
s i m p l e , u s e f u l r a n d o m n u m b e r g e n e r a t o r s a r e . f r e q u e n t l y d e s i g n e d
a r o u n d the o c c u r r e n c e o f a d i s a b l e d FOFL c o n d i t i o n :

When a c o n d i t i o n o c c u r s w h i l e e n a b l e d , . t h e c o n d i t i o n i s s a i d t o b e
r a i s e d . T h e p r o g r a m m e r c a n s p e c i f y a n a c t i o n t o b e t a k e n when a' ------
c o n d i t i o n i s r a i s e d o r h e c a n r e l y o n s y s t e m d e f a u l t a c t i o n s , (c a l l e d
s t a n d a r d system a c t i o n) . --------

T h e p r o g r a m m e r s p e c i f i e s a n a c t i o n t o b e t a k e n when a c o n d i t i o n i s
r a i s e d b y e s t a b l i s h i n q a n oq u n i t f o r t h ' e c o n d i t i o n . T h i s i s
a c c o m p l i s h e d by e x e c u t i n g a n s t a t e m e n t p r i o r t o t h e r a i s i n g o f
t h e c o n d i t i o n .

!

. .

An O N s t a t e m e n t h a s t h e t y p i c a l form
ON condition o n - u d ;

cond&on is t h e k e y w o r d n a m i n g t h e c o , n d i t i o n . ' . . on,u& . is e i t h e r a
s i n g l e s t a t e m e n t o r a , b e g i n b l o c k . E x a m p l e s :

ON FOFL GO TO L;
. ON UFL N = N + 1 ;
ON S I Z E EEGIN;

GO TO DONE;
END ;

O n c e a n o n u n i t h a s b e e n e s t a b l i s h e d f o r a c o n d i t i o n , i n a b l o c k ,
i . e . , o n c e a n O N s t a t e m e n t . f o r t ' h a t c o n d i t i o n h a s b e e n e x e c u t e d i n
t h e b l o c k , s u b s e q u e n t r a i s i n g of t h e c o n d i t i o n i n t h a t b l o c k , o r a n y
b l o c k i , n v o k e d f r o m if i n w h i c h a n o t h e r c n u n i t f o r t h e same , , '

c o n d i t i o n . h a s n o t b e e n e s t a b l i s h e d , c a u s e s t h e on u n i t t o b e
e x e c u t e d . l l S u b s e q u e n t l t i s i n t h e s e n s e o f l a t e r i n time.

A n o t h e r way o f d e s c r i b i n g . w h i c h o n u n i t g e t s c o n t r o l when a
c o n d i t i o n , i s r a i s e d i s a s f o l l o w s . I f a n o n u n i t f o r t h e c o n d i t i o n
h a s b e e n e s t a b l i s h e d i n t h e c u r r e n t , b l o c k , i t i s e x e c u t e d . I f n o n e
h a s b e e n e s t a b l i s h e d t h e r e , t h e b l o c k t h a t i n v o k e d t h e c u r r e n t b l o c k
is e x a m i n e d f o r a n e s t a b l i s h e d o n u n i t . T h e s e a r c h f o r a n on u11it
p r o c e e d s i n t h i s way a l l t h e way o u t t o t h e m a i n p r 0 c e d u r . e .

S u p p o s e t h a t a p r o c e d u r e has all e s t . a h 1 I s h e % on unat; P call3 Q ;
a n d Q e s t a b i i s h e s a n on u n i t f o r t h e same c o n d i t i c n . The on u n i t
e s t a b l i s h e d b y P i s l1s t acked1 l . I f t h e c o n d i t i o n o c c u r s s u b s e q u e n t . l y
i n 0, t h e on u n i t e s t a b l i s h e d i n Q i s e x e c u t e d . Once Q returns t o
P, h o w e v e r , t h e o n u n i t i n Q i s n o l o n g e r i n e f f e c t . Tf t h e
c o n d i t i o n s u b s e q u e n t l y o c c u r s i n P, P t s e s t a b l i s h e d c n u n i t g e t s
c o n t r o l .

I f a n o t h e r ON s tatement i s e x e c u t e d i n t h e same b l o c k i n wh ich a n o n
u n i t (f o r t h e same c o n d i t i o n) i s a l r e a B y i n ' e f f e c t , t h e on u n i t
s p e c i L i e d i n t h e new O N s t a t e m e n t s u p p l a n t s t h a t s ~ e c i f i e d e a r l i e r ,
i. e. , it b e c o m e s t h e e s t a b l i s h e d o n u n i t i n t h e b l o c k . T h a t is, t h e
new o n u n i t is n o t s t a c k e d .

T h e o n u n i t i t s e l f may h e t h o u g h t of a s a p a r a m e t e r l e s s i n t e r n a l
p r o c e d u r e . When a c o n d i t i o n i s r a i s e d , t h e c u r r e n t o p e r a t i o n is
i d e n t i f i e d a s t h e ~ g i g i of . i n t e r r ~ ~ p f , a n d i t i c j u s t a s i f the
i n t e r n a l p r o c s d u r e r e p r e s e n t e d by t h e o n u n i t were iqr~kd, t h e
p o i n t o f i n v o c a t i o n b e i l l y t h e p o i n t o f i n t e r r u p t . T h e on u n i t may
o r may n o t r s a c h i t s n o r m a l e n d . I f i t d o e s , c o n t r o l r e t u r n s t o t h e
p o i n t o f i n t e r r u p t a n d t h ; p r o g r a m (u s u a l l y) c o n t i n u e s f r o m t h e r e .
T h i s i s c a l l e d q o r u a l r e t u r n o f t h e o n u n i t . T h e c t h e r c h o i c e i s t o
e x e c u t e a G O TO o u t o f b l o c k , t r a n s f e r r i n g c o n t r c l f r o m t h e on u n i t
t o s o m e l a b e b e d s t a t e m e n t o u t s i d e t h e o n u n i t . 8 2 i n a l l GObB*c,
t h e r e i s n o p o s s i b i l i t y o f g o i n g b a c k t o t h e p o i n t o f i n v o c a t i o n o f
t h e b l o c k (i . e . , t h e p o i n t o f i n t e r r u p t) .

T h e view of on u n i t s ' a s i n t e r n a l p r o c e d . u r e s l l i n v a k e d l t f r o m t h e p o i n t
o f i n t e r r u p t i s c o m p l e t e d b y n o t i n g t h a t t h e e n v i r o n m e n t p a r t o f t h e
e n t r y v a l u e r e p r e s e n t i n g s u c h a p r o c e d u r e i s t h a t d e n o t i n g t h e
i n v o c a t i o n of t h e b l o c k c o n t a i n i n g t h e CN s t a t e m e n t when i t , ' w a s

e x e c u t e d . T h u s , r e f e r e n c e s t o a u t o m a t i c v a r i a b l e s of t h e b l o c k
c o n t a i n i n g t h e O N s t a t e m e n t , f r o m w i t h i n t h e c n u n i t , a r e r e f e r e n c e s
t o t h e g e n e r a t i o n s c o r r e s p o n d i n g t o t h e i n v o c a t i o n o f t h e c o n t a i n i n g
b l o c k w h i c h e x e c u t e d t h e CV s t a t e m e n t .

I n s o m e c a s e s t h e i n t e r r u p t e d o p e r a t i o n d c e s n o t c c n t i n u e from . t h e
p c i n t o f i n t e r r u p t o n n o r m a l r e t u r n f r o m t h e o n u n i t . T h e
e x c e p t i o n s a r e a s f o l l . o w s :
STRINGRANGE: T h e SUBSTR r e f e r e n c e i s a m e n d e d t o y i e l d a v a l i d -----------

s u b s t r i n g , t h e n t h e p r o g r a m c o n t i n u e s .
CCYVERSION: . It is a s s u m e d t h e o n u n i t h a s mad'e a n a t t e m p t t o ----------

correct t h e c o n d i t i o n u s i n g f a c i l i t i e s d e s c r i b e d i n L e s s o n 10 .
I f t h e a t t e m p t , h a s b e e n m a d e , . t h e c c n v e r s i c n o p e r a t i o n i s
r e t r i e d (t h i s c o u l d r a i s e C O Y V a g a i n i f t h e a t t e m p t was n o t
s u c c e s s ' f u l) . . I f n o a t t e m p t h a s b e e n made, ERROR i s r a i s e d .

SUBSCRIPTRANGE: EBROR i s r a i s e d . --------------
ERROR: F I N I S H is r a i s e d . F o t e t h a t w h e n ERROR i s r a i s e d , t h e r e i s -----

n o way t h e p r o g r a m c a n b e m a d e t o c o n t i n u e f r o m t h e p o i n t of
i n t e r r u p t .

FI-NISH: T h e p r o g r a m t e r m i n a t e s . ' '

Of t h e r e m a i n i n g cases, o n l y t w o (UBDERFLOW a n d STRINGSIZE) c o n t i n u e
f r o m t h e p c i n t o f i n t e r r u p t w i t h a d e f i n e d r e s u l t . . T h e o t h e r f o u r
(FIXEDOVERFLOW, OVERFLOW, ZERODIVIDE, a n d S I Z E) c o n t i n u e w i t h a n
u n d e f i n e d r e s u l t .

6 . 1 4 . S t a n d a r d s y s t e m a c t i o n .

When t h e s e a r c h f o r a n e s t a b l i s h e d o n u n i t d o e s n ' t t u r n u p a n y ,
s t a n d a r d s y s t e m a c t i o n is t a k e n . S t a n d a r d s y s t e m a c t l o n i s a s
f o l l o w s :
STRG: I s s u e a m e s s a g e , t h e n c o n t i n u e w i t h a m e n d e d SUBSTR r e f e r e n c e ----

a s d e s c r i b e d f o r n o r m a l r e t u r n from a STRG o n u n i t .
STRZ a n d !EL: I s s u e a m e s s a g e a n d c o n t i n u e w i t h t h ~ d e f i n e $ r e s u l t , ----
C O N V , l??p&, QI4, SIZE, SUBRG, and ZDIV: I s s u e a m e s s a g e a n d r a i s e

ERROR.
E R R O R : I s s u e a m e s s a g e a n d r a i s e F I N I S H . -----
F I N I S H : T e r m i n a t e t h e p r o g r a m . ------

S u p p o s e y o u a r e w r i t i n g a n e x t e r n a l p r o c e d u r e a s p a r t of a p r o g r a m
w h i c h i s a team e f f o r t . H o w d o y o u a r r a n g e f c r s t a n d a r d s y s t e m
a c t i o n t o b e t a k e n (i f t h a t i s w h a t y o u w a n t) w h e n a c c n d i t i o n i s
r a i s e d i n y o u r p r o c e d u r e , n o t k n o w i n g w h e t h e r s o m e c t h e r b l o c k a b o v e
y o u r s i n t h e c h a i n of a c t i v e b l o c k s h a s e s t a b l i s h e d a n o n u n i t f o r
i t ? You may e s t a b l i s h a "system a c t i o n o n u n i t 1 1 b y e x e c u t i n g a n ON

s t a t e m e n t w i t h t h e k e y w o r d SYSTEM i n p l a c e o f a n o n u n i t . E x a m p l e :
O N FOFL SYSTEM;

6 . 15. T h e REVERT s t a t e m e n t .

A n o t h e r p r o b l e m y o u may h a v e i n d e s i g n i n g a n e x t e r n a l p r o c e d u r e a s
p a r t o f a team e f f o r t is' t h e f o l l o w i n g . You may ' h a v e e s t a b l i s h e d a n
o n u n i t i n o r d e r t o i n t e r c e d e when a c o n d i t i o n is r a i s e d i n a
c e r t a i n p a r t o f y o u r p r o c e d u r e . H a v i n q p a s s e d t h e p o i n t a t w h i c h
you' a r e n o l c n q e r interest.eii i n i n t s r c c d i n g , how d.u you llcancell' t h e
e s t a b l i s h e d o n u n i t . s o t h a t s u b s e q u e n t a c t i o n , i f t h e , c o n d i t i o ~ i
s h o u l d o c c u r l a t e r i n y o u r procednre, w i l l b c g o v e r n e d e l l t i r e l y h y
a n y on u n i t s t h a t may be e s t a b l i s h e d i n t h e b l o c k s a b o v e y o u r s o n
t h e c h a i n o f a c t i v e b l o c k s ? By e x e c u t i n g a ______ R E V E R T s t a t e m e n t --------.-,. f o r t h e
c u n d i t . i o n . E x a m p l e :

H E V E R T Z E R O D I V I D E ;
T h e e f f e c t of t h i s i s t o . c a n c e l , o r n u l l i , f y , any 261V. o n u n i t
p r e v i r s u s l y e s t a b i i s h e d i n t h e c i i r r e n t b l o c k . T h e r e w i l l t h e n b e ng
Z D I V o n u n i t e s t a b l i s h e d i n t h e c u r r e n t b l o c k , i . e . , t h e s i t u a t i o n
i s t h e same a s i t was j u s t a f t e r t h e b l o c k was ' e n t e r e d a n d b e f o r e
a n y CN ZDIV,, .; s t - a t s m e n t waE e x e c u t e d .

I t is l e g a l t o r e v e r t a c o n d i t i o n w h i c h h a s n ' t b e e n e s t a b l i s h e d i n
t h e . c u r r e n t b l o c k . T h i s h a s n o e f f e c t . S e e LRH 1 2 1 .

6 . 1 6 . . T h e SIGNAL s t a t e m e n t .

You c a n c a u s e a s i m u l a t e d o c c u r r e n c e o f a c o n d i t i o n (u s e f u l i n
t e s t i n g) b y e x e c u t i n g a SL(;KA. s t a t e m e n t n a m i n g t h e c o n d i t i o n .
After' n o r m a l r e t u r n f r o m a n o n u n i t e n t e r e d . a s a r e s u l t o f r a i s i n g a
c o n d i t i o n i n t h i s way, e x e c u t i o n c o n t i n i l e r . w i t h t h e n e x t s t a t e m e n t
(t h i s i s t r u e e v e n f o r t h e FINISH c o n d i t i o n) . T h e o n e e x c c p t i o n is

ERROR; u p o n n o r m a l r e t u r n f r o m a n ESFOR o n u n i t r a i s e d h y s i g n a l i n g
ERROR, P I H I 3 O is ~ a l s e d a s u s u a l . S e e LRN 1 2 2 .

6 . . I ? . P r o g r a m m e r - n a m e d c o n d i t i o n s .

Y o u c a n d e f i n e a n d name y o u r own c o n d i t i o n s . A p r o g r a m m e r - n a m e d
c o n d i t i o n is a n i d e n t i f i e r ; i t s u s e (d e m o n s t r a t e d b e l o w) c o n s t i t u t e s
a n e x p l i c i t d e c l a r a t i o n o f t h e name a s a c o n d i t i o n name h a v i n g
i n t e r n a l s c o p e . T h e name may a l s o b e g i v e n e x t e r n a l s c o p e (s o t h a t

t h e s a m e name i n d i f f e r e n t ' e x t e r n a l p r o c e d u r e s d e n o t e s t h e s a m e
p rogrammer -named c o n d i t i o n , - a s o ~ p o s e d t o d i . f f e r e n t p rog rammer -named
c o n d i t i o n s t h a t h a p p e n t o h a v e t h e same name) by d e c l a r i n g i t w i t h
t h o CCNDI'JgN a t t r i b u t e a n d EXTEPNAL (s e e LRM 1 2 3) . N o t e t h a t t h e r e
a r e c o n d i t i o n n a m e s , b u t n o t c o n d i t i o n ' c o n s t a n t s , v a l u e s , o r
v a r i a b l e s .

T h e o n l y way t o r a i s e a p r o g r a m m e r - n a m e d c o n d i t i o n is t o s i g n a l it.

A p r o g r a m m e r - n a m e d c o n d i t i o n , ..nume, i s u s e d i n t h e f o l l o w i n g way i n
CN, SIGNAL, a n d R E V E R T s t a t e m e n t s

ON CONDITION (.rime.) . . . ;
STGNAL CONDITION (: m e) ;
R E V E R T C O N D I T I O N (flame) ;

i . e . , t h e p r o g r a m m e r - n a m e d c o n d i t i o n m a s q u e r a d e s a s t h e C O N D I T I O N
c o n d i t i o n . We c a n t h e n t a l k a b o u t e n a b l e m e n t s t a t u s , s t a n d a r d ---------
s y s t s m a c t i o n , e tc . , f o r p r o g r a m m e r - n a m e d c o n d i t i o n s by d e s c r i b i n g
t h e s e p r o p e r t i e s f o r t h e C O N D I T I O N c o n d i t i o n . S ~ e c i f i c a l l y , t h e
CONDITION c o n d i t i o n i s e n a b l e d b y d e f a u l t a n d c a n n o t b e d i s a b l e d . , 9

S t a n d a r d s y s t e m a c t i o n i s t o i s s u e a m e s s a g e a n d c c n t i n u e . . ,

6 . 1 8 . R e v i e w

S e e LRM 1 2 4 , s k i p p i n g a n y t h i n g we h a v e n ' t c o v e r e d y e t , a n d I.?R 1 2 5 .

I n t h e ANSI s t a n d a r d t h e r e a r e a 5ew h i g h l y t e c h n i c a l d i f f e r e n c e s i n
some- a c , t i o n s on n o r m a l r e t u r n f r o m o n u n i t s a n d i n some s t a n d a r d
s y s t e m a c t i o n s . I n a d d i t i o n , a t t e m p t t o c o n t i n u e w i t h a n u n d e f i n e d
r e su l t is i n v i o l a t i o n ' o f t h e s t a n d a r d . - B b r i e f h a n d o u t i s
a v a i l a b l e t r o m t h e i n s t r u c t o r f o r t h o s e who a r e i n t e r e s t e d .

6 . 1 9 . E f f e c t o f o p t i m i z a t i o n o n c o n d i t i o n s .

I f you h a d t h e j o b o f h a n d - o p t i m i z i n g a p r o g r a m , y c u ' wou ld d i s c o v e r -

w a y s t o common e x p r e s s i o n s , move i n v a r i a n t e x p r e s s i o n s o u t 0.f l o o p s ,
e t c . T h e f i n a l p r o g r a m , h o p e f u l l y , w i l l p r o d u c e t h e s a m e a n s w e r a s
t h e o r i g i n a l o n e , a t l e a s t when y o u d o n o t r e l y o n t h e r a i s i n g o f
c o n d i t i o n s a n d t h e e n t e r i n g o f o n u n i t s t o i m p l e m e n t y o u r l o g i c .
C l e a r l y , m o v i n g e x p r e s s i o n s a r o u n d m i g h t c h a n g e t h e c r d e r a n d n u m b e r
o f i n t e r r u p t s a n d t h u s c o n d i t i o n r a i s i n g s . ~ h e ' s a m e i s t r u e when
you r e q u e s t t h e c o m p i l e r t o o p t i m i z e y o u r p r o g r a m .

A m o r e s u b t l e p r o b l e m o c c u r s w i t h c e r t a i n k i n d s c f o p t i m i z a t i o n s .
T h e c o m p i l e r m i g h t f i n d i.t a d v a n t a g e o u s t o k e e ~ a v a r i a b l e i n a
r e g i s t e r i n s i d e a l o o p . Even i f you a s s i g n t o t h a t v a r i a b l e i n t h e
l o o p , t h ~ c o m p i l e r m i g h t n o t g e n e r a t e c o d e t o s t o r e t h e c o n t e n t s o f
t h e r e g i s t e r i n t o the a s s i g n e d s t o r a g e l o c a t i o n f o r t h e v a r i a b l e (i t
w o u l d d o s o o n l y a t t h e c o n c l u s i o n o f t h e l o o p , i f t h e v a l u e o f t h e
v a r i a b l e is n e e d e d s u b s e q u e n t l y) . T h u s , i f a n o n u n i t ' i s e n t e r e d a s
t h e r e s u l t o f a c o n d i t i o n r a i s e d i n t h e l o o p , a n d t h e o n u n i t
r e f e r e n c e s s u c h a r e g i s t e r - h e l d v a r i a b l e , i t w o u l d n o t r e t r i e v e t h e
c u r r e n t v a l u e o f t h e v . a r i a b l e .

Two o p t i o n s , w h i c h may a p p e a r on a BFGIN o r PROCEDURE s t a t e m e n t , c a n
b e u s e d t o t e l l t h e c o m p i l e r w h e t h e r y o u r p r o g r a m c a n b e s a f e l y
o p t i m i z e d i n t h e way d e s c r i b e d a b o v e . T h e o p t i o n s a f f e c t t h e c o d e
g e n e r a t e d i n t h e b l o c k , a n d a r e i n h e r i t e d b y c o n t a i n e d b l o c k s o n
w h i c h t h e y a r e n o t r e s p e c i f i e d . O R D E R (w h i c h i s t h e d e f a u l t i f
n e i t h e r is s t a t e d) gays t h a t the c o m p i l e r i s . n o t . al. l .nwed t n p e r f o r m
t h e o p t i m i z a t i o n s d e s c r i b e d a b o v e b e c a u s e . t h e c r d e r i n w h i c h
v a r i a b l e s a r e a s s i g n e d a n d r e f e r e n c e d m u s t b e o b s e r v e d , even acrnss
o n u n i t b o u n d a r i e s . REORDER e s s e n t i a l l y s a y s ' t h a t s u c h o n u n i t s
w i l l n o t b e e x e c u t e d , o r , i f t h e y a r e , t h e y w o n ' t r e f e r e n c e
v a r i a b l e s t h a t may n o t h a v e h a d t h e i r m o s t r e c e n t v a l u e s t o r e d .
T h i s p e r m i t s g r e a t e r o p t i m i z a t i o n . S e e LRM 1 2 6 t h r c u g h L R M 1 2 8 .

O R D E R a n d REORDFR a r e n o t a v a i l a b l e i n t h e & N S I s t a n d a r d . The
s t a n d a r d e s s e n t i a l l y p e r m i t s i m p l e m e n t a t i o n s t o b e h a v e a s t h e
c u r r e n t o n e d o e s u n d e r R E O R D E R , i . e . , it a l w a y s p e r m i t s maximum
o p t i m i z a t i o n . A t t h e s a m e time it p l a c e s r e s t r i c t i o n s o n w h i c h
v a r i a b l e s c a n b e r e f e r e n c e d i n o n ' u n i t s . T h e s e r e s t r i c t i o n s a r e
n e c e s s a r y t o g u a r a s ~ t e e t11e saioe b e h a v i o r cF the p r o g r a m , i n a l l
s t a n d a r d i m p l e m e n t a t i o n s , e v e n t h o u g h t h e - e x t e n t s t o w h i c h t h e y
c a r r y o u t c e r t a i n o p t i m i z a t i o n s may d i f f e r .

Do n o t l e t a l l o f t h e a b o v e s c a r e you! You w i l l F r o b a b l y d i s c o v e r
t h a t you w i l l h a v e v e r y l i t t l e n e e d f o r o n u n i t s f o r c o m p u t a t i o n a l
c o n d i t i o n s i n most r e a l i s t i c p r o g r a m s .

T h e amnnnt. o f o r t i m i z a t i o n attempted h y +.he c c r n p i l e r i s d l a u
g o v e r n e d b y t h e OPTIMIZE c o m p i l e r o p t i o n . S e e OPG 4 a n d OTUG 2 . A
c o m p l e t e d i s c u s s i o n o f e f f i c i e n c y c o n s i d e r a t i o n s , w i t h r e g a r d t o a l l
a r e a s o f t h e l a n g u a g e , is i n LRM 129 .

6 . 2 0 . U n a n s w e r e d q u e s t i o n s .

I n a n E R R O R o n u n i t , how c a n o n e o b t a i n i n f o r m a t i o n a b o u t w h a t
c a u s e d E R R O R t o b e r a i s e d ? . . .

I n a n y o n u n i t , how c a n o n e d e t e r m i n e w h e t h e r t h e c o n d i t i o n o c c u r r e d
n a t u r a l l y o r by b e i n g s i g n a l e d ?

T h e s e q u e s t i o n s w i l l b e a n s w e r e d i n L e s s o n 10'. O t h e r c o n d i t i o n s
w i l l b e c o n s i d e r e d i n , a p p r o p r i a t e 1 . s s s o ' n s .

6 . 2 1 . Homework p r o b l e m s .

(#6A) When i s
I F exphebbion THEM me-pant;
E L S E @be-pant;

n o t t h e same a s
IF -. (exphenbion) THEN h&e-parr;t;
E LS E fhr~.e-p~rt; ?

H i n t : E x p l a i n w h a t may h a p p e n when, f c r i n s t a n c e , exphennion
i s a 'EIT(IO) v a r i a b l e . . .

(#6B) S u p p o s e y o u h a v e a n a r r a y o f 10'3 e l e m e n t s (h c u n d s 1 t o ' 1 0 0)
t h a t i s t o b e f i l l e d w i t h u n i q u e v a l u e s i n t h e o r d e r i n w h i c h
t h e y a r e p r e s e n t e d . A v a r i a b l e r e c o r d s t h e i n d e x (i . e . ,
s u b s c r i p t v a l u e) o f t h e l a s t p o s i t i o n f i l l e d . Write a

' p r o c e d u r e t o a c c e p t a v a l u e , a s a n a r g u m e n t , a n d i n s e r t i t i n
t h e n e x t p o s i t i o n i n t h e a r r a y i f i t is n o t a l r e a d y i n t h e
a r r a y . T h e p r o c e d u r e is t o b e i n v o k e d . b y a C A L L s t a t e m e n t .
C o n c e r n y o u r s e l f w i t h t h e f o l l o p i n g :

(a) A f t e r t h e a r r a y h a s b e e n c o m p l e t e l y f i l l e d , a n o t h e r
p r o c e d u r e w i l l p r o b a b l y r e t r i e v e i t s e n t r i e s . Wake
s u r e b o t h p r o c e d u r e s h a v e access t c t h e n e c e s s a r y
v a r i a b l e s . Be c a r e f u l w i t h i n i t i a l v a l u e s . . .

(b) . U n l e s s s p e c i a l p r e c a u ' t i o n s a r e t a k e n , y o u r p r o g r a m
w i l l b e i n e r r o r i f m o r e t h a n 1 0 0 u n i q u e v a l u e s a r e
p r e s e n t e d t o t h e p r o c e d u r e . g h a t w i l l h a p p e n i f n o
s p e c i a l p r e c a u t . i o n s a r e t a k e n ? D i s c u s s s e v e r a l
w a y s o f d e t e c t i n g t h e s i t u a t i o n a n d o f , p r e v e n t i n g
e r r o r s . Also d i s c u s s s e v e r a l m e t h o d s c f i n f o r m i n g
t h e c a ' l l i n g p r o c e d u r e a b o u t t h e c c c u r r e n c e o f t h e
s i t u a t i o n , a n d d i s c u s s t h e i r i m p l i c a t i o n s c n i t s
d e s i g n . H i n t : c o n s i d e r . t h e f o l l o w i n g m e t h o d s :
(i) A r e t u r n e d v a l u e t o i n d i c a t e s u c c e s s o r

f a i l u r e .
. (i i) . . A n . a d d i t i o n a l p a r a m e t e r t h r o u g h w h i c h

. . s u c c e s s , o r f a i l u r e i s c o n v e y e d o u t .

(i i i) Use o f a p p r o p r i a t e PL1.I c o n d i t i o n s .
(i v) Use o f a p r o g r a m m e r - n a m e d c c n d i t i o n .

(#6C) S i m u l a t e b y h a n d t h e e x e c u t i o n o f t h e f c l l o w i n g c o d e t o
. d e t e r m i n e t h e v a l u e a s s i g n e d t o I. I f y o u s u r v i v e t h e t e d i u m

a n d g e t . t h e a n s w e r 2 5 0 1 , y o u u n d e r s t a n d e n t r y v a r i a b l e s ,
l a b e l . v a r i a b l e s , a n d t h e i r b e h a v i o r , i n r e c u r s i v e
e n v i r o n m e n t s .

I = P (1) ;
' , P: PZOC (X) RETURNS (FIXED BIN) RECURSIVE;

DCL X FIXED B I N ;
DCL A FIXED B I N IUTO;
DCL (N,S) FIXED BIN STATIC I N I T (0) ;
DCL L L A B E L S T A T I C ;
DCL Q ENTRY (FIXED B I N)

RETURNS (FIXED B I N) VARIABLE STATIC; '

. A , ? - X + S ;
N = N + l ;
I F N = 2 THEN L = LX;

\ ' I F N = 4 THEN Q = Q X ;
' , I F N = 5 THEN S = S + Q (A) :

ELSE S = S. + OX(A) ; . .

IF N - 6 THEN G O TO L ;
S = P (A) ;

LX: RETURN (A + S) ;
Q X : PROC (Y) RETURNS (FIXED EIN) ; .

DCL Y FIXED BIN;
RETURN (Y + A) ;

END;
END;

(#6D) P r e c i s e l y w h a t h a p p e n s when a FIXED DECIMAL (8,O) v a r i a b l e
w i t h v a l u e 1 2 3 4 5 6 7 8 is a d d e d t o a FIXEC DECIMEL (8,8)
v a r i a b l e w i t h v a l u e z e r o i n o u r i m p l e m e n t a t i c n ?

(#6E) Can FIXEDOVERFLOW c c c u r d u r i n q a d i v i s i o n c f two f i x e d - p o i n t
v a r i a b l e s ? . C a n y o u e x p l a i n y o u r ' a n s w e r ?

(#hF) What i s t h e d i f f e r e n c e , f o r a l l p r a c t i c a l F u r F o s e s , b e t w e e n
G V UFL SYSTEM;

a n d . .
O N . UFL ; ?

I .

(#6G) (D i f f i c u l t) S u p p o s e you h a v e a ' p r o g r a m w h i c h y o u , h ' ave
d e v e l o p e d t o s a t i s f y t h e ANSI s t a n d a r d a n d w h i c h you w i l l b e

. . .

s h i p p i n g t o o t h e r i n s t a l l a t i o n s t h a t h a v e d i f f e r e n t m a c h i n e s
a n d d i f f e r e n t A N S I s t a n d a r d c o m p i l e r s . T h o u g h y c u may h a v e
e n a b l e d t h e - S I Z E c o n d i t i o n d u r i n g . t e s t i n g , why i s i t
q e n e r a l l y n o t n e c e s s a r y o r u s e f u l t o , l e a v e i t e n a t l e d ' i n t h e
e x p o r t v e r s i o n o n c e y o u a r e s a t i s f i . e d t h a ' t S I Z E c a n n o t o c c u r ?
Why i s i t , h o w e v e r , d e s i r e a b l e t o l e a v e O F F , U F L , a n d POFL
e n a b l e d , e v e n t h o u g h y o u a r e s a t i s f i e d t h a t t h e y a r e n o t
o c c u r r i n g ?

(t6H) What a c t i o n i s t a k e n i f ZDIV is r a i s , e d i n e a c h o f t h e l i g h t
p l a c e s m a r k e d "*" i n t h e f o l l o w i n g p rog ram.?

P: PPOC OPTIONS (F A I N) . ; *
ON ZDIV X = 1; *
BEGIN; *

ON ZDIV X = 2; *
ON ZDIV X = 3; *
ON, ZDIV SYSTEM; *

.REVERT ZDIV; *
END; *

END;

(#61) N h a t c a n h a p p e n i n t h e f o l l o w i n g p r o g r a m s e g . m e n t ?

CN ERROR BEGIN;
T = S Q R T (Y) ;
G O 1 0 RESUME;

END :
X = s o m e v a l u e , p o s s i b l y n e g a t i v e ;
Y = some v a l u e , a l s o p o s s i b l y n s g a t i v e ;
T = SQRT (X);
RESUYE: . . .

How d o e s t h i s i m p r o v e when t h e p r o g r a m . i s ' c h a n g e d , ' a s
f o l l o w s ?

O N ERROR BEGIN;
ON ERROR SYSTEM;
T = SQRT (Y) ;
GO TO RESUME;

END;
etc.

(# 6 J) Y h a t P L / I f a c i l i t i e s s e r v e t h e f u n c t i o n cf t h e FORTRAN
"computed GO TOt1? T h e " a s s i g n e d G O TO'!?

(# 6 K) O c c a s i o n a l l y , o n e w a n t s t o t a k e some a c t i o n w h e n a c o n d i t i o n ,
snch as l ? R R n R , occurs, then l e t t h e n e x t h i g h e r l e v e l block
t h a t h a s a n e s t a b l i s h e d o n u n i t f o r t h e c o n d i t i o n . t a k e i t s
a c t i o n , a n d s o o n . A t e c h n i q u e f r e q u e n t l y t r i e d i s

O N E R R O R BEGIN;
t a k e s o m e a c t i o n
REVERT ERROP;
SIGNAL ERRCR;

END;
Why d o e s t h i s n o t a c h i e v e t h e d e s i r e d r e s u l t , a n d w h a t d . o e s
i t r e a l l y d o ? H o w c a n t h e d e s i r e d r e s u l t , b e a c h i e v e d ?

7.. Introduction t o I /O; stream I /O.

7.1. Datasets vs. f i l e s .

In PL/I, 1/0 is performed by doing certain things to abstract objects
called "files." Files can be as'sociated w i t h datasets so that the
operations on f i les 'have useful effects on the associated datasets.
Several different f i l e s can be simultaneously associated w i t h the
same dataset. A particular f i l e can be associated w i t h different
datasets a t different times. S'ee.LRM 130.

7.2. File constants, values, and variables'.

A f i l e value is an object referred to above as a f i l e . We are now
embarking on a discussion of our third program-control data type: f i l e .

New f i l e values are "generated" by:
(a) Reference to a f i l e constant.

They are propagated by assignment.
They may b,e used i n the following ways :

(a) 111 1/0 s tate~lents.
(b) In ON, REVERT, and SIGNAL statements dealing w i t h certain

conditions pertinent. to I/O.
(c) In comparison operations.

Recall that DECLARE statements can be used to declare names as entry
constants or entry variables, and that entry constants were also
capable of being contextually declared by thei r appearance as a label
prefix on a PROCEDURE or ENTRY statement. Similarly,' DECLARE s ta te-
'ments can be used to declare names as f i l e constants or f i l e variables,
and f i l e constants may be contextually declared by their appearance i n
1/0 statements or 1/0 condition names. The data type at tr ibute, not
surprisingly, is FILE. Fi le constants, l ike entry and label constants,
are "named constants . " Examples :

DCL F FILE; F is a f i l e constant. The default scope is external.
DCL G FILE INTERNAL; G is an internal f i l e constant.
DCL H FILE VARIABLE EXT; H is an external f i l e variable.

7 . 3 . File description at tr ibutes,

There is a very large s e t of attributes that describe cer'tain properties
of f i l e s . These f i l e description at tr ibutes (FDA1$, as they are called,
may be declared for f i l e constants but not f i l e variables. If a f i l e
constant is assigned to a f i l e variable, any FDA's declared for the. f i l e
constant are inherited by the f i l e variable i n the sense that they are
properties of the current f i l e value assigned to it. I f , l a te r , a
different f i l e constant is assigned t o the f i l e variable, the f i l e
variable w i l l ref lect possibly different properties represented by the
FDA's which were declared for this second f i l e constant. More on th is l a te r .

7.4. Opening a f i l e .

In order to do I / O on a dataset, it is f i r s t necessary to associate
the dataset with a f i l e . ' One way of accomplishing th i s is by
executing an OPEN statement . (This is called' explici t opening.)
The typical f i r m is

OPEN FILE (d.iee) TITLE (ddme) ;
Here, d-iee is a f i l e constant, or a f i l e variable, or a function
reference returning a f i l e value; i n any case it denotes a f i l e
value originally 'obtained by reference to some f i l e constant. Note
that it i s as much an error t o reference, .in an OPEN statement, a
f i l e variable which has not been assigned a value as it is to reference
.any variable that has not been assigned a value. . d d m e is a character-
s tr ing valued expression. wh,ase value (truncated t o 8 characters, i f ':

necessary) is taken t o be the "ddname" of the dataset. The actual
dataset denoted is the one associated with that "ddname" in the JCL.

The TITLE o tion may be omitted from the OPEN statement, i n which case
the & ame use is the f i r s t 8 characters of the identif ier naming the
f i l e constant from whose reference the value of d.iee was derived.
Examples :

OPEN FILE (X) TITLE ('ABCt) ;
The ddname is ABC.

DCL DEF FILE;
OPEN FILE (DEF) ;

The d h a m is DEF.
DCL U FILE VARIABLE;
U = DEF;
OPEN FILE (U);

The ddname is DEF.

I f a f i l e is already "open," an attempt t o explici t ly open it again is
treated as a "no-op." E.g . ,

DCL H FILE VARIABLE;
DCL FF FILE;
H = FF;
UPEN FILE IFF) :
OPEN FILE (H) TITLE ('XYZ ') ;

The l a s t OPEN statement has no effect , since the f i l e denoted equally
well by the file coristant FF or. the f i l e variable H is already "open."

Several f i l e s can be opened i n o n e . 0 ~ ~ statement. Example:
OPEN FILE . (Fl) ,

FILE' (F2) TITLE ('HUHt) ,
FILE' (F3) ; . .

The second way a dataset can be associated w i t h a f i l e is by implicit
o ening. Implicit opening occurs when a f i l e which is not open i s 9f- re erenced i n an 1/0 trahsmission statement. The ddname of the dataset
to be associated with the f i l e is derived in exactly the same way as for
explici t opening when the TITLE option is omitted.

7.5. The UNDEFINEDF ILE condition.

I f an attempt to open a f i l e f a i l s , the UNDEFINEDFILE condition
(abbreviation: UNDF) occurs for that f i l e . An on unit for UNDF may be
established for that- f i l e by executing an ON statement as i n

ON UNDF (dde) o n - u d ;
Because the UNDF condition is a qualified condition (like the CONDITION
condition) , .separate UMlF on units may be established for each f i l e i n
a program.

An attempt to open a f i l e may f a i l for several reasons, including: no
DD statement in the JCL for the ddname used; conflicting DCB at tr ibutes;
etc. In Lesson 1.0 we w i l l see'how one may t e l l w h y an attempted opening
was unsuccessful.

The UNDF condition, l ike the ERROR condition, i s enabled by default and
cannot be disabled. Standard system actionj which applies when the
condition is raised' and no on unit has been" established, is to issue a
message and raise ERROR. I f , on the other hand, an on unit is entered
and 'the on unit returns normally', subsequent 'action depends on whether
the attempted opening was explici t or impxicit. In the fonner case,
execution continues" from the point of interrupt. In the l a t t e r case,
execution continues i f the f i l e was (somehow) successfully opened in'
the on unit, 'e.g., by trying a different ddname); otherwise, the ERROR
condition is raised.

See the description.of UNDF in LRM 116.

7.6. Closinga f i l e .

The association between a dataset and a f i l e is broken by executing a
CLOSE statement for the f i l e :

CLOSE ~1~:(6.iee) ;
Several f i l e s can be closed simultaneously: .

CLOSE FILE (A) ,
FILE (B) ,
FILE (C);

Closing an already closed f i l e , l ike opening an already opened f i l e ,
has no effect .

Files l e f t open when a program terminates are closed by a PL/I
termination routine. Any output data l e f t i n a buffer i s transmitted
to the dataset before'the f i l e is closed. After a f i l e has been
closed, e i ther the same dataset or a different dataset may be associated
with it by subsequently executing another OPEN statement for the f i l e .
See LRM 131.

7.7. Overview of transmission statements.

The 1/0 statements that cause .data transmission that we w i l l examine
i n th is lesson are GET (input) and PUT (output) . In the next two lessons
we w i l l study READ (input) , . and three output statements : WRITE, REWRITE
and DEUnI'E. In Lesson 11 we w i l l add LKKl'E (output). In Lesson 9 , and

* again i n Lesson 14, we w i l l look a t the UNLOCK statement.

7.8. Overview of f i l e description at tr ibutes.

As s tated ear l ier , FDA's may be used in a declaration of a f i l e constant.
I t is not necessa , however, to declare any FDA's for a f i l e constant, + even thoug a s e t of properties for the f i l e must have been provided by
the time it is opened.

We w i l l be looking a t the many different FDA's gradually. Suffice it to
say that some are alternatives to others; i . e .', a conflict arises i f two
mutually exclusive a1 ternatives are provided.

' I f 'the f i l e properties described by FUArs are not complete when a f i le .
is opened, additional properties are supplied during the opening process.
This proceeds as follows.

I f the opening is explici t , additional FDA's may be written as options
on the OPEN 'statement. These must not conflict with any declared for .

the f i l e i n a DECLARE statement. Examples:
OPEN FILE (F) INPUT; +
OPEN FILE (G) OUTPUT TITLE (' SYSPUNCI-I') ,

'FILE (H) INPUT TITLE ('SYSIN');

I f the opening is implicit, additional FDA's are deduced from the
statement causing the opening. For example, INPUT w i l l be deduced
from GET and OUTPUT from PUT.

I f the "merging" of FDA's that occurs during explici t or implicit
openings produces any conflicts, the UNDEFINEDFILE condition is raised.
If the merging s t i l l leaves the s e t of f i l e properties incomplete,
others may be supplied by implication (i .e. , those. that a f i l e has may
imply others that it must also have) and f inal ly by default.

When a f i l e is closed, any FDA's supplied during the opening process
are divorced from the f i l e . I t continues to have only those w i t h
which it was declared' (which may be none) '. I f the f i l e is again
opened, it may acquire a different complete s e t of properties.

File properties are used, among other things, to determine which
operations may legally be carried out for a f i l e . For instance, it
is i l l ega l to WRITE t o an INPUT f i l e . An attempt to do so w i l l raise
the ERROR condition.

The different FRA1s are briefly described, and the defaults l i s ted ,
i n LRM 132. ' Other, detailed, descriptions are scattered throughout
LRM 133. The opening and closing of f i l e s may be reviewed a t LRM 134;
that reference also shows the FDA1 s deduced on implicit opening and
those that may be implied. The OPEN statement is further detailed a t
LRM 135. Finally, the whole subject of datasets vs. f i l e s is also
treated i n OPG 5 and CPG 4 , w i t h emphasis on device and dataset
characteristics.

7.9. Stream vs. recurd I /O.

Two alternative FDA's which describe properties of a l l f i l e s are
STREAM and RECORD.

The dataset associated with a stream f i 1 e . i ~ viewed as a continuous
stream of characters, rather than as a sequence of records. I t s
processing is inherently sequential. Stream output, which is
accomplished with the P ~ T statement , consists of* the issuing of a '

stream of characters t o be written t o the dataset. Stream input, which
is accomplished with the GET statement, consists of the acceptance of
a stream of characters read.from the dataset. Although a l l datasets -
are actually organized as records, stream transmission may be oblivious
to record b0undarie.s; it may, however, also be made cognizant of them.

The dataset associated with a record f i l e on the other hand, is viewed
as a sequence or s e t of discrete records. Each transmission statement
transmits exactly one record. The data i n a record need not be i n
character form; it can be i n any of the forms capable of being
represented internally i n PL/I .

For the remainder of this lesson, we w i l l be concerned with stream 1/0
only. Hence, we assume that the STREAM FDA applies to any f i l e we
are talking about. The STREAM attr ibute may be acquired:

(a) By declaration of the f i l e constant with STREAM..
(b) By specification of the STREAM option on an OPEN statement.
(c) By deduction on implicit opening of a f i l e by a GET or PUT

statement .
(d) By implication from the PRINT attr ibute on an explicit opening.
(e) By default on explici t opening.

See LRM 136.

7.10. Fi le description attributes'applicable t o stream f i l e s .

The other FDA's applicable to stream f i l e s are INPUT, OUTPUT, PRINT,
and ENVIRONMENT (abbreviation: ENV) .

INPUT and OUTPUT are two alternatives that h y f i l e (whether stream
or record) may have. ' A third alternative, applicable only to record
f i l e s , w i l l be given i n Lesson.8. The meaning of INPUT and, OUTPUT
should be' obvious. Only GET statements may be used for stream input
f i l e s , ' and only PUT statements for stream output f i l e s . See' LKM 137.

PKIN'I' is an additive a t t r ibute that may be specified only for stream
output f i l e s . I t says that the output dataset is ultimately to be
printed. See LRM 138.

The ENV a t t r ibute is much l ike the OPTIONS option (Lesson 4) i n that
it encloses a list of implementation-defined options. I t i s important
to note that the contents and meaning of environment options is not
specified by the language, but by each implementation. The basic
function of environment options is to provide the implementation with
extra information it may require, such as the physical organization of
records in a dataset. See LRM 1 39.

ENV is the only FDA that may not appear on an OPEN statement (except
in the ANSI version) . We w i l l have very l i t t l e to say about the
individual environment options, although.they are important, so you
should read LRM 140, OPG 6 and CPG 5.' The ENV at tr ibute w i l l be i n
confl ict with other FDA's i f it contains options i n conflict with
other FDA's. See LRM 141 for a table of conflicts,

The PRINT at tr ibute, being additive, is never deduced, implied, or
defaulted. I t must be specified (either i n a DECLARE statement or
OPEN statement),

. .
I f an implicit opening occurs and neither INPUT nor OUTPUT was' declared '

f o r t h e f i l e , GETimplies INPUTandPUTimpliesOUTPUT. If explici t . ,

opening occurs without specifying ei ther , thc dcfault uscd is INPUT.

7.11. Further OPEN statement options for stream f i l e s .

The LINESIZE option can be used' on an OPEN statement for any stream
output f i l e to e s t d l i s h a record length for the dataset. (This
information can also be conveyed i n 'the' ENVIRONMENT at tr ibute or in
JCL; and there is a standard default value i f none of these sources
supplies the information.)

The PAGESIZE tion can be used on an OPEN statement for any print
file-output f i l e which has the PRINT attr ibute) . I t
can be used to establish the maximum number'of lines to appear on
each page when it is printed.

7.12. Overview of stream transmission statements.

The PUT statement specifies one or more expressions of computational
data type whose values are to be converted to character' representations
which are then inserted i n the output dataset. Generally, successive
characters go into successive positions of the current output l ine
(record) . When an output l ine is f i l l ed , characters continue on the
next l ine. Successive PUT statements do not automatically s t a r t new -
l ines; the characters transmitted continue where the l a s t PUT s ta te-
ment l e f t off , which may be in the middle of a line. Facil i t ies are
also provided for start ing a new l ine or , i n the case of a pr in t f i l e ,
a new page.

The GET statement specifies one or more variables of computational data
type to be assigned values from an input dataset. The values are
assumed to be 'represented i n character form on the dataset and are . .
converted to the appropriate internal form. This process consumes a
number of characters f m m t he dataset s t a r t i ng a t the place where the l a s t
GET statement l e f t off (which may be in the middle of a l ine) . If a
l ine i s exhausted, remaining characters come from the next line.
Successive GET statements do not automatically s t a r t new lines . -
Facil i t ies are provided, however, for skipping to the s t a r t of the
next line.

7.U. Data l i s t s .

The part of a PUT statement that specifies the expressions whose values
are to be disposed of, and the part of a GET statement that specifies
the variables whose values are to be acquired, is called a data list

. ("I/O list" in FORTRAN) . I t is surrounded by parentheses. The l i s t
is .a l is t of data l i s t . items separated by cimm'as. A data l is t item is
one,of the following:

(a) An expres'sion. This may be just a constant or variable.
(b) ' A repetitive specification. This is a parenthesized l i s t of

data l is t items ending w i t h what looks l ike a controlled DO
statement without the semicolon.

Examples of data lists, including their surrounding parentheses, follow.
(XI
(x, y>
(A+B, 'THIS', 'THAT' 1) V, 1)
gr, Cv(I>, W(I) DO 1 = 1 TO N))

Notice the syntax of the repetitive specification
i n the above example. If N has the value 3, say,
the effect of the data l is t is the same as would
be obtained by the following one.

gr, V(l), W(1) , V(21, W(2). V(3) , W(3)
(((A(1,J) DO I = 1 TO N) DO J = 1 TO M))
((A(T), (R(T,.T) J = 1. BY 2 TO 5). C(1) DO I = 1, N))

The above is equivalent to:
, ~3(1,31, ~ (1 ~ 5 1 , c (i) ,
, B(N,3), B O) , CO\J))

I f a data list i t em ' i s a structure, it is equivalent to a sequence of
scalar i t e m , namely, those which are (in order) the base e1.en1ent.s of
the structure. I f a data l is t item is an array, it is equivalent to
a sequence of scalar items, namely, a l l the array elements i n the order
having the rightmos t subscript varying most rapidly. Thus, the item

A(* ,*I
is equivalent to the item

((A(1,J) DO J = LBOUND(A,2) TO HBOUND(A,Z))
DO I = LBOUND(A,l) TO HBOUND(A,l))

The elementary data.items in data lists i n GET statements cannot be .
.

arbitrary expressions ; they can only be' variables (although. they' may,
of course, be subscripted by expressions) because the context is one '

.

of assigning a value t o them. See LRM142.

7.14. Modes of stream transmission.

'Inhere are three modes of strean transmission: l is t-directed, data-
directed, and edit-directed, as determined by the form of the
o r PUT statement. The different modes may be intermixed on the same
f i l e .

7.15. List-directed transmission.

In l is t-directed transmission, which is the simplest, the keyword
LIST precedes the parenthesized data list. Together they consti t.ute
a LIST o tion. If 'the option immediately follows the keyword GET or + PUT, the eyword LIST may be omitted. List-directed transmission. ,

provides simple, "free-form" stream I/O. Examples w i l l be given la ter .

, O n input, character representations of values in the input stream
must be separated'by' one or more blanks, or by a comma and any
number of surrounding blanks. - Each input stream item' must be written
as a valid computational constant, i . e . , arithmetic constant,
character' s tr ing constant, o r . b i t s t r ing constant. The "attributes"
of the input s'tream item, deduced from t h e form in which it i s
written i n the same way that at tr ibutes are deduced for a constant
written i n the program, need not match the attributes of the corre-
sponding variable i n the data l ist; conversion 'between the source
and target attributes occurs as necessary. The CONVERSION condition
can occur i.n th is process (a homework problem w i l l . deal w i t h this) .

I t is possible to omit values from a l is t-directed input stream. .

Consecutive commas, or commas separated only by blanks, indicate
that no value is to be assigned to the variable i n the input data
l ist with which a value i n that position would be matched; the
variable thus retains i ts current value. Finally, a semicolon may
be used i n the input stream to indicate that a l l the remaining
variables i n the data l ist are to be skipped over. A l l these features
are demonstrated i n the following example. , .

DCL N FIXED BIN;
I

. .
DCL X FLOAT BIN (21),

A (3) C M (10) VAR,
B (30) FIXED BIN (15) ;

GET FILE(F) LIST (X,A,,N, (B(1) DO I = 1 TO N BY 2)) ;
Input stream:
6.4 'VALll , , 1 1

15
6 E2,, 5.1;

The f i r s t input stream item, 6.4, is associated with X . The value,
expressed as FIXED DECIMAL (2,1), is converted to FLOAT BIN (21.)
for assignment to X. The next input stream item is a character
s tr ing constant and is associated with A(1) ; A (1) thus acquires
the '4-character chaiacter s tr ing value VAL1. The next input stream
itell1 i s nussing, so A(2) retains i t s current value. The next one
results i n A(3) being assigned the value of the null character.
string. The next one results i n N being assigned the value 15;
during that assig~unent , the value i s converted from FIXED DECIMAL
(2 ,O ') t o FIXED BINARY of default precision. . The repetitive
specification appearing next i n the data l ist would cause successive
input stream items to be assigned to B(l) , B(3) ,. B(5) , . . . , B(15) .
The contents of the input stream result i n the following assignments
(only) , however :

6 to B(1)
I00 ' t o B (3)

5 to B(7).

On output, the values of the data l is t items, which may be arbitrary
expressions, are converted to character form according to the conver-
sion rules. Thus, the converted.character form w i l l ref lect the
at tr ibutes of the variables' o r expressions from whose values they
were obtained. Note that the conversion rules for binary arithmetic
data to character s tr ing c a l l fo r , an intermediate conversion to
decimal, so that the value "three" of a FIXED BINARY variable, for
instance, ' w i l l be printed' as 3 instead of 11B.

Placement of the character representations of the values i n the
output f i l e depends on whether that f i l e is a print f i l e or not.
If it is not, - they' are separated by oiw b1a.k. I T it is , siiccessive
values are aligned' on predefined "tab" columns. (The tab columns
can be changed' as described i n OPG 7 and CPG 6. In the ANSI language,
a 'I'M option is provided on the OPEN statement, which w i l l simplify
the specification of user-defined tab positions for pr in t f i l e s .)

Also, foi" non-print f l l e s the values of character s tr ing variables
o r expressions i n the data l is t are surrounded by quotes i n the
external representation. (If the data being written out with l i s t -
directed output were to be read back in la te r wit91 l is t-directed
input, these quotes w i l l be needed t o identify the input stream item
as a character' s tr ing constant.) For print f i l e s they are,not
surrounded by' quotes ' (remember' what the PRINT a t tribute says : the
f i l e ' i s t o be printed, i. e. , not read back in) .

See LRM 143 and LRM 144.

7.16. Dat a-directed transmission.

Data-directed transmission also permits s h p l e , free-form stream
transmission. The essential difference Irom list-directed traris~irission
is that values on the external medium are accompmi ed by the names of
the variables i n the program from which they were obtained or t o
which thcy are to be assigned. Because of this, the elementary data
l is t i t c m in a data edireeted PUT. statement 111us t be variables (possibly
subscripted by expressions) ; they cannot be arbitrary expressions. The
keyword DATA precedes the parent.hesi.zed data l i s t , forming the DATA
option.

On input, since each item in the input stream has i ts name associated
w i t h it (the form being essentially that of a scalar assignment
statement without a s'emicolon, and written with constant subscripts
and fu l l structure qualification), the items in the input stream need
not appear i n the same order as the items in the data list. In fac t ,
the order of items i n the data list is to ta l ly i r re leva~l t . Not a.11
of the variables appearing i n the data l i s t need appear i n the input.
stream, but names appearing i n the' input stream must appear in the

data list. Transmission for a single data-directed GET statement
is stopped only when a semicolon 'is encountered i n the 'input stream.
A data-directed input data. l ist . item'may not be subscripted or a
repetitive specification; when'array elements are' to be received
from'the input stream, it is sufficient to have the whole array as
a data l ist item.

Example (using the variables declared i n the previous example for
l is t-directed input) :

GET FILE (F) DATA (B, A, X, N) ;
Input stream causing the same assignments as i n the
previous example :
X 4 . 4 A(~)='vAL~' A{3)= " e l 5
B(l)=G B(3).=1E.2 ~ (7)=5 .1 ;

Note that items i n the input stream are separated by a comma and/or
one or more blanks.

On output, repetitive specifications, subscripted variables, e tc . ,
are allowed. The values are accompanied by thei r variable names
with subscript expressions evaluated to a constant value. Items
are separated as in l is t-directed output. A semicolon is written
following the l as t item.

In a data-directed transmission statement, the data l is t following
the keyword DATA may be entirely omitted. This is equivalent to
specifying a data l Z s t containing a l l variables laown a t that point
i n the program which are legal i n a data-directed data list.

&

See LRM 145 and LRM 146.

7.17. Edi L-directed trarlsyussiur~.

Edit-directed transmission gives the programmer f u l l control over
the format of data on the.externa1 medium. Edit-directed transmission
statements include not only data lists but format lists as well.
During their execution, the two lists are matched so that the value
being written. out (or read in) is assembled (or decoded, respectively)
according to the format item in the format , l is t . Values on the
external medium are not self-delimiting with blanks or commas as in
l is t-directed or data-directed transmission; the format item for a '

particular val~ie specifies the number of characters to be used on the
external medium as well as the format of the contents of that f ie ld .

In edit-directed GET or PUT statements the parenthesized data list
is preceded by the keyword EDIT. The format l i s t is also parenthesized
and immediately follows the data l ist (i .e . , no keyword is used).
A l l of th is constitutes the EDIT option.

7.18. Format lists.

A .format l ist is a l is t . of format it& separated by commas. Each
format item is one of the following:

(a) A data format item, control format item, or remote format
item (described below) .

(b) One of those preceded by either ' an unsigned decimal integer
constant or a parenthesized expression, representing an
i tera t ion factor.

(c) A parenthesized format list preceded by an i terat ion factor.
An i tera t ion factor effectively replicates the,elementary format item
or l i s t of items that fol lows' i t .

Data f o m t items describe the format of a f i e ld on the external
medium corres~ondinrr to an item from the d a t a . l i s t . Control format
items do not korr&spond to items in the data l i s t and thns do not
E i b e the format of a.value; they indicate. control actions such
as skipping t o a new l ine or page, well as others.. Remote format
itel~ls are described' :l.ar.eY.

Matching of items between data lists and format lists proceeds as
follows. The process is "driven" by the data l ist . Once the next
scalar item is obtained from the data l ist (remember that a structure
item' is equivalent t o a list of i ts scalar base itemi, in order', and
an array item' is equivalent to' a l is t of its subscripted elements i n
row-major order), control advances in the format l is t unt i l a data
format item is encountered, and it is that data format item which is
paired with the scalar data iist item. Any actions specified by
control format items encountered while looking for the next data
format item are taken. An i terat ion factor 'is ,evaluated when it is
encountered and causes repetition of the following item or list the
indicated number of times (which may be zero). When the data l is t
is exhausted, any remaining format items (even i f the next one is a
control format item) are 'ignored. IIowever, i f the format list is
exhausted f i r s t , it i s rescanned from the beginning (note: from t.he
beginning of the whole l i s t) .

I t should be remarked that pairs of data lists and their corresponding
format lists may be repeated i n an edit-directed transmission state-
ment. When one data list is exhausted, the second is begun; the
second format l is t is used for subsequent matching, even i f the f i r s t
one was not exhausted. I f a format list is exhausted before i ts
corresponding data l is t , - that format l i s t is rescanned from the
beginning.

See LRM 1 4 7 and LRM 148.

7.19. Data format items.

Detailed descriptions of the s ix data. format items would take many
pages and w i l l not be. attempted' here. ' The' flavor of three of them
w i l l . be: given. Morc information is in LRM 149 and LRM 150.

. . F fo-t i tem. On output, the value is converted to FIXED DECIMAL
(the data. l ist item may have at tr ibutes of any computational data
type) . The format item specifies a to ta l f i e ld width, an optional
n~rmbcr of fractional positions (taken a s 0 i f not specified), and
an optional scale factor. Examples :

F(5) might produce 'bbl23, bt,b50, or -1003.
F(6,S)' might produce bl.OOO, -3.012, or 10.640.

On j.npi~t., t.h& contents of the f i e ld width specified must be a
decimal integer constant, positioned anywhere i n the f ie ld . I f a
decimal point i s used, it overrides the fractional- art f i e ld
width in- the format item; i f it isn ' t , it is assumeh , to appear i n
the position specified by the format item.

E format item. On output, the value is converted to the form of
a decimal floating-point constant having the specified to ta l f i e ld

'width and number of fractional digits. ' On.input, the f i e ld must
contain a valid decimal floating-point or f ixed-point constant .

A format item. On output, the value is conveqted to character and
disposed of i n the f i e ld width specified. The f ie ld width may be
omitted, in which case the f i e ld width i s the length of the character ,

; value. On input, the f i e ld width specified (i t 'cannot be omitted)
is assumed to contain a character s tr ing value (a l l characters are.
legal) .

The remaining data format items are B (bit) , C (complex) , and F' (picture) .

Field widths, etc. , may be given by the values of expressions; they
need not be constants.

Note that there is no correspondence of data types required for data
items and their matching format items. Conversions are performed as . .

necessary. E.g., suppose a data item were a . CIIAR (50) VAR variable,
and suppose the format item were F(5). On output, the character
s tr ing value w i l l be converted to fixed decimal, which may cause the
CONVERSION condition to occur. On input; the 5-character f i e ld must
contain a decimal fixed-point constant. If it doesn't, the CONVERSION
condition w i l l occur. If it does, i ts value w i l l be converted to
CHAR (8) for assignment to the target variable.

7.20. Control format items.

X format item. X(n) causes the next n positions to be f i l led 'wi th
blanks,. on output,. or skipped, on input.

SKIP format item. SKIP(n) causes the current l ine to be terminated
and the next n - 1 l ines to be skipped. SKIP is equivalent t o SKIP(1).
SKIP(0) is allowed only fo r print f i l e s ; it suppresses spacing and
causes the next l ine t o be overprinted on the current one. This is
useful fo r underscoring.

COLUMN format itcm. Abbreviation is COL.
COL(n) causes cursor to be repositioned forward t o the given

' position i n the l ine . Intervening positions are f i l l e d w i t h blanks
on output and are skip ed on i n u t . I f the current l ine is already P past the designated co umn, SKI!(^) is assumed; i .e . , the next l ine -
is positioned t o the designated column.

PAGE format item. Used for print f i l e s only. Succeeding output
w i l l continue on the next page.'

LINE format item. For pr in t f i l e s only. Succeeding output w i l l
continue on the designated line. I f the current page is already
past that l ine, a ~iew page is begurr.

See LEM 151.

7.2 1. Remote format item.

The remote format item has the form R(&b& where is a . label-
v a l u ~ e ? s s i o n . When one is encountered, the FORMAT statement . .
whose statement label is tlie value ,of Labd is scanned. A FORMAT
statement merely contains a format l i s t ; it can be used t o provide
several different edit-directed transmission statements with the
same format l ist . Example:

GET FILE (IN) EDIT' (N,X) (R(LAB));
PUT FILE (OUT) EDIT (N+2,X-1) (R(LAB));
LAB: FORMAT .(F(8) ,X(1), E(15,5)) ; . .

A FORMAT statement is not executable i n the normal sense. In the . .

ANSI standard, the label on a FORMAT statement is of a new data type,. .

"format", and there are format variables and a FORMAT attribute.
I . e . , there i s a clear distinction between format values and label
values, and they serve different functions. The current language is . ' . .
a l i t t l e cloudy in th is area. See LRM 152.

7.22. . Other stream transmission statement options.

Any stream transmission statement may contain a SKIP option. The
syntax and meaning are the same as for the SKIP format item. The
skipping takes place before the data l ist is processed, i . e . , f i r s t .

A PUT statement for a print f i l e may contain a PAGE oution.or LINE - - .-

option, or both. The 'syntax and rn&ming are as for the same format
items', and the action is taken before 'data transmission.

A statement with one of the above options may omit the LIST, DATA,
or WIT option. For.exarnple, PUT.FILE (SYSPRINT) PAGE; causes a
new page .to be positioned on the f i l e SYSPRINT without data transmission.

The COPY option i n a GET statement says that the input stream read
is t o be copied, exactly as read, to the stream output f i l e specified
i n the COPY option.

The FILE option, which designates the stream input or output f i l e ,
may be replaced by a STRING option. In a GET statement, the STRING
option provides a character s tr ing expression which serves as the
source of input stream data instead of a f i l e . In a PUT statement, .

it specifies a character s tr ing variable that serves as a sink of
output stream data instead of a f i l e . The STRING option extends the
fac i l i t i e s of stream 1/0 to operations on strings (for instance,
formatting) performed in core as str ing manipulations (see LRM 153).

Now review LRM 154 through LRM 157. Certain options of PUT statements
intended for debugging 'and implemented only by the Checkout compiler
(and which are not part of the ANSI standard) are described in Lesson
13. More review: LkM 159.

7.23. Standard f i l e s .

The language recognizes SYSPRINT as a standard print f i l e and SYSIN
as a s'tandard stream input f i l e . A GET or PUT statement not containing
ei ther a FILE option or a STRING option is equivalent to one containing
FILE (SYSIN) or FILE (SYSPRINT) . Thus :

GE1' (A,B, C) ; is an easy way to get input.
GET DATA; allows any variables hown to be "assigned"

a value from SYSIN.
PUT DATA; is an easy way to print a l l known computational.

variables and their values on SYSPRINT.
PUT (A,B,C); is a carefree way to provide output.
PUT SKIP; conditions SYSPRINT t o s t a r t receiving future

output on a new line.

See LRM 158, OPG 8, and CPG 7.

7.24. Conditions applicable to stream I/O.

The UNDEFINEDFILE'. condition, which is applicable t o a l l I / O , has
already been mentioned; so has CONVERSION, which can occur sduring
stream input o r output (as well as the situations .mentioned i n
Lesson 6) . Another'condition from Lesson 6 , the SIZE condition,
occurs i n edit-directed output i f the f i e ld width specified i n an
E o r F format item is not large enough'to contain non-zero high-
order significant d igi ts or a leading minus sign.

Four new conditions are applicable. The TRANSMIT condition (which
is a qualified condition, l ike UNDEFINEDFILE, i - e . , it i s qualified
by a f i l e value) occurs i f a real, 3jue T/O error occurs on any
input or output statement. Its default s tatus is enabled and it
cannot be disabled. Standard system action is to issue a message
and raise ERROR. I f normal return from a TRANSMIT on mi-t occurs,
execution continues from the point of interrupt, but the effect of
the 1/0 operation that raised TRANSMIT is unpredictable.

The ENDFILE condition (also qualified) occurs on any input operation
when no more data is available. In the case of a GET statement, i t
occurs i f the physical end of f i l e is reached before data transmissiorl
or between two data transmissions associated w i t h data format items.
I f the physical end of f i l e is encountered duri,ng the processing of
a data format item o r X format item, ERROR is raised instead. The
defa~Lt status o t ENUk'lLE is enabled; it cannot be disabled. Standard
system action is to issue a message and raise ERROR; thus, even i f you
don1 t l ike on units, you pret ty much need an ENDFILE on unit. On
normal return from WENDFILE on unit , execution continues w i t h the
statement following the input statement.

The ENDPAGE condition (also qualified) occurs when an attempt is made
t o transmit data to a l ine on a page of a pr in t f i l e havim a line
number i n excess of the value of PAGESIZE (as specified i n an OPEN
statement or defaulted). Status is as for the above conditions.
Standard system action is to s t a r t a new page; this uselul acLiurl
occurs without any specific request! Note, however, that i f an ENDPAGE
on unit is entered, any further output that it does to the same f i l e
w i l l continue to appear on the same page, on lines with even higher
l ine numbers. This is useful for printing page footings.. After printing
a footing, i f it desires, the on unit could execute PUT FILE(. . .) PAGE;
t o skip t o the next page. I t may execute, then, further PUT statements
to print a page heading (column headings, etc.) . When normal return
from the on unit is f inally made, execution continues from the point of
interrupt i n the PUT statement that raised the condition. Note that

execution of;a LINE or SKIP format item or statement option can
cause ENDPAGE to be raised; on normal return, the action specified
by LINE or SKIP is ignored.

The f inal condition, NAME (also qualified), occurs on data~directed
input i f a name in the input stream does not appear i n the data l ist
or, i f no data l i s t is .provided, is not known i n the current block.
I t also occurs i n various cases of ill-formed input. Default status
is as for the above.' Standard system action is to ignore the incorrect
input stream item, issue a message, and continue. On normal return,
the GET statement continues with the next input stream item.

See LRM 116 for further detai ls on the above.

7.25. Stream 1/0 t o a terminal.

. The Optimizing and Checkout compilers modify certain aspects of stream .
1/0 when a f i l e i s associated with a terminal instead of a dataset,
t h e goal being better human engineering.

Normally, successive PUT statements merely place successive values
into a l ine buffer'; data transmission does not actually occur unless a
l ine is completed. In TSO, each PUT statement transmits its data to
a terminal immediately so that you may see a l l output generated
logically before you are required' to supply input. Nevertheless,
s'uccessive PUT statements without intervening GET statements continue
to write i n the same line.

SKIP(0) is implemented by backspacing! This is only useful on an
IBi 2741 terminal.

When a GET statement i s executed, the carriage is returned and you are
yro~lpted with a colon and another carriage return! However, i f the
l a s t PUT statement directed to the terminal transmitted a colon as the
l a s t character, that is taken t o be a prompt issued by the program and
the prompting action described above is not taken. End-of - line: is
taken as a delimiter between items, unlike the usual behavior, so that
you may type one item per l ine without blanks, I f a data l i s t isn't .
exhausted a t end-of-[line, you are prompted for more with a plus sign
followed by a colon. Finally, i f end-of-line i s encountered inside a
data format item, i . e . , besore t he whole f i e ld width i s exhausted,
sufficient t ra i l ing blanks are assumed t o match the f i e ld width.

These features and others arc described in CTUG 2 and 3 and OTUG 3 and 4.

7.26. Comparison to FORTRAN.

Edit-directed 1/0 corresponds to FORTRAN "formatted 1/01 (but not
the "direct access" kind). The format list may accompany the GET
statement or it may be remote (which is more. l ike FORTRAN). Each
transmission statement does not automatically s t a r t a new l ine , as
i n FORTRAN. For a pr in t f i l e , you do not provide a carriage control
character as the f i r s t character of data for each l ine; that is taken
care of automatically by PAGE., SKIP, or LINE options or format items
and i f data just overflows a line. (For a non-print f i l e , however,
SKIP merely causes the output l ine to be finished'. The system does
not provide carriage control characters, and i f you intend t o print
a dataset created via a non-print f i l e , and you t e l l ASP via the
RECM DCB operand that the dataset'has carriage control characters,
you w i l l have t o generate them in the output data. Use YKINY for
datasets to be printed! I f not declared, SYSPRINT - is a PRINT f i l e .)

Items i n an edit-directed output data list can be expressions, while
i n FORTRAN formatted 1/0 they cannot be.

'l'he repetitive data l ist item is l ike I;OKI'KAL\lls "implied DO," but a
l i t t l e more general.

Formatted 1/0 i n FORTRAN is driven by the format l is t , while edit-
directed 1/0 i n PL/I is driven by the data l ist .

I f the format l is t is exhausted before the data l ist , it is rescanned
from the beginning i n PL/I, even i f it contains a nested (and iterated)
format list (what is called a "group format specification" i n FORTRAN). .

'l'here is nothing to correspond t o I ; O K i ' M - ' s H format item o r l i t e r a l
format item;.data can only come from the.data list.

A given data fomt ieem can be marched w f e h any rype of 8ara lrem,
while a specific correspondence of types is required i n FORTRAN.

Leading or t ra i l ing blanks i n F or E-format input f ields are ignored
rather than treated as zeroes. Embedded blanks w i l l cause the
CONVERSION condition to occur.

There is no equivalent to FORTRAN's format arrays and object - the
formats. However, much of the f l ex ib i l i ty that it p.rovides is avail-.
able i n the fac t that i terat ion factors and f ie ld widths can be
expressions whose values are obtained by reference . t o input variables.

List-directed 1/0 is roughly equivalent to the same feature of
FORTRAN, though the contents -of l is t-directed input data streams
are different .

Data-directed 1/0 is ' roughly equivalent to "NAMELIST I/O" i n FORTRAN,
though the details are 'different.

7.2 7. Unanswered questions .
The question "1.10~ do we correct a conversion condition?'" f i r s t asked
in Lesson 6 is relevant here, ' too. I t is answered i n Lesson 1 0 .

We w i l l learn i n Lesson 1 0 not vrlly how we can t e l l what raised ERROR,
but i f we find it was caused by standard system action for one',of the
1/0 conditions that can do that when'no on unit .is established, how
we can determine what f i l e is involved.

We w i l l also see how we can t e l l what garbage caused the NAME condition
t o occur, and which of the many possibi1ifi .e~ .was the cause of an
UNDEFINEDFILE condition.

7.2 8. Homework problems.
. .

(# 7A) Suppose F is declared as, FILE. What f i l e description
a t t r ibutes 'wi l l it have i f it is opened implicitly by . a PUT statement? Suppose the PUT statement says

PUT FILE (F) LINE (10) LIST ('BEGINNING') ; P

Why is th is i l legal? . .

(#7B) A 613 ABEND occurs i f you t ry to open a particular
SYSOUT dataset when it is already open. The error
messages that are written out when the ERROR condi-
tion i s raised are written on f i l e SYSPRINT (one of
the standard f i l es) . I f the f i l e i s not already
open, it is opened by th is action. Suppose the Dll
statement for SYSPRINT says SYSOUT=A (as it does i n
our cataloged procedures). Recall that an explici t
OPEN for an already opened f i l e is ignored i n PL/I .
Suppose an error message has already been produced
on SYSPRINT. What happens i f your program subsequently
executes

OPEN FILE (F) TITLE ('SYSPRINT1) OUTPUT;
(The same can happen i f the error message is produced
a f te r F is opened.)

(#7C) What happens i f an attempted opening of f i l e SYSPRINT
raises UNDEFINEDFILE and there is no UNDF on unit for
SYSPRIW? An intel l igent recovery from th i s situation
w i l l be described i n Lesson 1 2 .

(#7D) Write some code that w i l l associate f i l e F with the
dataset identified by t he DD statement with ddname
DDO1. I f the OPEN f a i l s , assume no DD statement was
provided and t r y DD02. Continue on to DD99 unt i l you
succeed'on one or f a i l on a l l . (Though not the main
point of th is problem', you should s e e how a numeric
pictured variable can be ilssefi.11 in 'generating those
ddnames .]

(#7E) Show some code which in i t i a l i zes the elements of an -
array o f f i l e wriSics to different f i l e constants.
Assume the program w i l l access a l l the f i l e s "in
parallel" instead of one a f tc r another, so that they
must a l l be open simul.taneously . Open them in a DO
group. Be prepared to write a message for each one
whose open f a i l s , giving its index. Establish the
on units i n the same DO nrom . If vou were to - -

establish the on units ifi a
executed' before the one that
you have to . do anything dif f e&nt to.. make sure the
proper index i s printed out when a particular f i l e
can't be opened'!

(#7F) Is. it possible to write a u t i l i t y program in PL/I
which is capable of manipulating any number of data- .
se t s simultan&ously? Assume the processing required
is methodical enough to access the f i l e s through an
array (allocated dynamically with adjustable extents
once the program detepines how many fLles it w i l l
have t o deal with).

[# 7G) I f the input stream
3 5 10B 355 WORD 'AGAIN' '16s' '5.1'

were read by rhe statement
GET (N, S, M, X, T, U, V, J) ;

with the variables declared a s follows:
N FIXED BIN
S CHAR (20) VAR
M FIXED DEC
X FLOAT DEC
T CHAR (20)
U CHAR (3)
V FIXED DEC
J FIXED DEC

~ for which input stream items would the CONVERSION
condition occur? (Assume it is corrected whenever
it occurs, so that the whole l ist is processed.)
In which cases is the raising of the condition
dependcnt on the attributes of the variable i n the
data l ist , and in which cases not?

(# 7H) I f you have FORTRAN experience, . compare the PL/I
and FORTRAN format items.

(#71) Write a portion of a program that reads two input
values which are taken to be the row and column
dimensions of an array, allocates an array of that
s ize (use an automatic variable), then reads i n
values for the array elements under format control.
Demonstrate several alternatives:

(a) A DO group containing'a GET statement
, . t h a t reads a single value into the next

element of the 'array.
(b) A single GET statement (for the array

elements) that uses a repetitive
specification.

(c) As i n (b) , but without a repetitive
specification; This is only possible
i f the values are presented i n row-
maj or order.

(# 75) There i s no 'REWIND statement i n PL/I . How would
you accomplish that function?

(#7K) There is no BACKSPACE statement. Suppose you had
to read a l ine of input twice, ur~der different
format controls. How would you do that? '

(#7L) Suppose you want to pr in t the elements of an array
using F (8 ,3) fbn~lat. What happens i f an element
has the value 10000? O r -1000? Suppose you want
the f i e ld t o be f i l l ed with eight asterisks when
the value won't f i t , as i n FORTRAN. Show a way of
doing th is which involves staterrlent

PUT FILE (OUT) EDIT ((TEST(A(1)) DO I = 1 T0 100))
(100 A(8) ;

TEST is a function procedure. Your job is to show
what is i n TEST.

(#7M) S is declared a s a varying length character s t r ing
variable. I f ei ther of the following statements' i s
legal, what does it mean? I f not, why not?.

PUT EDIT (S) (A) ;
GET EDIT (S) (A) ;

(# 7 N) What is the difference between the following three
statements, i n terms of thei r effects?
X is an array.

PUT EDIT (X) (E (20,8) , SKIP) ;
PUT EDIT (X) (SKIP, E (20',8))
PIIT EDIT (X) (E (20,8)) SKIP;

What would be the difference i f X were a scalar
va.riah1.e and the PUT statement were executed inside
a loop?

(# 70) Read a l i s t of values into an array using l is t-directed
input, You do not know i n advance how 'mny values you
w i l l get. The input f i l e contains only the array
values. Be prepared t o receive up to 1000 values, and
s e t a variable to indicate how many were read into the
array. Print a message i f more than 1000 values are
received. . '

(X 7 ~) In the above problem you may be l e f t w i t h an incomplete
array, i . e . , one some of whose elements are unused.
What could you do subsequently t o take advantage of
array assignr~lents , array expressions, e t c . , which
operate. on a l l the elements of an array?

(#7Q) Suppose you are using an ENDPAGE on unit to pr in t a
page footing a t the bottom of every page of output on

. . a pr int f i l e . How do. you .get the footing printed a t
. , the. . bottom . of 'the l a s t page, :which may be incomplete?

.

(# 7R) Demonstrate the use of an ENDPAGE on unit fo r the
production of page headings.

8. I n t r o d u c t i o n t o record 110; consecut ive d a t a s e t s .

I n record 110, t ransmiss ion of d a t a occurs i n u n i t s of d i s c r e t e r eco rds ,
which co r re spond , to l o g i c a l r eco rds i n a d a t a s e t . Each record t r ansmis s ion
s ta tement t r ansmi t s e x a c t l y one record i n t o o r ou t of a v a r i a b l e , c a l l e d
a record v a r i a b l e . (Some record t ransmiss ion s t a t emen t s d o n ' t c ause any
d a t a t ransmiss ion and don ' t use record v a r i a b l e s , b u t they s t i l l do some-
t h i n g t o a record i n a d a t a s e t .)

I , .

Transmission c o n s i s t s of t h e mass t r a n s f e r of so many cont iguous b y t e s , .
of s t o r a g e between t h e record on t h e e x t e r n a l medium and t h e record
v a r i a b l e i n core . It should be obvious t h a t t h e record v a r i a b l e must

, r e p r e s e n t connected s t o r a g e (Lesson 3) . Beyond t h a t , record v a r i a b l e s
may be j u s t about anyth ing -- s c a l a r s , a r r a y s , o r s t r u c t u r e s . The d a t a .

. . i n t h e record is a byte-for-byte image of t h e d a t a i n c o r e , r e g a r d l e s s
of t h e d a t a type. Transmission occurs without conversion of 'any k ind .
Recurd v a r i a b l e s can con ta in program c o n t r o l d a t a , b u t va lues read from . .

such r eco rds may no t be v a l i d , p a r t i c u l a r l y i f t h e reading occurs i n a
d i f f e r e n t execut ion of t h e program from i t s w r i t i n g .

Record f i l e s a r e used f o r v a r i o u s purposes. Because d a t a t ransmiss ion
t a k e s p l ace wi thout conversion between i n t e r n a l machine form and e x t e r n a l
c h a r a c t e r form, record f i l e s (and t h e d a t a s e t s a s soc i a t ed wi th them) a r e
p a r t i c u l a r l y a p p r o p r i a t e f o r i n t e rmed ia t e s t o r a g e , i . e . , d a t a c r e a t e d by
t h e program f o r reading back i n l a t e r (may be much l a t e r) . By t h e same
token, record f i l e s (and t h e i r d a t a s e t s) a r e no t s u i t e d f o r human con-
sumption except i n t h e s p e c i a l c a s e t h a t t h e record v a r i a b l e s a r e
c h a r a c t e r s t r i n g v a r i a b l e s .

A record f i l e is one which has t h e WCORU f i l e d e s c r i p t i o n a t t r i b u t e (FDA)
i n s t e a d of STREAM. See LRM 136 and LRM 160.

8 .2 . Records and keys.

A l l d a t a s e t s are cuupused of a s e t of records . Even d a t a s e t s a s s o c i a t e d
w i t h s t ream f i l e s are composed of a sequence of r eco rds , b u t t h a t is n o t
always of much consequence.

The records of some types of d a t a s e t s a r e accompanied by i d e n t i f i c a t i o n
f i e l d s c a l l e d . r e c o r d e d keys. A recorded key con ta ins a c h a r a c t e r s t r i n g
v a l u e , c a l l e d a key, which i d e n t i f i e s t h e record wi th which i t is
a s s o c i a t e d . A recorded key may be phys i ca l ly . . s epa ra t e from t h e record
o r embedded w i t h i n i t . A d a t a s e t containing.keyed'recdrds is c a l l e d a

keyed d a t a s e t .

When a program wishes t o d e s i g n a t e a p a r t i c u l a r record i.n a d a t a s e t , i t
does s o by computing and p re sen t ing a key va lue . Key va lues i n t h e
program a r e c a l l e d source keys. .Thei r meaning is de f ined by t h e imple-
mentat ion. Usual ly they correspond t o t h e va lues i n recorded keys, b u t
t h i s is no t always necessary .

8 . 3 . Language vs . implementation: h i s t o r y of record 110.

The language . . f e a t u r e s f o r r eco rd 110 seem, more than any o t h e r p a r t s of
t h e language, . . t o have been s t r o n g l y inf luenced by t h e k inds of d a t a s e t s
and p roces s ing techniques a v a i l a b l e i n I B M 1 s OS ope ra t ing - . system. Perhaps
what happened went something l i k e t h i s : The language des igne r s used t h e
c a p a b i l i t i e s of I B M hardware and t h e OS ope ra t ing system ' t o s e t goa l s
and t a r g e t c a p a b i l i t i e s . From a huge a r r a y of . .poss ihd .k i t ies they d i s t i l l e d
ou t some common f e a t u r e s and c a l l e d th i s ' l a r iguage . The, common f e a t u r e s
c o n s t i t u t e d a minimal s e t of c a p a b i l i t i e s but could be combined i n diverse
ways t o provide many v a r i a t i o n s i n behavior . Some of t h e s e v a r i a t i o n s
corresponded t o t h e hardware c a p a b i l i t i e s they had i n mind w h i l e o t h e r s
d i d n ' t

Other manufacturers have se l ec t ed ' combina t ions t h a t corresponded t o t h e i r
hardware and o p e r a t i n g system c a p a b i l i t i e s . C e r t a i n combinations of
language . . f e a t u r e s t h a t I B M has found a use f o r may no t have a use i n another
system. Even w i t h i n t h e IBM implementat ions, t h e i n t r o d u c t i o n of t h e VS
o p e r a t i n g system h a s ' l e d t o t h e a s s ign ing of meaning t o c e r t a i n combina-
t i o n s of f e a t u r e s t h a t were p rev ious ly meaningless.

Our s tudy o f , r e c o r d 110 w i l l thus proceed a s fo l lows . We w i l l look f i r s t
a t some of t h e i n d i v i d u a l language f e a t u r e s and what they mean. We w i l l
t hen t u r n our a t t e n t i o n t o one of t h e k inds of d a t a s e t s I B M suppor t s and
w i l l d i s c u s s t h e k inds of process ing t h a t may be done wi th i t and t h e
language f e a t u r e s used t o accomplish it.. I n Lesson 9 we w i l l s tudy
a d d i t i o n a l language f e a t u r e s and apply them t o o t h e r k inds of I B M d a t a s e t s
and p roces s ing techniques .

PL/I provides two k inds of acces s t o d a t a s e t s a s s o c i a t e d w i t h record f i l e s ,
s e q u e n t i a l and d i r e c t . D i r e c t acces s , denoted by t h e DIRECT FDA, means
t h a t r eco rds w i l l b e accessed i n a n a r b i t r a r y sequence. Each record t o
be processed must be i d e n t i f i e d by a sou rce key. Sequen t i a l a c c e s s ,
denoted by t h e SEQUENTIAL (abbrev ia t ion : SEQL) FDA, means t h a t records
w i l l b e accessed i n some k ind of s e q u e n t i a l o rde r . What i s meant by
s e q u e n t i a l o r d e r is up t o t he implementation: i t may be t h e p h y s i c a l
o r d e r of r eco rds i n a d a t a s e t o r t h e o rde r def ined by ascending o r descend-
i n g key v a l u e s . (Though w e haven ' t s a i d s o e x p l i c i t l y , keyed r eco rds may
have a l o g i c a l o r d e r def ined by t h e i r keys which i s no t i d e n t i c a l t o t h e i r

p h y s i c a l o rde r i n t h e d a t a s e t .) An implementation may provide a choice
between p h y s i c a l sequence and key sequence. When key sequence i s be ing
used, t h e program may use sou rce keys.

A l l r eco rd f i l e s w i l l . h a v e e i t h e r t h e SEQL o r t h e DIRECT a t t r i b u t e . See

I LRM 161. A s f o r o t h e r FDA's, t h e s e may be s p e c i f i e d e x p l i c i t l y o r they
may b e acqui red a t open t ime by deduct ion , imp l i ca t ion , o r d e f a u l t .

8.5. The KEYED a t t r i b u t e .

C e r t a i n o p t i o n s of t ransmiss ion s t a t emen t s provide f o r t h e communication
of key va lues . For c e r t a i n types of o p e r a t i o n s t h e i r u se i s mandatory;
i n o t h e r c a s e s they a r e n o t used. I f t h e y a r e t o - be used, t h e f i l e must
have the'KEYED FDA. Such a f i l e i s c a l l e d a ' k e y e d ' f i l e . T t i s n o t r equ i r ed t h a t
keyed f i l e s and keyed d a t a s e t s be a s s o c i a t e d only wi th each o t h e r ; they may a l s o
be assoc ia t ,ed w i t h t h e i r non-keyed a l t e r n a t i v e s . We w i l l s e e how a keyed f i l e can:
b e ' u s e d w i t h a non-keyed d a t a s e t , and how a non-keyed f i l e can be used , .

w i t h a keyed d a t a s e t , when we look i n Lesson 9 a t c e r t a i n types of process ing
provfded f o r i n IBM implementations.

Keyed f i l e s may b e accessed s e q u e n t i a l l y o r by d i r e c t acces s . Sequen t i a l
f i l e s may b e a c c e s s e d . u s i n g keys o r n o t , hence a s e q u e n t i a l f i l e may b e
keyed o r .non-keyed. The ' a r b i t r a r y o r d e r i n which d i r e c t f i l e s are accessed
r e q u i r e s t h e . u s e of keys , hence d i r e c t f i l e s may n o t b e non-keyed.. Thus,
t h e DIRECT a t t r i b u t e imp l i e s t h e KEYED a t t r i b u t e . See LRM 162. The t h r e e
v a l i d combinations a r e SEQL, KEYED SEQL, and KEYED DIRECT.

8.6. Record t ransmiss ion s t a t emen t s .

I n t h i s l e s son we w i l l s tudy t h r e e record t ransmiss ion s t a t emen t s .

The'READ s ta tement o b t a i n s an e x i s t i n g record from a f i l e .

The REWRITE s ta tement r e p l a c e s a n e x i s t i n g r eco rd w i t h new, o r updated, da t a .

The WRITE s ta tement adds a new reco rd t o a f i l e .

I n Lesson 9 w e w i l l s t udy t h e DELETE s t a t emen t , which d e l e t e s an e x i s t i n g
record from a f i l e . I n Lesson 11 we w i l l s tudy an a l t e r n a t i v e t o t h e WRITE
s t a t emenr 'that can be used i n c e r t a i n ca ses .

8 . 7 . Common o p t i o n s of record t r ansmis s ion - s t a t emen t s .

A l l r eco rd t r ansmis s ion s t a t emen t s con ta in t h e FILE op t ion which, a s i n
s t ream 110, d e s i g n a t e s t h e f i l e .

The READ s ta tement uses t h e INTO op t ion t o name t h e v a r i a b l e i n t o which a
r eco rd is t o b e read . A gene ra l requirement i s t h a t t h e amount of s t o r a g e
occupied by t h e v a r i a b l e , i . e . , i t s s i z e t ak ing i n t o account any a r r a y
e x t e n t s , e t c . , must be equa l t o t h e l eng th of t h e record read . Note,
however, t h a t i f you read i n t o a s c a l a r varying-length s t r i n g t h e c u r r e n t
l e n g t h of t h e s t r i n g v a r i a b l e is s e t by the reading of t he record , a s
on assignment. I f you in t end t o read i n t o d i f f e r e n t v a r i a b l e s having
d i f f e r e n t s i z e s , then t h e d a t a s e t must have V o r U format r eco rds (not F
format r eco rds) -- independent of any blocking. Sce LRM 165. An a l t e r n a -
t i v e t o t h e INTO op t ion w i l l b e d iscussed i n Lesson 11.

The REWRITE and WRITE s t a t emen t s u se t h e FROM'option t o name t h e v a r i a b l e
from which a record i s t o b e w r i t t e n . The.' same.requirements f o r matchinn
t h e s i z e of t h e r eco rd atid record v a r i a b l e e x i s t . at hat i s , i f d i f f e r e n t -
v a r i a b l e s , having d i f f e r e n t s i z e s , a r e t o be w r i t t e n , t h e d a t a s e t w i l l
have t o have V o r U format records. When a s c a l a r varying-length s t r i n g
i s w r i t t e n , t h e l e n g t h of t h e record is determined by the s t r i n g ' s c u r r e n t
l eng th . See LRM 166.

It i s f r e q u e n t l y u s e f u l t o use a s t r u c t u r e (Lesson 3) f o r a record v a r i a b l e ,
Thio oerveo t o group 1-elated da L a f Leuls llavllig p o c e n r l a l l y d i t t e r e n t
a t t r i b u t e s (t h e s t r u c t u r e base elements) t oge the r as f i e l d a w i t h i n one
record .

8.8. Data movement d i r e c t i o n a t t r i b u t e s .

I n Lesson 7 we saw the INPUT and OUTPUT FDA's. A t h i r d a l t e r n a t i v e , UPDATE,
can be used w i t h record f i l e s . It indzca t e s t h a t records may be both read
from and w r i t t e n t o t h e f i l e . These a t t r i b u t e s hold s i g n i f i c a n c e f o r t h e
types of r eco rd t ransmiss ion s ta tements that. r.an be 1.1sed wi th file^ having
those a t t r i b u t e s a s fol lows.

READ
REWRITE.
DELETE
WRITE

See LRM 137. A t t h i s po in t you should review the va r ious d i f f e r e n t ways
FDA's may be acqui red . See LRM 132, LRM 134, and LRM 141.

INPUT OUTPUT UPDATE

. .

J

J

J
v'
J
J

8.9. Minor a t t r i b u t e s and opt ions .

The BUFFERED o r UNBUFFERED (BUF o r UNBUF) . B e t r i b u t e s may be used i n c e r t a i n
cases . See t h e i r d e s c r i p t i o n a t LRM 167. For t h e 110 we w i l l be dea l inn -
w i t h i n Lessons 8 and 9 we need n o t be concerned wi th t h i s ; i t i s s u f f i c i e n t
t o l e t i t d e f a u l t . These a t t r i b u t e s a r e n o t i n t h e ANSI s tandard . I n ,

Lesson 11 we w i l l cons ider a c e r t a i n type of s e q u e n t i a l 110 t h a t r e q u i r e s
t h e BUFFERED a t t r i b u t e (i n t h e c u r r e n t language). I n Lesson 1 4 we w i l l
look a t another type of 110 t h a t r e q u i r e s t h e UNBUFFERED a t t r i b u t e , b u t
t h a t , type of 110 i s n ' t i n t h e ANSI s tandard .

The BACKWARDS'atrtibute may be used f o r s e q u e n t i a l i npu t ' record f i l e s asso-
c i a t e d w i t h d a t a s e t s on magnetic tape. It s p e c i f i e s t h a t t h e f i l e i s t o
be read i n t h e r e v e r s e s e q u e n t i a l o rde r of i t s records. This permi ts g r e a t e r
e f f i c i e n c y when making m u l t i p l e pas ses over a t ape d a t a s e t . This a t t r i b u t e
is a l s o no t i n t h e ANSI s tandard . See LRM 168.

The IGNORE op t ion of t h e READ s ta tement may be used i n s t e a d of t h e INTO .
op t ion when t h e s ta tement addresses a s e q u e n t i a l f i l e (e i t h e r . i n p u t o r
update) . IGNORE(n) causes n r eco rds t o be s k i p p e d , . i . e . , read b u t no t
ass igned t o any record v a r i a b l e . See LRM 169.

8.10. ENVIRONMENT a t t r i b u t e f o r record f i l e s .

A v a s t number-of d i f f e r e n t op t ions can be s p e c i f i e d ' i n the. ENV FDA f o r
record f i l e s . F u l l d e t a i l s a r e given i n LRM 163. Although t h i s implementa-
t ion-defined m a t e r i a l i s very important , and you should read i t sometime,
we w i l l d i s cuss he re only c e r t a i n e s s e n t i a l ENV op t ions a p p l i c a b l e t o o u r
implementation.

8.11. Dataser organ iza t ions .

I n Lesson 7 w e po in ted o u t t h a t t h e func t ion of t h e ENVIRONMENT FDA i s t o
provide a system wi th implementation-dependent in format ion i t may need t o
r e l a t e your s tandard PL/I 110 s t a t emen t s t o t h e f a c i l i t i e s a v a i l a b l e i n
t h e system. Some of t h i s in format ion i s o p t i o n a l ; f o r i n s t a n c e , a good
number of t h e ENV upLions a r e e s s e n t i a l l y JCL DCB parameters moved i n t o the
program i t s e l f . Others may be mandatory.

E a r l i e r we s a i d t h a t an implementation has c e r t a i n "nat ive" 1 / 0 c a p a b i l i t i e s

around which p a r t i c u l a r combinations of t ransmiss ion s t a t emen t s and o p t i o n s
are centered . I n the IBM systems, you'must d e s i g n a t e one of t h e n a t i v e
types of record 110 process ing us ing p a r t i c u l a r ENV op t ions . . The a l t e r n a t i v e s
we will cons ider i n t h i s course a r e c a l l e d ' c d n k e ~ u f i v e ; . ir idefed, and ' r e g i o n a l
d a t a s e t o rgan iza t ions . The ENV o p t i o n s , and t h e i r b a s i c meani.ng, a r e as

fo l lows .

CONSECUTIVE. Consecut ive d a t a s e t s a r e non-keyed. Records a r e s t o r e d con-
s e c u t i v e l y i n t h e d a t a s e t . The "order" implied by s e q u e n t i a l acces s i s
p h y s i c a l o r d e r .

INDEXED. Indexed d a t a s e t s a r e keyed d a t a s e t s . Records are s t o r e d , w i t h
t h e i r keys , i n an o r d e r which is usua l ly n o t m a t e r i a l . The "order"
implied by s e q u e n t i a l a c c e s s i s l o g i c a l o r d e r by i n c r e a s i n g key va lue .
Th i s may n o t be t h e p h y s i c a l o r d e r of r eco rds i n t he d a t a s e t .

REGIONAL. Regional d a t a s e t s come i n t h r e e s u b v a r i e t i e s , as we s h a l l s e e
i n Lesson 9 . One is non-keyed and two a r e keyed d a t a s e t s . Sequen t i a l o rde r
is a p e c u l i a r mixture o f . b o t h phys i ca l and l o g i c a l .

To r e i t e r a t e a p o i n t made e a r l i e r , combinations of FDA's , t h e t ransmiss ion
s t a t emen t s and t h e i r op t ions have v a l i d i t y only wi th r e s p e c t t o particular
d a t a s e t o r g a n i z a t i o n s . . Combinations v a l i d f o r some o rgan iza t ions may be
i n v a l i d f o r o t h e r s . Val id combinations a r e summarized a t LRM 141.

Indexed and r e g i o n a l o rgan iza t ions w i l l b e t h e s u b j e c t of t h e n e x t l e s s o n .
The remainder of t h i s one w i l l be devoted t o consecut ive o rgan iza t ion .

8.12. Consecutive d a t a s e t s .

Tllr CONSECUTIVE opclon of che EhVlKUNMENT a t t r i b u t e i s used t o iden . t i fy a
d a t a s e t a s be ing organized consecut ive ly , If t h c ENV a t t r i b u t e i s n o t dec lared
f o r a f i l e , o r i f 'it i s b u t doesn' t con ta in any of t h e d a t a s e t organizaXion
o p t i o n s , then consecut ive o r g a n i z a t i o n is assumed. Though w e d i d n o t say
so i n Lesson 7 , consecut ive organizat4on a p p l i e s a l s o t'o d a t a s e t s asso-
c i a t e d w i t h s t ream f i l e s ; i t 'is t h e 'drily o rgan iza t ion a p p l i c a b l e t o them.

Consecutive d a t a s e t s can only be accessed through s e q u e n t i a l f i l e s . The
U Y U J a t t r i b u t e i s n o t used because t h e r e i s no use f o r t h e va r ious s t a t e -
ment op t ions t h a t have t o do w i t h keys s i n c e t h e r e a r e no keys i n t h e
dataset . Do n o t , however, e u ~ ~ L u s r ~ l l e meanings of consecut ive and sequential.
11 Consecutive" i s an I B M implementation concept t o d e s c r i b e a p a r t i c u l a r type
of o r g a n i z a t i o n and r e p r e s e n t a t i o n of r e c o r d s i n a d a t a s e t i n IBM systems.
I t Sequent ia l" i s a s t anda rd ized PL/I concept t o d e s c r i b e t h e f a c t t h a t r eco rds
w i l l be accessed i n some kind of o r d e r . Sequen t i a l acces s a p p l i e s t o da ta -
sets w i t h o t h e r o rgan iza t ions a s w e l l , b u t consecut ive o r g a n i z a t i o n demands
s e q u e n t i a l acces s .

The k inds of p roces s ing permi t ted on consecut ive d a t a s e t s a r e a s fo l lows .
You may c r e a t e one by w r i t i n g i t s r eco rds s e q u e n t i a l l y ; t h e s e a r e p laced
i n t h e d a t a s e t p h y s i c a l l y i n t h e o r d e r i n which they a r e w r i t t e n . You may
read t h e r eco rds of a n e x i s t i n g one s e q u e n t i a l l y , ob ta in ing them i n t h e i r
phys i ca l o r d e r (hence, i n t h e o rde r i n which they were w r i t t e n) . O r , you

may read t h e r eco rds s e q u e n t i a l l y , making changes t o some and r e p l a c i n g
them i n the d a t a s e t (i n t h e same p l a c e from which they came) be fo re going
on t o read f u r t h e r records . See LRM 170.

8.13. Crea t ing a consecut ive d a t a s e t .

The a p p l i c a b l e FDA's are SEQL OUTPUT. The WRITE s ta tement w i th t h e FROM
o p t i o n is used. I f t h e f i l e h a s n ' t been opened e x p l i c i t l y , execut ion of
t h e f i r s t WRITE s ta tement causes i m p l i c i t opening wi th the a t t r i b u t e s
RECORD and OUTPUT being deduced;' i f a n access a t t r i b u t e wasn ' t dec l a red ,
SEQL is assumed4'by d e f a u l t . See LRM 132 and LRM 134. An example fol lows.

DCL F FILE, S CHAR '(80) ;
OPEN FILE (F) ' SEQL OUTPUT; . .

DO WHILE (more t o w r i t e) ; t

WRITE FILE (F) FROM (s) ;

END ;
CLOSE FILE (F);

I n t h e above example, t h e d a t a s e t w r i t t e n i s i d e n t i f i e d i n t h e JCL by
t h e DD s t a t emen t w i t h ddname F (we d i d n ' t use t he TITLE o p t i o n on the OPEN
s t a t emen t) . The BU s ta tement might look l i k e

/ /F DD DISP= (NEW, CATLG) , DSN=whatever ,
/ / UNIT=whatever,SPACE=whatever,
/ / DCB=(RECFM=f,LRECL=r,BLKSIZE=b)

The DCB parameters f , r , and b could be j u s t about anything. I f f i s F (o r
FB o r FBS), r - must be 80 (s i n c e t h e program, as shown, w r i t e s r eco rds of
l e n g t h 80) and b must b e 80 (o r a m u l t i p l e i f f i s FB o r FBS). I f f i s V
(o r VB o r VBS), r must be a t l e a s t 84 and b must be equal t o o r g r e a t e r than
r. I f f is U , b must b e a t least 80 (r is n o t used) . You can i n t e r m i x
r eco rds of o t h e r l eng ths (w r i t t e n from o t h e r record v a r i a b l e s) i f and only
i f f is - .not F, FB, o r FBS, and r and b a r e l a r g e enough.

Most DCR parameters can be provided via t h e ElW a t t r i b u t e i n t h e program,
which, i f done, t akes precedence t o JCL. A u s e f u l f e a t u r e is t h a t t h e
LRECL and/or BLKSIZE may be camputed by t h e program and s p e c i f i e d us ing
v a r i a b l e s , e .g . ,

DCL F' FILE ENV(FB RECSIZE (R) BLKSIZE (B)) ;
DCL (R, B) FIXED B I N (31) STATIC;
R = some va lue ;
B = 5*R;
OPEN FILE (F) SEQL OUTPUT;
BEGIN;

DCL S CHAR (R) AUTO;
e t c .

Genera l ly , w e w i l l n o t go i n t o s o much d e t a i l w i th JCT., cons ide ra t ions . The
guides have e x t e n s i v e s e c t i o n s on JCL wi th examples. For

c r e a t i o n o f a consecu t ive d a t a s e t , s e e CPG 8 and OPG 9.

It should be po in t ed ou t t h a t when a DISP of OLD i s used w i t h an e x i s t i n g
d a t a s e t , i t is "recrea ted" , i . e . , t o t a l l y overwr i t ten . I f DISP=MOD i s
used, t h e r e c o r d s w r i t t e n w i l l be appended t o t h e end of t h e d a t a s e t , a f t e r
any e x i s t i n g records .

8.14. Re t r i ev ing a consecut ive d a t a s e t .

A consecut ive d a t a s e t may be read by opening a s e q u e n t i a l i n p u t f i l e and
reading s u c c e s s i v e r eco rds w i t h t h e .READ s ta tement us ing the INTO opt ion .
I f a t any p o i n t you can a n t i c i p a t e t h a t you a r e n o t i n t e r e s t e d i n t h e
con ten t s of t h e fo l lowing 11 r eco rds , you may sk ip over them by s i lhs t i t i l t i ng
t h e IGNORE o p t i o n £or t h e INTO opt ion .

8.15. A l t e r i n g a consecu t ive d a t a s e t .

By opening a f i l e a s s o c i a t e d w i t h a consecut ive d a t a s e t f o r s e q u e n t i a l
update (i. e. , us ing FDA's SEQL and UPDATE) you can read t h e r eco rds se-
q u e n t i a l l y and, for any t h a t -you choose, a l t e r t h e i r c o n t e n t s and w r i t e them
back ou t (i n p l a c e) . That i s , you use the READ s ta tement w i t h INTO op t ion
and then, a f t e r a l t e r i n g t h e record by a s s ignmen t s . t o t h e record v a r i a b l e ,
you use the REWRITE statelue~ll: with the F'KUM opt ion . If you do n o t wish t o
a l t e r a r eco rd , j u s t s k i p the REWR.T..TE statement. Note t h a t proceaa5ng is
s t r i c t l y s e q u e n t i a l : you cannot r e w r i t e t h e n-th record a f t e r reading
t h e n + l s t r eco rd , and you obvious ly cannot r e w r i t e a record b e f o r e reading
i t . See LRM 171. S ince an e x i s t i n g record i s be ing r ep laced , i t s l eng th
must n o t be changed.

Note t h a t when a member of a p a r t i t i o n e d d a t a s e t (a s denoted e n t i r e l y by
t h e DSN JCL parameter) is w r i t t e n (o r c r e a t e d) , us ing SEQL OUTPUT, unused
space a t t h e end of t h e d a t a s e t i s used; t he newly w r i t t e n member w i l l then
r e p l a c e any e x i s t i n g member wi th the. same name. (The space occupicd by
t h e rep laced member is no t a c c e s s i b l e and no t a v a i l a b l e f o r re-use unless
t h e d a t a s e t is "compressed" w i t h a u t i l i t y .) However, a member of a PDS
may b e r e w r i t t e n i n p l a c e , u s i n g SEQL UPDATE. It i s p o s s i b l e t o do an
update i n p l a c e because t h e r e i s no way of changing t h e s i z e of a record - -
o; of adding e x t r a r eco rds (t h e WRITE s t a t emen t i s i l l e g a l f o r a s e q u e n t i a l
update f i l e) .

JCL d e t a i l s f o r access ing (reading o r a l t e r i n g) consecut ive d a t a s e t s a r e
g iven i n CPG 9 and OPG 10, complete examples appear i n CPG 10 and OPG 11
(however, they use c e r t a i n 110 f a c i l i t i e s we won't s e e u n t i l Lesson 91).

8.16. The TOTAL option.

Normally, record 110 is accomplished by a c a l l t o a l i b r a r y rou t ine . Under
c e r t a i n cond i t i ons , however, i n - l i n e code may be generated l ead ing t o
s u b s t a n t i a l e f f i c i e n c i e s . This is p o s s i b l e only f o r s e q u e n t i a l ou tpu t o r
i npu t o f consecut ive d a t a s e t s , and then only when c e r t a i n o t h e r cond i t i ons
a r e met. You have t o s p e c i f i c a l l y r eques t i n - l i n e code because t h e compiler
cannot always d e t e c t , f o r a g iven READ o r WRITE s ta tement , whether or : n o t .

t h e c o n d i t i o n s w i l l be met when i t i s executed. By us ing t h e ENV op t ion . .
" TOTAL you a r e promising t o meet t h e condi t ions . See LRM 172 and LRM 17.3. -

8.17. Condi t ions a p p l i c a b l e t o recard 110 (consecut ive d a t a s e t s) . . .

. UNDEFINEDFILE, be ing a p p l i c a b l e t o a l l 110, i s applicabile here . Likewise
TRANSMIT. ENDFILE i s a p p l i c a b l e t o s e q u e n t i a l i n p u t or update f i l e s (a s
w e l l as s t ream i n p u t ' f i l e s) and is r a i s e d when a READ .s ta tement a t t empt s t o
r ead a r eco rd beyond t h e last one i n t h e d a t a s e t . Note t h a t normal r e t u r n .
from a n on u n i t en t e red from a READ s ta tement r e s u l t s i n t h e nex t s t a t emen t
be ing executed wi thout anyth ing having been read i n t o the record v a r i a b l e .

One new c o n d i t i o n , the.RECORD'~oridition (a q u a l i f i e d cond i t i on) i s appl ica- '
b l e . Th i s occurs whenever t h e s i z e of a record does no t match t h e s i z e of
t h e r eco rd v a r i a b l e . The cond i t i on cannot occur i n most s i t u a t i o n s w i t h
varying-length s c a l a r s t r i n g record v a r i a b l e s . The s t a t u s is enabled,
and i t cannot be disabled. ' Standard system a c t i o n i s t o i s s u e a message
and r a i s e ERROR. Normal r e t u r n from an on u n i t cont inues execut ion w i t h
t h e nex t s ta tement ; i n t h i s case , t h e e f f e c t on t h e record (on ou tpu t) o r
t h e record v a r i a b l e (on i n p u t) i s n o t def ined by t h e language. . . What happens
i n ou r implementation i s des.cribed i n LRM 116.

8.18. Comparision t o FORTRAN.

Sequen t i a l i npu t and ou tpu t t o consecut ive d a t a s e t s i s comparable t o FORTRAN
unforluatted hpul: and output . FORTRAN h a s no equ iva l en t t o s e q u e n t i a l
update.

8.19. Homcwork problems.

(# 8 ~) Suppose you employ a WHILE-only DO group t o read a s e q u e n t i a l i n p u t
f i l e and .p roces s i t s records . How many d i f f e r e n t coding techniques
f o r breaking t h e loop when ENDFILE occurs can you demonstrate? Which
do you l i k c bcst? Lcoo.t?

(18B) Suppose you have a "data base" f o r a n experiment con ta in ing d a t a on
t h e number of occurrences of v a r i o u s responses t o d i f f e r e n t s t i m u l i .
Suppose r e c o r d s a r e organized i n "groups1' w i t h each group c o n s i s t i n g
of two k i n d s of records .

(a) One header record con ta in ing a s t imu lus type , a s t imu lus sub-
t ype , and a count , n, of t h e number of p o s s i b l e response types
(n may b e zero) . The record is descr ibed by t h e record
v a r i a b l e dec l a red below.

DCL 1 HEADER,
2 STIMULUS TYPE CHAR (20),
2 STIMULUS-SUBTYPE CHAR (l o) ,
2 //RESPONSZS FIXED BIN (15) ;

(b) Following t h e header record , a detail record f o r each of t h e p o s s i b l e
respons'es (t h e r e may be none of t hese) con ta in ing a response type
and a count of occurrences (h i s t o r i c a l data.) . ' ~ a r h deta!.l record
is desc r ibed by t h e record v a r i a b l e dec l a red below.

DCL 1 DETAIL,
2 RESPONSE TYPE CHAR (50) ,
2 #OCCURRE~CES' FIXED B I N (15) ;

Groups, and d e t a i l r eco rds w i t h i n groups, a r e i n no p a r t i c u l a r o rde r .
Mul t ip l e s u b t y p ~ s f o r a g iven s t imu lus type a r e p o s s i b l e , and d i f f e r e n t
s r imu lus types might have t h e same subtype.

You have just performed an experi.ment c.h.a.ract,erized by 3 c a r t a i n
s t'imulus type , and you have observed a p a r t i c u l a r type of response.
'You cons ider t h e s t imu lus subtype t o be . i r r e l e v a n t , i n t h i s experi-
ment. You would l i k e t o update your r eco rds t o show one more
occurrence f o r t h e p a r t i c u l a r response and s t imulus wi thout regard
t o t h e s t imu lus subtype.

Write a program t o update t h e e x i s t i n g d a t a base i n t h e d e s i r e d way.
Make i t a s " e f f i c i e n t t t as you can. Use -a s e q u e n t i a l update f i l e .

Suppose e i t h e r fhe s t imu lus type o r combination of stimulus t ype -
and response type a r e n o t t o be found i n t h e d a t a base. What' a r e
you going t o do about t h a t ? What happens t o your d a t a base i f t h e
system c ra shes i n t h e middle of a run? Is i t hard t o recover from
t h a t ? (You bet!.)

(#8C) Discuss an a l t e r n a t i v e des ign t o t h e program you wrote f o r / / 8 ~ which can
accommodate new s t i u ~ u l u s ur response types and which is nor s u b j w r
t o s e v e r e recovery problems i f t h e system c r a s h e s i n t h e middle of a
run. What is t h e "cost" of t h i s ex t r a . f l e x i b i l i t y and p r o t e c t i o n ?

9. Indexed and r e g i o n a l d a t a s e t s .

9.1. One of t h e a l t e r n a t i v e s t o consecut ive d a t a s e t o rgan iza t ion i s indexed
o rgan iza t ion , s p e c i f i e d by t h e INDEXED op t ion of t h e ENVIRONMENT a t t r i b u t e .

Indexed d a t a s e t s a r e keyed d a t a s e t s . The r eco rds and t h e i r recorded keys
a r e maintained i n l o g i c a l o r d e r by ascending key va lues ; t h e i r phys i ca l o rde r
is no t m a t e r i a l , .as f a r a s t h e program i s concerned, because t h e r e i s no way'
i t can be known. The s e q u e n t i a l o rde r def ined f o r indexed d a t a s e t s i s key-
sequence o rde r .

Whereas t h e r eco rds i n a consecut ive d a t a s e t can only be accessed sequen-
t i a l l y , t hose i n an indexed d a t a s e t can be accessed s e q u e n t i a l l y (i n key
sequence) o r i n a r b i t r a r y o rde r ; t h a t is , e i t h e r a s e q u e n t i a l o r a d i r e c t
f i l e may be used wi th an indexed d a t a s e t . An index i s maintained i n t h e
d a t a s e t , by t h e ope ra t ing system, t o a i d i n t h e l o c a t i o n of a record having
a p a r t i c u l a r recorded key va lue . See LRM 164, LRM 174, CPG 11, and OPG 12.

9.2. Statement op t ions d e a l i n g wi th keys.

When a WRITE s ta tement needs t o i d e n t i f y t h e p a r t i c u l a r record t o be w r i t -
t e n , i t uses t h e KEYFROM op t ion . The op t ion con ta ins a c h a r a c t e r - s t r i n g
valued express ion whose va lue i s used a s t h e sou rce key (i . e . , t h e pro- .-.
gram's des igna t ion of t h e r e c o r d ' s key va lue) . Example:

WRITE FILE (F) FROM (V) KEYFROM (K 1) P) ;
Th i s causes t h e con ten t s of t h e record v a r i a b l e V t o b e w r i t t e n i n t h e da t a -
s e t a s s o c i a t e d wi th t h e f i l e F a t a p l ace i d e n t i f i e d by t h e va lue of K I) P .
Usual ly t h e va lue of t h i s source key becomes t h e va lue of t h e recorded key;
however, we .wi l1 s e e l a t e r t h a t t h e a s s o c i a t e d d a t a s e t need n o t b e a keyed
d a t a s e t , i n which c a s e t h e source key is used f o r something e l s e . KEYFROM means
I I t ake t h e source key from the express ion ..."

There a r e two ways keys e n t e r the p i c t u r e i n read ope ra t ions . You may
i d e n t i f y t h e record t o be read by g iv ing a p a r t i c u l a r source key va lue ,
us ing , t h e KEY op t ion . Example:

READ FILE (G) INTO (s) KEY ('REC' I I K);
This causes t h e record i d e n t i f i e d by t h e va lue of t h e exp res s ion 'KECI
I I K (t h e sou rce key va lue) t o be read from t h e d a t a s e t a s s o c i a t e d

w i t h f i l e G i r ~ t o t h e record v a r i a b l e S. KEY means " the record whose
11 .key is. . . A l t e r n a t i v e l y , i f you a r e reading s e q u e n t i a l l y you may

read t h e next record i n sequence and have i t s key v a l u e handed t o you.
The KEYTO o p t i o n is used f o r t h i s . I t ' n a m e s a s c a l a r c h a r a c t e r s t r i n g
v a r i a b l e t o which t h e key va lue i s ass igned . Example:

READ FILE (H) INTO (R) KEYTO (KEWAR);
Th i s causes t h e next s e q u e n t i a l record t o be read i n t o t h e r eco rd v a r i -
a b l e R from f i l e H; i t s key v a l u e i s ass igned t o t h e key v a r i a b l e
KEWAR. A s w l t h t h e WRITE s t a t emen t , t h e s e source key va lues u s u a l l y
correspond t o recorded key v a l u e s , b u t h e r e t oo .the d a t a s e t need n o t be
keyed and t h e source key may have a d i f f e r e n t meaning. KEYTO means
I I a s s i g n t h e . key .to. . . I t .

When t h e seq .uent ia1 o r d e r de f ined f o r a d a t a s e t i s key sequence, t h e meaning
of t h e IGNORE o p t i o n , which can be used -- a s w e s a w i n Lesson 8 -- i n p l ace
o f . t h e INTO o p t i o n , i s "read t h e g iven number of r e c o r d s i n key sequence and
i g n o r e them. "

A REWRITE s t a t emen t t h a t r e p l a c e s a n e x i s t i n g record may or may n o t need
t o i d e n t i f y t h e r eco rd t o b e r ep l aced . I f i t does , i t uses t h e KEY opt ion
i n t h e same way as f o r t h e READ s ta tement .

See LRM 175' and LRM 176, and review LRM 169.
, .

9 . 3 . ENVIRONMENT o p t i o n s f o r indexed d a t a s e t s .

There a r e a number of ENV o p t i o n s a p p l i c a b l e t o indexed d a t a s e t s . Some:of
t h e s e have t o do w i t h s p e c i f y i n g t h e l e n g t h of t h e recorded key f i e l d o r
i t s r e l a t i v e p o s i t i o n i n t h e record (i f i t happens t o be of t h e embedded
k ind) . Th i s and o t h e r in format ion can a l s o be s p e c i f i e d i n JCL. We w i l l
n o t , c o v e r JCL f o r indexed d a t a s e t s . The programmer's g u i d e s , (r e f e r e n c e s
g iven l a t e r) do a good job i n t h i s a r e a . For now, s e e LRM 177. Other ENV
o p t i o n s p a r t i c u l a r l y a p p l i c a b l e t o indexed d a t a s e t s are s c a t t e r e d through-
o u t LRM.163.

' 9.4. Crea t ing a n indexed daease t .

. ' An indexed d a t a s e t must be c r e a t e d sequentially. The r eco rds a r e presented
w i t h t h e i r keys i n ascending key sequence, u s ing WRITE...FROM...KEYFBOM.
Appl icable FDA's are KEYED SEQL OUTPUT. The source Cey va lues become t h e
r eco rded 'key values. See LRM 178, CPG 12 , and OPG 13.

9.5. Re t r i ev ing a n indexed d a t a s e t .

'

The r eco rds of an e x i s t i n g indexed d a t a s e t may be read s e q u e n t i a l l y (i n
ascending key sequence) o r i n a r b i t r a r y o rde r .

I f , when you a r e r ead ing them s e q u e n t i a l l y , you don ' t c a r e t o know what t h e
key va lues a r e , you can use t h e same techniques a s f o r consecut ive d a t a s e t s .
I . e . , you can open t h e f i l e f o r s e q u e n t i a l i n p u t and u s e READ...INTO o r
READ...IGNORE. T h i s is an example of a non-keyed f i l e be ing a s s o c i a t e d wi th
a keyed d a t a s e t .

I f you want t o know t h e key v a l u e s , open t h e f i l e f o r keyed s e q u e n t i a l i npu t
and u s e READ...INTO...KEYTO. The recorded key va lues become t h e sou rce key
va lues . You can a l s o u s e READ...IGNORE. Another t h ing you can do i s s k i p
ahead i n t h e key sequence t o a record having a p a r t i c u l a r key, by us ing

READ. . . INTO. . .KEY. Having pos i t i oned ahead t o ' t h e d e s i r e d r eco rd , you can
then con t inue r ead ing s e q u e n t i a l l y w i t h READ...INTO...KEYTO.

. .

To read r e c o r d s i n a r b i t r a r y o r d e r , u s e t h e KEYED DIRECT INPUT FDA's and
READ...INTO...KEY s t a t emen t s . The key va lues 'can be presented i n any o rde r .

'Normally., t h e sou rce key va lue s p e c i f i e d i n a KEY o p t i o n of t h e READ s t a t e -
;merit t r a n s l a t e s d i r e c t l y i n t o a recorded key va lue . The t r a n s l a t i o n has
i n t e r e s t i n g l y d i f f e r e n t p r o p e r t i e s when t h e GENKEY op t ion of t h e ENV a t t r i b u t e
i s , u s e d ; r ead about t h a t a t LRM 179.

9.6. A l t e r i n g a n indexed d a t a s e t .

There are s e v e r a l ways.you can update a n indexed d a t a s e t . Sequen t i a l up-
d a t i n g i s l i k e t h e kind of updat ing w e showed f o r consecu t ive d a t a s e t s . You
f i r s t read a r eco rd (using any of t h e forms of READ s ta tement desc r ibed
above) , al ter t h e r eco rd v a r i a b l e , t hen w r i t e t h e updated d a t a back o u t by
execut ing a REWRITE...FROM s ta tement . The KEY o p t i o n i s n o t used because .
t h e r eco rd be ing rep laced i s t h e l a s t one read . Appl icable FDA's a r e
SEQL UPDATE o r KEYED SEQL UPDATE.

. .

You can update r eco rds i n random o rde r i f t h e f i l e i s opened f o r keyed
d i r e c t update . I n t h i s c a s e a record need n o t be read b e f o r e i t i s re- '

. w r i t t e n , s o you must u s e t h e KEY o p t i o n on t h e REWRITE s ta tement t o . d e s i g - '

n a t e t h e record t o be r e w r i t t e n , However, t h e des igna ted record must e x i s t .
. . I f i n f a c t t h e one you d e s i g n a t e f o r r e w r i t i n g was no t t h e ' l a s t one r e a d ,

t h e REWRITE causes a n i m p l i c i t READ j u s t t o check t h a t t h e record e x i s t s .

An e x i s t i n g indexed d a t a s e t opened f o r keyed d i r e c t update can a l s o have
r eco rds added t o i t . Use WRITE.. .FROM. . .KEYFROM. Keys can be presented i n .
any o r d e r , b u t they must d e s i g n a t e non-exis ten t r e c o r d s (conformance i s
checked!); B e s u r e you see t h e d i f f e r e n c e between REWRITE and WRITE f o r a
d i r e c t u p d a t e ' f i l e .

Another way i n which an e x i s t i n g indexed d a t a s e t can b e a l t e r e d i's desc r ibed
immediately below.

'9.7. The DELETE s ta tement and dummy reco rds .

We come now t o t h e f i r s t u se of t h e DELETE s t a t emen t .
. .

Execution of a DELETE s ta tement causes t h e s p e c i f i e d e x i s t i n g record t o be
marked a s d e l e t e d . Subsequently, i t is a s i f t h e record had never been i n
the d a t a s e t i n t h e f i r s t place.

The s t a t emen t is permi t ted f o r d i r e c t update f i l e s ' . The KEY op t ion i s used
t o i d e n t i f y t h e e x i s t i n g r eco rd t o b e d e l e t e d . Example:

DELETE FILE (F) KEY (K I I SUBSTR (S, 2)) ;
The record i d e n t i f i e d by t h e key whose v a l u e i s g iven by . I 1 SUBSTR(S, ,2)
i s d e l e t e d from f i l e F.

For indexed d a t a s e t s , t h e DELETE s ta tement is a l s o permi t ted w i t h s e q u e n t i a l
upda te f i l e s . I n t h i s c a s e t h e KEY o p t i o n is no t used. A s w i t h r e w r i t i n g
r eco rds , on ly t h e l a s t r eco rd r e a d may be d e l e t e d .

Note t h a t no r eco rd v a r i a b l e is used. Data t r a n s f e r i n t h e usua l s ense
does not occur . However, i n t h e c a s e of indexed d a t a s e t s accessed through
d i r e c t upda te f i l e s a n i m p l i c i t READ i s , performed under the same r.j.rr.1.m-

stances as w i t h REWRITE t o check t h a t t h e record e x i s t s , The record t o b e
d e l e t e d is p h y s i c a l l y r ep l aced wi th a s p e c i a l mark t h a t i n d i c a t e s "de le ted
record ." Such n r eco rd is c a l l e d a dummy record. With Indexed d a t a s e t s
you a c t u a l l y have your c h o i c e . (e x p r e s s e d through JCL) a s t o whether dummy
r e c o r d s are o r are n o t t o b e i n v i s i b l e d i ~ r t n g a R E D ope ra t ion . Ece LRM 180,
CPG 1 3 , and OPG 14. . .

Now read LRM 181, CPG 14, and OPG 15.

We have skipped over many of t h e d e t a i l s of how indexed d a t a s e t s a r e managed
by t h e system, D e t a i l s a r e t o b e found i n passages p rev ious ly c i t e d . The
a d d l t i u n of r e c o r d s t o an e x i s t i n g indexed d a t a s e t causes i t t o become d i s -
organized , and e f f i c i e n c y is s e v e r e l y degraded (your WAIT t i m e can go through
t h e roof !) . It is a good i d e a t o "reorganize" an indexed d a t a s e t occas iona l ly .
See CPG 1 5 and OPG 16. For some complete examples of t h e u s e of indexed
d a t a s e t s , see CPG 1 6 and OPG 17.

9.8. Regional d a t a s e t s .

The t h i r d a l t e r n a t i v e d a t a s e t o r g a n i z a t i o n is r e g i o n a l o rgan iza t ion . A
r e g i o n a l d a t a s e t i s thought of as be ing d iv ided i n t o regio.nsnumbered con-
secuLfvefy s t a r c i n g w i t h zero . A r e g i o n can hold one o r more r eco rds . A s
we s h a l l see, t h e s e q u e n t i a l o rde r de f ined f o r r e g i o n a l d a t a s e t s has c e r t a i n
a s p e c t s of ghyoicol seqrience (as f u ~ ~unoecutivc d a t a s e t s) and cer~alr~
a s p e c t s of key sequence (a s f o r indexed d a t a s e t s) . By s p e c i f y i n g r eg ion
numbers t h e programmer may opt imize (o r a t l e a s t have some c o n t r o l over) t h e
placement of r e c o r d s i n t h e d a t a s e t . Source keys a r e used t o communicate
r e g i o n numbers and poss ib ly a l s o key v a l u e s (t o correspond t o t h e va lues i n
rccorded keys).

There a r e t h r e e s u b v a r i e t i e s of r e g i o n a l o r g a n i z a t i o n , denoted r e s p e c t i v e l y
by t h e E W o p t i o n s REG IONAZI (1) , REGIONAL (2) , , and REGIONAL (3) .

Regional(1) d a t a s e t s a r e non-keyed d a t a s e t s . Each r eg ion con ta ins e x a c t l y

one r eco rd , hence a r e g i o n number i s a r e l a t i v e record number. Source keys ,
when used, a r e i n t e r p r e t e d as reg.ion .numbers on ly , Access may be s e q u e n t i a l
o r d i r e c t . Sequen t i a l acces s i s i n r e g i o n number o r d e r , hence t h e physical .
sequence c h a r a c t e r i s t i c s . D i r e c t acces s ope ra t ions go d i r e c t l y t o t h e
record i d e n t i f i e d by t h e r eg ion number given. Regional(1) d a t a s e t s can con- '

t a i r , unblocked f ixed-f ormat r eco rds 'only.

Regional(2) and r eg iona l (3) d a t a s e t s a r e both keyed d a t a s e t s . Records a r e
always accompanied by' (non-embedded) recorded keys. Sequen t i a l acces s is
a g a i n i n r eg ion number o rde r , una f f ec t ed by recorded keys. D i r e c t a c c e s s
o p e r a t i o n s s ta r t a t t h e r eg ion number s p e c i f i e d i n t h e sou rce key and scan
from t h a t p o i n t forward (wrapping around t o t h e beginning of t h e d a t a s e t i f
t h e end i s reached) f o r t h e record i d e n t i f i e d by t h e v a l u e of a recorded key.
The sou rce key is used ' t o s p e c i f y both t h e r eg ion number a t which t h e sea rch
i s t o begin and t h e recorded key va lue t o be searched f o r .

The main d i f f e r e n c e between r eg iona l (2) and r eg iona l (3) d a t a s e t s i s t h a t
' r eg ions i n r eg iona l (2) d a t a s e t s correspond t o r eco rds , a s i n r e g i o n a l (1)
d a t a s e t s , whereas r e g i o n s i n r eg iona l (3) d a t a s e t s correspond t o t r a c k s .
Thus, r e g i o n a l (3) r eg ions may c o n t a i n more than one record .

Regional d a t a s e t s employ dummy reco rds t o mark r eco rds as having been de-
l e t e d (or never w r i t t e n i n t h e f i r s t p l a c e) . -There i s no choice a s t o .
whether dummy r e c o r d s can b e d e t e c t e d by t h e program o r n o t , as w i t h indexed
d a t a s e t s . I n some c a s e s they a r e made a v a i l a b l e , i n o t h e r c a s e s t hey a r e , '

n o t , as w e s h a l l s ee .

The above m a t e r i a l i s reviewed a t LRM 182, CPG 1 7 , and OPG 18.

9.9. Regional (1) d a t a s e t s .

Regional(1) d a t a s e t s may be c r e a t e d sequentTal ly o r by d i r e c t acces s .

I n s e q u e n t i a l c r e a t i o n , t h e f i l e i s opened f o r keyed s e q u e n t i a l ou tpu t .
Records a r e presented us ing WRITE...FROM...KEYFROM. The sou rce key v a l u e
is. a c h a r a c t e r r e p r e s e n t a t i o n of t h e r e g i o n number. ,Records must be presented
i n o rde r of i n c r e a s i n g r eg ion number (hence t h e a s p e c t s of key sequence) .
However, some r eg ion numbers may b e skipped over ; t h e system i m p l i c i t l y
w r i t e s a dummy record i n each r eg ion skipped over . Also, when t h e d a t a s e t
i s c losed t h e remainder of t h e space i n i t s c u r r e n t e x t e n t i s f i l l e d w i t h
dummy reco rds s o t h a t a l l of t h e space (through t h a t e x t e n t) ,is f i l l e d
e i t h e r w i t h real o r dummy reco rds .

I n d i r e c t c r e a t i o n , t h e f i l e is opened f o r keyed d i r e c t ou tput . A t t h a t
t ime t h e f i r s t e x t e n t of t h e d a t a s e t i s d reformatted by f i l l i n g i t w i t h

dummy r e c o r d s (t h i s can t a k e q u i t e a wh i l e) . Records are presented as
ab,ove, b u t t h e r e g i o n numbers may be g iven i n any o rde r . A r eg ion number
may even r e p e a t ; t h e r eco rd p rev ious ly w r i t t e n i n t h e r e g i o n w i l l b e over-
w r i t t e n . A t t h e conc1usion of t h e c r e a t i o n process t h e f i r s t e x t e n t
of t h e d a t a s e t w i l l c o n t a i n t h e r e c o r d s w r i t t e n and those dummy reco rds n o t
o v e r w r i t t e n w i t h r e a l r eco rds .

A f t e r c r e a t i o n , t h e r eco rds of a n e x i s t i n g r eg iona l (1) d a t a s e t can b e re-
t r i e v e d s e q u e n t i a l l y o r d i r e c t l y . Sequen t i a l acces s , u s ing e i t h e r SEQL
INPUT and READ...INTO o r KEYED SEQL INPUT and READ ... INTO ... KEYTO, is i n
r e g i o n number o r d e r . A l l r e c o r d s a r e r e t r i e v e d , whether dummy o r no t .
The v a l u e r e t u r n e d t o t h e key v a r i a b l e named i n t h e KEYTO o p t i o n i s t h e
c h a r a c t e r r e p r e s e n t a t i o n of t h e r e g i o n number. A combination permi t ted
f o r fadexed d a t a s e t s , READ...INTO. ..KEY, which i s used dur ing s e q u e n t i a l
i n p u t o p e r a t i o n s t o s k i p ahead i n t h e sequence, i s n o t permi t ted f o r re -
g i o n a l d a t a s e t s .

D i r e c t acces s u ses KEYED DIRECT INPUT and READ...INTO...KEY. Records may
b e r e t r i e v e d i n any o r d e r , and dummy reco rds a r e made a v a i l a b l e .

The b a s i c f a c i l i t i e s f o r a l t e r i n g a r e g i o n a l (1) d a t a s e t ' a r e a s fo l lows .

SEQL UPDATE
READ. . . INTO Get nex t r eco rd , r e a l o r dummy.
REWRITE...FROM Replace i t a f t e r changing.

KEYm SPQL UPDATE
Same as above w i t h a d d i t i o n of KEYTO o p t i o n t o t h e READ s t a t emen t .

KEYED DIRECT UPDATE
REm. . ,INTO.. .KEY Get any i ecurd, r e a l o r d m y .
REWRITE...FROM...KEY Replace any r eco rd , r e a l o r dummy.
WRITE...FROM...KEYFROM Same e f f e c t as REWRITE.
DELETE. . . KEY Change any record t o dummy.

Note t h a t t h e DELETE s ta tement is only allowed wi th d i r e c t update f i l e s ,
whereas w i th indexed d a t a s e t s it was a l s o allowed w i t h s e q u e n t i a l update
f i l e s .

I f you a r e wondering why dummy r e c o r d s a r e r e t r i e v e d , why you can r e w r i t e
o r d e l e t e a non-exis ten t (dummy) r eco rd , and why you can w r i t e over an
e x i s t i n g r eco rd -- who knows? The a p p l i c a t i o n of language f e a t u r e s t o
n a t i v e I / O f a c i l i t i e s of t h e system would be smoother i f t h e s e t h i n g s
weren ' t permi t ted f o r r e g i o n a l (1) d a t a s e t s .

See LRM 183, CPG 18, and OPG 19.

9.10. Regional(2) and regional(3) datasets.

These are processed using.exactly the same FDA's, statements, and state-
ment options as for regional(1) datasets. The differences are as follows.

Dummy records are not retrieved during read operations. REWRITE can only
replace existing (non-dummy records), and DELETE can only delete existing
records.

The source key'va1,ue. used in a KEY or KEYFROM option has two parts: a
region number and a string corresponding to a recorded key. READ, REWRITE,
and DELETE operations "search" for the designated record by starting 'at ..

the track implied by the region number and actua'lly looking for the 'given
recorded key. ' (The number of tracks spanned in the search, before giving
up, is'governed by a JCL parameter.) WRITE operations start at the track
designated and look for a dummy record to replace in the same manner.
Note that duplicate recorded keys can exist in the dataset. Also note
that a record retrieved or written may actually belong to a different
region t,han the one at which the search started,.yet no feedback is given.
concerning the actual region.

In a regional (3) ' dataset, a dummy' record created by a DELETE statement,
though not made available to a READ operation, is unfortunately nor avail-
able for re-use by a WRITE statement. Only dummy records left over from
the dataset's creation are available for the addition of new records. ,

All dummy records in regional(2)'datasets represent space available for
new records.

In sequential output operations it is only the region number part of the
source key value that is checked for ascending sequence. There are no
requirements on the part of the source key value to be used for the -re-
corded key.

In sequential input (or update) operations, records are retrieved in their
physical sequence. If the file is keyed and the KEYTO option is being
used to receive the key of the record read, the value assigned to the key
variable is Llle recorded key value only. These will not necessarily be in
any particular order.

See LRM 184 and LRM 185, CPG 19 and CPG 20, and OPG 20 and OPG 21. The
programmer's guide references contain examples. JCL considerations are
given at CPC 21 and CPG 22, and OPG 22 and OPG 23.

9-8

9.11. The EXCLUSIVE attribute and locked records.

You,probably know that the difference between the JCL disposition parameters
0LD.and SHR is that the first is used to prevent the scheduling of another
job that needs to use the dataset to which it applies, the idea being that
you intend to write into the dataset and it. would be meaningless for another
job to access the dataset while you are writing into it, whereas the second
says that you don't intend to write in it and hence another job that also
needs it, but not for writing, can be scheduled concurrently. By use of
appropriate PL/I facilities to "synchronize" access., you actually can per-
mit two jobs that update a given dataset to be safely,scheduled together;
that is, you can use DISP=SHR in both sets of JCL. This is accomplished
as follows. The facilities apply only to direct update files; they are to
be used in the way described in both programs.

Use the. EXCLUSIVE FDA. When a READ statement is executed,on an exclusive
file, the record involved (not the whole datasat) is "locked" so that
another program cannot access it. If another program tries to, ti-.' will
just wait for the record to be unlocked. The record is unlocked automat-
ically when your READ statement is followed up by a REWRITE or DELETE
statement addressing the same record, or when the file is closed. Alter-
natively, if you decide after reading the record that you don't want to
alter it, you can explicitly unlock it by executing an UNLOCK statement, as in

- . mLoj~ FILE-(~)-&k --- - -- . . - - - .- - - .

Finally, to suppress the automatic locking that occurs on a READ, add the
NOLOCK option to the READ statement. See LRM 191 through LRM 193. These
features are not in the ANSI standard. We will see them again in Lesson 14.

9.12. Conditions applicable to indexed and regional 110.

There is one remaining qualified 110 condition to be described. The KEY
condition occurs whenever an invalid key value is presented in a KEY or
KEYFROM option. Some of the colrmon cases of occurrence are as follows.

Requested record having designated key doesn't exist.
Keyed sequential: key is out of sequence.
No space in dataset to add keyed record.

Other cases are described in the relevant entry in LRM 116. Default
status is enabled; KEY cannot be disabled. Standard system action is to
issue a message and raise ERROR. On normal return from a KEY on unit,
execution continues with the statement following the one whose execution
raised KEY.

9.13. Review

To review all the record 110 transmission statements, read ~RM'186 through
LRM 190. Ignore all discussion of the EVENT option. For the READ state-
ment ignore the SET option.

9.14. Comparison to FORTRAN.

The ability to read or write a given record-identified by its relative
record number, provided for regional(1) dat'asets, is roughQ comparable to,
FORTRAN "direct-access" reads and writes. In FORTRAN, however, the records
can be processed as unformatted data transfers or under format control;
the latter option is not directly reflected in the PL/I capabilities.

FORTRAN has no processing capability comparable to.that provided in PL/I
for indexed, regional(2), or regional(3) datasets.

9.15. Unanswered questions..

In Lesson 10 we will see how the different causes of the KEY condition may
be distinguished.

9.16.. Homework problems.

(#9A) Why do you think the REWRITE statement .uses the KEY option instead
of the KEYFROM option?

(#9B) State the distinction between the REWRITE statement and the WRITE
statement. (We saw that the distinction was 'blurred in the case
of regional (1) datasets .)

(119C) State the rule relating READ statements and 'REWRITE statements for
sequential update files.

(#9D) Is the following sequence permitted for sequential update files?
I'f so, what does' it mean? . .

READ ... INTO
READ...IGNORE
REWRITE...FROM,

(1/9E) . Suppose 'no records have been added to an indexed dataset since its
creation. Considering what the index is used for, how much 110 is
involved in finding a record having a given recorded key, by direct
access? Specifically, is it a fixed amount'or does it depend on the:
size of the dataset? Answer the same question for regional(2) or
regional(3) datasets (assume unique recorded keys). What can the
system designer (programmer and data base designer) do to dinimize .

the.search time for regional(2) or regional(3) datasets? Can you
see any realistic applications for these kinds of regional datasets?

(#9F) I f you ,had a d a t a s e t c o n s i s t i n g of f ixed- length unblocked r eco rds
t h a t i n f a c t conta lned t h e . c h a r a c t e r r e p r e s e n t a t i o n s of problem d a t a
(perhaps s e v e r a l pe r r e c o r d) , what P L / I language f e a t u r e s could you
combine i n ' o rde r t o s e l e c t t h e s e r eco rds i n a r b i t r a r y o rde r (by rel-
a t i v e r eco rd number) and y e t s t i l l decode .them under format c o n t r o l ?

(# 9 ~) Which c o n d i t i o n , ENDFILE o r KEY, do you t h i n k i s r a i s e d by a.
READ...INTO...KEY s ta tement on a keyed s e q u e n t i a l f i l e when, i n po- '

s i t i o n i n g ahead i n key sequence t o t h e record wi th t h e des igna ted . .

key, , t h e end of f i l e i s encountered?

(#9H) R e c a l l problem #8B (s t imulus-response data-base) . What advantages
might indexed o r g a n i z a t i o n y i e l d ? Discuss how you would u s e i t .

10. (a) Builtin functions and pseudo-variables .
(b) Interlanguage . . communication.

10.1. Review of bui l t in functions and pseudo-variables.

In the f i r s t three lessons we discussed a good many bui l t in functions',
and some pseudo-variables, without saying too much about them.

Builtin functions are functions that can be invoked for their returned
- value and which are provided by the language ; that is, one need not

code procedures to compute the desired function. An implementation
may supplement those defined by the language. The function is supported
ei ther by in-line code or by a library routine. Builtin functions are
provided for purposes of convenience-to the programmer, or for common
computational needs or because the compiler cah generate better code, or
sometimes because the function involved simply can ' t be expressed by the
programmer using other language features. A l l of the bui l t in functions
that we have s'een so f a r 'take arguments ; we w i l l soon see others that
don t .

Pseudo-variables are similar i n that references t o them look just l ike
function references. However, they don't denote a value. Instead, they
denote a variable or a portion of a variable and in fact their use is as
an assignment target. The pseudo-variables generally have counterparts
as bui l t in functions. For example, SUBSTR is both a pseudo-variable and
a bui l t in function. A reference to SUBSTR means a substring of the
str ing which is the f i r s t argument. When it is used as a bu i l t in func-
tion reference, . the f i r s t argument may be an arbitrary expression,
because the result of the reference t o SUBSTR needs only to have a value
that can be used i n the context of the expression i n which the SUBSTR
reference is embedded. When it is used as a pseudo-variable reference,
the f i r s t argument can only be a s t r ing variable, because the resul t of
the reference t o SlTBSTR in this case needs to denote some "storage" to
which a value may be assigned.

10.2. Names of bui l t in functions and pseudo-variables.

In a l l our examples so f a r we have used bui l t in functions and pseudo-
variables just by using their names i n appropriately constructed syntac-
t i c a l functionreferences. I t h a s beentacit lyassumedthat thenames
do not appear i n declarati.ons' of other objects . I f they do, then any
use of the name within i ts scope denotes the object declared, and not
the bui l t in function or psetmo-va.riable. This.means that you can use .

SIN as the name of a variable, for. instance , and you can use LOG as the
name of a procedure (internal or external) assuming these names were
properly declared. However, within the scopes of thei r declarations,
these names are not available to mean the bui l t in functions.

10.3. The BUILTIN at tr ibute.

The name of a bui l t in function which ha.s been usurped for some other
purpose may be restored' to. its. original meaning, inside a nested
block, by declaring it with the BUILTIN attr ibute. No other attributes,
except INTERNAL, ' can be used with it. Example :

P: PROC;
DCL INDEX FIXED. BIN;
INDEX = 0 ;
BEG IN ;

DCL INDEX BUILTIN;
I = INDEX(S,'/*.'>;

END;
J2ND ;

'lhe k i r s t reference to INIIEX (TNnEX 9 0;) is a reference t o a FIXED
BINARY variable. The second, inside the begin block, is a reference
t o thc INDEX bu i l t in f m . c t i o ~ ~ .

BUILTIN carries no implications for data type, etc. There are no values
or variables, or constants, of type "builtin." I t is incorrect t o declare
as BUILTIN an identif ier which is not the name of a bui l t in function.
See LRM 194.

I t i s also improper to think of a bui l t in function'as a kind of "entry"
value having, maybe,'special properties. The current language, however,
blurs the 'distinction in one special case. The names of the mathematical
bui l t in functions' (SIN, SQRT, EXP, etc.) may be used as entry constants
i n the context of an argument being associated with an entry parameter,
e,.g. ,

CALL F (SIN) ;
CALL F (COS) ;
F: PROC (Q) ;

DCL Q ENTRY (FLOAT BIN (21))
RETURNS (FLOAT BIN (21)) ;

y : Q(X);
;

See LRM 195. This limited fac i l i ty is not available i n the ANSI standard

10.4. Parameterless bui l t in functions and pseudo-variables.

Why is i t unnecessary, except fo r the reasons demonstrated above, to
declare a bui l t in function name such as SQRT as BUILTIN? The reason is
as follows. A reference such as SQRT (X) , i n the absence of a deklara-
tion fo r the name SQRT, cannot possibly be anything else. I t cannot .be
a referellce t o an external entry constant because they must be -declared
(as we saw in Lesson 4). I t cannot be a reference to an array because
an undeclared identif ier cannot require the climension at tr ibute by
& f d ~ l t .

A s we shall soon see, certain bui l t in functions and pseudo-variables
do not take any arguments. A reference to one of them, when written
without an argument l ist , would look l ike a reference to a simple
variable, and we have seen that they acquire the attributes of an
a r i thmet ic .var iabmy default. There is a potential conflict, then,
when a name of a parameterless bui l t in function, such as TIME, i s
written by i t s e l f . In the absence of an explici t declaration for
TIME, shall TIME by i t s e l f denote the TIME buil t in function, or shal l
it be a FLOAT DECIMAL (6) variable? I t must be the l a t t e r ; a homework
problem w i l l help you understand why.

However, i f we want TIME t o mean the bui l t in function rather than a
variable declared implicitly (with default at tr ibutes) , then we may
do one of two things. We may explicitly declare TIME as bui l t in , or
we may write the bui l t in function reference as TIME(), i . e . , with an
argument l i s t , a lbei t an empty one. The argument l is t puts us back
i n the situation of SQRT (X) which, we argued, cannot be anything but
a bui l t in function reference.

An empty argument l is t may also be written a f te r the name of a parameter-
less entry to be invoked, as i n

FUNCC ION : PROC R E m S (CHAR (1)) ;
RETURN (SUBSTR (S , I, 1)) ;

END ;
T = FUNCTION() ;

In the ANSI language you w i l l be required t o write an empty argument
list to get FUNmION invoked, although in the current language you are
not.. (Review the' discussion i n Section 6.8.) . I t is very good docu-
mentary practice, i n any event, t o write an argument l is t ' (i f only an
empty one)'with every function reference.

10,.5. Additional specific buil t in functions and pseudo-variables.

In Lesson 1 we examined a l l of the. arithmetic bui l t in functions and
mathematical bui l t in functions. In Lesson 2 we had most of the string-
handling buil t in functions. In Lesson 3 we had some of the array-
handling bui l t in functions.

Remaining string-handling builtin-functions:
STRING ' This effectively concatenates the elements of i ts aggregate

argument, which must be an array or structure containing
s'tring elements. The res1.il.t i s a. scalar value. I t is as i f
a scalar s tr ing variable were string-overlay defined (Lesson
3) on the argument. The STRING' bui l t in function may also be
used as a pseudo-variable. There are minor differences i n
the ANSI standard.

UNSPEC This effectively allows the storage occupied by its argument
t o be viewed as a b i t s tr ing. Since the storage required
fo r a variable of a given 'data type is implementation-defined,
so is the length of the b i t s tr ing. 1.JNSPPEC is also a pseudo-
variable. Examples:

DCL I FIXED BIN (31),
. X FLOAT BIN (21) ,

U BIT (32) ;
U = UNSPEC(1) ; The 32 b i t s occupied by I (in our

implementation) are moved into U.
U = UNSPEC(X); Ditto for X , i . e . , it is interpreted

as a b i t s tr ing of length 32.
UNSPECV) = ,'0101110.. .0110!B; .

Store the b i t pattern i n X .
UNSPEC (I) = UNSPEC (X) ; . -

This moves the contents of X into I
without conversion. The value of the
floating point variable X can then be
manipulated as i f i t 3 internal representa-
tion were an integer (by manipulating I
i n s teacl) .

UNSPEC gives you a legal, though inevitably implementation-
dependent, way of looking a t the storage occupied by any
variable through other 'attributes.

Remaining array-handling bui l t in functions:
SUM T'akes'. an array argument and returns the sum of i ts elements.
PROD Same, but returns the product.
ANY Same, but the' array argument is an array of : b i t strings and

the operation is logical "or." Thei-th b i t i n the resulting
sca.1a.r b i t s t r ing :is 1 i f and only i f the i-th b i t of any
element of the 'array is 1.

ALL Same as ANY except the operation is logical "and." ANY and
ALL are renamed' SOME and EVERY, and sl ightly changed, i n the
ANSI language. i POLY Computes, 'for array A and value X , essentially Z aix . Also
a more general form. Not i n ANSI.

Details of the above may be found a t LRM 18.

Having covered conditions i n Lesson 6 and la ter . we are now ready t o
look a t the condition-handling bui l t in functions. See LRM 196 A d
LRM 18. A l l of these are parameterless bui l t in functions (some are
pseudo-variables as well) -that give you certain information about the
interrupt i n whose on unit (or descendant block thereof) they are
referenced.

ONCODE Returns an implementation-defined integer value specifying
the cause of the interrupt. See LRM 197. Can be used,
for instance, to determine whether a condition occurred
naturally or was signaled or to distinguish between many
different reasons 'for the occurrence of a condition.

ONLOC Returns, as a character s t r ing value, the name of the
procedure i n which the intefrupt occurred (more precisely,
the name of the entry point a t which it was entered). .

ONF ILE For an 1/0 condition, the name of the f i l e . Though an on
unit can be established separately for each f i l e , making .

this determination unnecessary, should standard system
action i n the absence of such an on unit take you into an
ERROR on unit, you would need ONFILE to determine the f i l e
on which the condition occurred.

DATAFIELD The contents of the bad f i e ld that caused the NAME condition
to occur (Lesson 7) . Called ONFIELD i n ANSI language.

ONCOUNT See description i n LRM 18 and LRM 198; also OPG 25
ONKEY The' value of a .bad key' causing the KEY condition.
ONSOURCE The contents of the bad character s t r ing value whose attempted, . '

conversion to something else fai led, causLng the CONVERSION

condition. Canbeusedasapseudo-var iab le inaCONVonuni t ,

to replace that bad str ing for purposes .of recovery; the

replacement value is used when the conversion is reattempted
on normal return from the on unit (see Lessons 2 and 6) .

ONCHAR Denotes the single ch.aracter (one of those i n the str ing
represented by ONSOURCE) which caused the conversion to f a i l .
May be used as a pseudo-variable to replace the single
character i n a recovery attempt.

Stream 1/0 bui l t in functions:
COUNT The number of data items transmitted during the last'GET or:

PUT operation on the specified f i l e .
LINEN0 The current line number of the. specified pr in t f i l e .

One of thelstorage control bui l t in functions
i n Lesson 11):

(others w i l l be discussed

ALLUWl'lON The number of generations i n the stack for the, given controlled
variable (see Lesson 5).

Miscellaneous bui l t in functions:
DATE Parameterless; returns the current date as an implementation-

defined character s tr ing value (YYMMDD i n our sys tem) .
TIME Similarly, the current time (HHMMSSTIT; 19"r is milliseconds) .

Others i n ANSI (which have not been previously mentioned) :
COLLATE Returns a character 'string value containing the character

s e t i n the implementation's collating sequence.
DOT Dot product of two vectors.
PAGENO Like LINENO; returns the current page number of the

specified pr in t f i l e .
SUBTRACT An arithmetic bui l t in function, l ike ADD.
VALID Tests whether a given computational value conforms to a '

given picture specification. Returns a BIT' (1) result
without raising the CONVERSION condition.

Good news! The mathematical bui l t in functions which we remarked i n
Lesson 1 had been deleted i n the ANSI standard are now back in!

10.6. Overview of interlanguage communication fac i l i t i e s .

A natural question t o ask is whether or not FORTRAN and PL/I routines
can be intermixed: Can a routine written i n one language invoke one
m i t t e n i n the other'! Clearly, i f th is were possible one could receive
that much more .value from his accumulation of FORTRAN subprograms, for
instance. ' O r one might extend the usefulness of existing FORTRAN

,programs by having 'them interEace with PL/I procedures to do update
operations on datasets, say.

A l l of th is is possible--but only because'certain f ac i l i t i e s are
specifically provided t o meet these needs. These f ac i l i t i e s deal with
the impediments. t o free' communication between languages . Some of 'these
impediments are described below.

The primary problem i s that different languages generally have different
run-time environments. This is true i n IBM systems but not, apparently,
i n Univac systems. The differences i n environment involve, among other
things :

(a) the handling of hardware interrupts, such as overflow;
(b) the addressing of arguments and parameters (arguments

and parameters may be addressed un different sides of
ail interlanguage buwi i la~y) ;

(c) the mapping of aggregates, such as arrays;
(d) defined actions on program termination.

The ILC (interlanguage communication) f ac i l i t i e s of the Checkout and
Optimizing compilers permit useful communicatiori between PL/I, FORTRAN,
COBOL, and Assembler routines. In this course we w i l l study only
FORTRAN-PL/I communication. The de t a i 1s of PL/ I -Assembler c o m i c a t i o n
are well covered i n OPG 24 and CPG 23.

When communicating w i t h FORTRAN, the main program may be of either
language. There' are no special requirements for the contents of the
FORTRAN routines; existing ones may be used with.PL/I without recom-
piling. A l l of the services'required are performed by the PL/I
system in accord with specifications made in the PL/I routines.
See LRM 199.

10.7. FORTRAN calling PL/I .

An external PL/I procedure to be called by FORTRAN must use. the OPTIONS
option of the PROCEDURE statement to announce this fact . Example:

PLISUB: PROC (X, Y) RETURNS (FLOAT)
OFTIONS (FORTRAN] ;

. ,

OPTIONS (FORTRAN) may also be specified on an ENTRY statement of an
external procedure. In fact , a procedure may have several different
entry points, some to .be entered from a FORTRAN routine and others from
PL/ I . Any given' entry point cannot, unfortunately , be invoked equally
well by both.

I f any of the parameters of a PL/I procedure called by FORTRAN are
arrays, thei r bounds must be declared i n the PL/I procedure as constants
(unfortunately). Recall from Lesson 5 that the only form of "adjustable
extent" permitted i n parameter declarations is an "asterisk extent,"
denoting that the bounds are inherited' from the actual argument.
Unfort'unately , FORTRAN doesnl t make that information available. Since
PL/I won1 t allow expressions in declarations of parameters, the following
"FORTRUN-s tyle" construction is not allowed:

P : PROC (X , N) OPTIONS (FORTRAN) ;
DCL X(N) FLOAT ;

Because arrays of more than one dimension are mapped differently i n PL/I
and FORTRAN (row-major order i n PL/I and column-major i n FORTRAN) , one
of the services provided by the OFTIONS (FORM) specification is the
remapping of an array (of more than one dimension) on entry and on return.
That is', on entry t o the PL/I procedure storage is acquired dynamically,
the FORTRAN array is copied in to it (in transposed order), and the copy
is then used in the PL/I procedure. On return from the procedure the
transposed copy of the array (which may have been. the target of some
assignments) is copied back in to the actual FORTRAN array i n the proper
order, and the dynamic storage is released. 'Thus, the fact that arrays
are mapped differently i n our implementations of these. two languages

. need not be a concern.

However, the remapping of arrays can be "expensive" i f they are large
(extra storage requirements for the remapped copy) or i f it occurs'
frequently '(extra execution time for the copying) . I f these factors
a re important, the PL/I programmer has several options a t h is disposal
t o refine o r control the s ' e ~ c e s provided automatically.

First of a l l , i f an array parameter is not changed by assignment i n ',

the PL/I procedure, the' transposed copy need not be written back into
the original FORTRAN array on return from PL/I . To suppress that , ' ,

use the NOMAPOUT o tion of the OPTIONS option. Example:
P : e m I o N s (FORTRAN Nowour (x , z)) ;

Alternatively, an array which is not assumed t o have a value on input
i . e . , whose elements are not fetched' i n the PL/I procedure before
being assigned values by it, does'not have to have the remapped copy
ini ' t ialized with the elements of the FORTRAN array on entry.
Specify th is with the N W I N o tion, e.g.,

p: PRoc &,y,?) -AN
NOMAPOUT (X , Z)
NOMAP I N (Y)) ;

The programmer may also suppress entirely' the creation of a copy
(which saves space as well a s time) i f he is willing to reverse the
order of subscript e m r e s s i o r ~ in subscripted array references i n the
PL/I procedure. *'l'o db that , use thc NCM@ o tion '(syntax same as for
previous options). Actually, the nee h-E- to reverse the order of the
subscript expressions can be avoided by the use of ISUB-defining
(Lesrun 3) .

See LRM 200 - LRM 204.

10.8 PL/I calling FORTRAN.

As with a l l external entry constants, the name of the FORTRAN routine
m i s t be declared' as EX'rEKNAL ENTRY i n the PL/I procedure (Lesson 4) .
To indicate that it is a FORTRAN, and not a PL/I, routine, the OPTIONS
at t r ibute is also used. Example:

TlCl', CWlP ENTRY (FLJIAT (*) , FIXED BIN (31))
RETURNS (FLOAT)
OPTIONS (FORTRAN)
m;

The OmIONS at t r ibute is much l ike the OPTIONS option. I t can include
the N W , N W I N , and NOMAPOUT options t o control the automatic
remapping of multidimensional arrays. The individual arguments to
which these options apply a E indicated i n the way demonstrated below.

DCL FORTSUB ENTRY ((*, *) F,LOAT, (*, *) FLOAT,
(* ,*) FLOAT, (* ,*) FLOAT)

OPTIONS (FORTRAN
NWIN(ARG~)
NOMAPOUT (ARG 4)
NOMAP (ARG 3))

ExT;
With the above declaration, i n a ca l l such as

CALL FORTSUB(A(*,*), B(*,*), C(*,*l Dlk , *)) ;
.the third argument, C , . . w i l l be passed as is without remapping, while
dummy arguments (copies) w i l l be made for the others just before

invoking FORTSUB. The copies of ' B and D w i l l be in i t ia l ized to the
transposes of B and D during th i s process, but A ' s w i l l not be
in i t ia l ized (A is presumed t o be an "output" argument); and on return
from FORTSUB the elements of the transposed copies of A and B w i l l be
assigned back to A and B, respectively, before the dynamic storage
for a l l the copies' is released (D is assumed to be an "input" argument,
i . e . , one whose elements are not changed by FORTSUB).

An additional option can be used i n the OPTIONS attr ibute. The INTER
o tion says that PL/I is to handle those interrupts not handled b y e
*sys tem (ones which would normally cause abnormal termination) .
For the Model 195, INTFX specifies that PL/I w i l l handle a l l interrupts.
By "handle an interrupt" is meant the following: the c h a z o f active
blocks w i l l be searched for an established on unit . I f one is found,
it is invoked; it may return normally to the point of interrupt or it
may terminate by a GO TO out of block, as usual. I f no established on
unit is found, standard system action is taken, as usual.

See LRM 205 - LRM 207.

10.9. Creation and destruction of other-language environments.

When a c a l l t o an other-language routine is f i r s t made, the current
run-time enkironment is se t ' a i ide and the other-language environment
is created. When the other-language routine returns 'to its cal ler ,
the original environment is restored. Hoyever , the other-language
environment is not discarded quite yet'; it is just s e t aside. .This .
is done i n anticipation of another ca l l to the other-language routine
(such a ca l l may be inside a loop, fo r instance). I f such a repeat
c a l l is made, the other-language environment is found to exist already,
so it only needs to be retrieved instead of created from scratch
(which is much cheaper) . An other- language environment is not discarded
entirely unti l the routine which invoked the other-language routine
returns to - i ts cal ler . This is' accomplished by a clever manipulation
of -d~e "save area" chain by the interlanguage communication modules of
the PL/I library. I t is i l lus t ra ted below.

call $3

PL/I environment
created here.

return #1 call # 4

I I

PLY1 environment PL/I environment j
not destroyed. retrieved here 1

, (not created I
from sc.r~tch) ,

i '

return #2

PL/I environment
'not destroyed .

FORTRAN
i

..................- --.---.---.. ..-............-......-.......4...--........r..--.. i
1

i
I I

I return #3
I
I
i
PL/I environment 1 discarded here.

I I
i . j .

.: b! ,

I
..'-''''-,I

FORTRAN

I i I

call #.I .return # 4

No PL/l routines
beyond here.

One consequence of the des'truction of a language I s environment i s that
f i l e s opened'while i n that environment are closed when the environment
is terminated. Several things can be done to retain an other-language
environment for a longer time than the preceding diagram shows. One
involves crossing several boundaries. I f , i n 'the preceding diagram, an
active PL/I procedure exists . somewhere i n the chain of ca l l s w-here the
comment "No PL/I routines beyond here" is , then' the PL/I environment 5s
not created a t "call #3" (i t is merely retrieved) and it is not discarded
a t "return #3"; it is not -discarded &ti1 the original or f i r s t ca l ler
of a PL/I procedure returns to its caller .

Another technique is dem0nstrated.b~ the following. Assume the main
program is FORTRAN. Let' it ca l l a dummy PL/I procedure which merely
returns to i ts caller'. This establishes the PL/I environment; it is
not discarded un t i l the cal ler of the PL/I procedure, i . e . , the FORTRAN
main program, returns to its cal ler (which i n this case is the operating
system). Thus, the chain of ca l ls subsequently in i t ia ted by the FORTRAN
main program may cross language boundaries any number of times, a t any
depth, without destruction of the PL/I environment.

See LRM 208. Read LRM 209 to review. LRM 210 contains a discussion
of communicating via common storage ("named COMMON" i n FORTRAN, STATIC
IXERNAL i n PL/I) .

10.10. JCL considerations.

I t i s recommended that you use PL/I cataloged procedures to link edi t ,
load, and execute mixed' PL/I -FORTRAN programs. (These are discussed i n
Lesson 13.) You w i l l need to make the' FORTRAN library available t o the
linkage editor or loader'whenever a PL/I procedure contains OPTIONS (FORTRAN)..
One way th is may be accomplished is by use of the symbolic parameter POSTLIB:

POSTLIB = 'SYS1.M)RTLIB1
Also, you w i l l need to supply a DD statement for FT06F001 in the GO s tep,
even i f the FORTRAN routines ncvcr w i t c t o unit 6 , since one.of the
actions performed during creation of the FORTRAN environment is the
opening of FT06F001. See OPG 25 and CPG 24.

10 .'11. ,Homework problems.

(#loll) Explain what each of the following means:
B = SUBSTR(UNSPEC (X) , 4, 2) ;
B = UNSPEC (SUBSTR(S , 4, 2)) ;

Are the following allowed? I f so, what do they mean?
msm(LJNspEc(x), 4, 2) = B;
UNSPEC (SUBSTR(S, 4, 2)) = B;

I f you are having trouble deciding whether these are allowed,
consider'which 'of the following 'are allowed and which aren' t .
F, G , and H are user-defined 'functions.

SUBSTR(F(X), 4, 2) = B;
SUBSm(S, G(A), 2) = B;
SUBSm(S, 4, H(A)) = B;
UNSPEC (F (C)) = B ;

(#10B) In the notes we said an undeclared identif ier cannot acquire
the dimension at tr ibute by default. Let's explore this further.

Under what conditions are identif iers declared contextually?
(Review' LRM 71.)

I f A, By and SIN are not explicitly declared i n a program, are
they contextually dcclarcd' by their appearances ' ill U~tt fullowing
statement?. If so, as what?

A = B (1) + SIN (1) ;
Is there any error here, i . e . , w i l l the compiler balk?

Suppose the program contained a DEFAULT statement which specifies
the dimension at tr ibute as a default:

DFT RANGE (*) (2) ;
When are defaults applied (in particular, before or af ter
acquisition of at tr ibutes by context)? (Review LRM 72.)
To wllicli u f A, B, and SIN would th is default apply? Is the
program now legal?

Leave the DEFAULT statement i n and consider the following.
What is the effect of the addition of the declaration

DCL (A, B) ;
to the program? Note that A and B are explici t ly declared,
but with no at tr ibutes. 'Do they acquire any at tr ibutes by
context? By default? Is the program now legal?

What happens i f we also add the following?
DCL 3IN;

Consider the program i n any of i ts intermediate stages as it
was developed above. I f it was. legal a t a given stage, would
i ts meaning have changed i f B were a l l of a sudden 'added to
the language as the name of a bui l t in function? Is there any
way 3 program can have its rneaiilig clrariged by the addition of
a bui l t in function? Comment on what might happen in FORTRAN
i f a new int r ins ic function were added.

(#10C) Comment on why TIME is not known as a bui l t in function i n
A = TIME; (no declarations)

but is in -
A = TIME();

or
DCL TIME BUILTIN;
A = TIME;

(#10D) During an attempt t o add a keyed record t o an indexed dataset
using a direct update f i l e and a WRITE. . .FROM.. .KEYFROM s ta te-
ment, the KEY condition may occur ei ther because there is no
space for the new record or because a record containing the
specified key already exists; How can these cases be distinguished?

(#10E) Suppose a CONVERSION on unit has been established as follows:
ON COW ONCHAR() = '0 ' ;

What happens when each of the following character s tr ing
values undergoes ' oonvers ion to. numeric? What is the f ina l
numeric result?.

12x3
1X4Y
12EF3 (tricky)

What happens i n t he fol.l.nwing?
CDEFGH (very tricky) '

(Hint: how many digits can appear i n an exponent f i e ld of a
floating-point constant, i n our implementation?)

(#10~) In Lesson 6 we remarked' that
IF A = B THEN ...;

i s i l legal i f A and B are arrays, because the comparison
operator applied to arrays yields an array of BIT (1) results
and the IF statement requires a scalar expression. Show how
the ALL bui l t in function can be used to achieve the desired
meaning i n the IF statement.

11. . L i s t p rocess ing and locate-mode 110.

11.1. P o i n t e r s .

I n t h i s l e s son .we w i l l encounter t h r e e new types of program-control d a t a .
The f i r s t of t h e s e is "poin ter . "

A p o i n t e r v a l u e i s an address of some v a r i a b l e . A p o i n t e r va lue must - n o t
b e thought of a s an i n t e g e r ; i t cannot be used i n t h e ways i n t e g e r s can be

'

used. For i n s t a n c e , you cannot do a r i t h m e t i c w i t h i t and you cannot w r i t e
a p o i n t e r ya lue out w i t h s t ream ou tpu t .

The POINTER a t t r i b u t e is used t o d e c l a r e a p o i n t e r v a r i a b l e (u sua l ly c a l l e d
simply a p o i n t e r) , i . e . , a v a r i a b l e , t h e d a t a type of whose p o s s i b l e va lues
i s " ~ o i n t e r . " The a b b r e v i a t i o n of POINTER i s PTR. L ike o t h e r v a r i a b l e s ,
p o i n t e r s may b e i n t e r n a l o r e x t e r n a l , of any s t o r a g e c l a s s , a l i gned o r un-
a l i gned , parameters , de f ined on o t h e r p o i n t e r s , a r r a y s , s t r u c t u r e base e l e -
ments, . i n i t i a l i z e d , e t c .

11.2. The ADDR b u i l t i n func t ion .

One way t h a t p o i n t e r va lues may be "generated" is by r e f e r e n c e t o t h e
ADDR b u i l t i n func t ion (one of t h e s torage-handling b u i l r i n f u n c t i o n s) .
The argument of ADDR may be any v a r i a b l e r e f e r e n c e (but i t must denote a
v a r i a b l e i n connected s t o r a g e) . The r e s u l t of t h e b u i l t i n func t ion r e f e r -
ence i s a p o i n t e r v a l u e which is t h e address of t h e argument.
Examples :

P: PROC (X) RECURSIVE;
DCL X FIXED B I N (15);
DCL Y FLOAT DEC (6) CTL;
DCL Z CHAR (20) VAR AUTO;
DCL -A (15) CHAR (1) STATIC;
DCL 1 .S STATIC,

2 T,
2 u ,

3 V FIXED DEC (5 ,-2) ,
3 W FLOAT B I N (100) ;

ADDR(X): i s t h e address of t h e a c t u a l a r g w e n t a s s o c i a t e d wi th X i n
t h e c u r r e n t i nvoca t ion of P.

ADDR (Y) i s t h e address of t h e c u r r e n t gene ra t ion of t h e c o n t r o l l e d
v a r i a b l e Y , i .e. , t h e one .on top of t h e s t a c k f o r Y: .

ADDR(Z) is t h e add res s of the . gene ra t ion of Z a l l o c a t e d on e n t r y
t o t h e c u r r e n t i nvoca t ion of A .

ADDR (A) is t h e addres s of t h e whole a r r a y A.
ADDR(A(3)) i s t h e address of t h e t h i r d element of t h e a r r a y A .
ADDR(A(1)) i s t h e add res s of t h e I - th element of t h e a r r a y A ,

ADDR(S) is t h e address of t h e s t r u c t u r e S.
ADDR(S.U). i s t h e address of t h e subs t ruc tu re U wi th in S.
ADDR(S.U.W) i s t h e address of t h e s t r u c t u r e base element S.U.W.
ADDR (5) i s i l l e g a l because the argument i s not a v a r i a b l e .

We w i l l p r e s e n t l y s e e t h e unique funct ion po in te r va lues serve . For t h e
time being, no te t h a t they may be assigned t o po in te r v a r i a b l e s and they
may b e compared f o r e q u a l i t y (a s wi th a l l program-control d a t a , only t h e
comparison o p e r a t o r s = and i= a r e allowed).

11.3. The BASED s t o r a g e c l a s s and based v a r i a b l e s .

I n Lesson 5 w e saw t h r e e ' o f t h e four s to rage c l a s s e s , namely those des-
c r ibed by t h e s t o r a g e c l a s s a t t r i b u t e s AUTOMATIC, STATIC, and CONTROLLED.
W e w i l l now d e s c r i b e t h e remaining s t o r a g e c l a s s , denoted by t h e BASED,
a t t r i b u t e . A v a r i a b l e having t h i s s t o r a g e c l a s s is c a l l e d a based va r i ab le .

The unique s i g n i f i c a n c e of based v a r i a b l e s l ies e n t i r e l y i n t h e meaning of
a r e fe rence t o one and i n how they a r e a l l o c a t e d . '

To begin wi th , l e t ' s look a t references t o based v a r i a b l e s ("based r e f e r -
ences"). Suppose w e have a based v a r i a b l e B:

DCL B FIXED BINARY (31) BASED;
W e may th ink of B a s no t having any s to rage of i t s own, i , e . , not having
a unique, assigned l o c a t i o n . A r e fe rence t o B never the less denotes a
r e fe rence t o a FIXED BINARY (31) ALIGNED v a r i a b l e r e s i d i n g somewhere.
W e a r e responsib le f o r saying where. We do t h a t by providing, with t h e -
w r i t t e n re fe rence t o B, a pointer-valued expression whose value is taken
t o be the address of B f o r t h a t reference . The syntax, i n genera l , is:

pointer-expression -t based-variable
A simple example i s P -t B where P i s a po in te r v a r i a b l e . NOTE: The
symbol "+" appearing i n these notes i s represented i n a PL/I program by
a minus s ign immediately followed by a "grea ter than" s ign , i .e., "->It.

...... . ._. - --. - - .- _. . . _ ._ _

L e t ' s examine t h i s c lose ly . We read i t a s " the B pointed t o by I?." It
i s a v a r i a b l e r e fe rence l i k e any o ther : it denotes a l o c a t i o n having a
va lue understood i n t h e context of c e r t a i n a t t r i b u t e s (FIXED RINARY'(31)
ALIGNED i n t h i s case) . It may be used anywhere a v a r i a b l e r e fe rence is
permi t ted , as i n t h e fol lowing examples:

P + B m P + B + l ;
I F P -+ B > Q THEN CALL F(C, P -+ B);
GET LIST (P + B);
DO P -t B = 1 TO 10;
A(P + B) = C(P + B) / 3;

I n t h e above examples i t has been assumed t h a t P has been assigned a va lue
which i s t h e address of a FIXED BINARY (31) ALIGNED var iab le . . The r e f e r -
ence P -+ B i s no t l e g a l unless t h i s i s so . Examples:

DCL (E , F, G ,) FIXED B I N (31) ;
DCL AR (10) FIXED B I N (31);
DCL 1 S,

2 T FLOAT DEC (6) ;
2 U FIXED B I N (31) ;
Before P . i s assigned a va lue , a r e fe rence t o P + B is i l l e g a l .
P = ADDR(E);
P + B now denotes E, i .e . , i t i s a re fe rence t o t h e s to rage "occu-

pied by" E.
P = ADDR(F);
P + B now r e f e r s t o t h e s t o r a g e occupied by F.
P = ADDR(AR(I)) ;
P + B now r e f e r s t o t h e s to rage occupied by AR(I), i .e . , by AR(C) i f

I had t h e va lue i when t h e address of AR(1) was taken.
P .= ADDR(S .u) ;
P + B now r e f e r s t o t h e s to rage occupied by S.U.
P = ADDR(S.T);
A r e fe rence t o P -+ B i s now i l l e g a l ; we. w i l l examine why l a t e r .

You can see from, t h e s e examples t h a t t h e locat io l i referenced i n a based .
r e fe rence i s determined by t h e cu r ren t va lue of t h e p o i n t e r expression
w r i t t e n wi th t h e reference . Actual ly , i n a l l of the examples t h a t ex-
press ion was merely a s c a l a r po in te r v a r i a b l e ; w e w i l l see more genera l

, forms s h o r t l y . The th ing t o no te is t h a t the same po in te r expression may
have d i f f e r e n t va lues a t d i f f e r e n t t imes, and thus a given based re fe rence
may denote d i f f e r e n t l o c a t i o n s a t d i f f e r e n t times. Example:

DO P = ADDR(E), ADDR(AR(I) 1, ADDR(F) ;
P + B = P + B + l ;

END ;

This loop causes 1 t o be added success ively t o t h e t h r e e FIXED BINARY (31)
ALIGNED v a r i a b l e s E , AR(I), and F.

Of course, two d i f f e r e n t based references involving the same based v a r i a b l e
may have d i f f e r e n t po in te r expressions. Suppose P and Q were both po in te r
va r i ab les . Then P + B and Q + B denote FIXED BINARY (31) ALIGNED v a r i a b l e s
having p o t e n t i a l l y d i f f e r e n t loca t ions . They.would denote t h e same th ing
only i f t h e va lues of P and Q were equal . Example:

P = ADDR(E) ;
Q = ADDR (F) ;
P + B = P.'B + ' Q + B;

The e f f e c t of t h i s i s t o add F t o E.

A l l of t h e po in te r expressions shown s o f a r have been simple s c a l a r va r i -
ab les . S l i g h t l y more complicated ins tances nf v a r i a b l a s used i n baaed
references a r e as follows:

DCL P PTR STATIC;
DCL Q PTR 9ASED; ,

-
DCL B . BASED ;
P + Q + B i s read " the B pointed t o by t h e Q pointed t o by P." B i s lo-

ca ted by a p o i n t e r v a r i a b l e , a s i n the previous examples; however,
t h a t p o i n t e r v a r i a b l e , Q, is i t s e l f based and ie loca ted by P.

DCL ~ (1 0) PTR;
R(1) + B denotes t h e B pointed t o by the I- th element of t h e p o i n t e r . .

arr,ay R'.
DCL 1 PTRS,

2 FIRST .PTR, -
2. LAST PTR;

PTRS.FIRST -t B denotes t h e B pointed t o by PTRS.FIRST.

Function procedures can r e t u r n po in te r values, i . e . , you can. write

DCL SUB ENTRY (FIXED) RETURNS (PTR)' EXT;
SUB': PROC (I) RETURNS (PTR);

6

RETURN (P) ;

RETURN (ADDR (E)) ;
e t c .

An example of a p o i n t e r expression which i s not a po in te r v a r i a b l e (pos-
s i b l y subscr ip ted o r s t ruc tu re -qua l i f i ed) is a func t ion reference:

. SUB (J*K-2) . j 'B- -" - . ---

Such a func t ion r e f e r e n c e may b e - a b u i l t i n f l inct ion re fe rence which r e t u r n s
a po in te r value:

ADDR(E) ,+ B.
We conclude by saying t h a t a po in te r expression i s e i t h e r a po in te r va r i -
a b l e o r a func t ion reference; t h e r e a r e no "operators" t h a t y i e l d a pointer
va lue a s r e s u l t .

-.- -- - -. --..--..... "- . ..--,

.This d i scuss ion of based v a r i a b l e s has served t o show t h e uses of pointer
va lues : they a r e used t o "locate" based var iables- tha t ' s a l l :

The process of l o c a t i n g a based variable is c a l l e d p o i n t e r q u a l i f i c a t i o n .
A l l of our examples have been examples of e x p l i c i t po in te r q u a l i f i c a t i o n
(i n which t h e po in te r expression used t o l o c a t e t h e based v a r i a b l e is
w r i t t e n e x p l i c i t l y a s p a r t of t h e based reference , using t h e po in te r qual-
i f i c a t i o n symbol.+) . In another form, i m p l i c i t . po in te r q u a l i f i c a t i o n ,
t h e qua l i fy ing po in te r expression is written as p a r t of t h e BASED attribute
and is omitted from t h e based reference , as i n :

DCL B FIXED BINARY (31) BASED (P);
P = ADDR(E);
B = B + l ;
P = ADDR(F) ;
B = B + l ;

Thi s causes 1 t o be added f i r s t t o E , then t o F. The i m p l i c i t p o i n t e r
q u a l i f i c a t i o n can be over r idden on a p a r t i c u l a r based r e f e r e n c e , a s i n

B = Q + B + l ;

There i s n o t much going f o r i m p l i c i t p o i n t e r q u a l i f i c a t i o n . It i s j u s t a
convenience f e a t u r e t h a t saves w r i t i n g i n c e r t a i n ca ses . .An unqua l i f i ed
based r e f e r e n c e such as B f a i l s t o convey t o t h e r eade r t h a t t h e l o c a t i o n
of B is determined dynamically and is g iven by t h e va lue of an expres s ion
appear ing elsewhere i n t h e program. We thus recommend t h a t e x p l i c i t p o i n t e r
q u a l i f i c a t i o n always b e used.

We must emphasize t h a t a based v a r i a b l e , . B , d e c l a t e d wi th d a t a t y p e a t t r i -
b:utes a t t r , can only b e used t o acces s s t o r a g e belonging t o a v a r i a b l e
'having t h e a t t r i b u t e s a t t r . Thus, execut ion of t h e s ta tement 1 a b e l e d . L i n

DCL V 1 a t t r l ;
DCL V2 a t t r 2 BASED;
DCL P PTR;
P = ADDR(V1) ;

.L: s o m e r e f e r e n c e t o P -t V2;
i s i n e r r o r u n l e s s a t t r l and a t t r 2 are t h e same. (a t t r l and a t t r 2 need no t
be e x p l i c i t l y dec l a red , a s shown; t hey may, of course , be . a t t r i b u t e s acqui red
c o n t e x t u a l l y o r i m p l i c i t l y i n t h e g e n e r a l ca se .) One s l i g h t except ion t o
t h e requirement f o r matching of a t t r i b u t e s i s g iven later.

A s a consequence of t h e above r u l e ,
DCL V 1 FLOAT DEC (6) ;
DCL V2 BIT (32) ALIGNED BASED;
DCL P PTR;
P = ADDR (Vl) ;
DCL B32 BIT (32) ;
L: B32 = P -t V2;

is i l l e g a l (execut ion of t h e s ta tement l abe l ed . L is. i n e r r o r , even though a
FLOAT DEC (6) v a r i a b l e occupies 32 b i t s i n our implementat ion) . It .is j u s t
a s i l l e g a l t o l ook a t s t o r a g e through " d i f f e r e n t " a t t r i b u t e s t han t h e ones
implied upon i t s a l l o c a t i o n , us ing based v a r i a b l e s , as i t is wi th def ined
v a r i a b l e s (s e e Lesson 3) . The purpose of t h i s Is t o guarantee tha.t a l e g a l
program h a s t h e same meaning i n a l l implementations.

Now what does a based r e f e r e n c e s u c h . a s P -t B (I) , ; w h e r e B is a based a r r a y ,
mean? Th i s is read " the I - t h element of t h e a r r a y B po in ted t o by P." 'Tha t
is, t h e v a l u e of P must b e t h e add res s of an a r r a y having t h e same a t t r i b u t e s
as B (i nc lud ing t h e dimension a t t r i b u t e) . Note t h a t , i t is t h e , a d d r e s s of t h e
whole a r r a y and n o t t h e address of t h e I - th element. Example:

DCL B (10) FIXED B I N (31) BASED;
DCL C - FIXED B I N (31) BASED ;
DCL P PTR;
DCL V (10) FIXED B I N (31);
P = ADDR(V) ;

P -+ B i s a r e f e r e n c e t o t h e whole a r r a y V.
P -+ B(I) i s a r e f e r e n c e t o V(1).
P + C i s i l l e g a l , because P does not point t o a s c a l a r FIXED BINARY (31)

v a r i a b l e ; it p o i n t s t o an a r r a y .
P = ADDR(V(J)) ;
P -+ C i s now l e g a l . It i s a re fe rence t o V(J) - o r , more p r e c i s e l y ,

V G) , where j was t h e va lue of J when t h e address of V(J) was taken.
C has t h e same d a t a type (and s t r u c t u r i n g) a t t r i b u t e s a s an element
of V (t h a t is , a s what P po in t t o) , namely, s c a l a r FIXED BINARY (31).

P -+ B i s i l l e g a l because P doesn ' t po in t t o an a r r a y ; i t po in t s t o a
s c a l a r .

P -+ B(1) i s i l l e g a l f o r t h e same reason.

By t h e same token, P + S.T means " the T component of t h e s t r u c t u r e S pointed
t o by P." P must have a s va lue t h e address of a v a r i a b l e having t h e a t t r i -
b u t e s (inc luding s t r u c t u r i n g) of S. Example:

DCL 1 S BASED,
2 T FLOAT,
2 u,

3 . V FIXED BIN (15) ,
3 W CHAR (3) ;

DCL 1 X LIKE S STATIC;
DCL 1 Y LIKE S.U BASED;
DCL .P PTR;
P = ADDR(X) ; . .
P -t S is a r e f e r e n c e t o X .
P -+ S.U i s a r e fe rence t o X.U.
P -+ S . U . V is a reference t n X.1T.V. . ,

P -+ Y i s i l l e g a l , because t h e a t t r i b u t e s of Y a r e not t h e same a s what
P p o i n t s t o , i .e . , a r e not t h e same a s those of X.

P = ADDR(X.U);
P + Y i s now l e g a l , s i n c e Y has t h e same a t t r i b u t e s a s what P po in t s t o ,

i . e . , a s X . U , namely, a s t r u c t u r e c o n s i s t i n g . o f a FIXED BIN (15)
i t e m followed by a CHAR(3) i tem, both one l e v e l removed from the
p a r e n t a l level. ,

Of what use i s any of t h i s ? So f a r w e have seen how v a r i a b l e s t h a t a l ready
e x i s t , i . e . , t h a t have had s t o r a g e a l l o c a t e d t o them presmably a s the r;esult
of a s t a t i c , automatic, o r con t ro l l ed a l l o c a t i o n , may be accessed through a
s imi la r ly - s t ruc tu red based v a r i a b l e , which does not have any s to rage of i t s
own (i . e . , which se rves only a s a s o r t of template t h a t can be moved around).
But t h i s doesn ' t provide much more f a c i l i t y than o the r techniques f o r looking
a t t h e same s t o r a g e through d i f f e r e n t v a r i a b l e s (e .g. , through parameters o r
def ined v a r i a b l e s , n e i t h e r of which has any s to rage of i t s own).

The main 'use f o r based s to rage i s a technique c a l l e d "list processing" which
u t i l i z e s c e r t a i w t h i n g s we haven' t described y e t (next s e c t i o n) . But the
f a c i l i t i e s we. have described s o f a r form t h e ' b a s i s of many "system program-
ming" a p p l i c a t i o n s when combined with something l i k e "UNSPEC1'-ing an absolute

integer value into a pointer variable to gain access to an absolute memory
location not "belonging" to a variable allocated during the execution of the
PL/I program. . That such applications are made implementation-dependent by
the.use of UNSPEC is not objectionable because, after all, the "system"
which is the object of its processing is what defines the "implementation,"
in a sense. You do not require a program that accesses IBM OS control blocks,
for instance, to run on a Univac system.

Any of the !'illegal" uses of pointer qualification demonstrated above repre-
sent violations of the ANSI standard. As with any such language violation,
the meaning of the program in not defined by the language rules and an im-
plementation may do what. it wants. Three possible ways an implementation may
11 .react1' to a language violation are as follows:

(a) Generate code which assumes no violation has occurred. This ap-
proach leads to the most efficient program when, in fact, no vio-
lation of language rules occurs. When one does, however, the
result is often unpredictable. Sometimes it may be predictable
and useful, and many technically illegal (and potentially unex-
portable) programs are written on this basis. '1n any event, the
result is not documented officially: you either hear about it
from someone else, discover it'by accident, discover it by looking
at.generated code, or assume something incorrect about the langu-
age itself which turns out to be a property of the implementation
and not the language.

(b) Permit the violation and document the consequences.. This is often
done when those consequences are useful and consistent within an
implementation, and when they dontt.change the meaning of'a program
which doesn't rely on them. This is called an "implementation
extension. 1 I

, (c) Check for the violation and report an error. This differs from (b)
in two respects: extra code is specifically generated (or executed)
to detect violations; and when a violation is detected, no way is
provided to extract a useful result from it. For instance, an im-
plementation may raise the'ERROR condition in such an instance.
Recall from Lesson 6 that there is no way to'return to the point of
interrupt after ERROR is raised.

With respect to illegal uses of pointers, the Optimizing compiler takes approach
(a) and the Checkout compiler takes approach (c).

It is. time to catch up with references: read LRM.211 - LRM 215 and the. entry
for ADDR in LRM 18.

11.4. Allocating based storage.

A based variable can be used in another way: to allocate some storage dynam-
tc ally. For example :

DCL B (10). FIXED B I N (31) BASED;
DCL P PTR;
ALLOCATE B SET (P) ;

The ALLOCATE s ta tement causes a genera t ion of s to rage s u f f i c i e n t t o hold a
v a r i a b l e having t h e a t t r i b u t e s of t h e b a s e d v a r i a b l e t o be a l l o c a t e d , and i t
causes t h e address of t h a t genera t ion of s to rage t o be assigned t o t h e ind ica ted '
p o i n t e r v a r i a b l e . Note t h a t i f t h e BASED a t t r i b u t e ' i n t h e d e c l a r a t i o n o f . t h e .
based v a r i a b l e .contains a re fe rence to. a po in te r v a r i a b l e , t h e SET opt ion of t h e
ALLOCATE statement may b e omit ted; t h e address of the new genera t ion i s assigned.
t o t h a t p o i n t e r v a r i a b l e . Example:

DCL X '., . BASED (P);
ALLOCATE X ;

Here, t h e address of t h e s t o r a g e a l l o c a t e d dynamically i s assigned t o P.

W e saw i n ' l e s s o n 5 how t h e ALLOCATE statement i s used t o a l l o c a t e a new gen-
e r a t i o n of s to rage f o r a con t ro l l ed v a r i a b l e . No address i s re turned. The
previous genera t ion i s "stacked," and subsequent references t o t h e con t ro l l ed
v a r i a b l e r e f e r t o i t s most recent generat ion. A FREE statement r e t u r n s t h e
s t o r a g e belonging t o the c u r r e n t genera t ion and "unstacks" the previous one,
making i t c u r r e n t .

When t h e ALLOCATE s ta tement is used t o a l l o c a t e s torage . f o r a based v a r i a b l e ,
you a r e handed t h e address of the new gene.rati.nn.. You use t h a t s u b s ~ q u a r i f l ~
t o l o c a t e the s t o r a g e f o r t h a t genera t ion . You may a l l o c a t e mul t ip le gener-
a t i o n s . Providing you s a v e ' t h e i r addresses i n d i f f e r e n t po in te r v a r i a b l e s
you w i l l be a b l e t o access a l l of them (compare t o con t ro l l ed v a r i a b l e s , where
you can on ly access t h e most r ecen t genera t ion) . Example:

DCL B ... BASED;
DCL (P,Q) PTR;
ALLOCATE B SET (P), B SET (Q);
P + B = l ;
Q + B = 2;

. P + B = P + B / Q + B ; . .

Note t h a t i f you a r e n o t c a r e f u l you can e a s i l y l o s e t r a c k of s to rage a l l o c a t e d
dynamically through a based v a r i a b l e . For example,

ALLOCATE .B SET (P) ;

ALLOCATE B SET (P);
It is assumed t h a t t h e va lue of P is no t copied , in to any o the r po in te r v a r i -
a b l e between t h e s e two statements. . Then, the second a l l o c a t i o n ass igns a new
v a l u e t o P. You subsequently have no way of accessing t h e f i r s t a l l o c a t i o n
of B - o r of recovering i t s s torage . It is l o s t forever!

The FREE s ta tement i s used t o r e l e a s e s t o r a g e acqui red dynamically f o r a
based v a r i a b l e (we saw i t used i n Lesson 5 f o r c o n t r o l l e d v a r i a b l e s) . You
have t o q u a l i f y t h e gene ra t ion of t h e based v a r i a b l e being f r e e d , u s ing e i t h e r
e x p l i c i t o r i m p l i c i t p o i n t e r q u a l i f i c a t i o n . Example:

FREE P -t B;
C l e a r l y , you can f r e e gene ra t ions of based v a r i a b l e s i n any o r d e r ; they a r e
no t r equ i r ed t o be f r e e d i n t h e o r d e r of a l l o c a t i o n , o r t h e r e v e r s e of t h a t , e t c .

Once a gene ra t ion of s t o r a g e has been a l l o c a t e d f o r a based v a r i a b l e , t h a t
s t o r a g e b e a r s no i n t i m a t e r e l a t i o n s h i p t o - t h a t based v a r i a b l e . Any based
v a r i a b l e having t h e same a t t r i b u t e s (i nc lud ing s t r u c t u r i n g) may be used t o
acces s i t (i n conjunct ion wi th t h e a p p r o p r i a t e p o i n t e r v a l u e) . I n t h i s re -
gard , t h e gene ra t ion of s t o r a g e i s i n d i s t i n g u i s h a b l e from t h a t belonging t o a
non-based v a r i a b l e which happens t o be accessed through a based v a r i a b l e and
a p o i n t e r va lue obta ined by t ak ing t h e ADDR of t h e non-based v a r i a b l e , a s was
demonstrated e a r l i e r i n t h i s l e s son . .Note, .however , t h a t t h e only kind of
s t o r a g e t h a t can be f r e e d by a FREE s ta tement naming a based v a r i a b l e i s
s t o r a g e t h a t was a l l o c a t e d by an ALLOCATE s ta tement f o r a s i m i l a r based v a r i a b l e .

I n Lesson 5 we Said t h a t i n i t i a l i z a t i o n implied by the'INITIAL a t t r i b u t e t a k e s
p l a c e upon a l l o c a t i o n . This is , of course , t r u e a l s o f o r based v a r i a b l e s .

We have now seen two ways t h a t new p o i n t e r va lues a r e generated: by r e f e r e n c e
t o t h e ADDR b u i l t i n f u n c t i o n and by a l l o c a t i o n 0 f . a based v a r i a b l e .

See LRM 216, LRM 217, and r e l e v a n t p a r t s of LRM 90.

11.5. Adjus tab le e x t e n t s f o r based v a r i a b l e s .

Based v a r i a b l e s can have a d j u s t a b l e e x t e n t s , t h a t is , a r r a y bounds and s t r i n g
l e n g t h s g iven by t h e v a l u e s of exp res s ions appearing i n t h e i r d e c l a r a t i o n s .
However, i n t h e c u r r e n t language you must u se ano the r o p t i o n i n conjunct ion
wi th t h e s e , and t h e i t e m s con ta in ing a d j u s t a b l e e x t e n t s can fur thermore only
e x i s t a s members of a based s t r u c t u r e . .The a d d i t i o n a l o p t i o n i s c a l l e d t h e
REFER op t ion . An example fo l lows:

DCL N FIXED BINARY (15);
DCL 1 S BASED,

2 L FIXED B I N (IS),
2 A (N REFER (S .L)) FLOAT;

A is a une-dimensional a r r a y of FLOAT elements and i s a member of t h e s t r u c -
t u r e S. O n ' a l l o c a t i o n of S, t h e upper bound of A i s taken t o be t h e va lue of
N. That de te rmines how much s t o r a g e is . a l l oca t ed . That v a l u e i s then auto-
m a t i c a l l y ass igned t o S.L i n t h e newly a l l o c a t e d gene ra t ion of S. On any
subsequent r e f e r e n c e t o t h i s gene ra t ion of S, t h e element S.L is consul ted
t o f i n d t h e upper bound of S.A (i f t h a t i s needed f o r any th ing) . C l e a r l y ,
you can f r e e l y a s s i g n va lues t o S.L a f t e r a l l o c a t i o n of S , b u t on any r e f e r -
ence t o S.A (o r an element t h e r e o f) t h e va lue of S.L must b e what i t was when
S w a s a l l o c a t e d . I n p a r t i c u l a r , S.L must have i t s o r i g i n a l va lue when S is
f r e.ed ,

For d i f f e r e n t a l l o c a t i o n s of S, N may have a d i f f e r e n t va lue . Thus, t h e
d i f f e r e n t genera t ions of S would con ta in a r r a y s wi th d i f f e r e n t upper bounds.
Each genera t ion of S would con ta in t h e upper bound (i n S.L) of i ts own com-
ponent A. We c a l l such s t r u c t u r e s se l f -def in ing data. '

A based s t r u c t u r e d e c l a r a t i o n may conta in any number of ad jus tab le e x t e n t s
and REFER opt ions . There a r e a few r u l e s t h a t guarantee t h a t a s t r u c t u r e can -
be "mapped" when a r e f e r e n c e i s made t o i t . For example, each r e f e r ob jec t
(the s t r u c t u r e base element named i n a REFER option) must precede the com-
ponent whose d e c l a r a t i o n con ta ins it . See LRM- 218 through- LRM 220.

The REFER op t ion e x i s t s i n the ,same form i n t h e ANSI standard. I n add i t ion ,
any e x t e n t may b e given by an expression without t h e REFER opt ion , and such
an e x t e n t need no t belong t o a s t r u c t u r e member. The expression i s evaluated
upon a l l o c a t i o n and whenever n e c e s s a r y ' t o "map" t h e v a r i a b l e t o which i t
a p p l i e s , subsequently; i n t h e l a t t e r case i t . m u $ t g ive the same value a s i t
d i d on a l l o c a t i o n . Example:

N FIXED RXN;
DCL A (N) FLOAT BASED;
DCL (P,Q) PTR;
N = some va lue (value 1) ;
ALLOCATE A SET (P) ;
N = some o t h e r va lue (value 2) ;
ALLOCATE A SET (Q);

On any re fe rence t o t h e genera t ion of A loca ted by P, N must have "value 1"
and on any referenc'e t o Q -+ A i t must have "value 2."

11.6. L i s t processing.

The va lue of a l l o c a t i n g mul t ip le genera t ions of a based v a r i a b l e i s l imi ted
by your a b i l i t y t o s t o r e a l l t h e po in te r va lues used t o l o c a t e them. For
i n s t a n c e , i f you use an a r r a y of 100 elements t o s t o r e po in te r va lues , you
c a n ' t keep t r a c k of more than 100 simultaneous genera t ions , even though you
could allocate more.

The t r u l y outstanding value of based v a r i a b l e s and po in te r s i s t h a t the gen-
e r a t i o n s of t h e based v a r i a b l e s themselves can conta in the ~ o i n t e r va lues
used t o access " re la ted" genera t ions . This i s the essence of l i s t processing.
It is a way of organizing, a l l o c a t i n g , manipulating, and referencing an
unbounded amount of d a t a r e l a t e d i n some use fu l way (bounded only by the
t o t a l amount of memory a v a i l a b l e) . The r e l a t i o n s h i p s between da ta i t e m s (or
o rgan iza t ion imposed on them) charac te r i ze c e r t a i n l o g i c a l p roper t i e s of the
d a t a a n d , d e f i n e how you may access them.

Such a c o l l e c t i o n of d a t a i tems i s c a l l e d a l i s t s t r u c t u r e . To repea t : i t
i s a c o l l e c t i o n of m u l t i p l e generat ions of based v a r i a b l e s i n which each gen-
e r a t i o n i s an aggregate which conta ins both problem-dependent d a t a and pointer
v a r i a b l e s used t o reach r e l a t e d genera t ions . I n i t i a l e n t r y i n t o such a

c o l l e c t i o n i s - b y means of a p o i n t e r va lue (or maybe s e v e r a l) he ld e x t e r n a l
t o t h e c o l l e c t t o n i t s e l f .

A l ist s t r u c t u r e may t a k e many forms. Some examples are p i c t o r i a l i z e d below.

One-way l i nked l i s t '

Two-way l i nked l is t

*

L i s t of l i s t s

>

.. -

\I 7 7
r J

d a t a

*

d a t a

>

>

d a t a

\

da ta

3

>

t

*

d a t a

f

*

>

>

\

>

d a t a

d a t a . . d a t a

In these diagrams we have used to designate a unique pointer value which
doesn't point to anything. Such a pointer value is returned by the NULL
builtin function. See LRM.18. Even though NULL() is a function reference,
it is pekmitted.as an initial value for a static pointer variable, e-g,,

DCL P PTR STATIC INIT (NULL()) ;

The following example shows- a procedure OBSERVE that maintains a list of ti .

unique character string values that are presented to it along with a count
of the number of times each has been observed. The list is initially empty.
The pointer variable HEAD gives access to the list. At all times entries in

' the list are maintained in "sorted" order, so that we don't generally have
to scan the whole list to determine that an entry is not present. Study it
carefully and convince yourself that the. algorithm works in all these cases:

(a) An entry is being added to an empty list.
(b) An entry is being added before the first entry.
(c) An entry is being added after the last entry.
(d) An entry is being inserted between two existing entries.

The special requirements of these cases are as follows (check that they are
met) :

(a) HEAD has to be made to point to the new entry. The new entry's
NEXT component must be set to the null pointer value.

(b), HEAD has to be made to point to the'new entry. The new entry's
NEXT component must be made to point to the previously first entry.

(c) The last entry's NEXT component must be made to point to the new
entry. The new entry's NEXT component must be set to the null
pointer value.

(d) The "previous" entry's NEXT component must be made to point to .the
new entry. The new entry's NEXT component must be made to point
to the entry that was after the "previous" entry, i.e:, to the
I1 next" entry.

OBSERVE: PROC (S);
DCL S CHAR (10);

DCL HEAD PTR STATIC EXT INIT (NULL ()) ;
DCL 1 ENTRY BASED,

2 NEXT PTR,
2 T CHAR (lo),
2 COUNT FIXED BIN (15);

DCL NEXT FIELD PTR BASED;
/* NEXT FIELD IS 'A TEMPLATE GIVING ACCESS E I ~ E R TO HEAD OR TO SOME
ENTRY.NEXT */

DCL (P,.Q,R) PTR STATIC;
DCL (NOT - FOUND, SEARCHING) BIT (1) ;

NOT - FOUND, SEARCHING = '1'B;
P = ADDR(HEAD) ;

/* IF P STILL HAS THIS VALUE LATER, P + NEXT - FIELD ACCESSES HEAD * /
Q = HEAD;

/* IF LIST IS EMPTY, Q HAS VALUE NULL () ; OTHERWISE,, IT POINTS TO
FIRST ENTRY * /

DO WHILE (NOT FOUND 6 , SEARCHING 6 Q 1 - NULL ()) ;
IF Q + E~TRY .T < S THEN no; /*KEE~ GOING*/
. P = ADDR(Q +, ENTRY .NEXT) ;

/* REFERENCE TO P + NEXT FIELD.
LATER REFERENCES AN E~TRY . NMT * /

Q = Q + ENTRY.NEXT;
END ;
ELSE IF Q + ENTRY.T = S THEN /*FOUND IT*/

.NOT FOUND = 'O'B;
ELSE S ~ C H I N G = 'o'B; /*WENT BEYOM>*/

END;

IF NOT FOUND THEN DO; -
R = Q ; /*MAY HAVE VALUE NULL () */
ALLOCATE ENTRY SET (Q) ;
Q -t ENTRY.NEXT = R; /*CHAIN NEW TO RIG^/
Q -t ENTRY.T = S;
Q -t ENTRY.COUNT = 0;
P -t NEXT-FIELD = Q; /*CHAIN LEFT TO NEW/

END ;

Q -t ENTRY.COUNT = Q -t ENTRY.COUNT + 1;
END ;

List structures may be employed in,engineering applications to "model" so-
phisticated physical systems, such as physical or chemical structures. The
relationships between data items linked by pointers represent information in
an abstract sense. Exploitation of this can lead to newer, more natural ways
of processing information. See LRM 221 through LfiM 222.

11.7. Areas.

One normally has no, control over where in storage a based variable is allo-
cated. Generations of based variables could be scattered all over storage.
For certain operations you would like to draw a box around a particular list
structure and then treat the whole list structure (i.e., the contents of the

. . box) as a single object. It is possible to do essentially that,'by restricting
certain based allocations to a particular area of storage and treating that
area as a. whole object.

For this purpose we introduce another program-control data type, "area." An
area variable is declared with the AREA attribute, which includes an area size
(which has an implementation-defined meaning; in our implementation, it is
the number of bytes reserved for the area). Example:

DCL A AREA (5000) ;
This declares an area variable of size 5000 bytes (plus 16 more for control
information).' The "value" of an area variable is its contents, including
the control information.

Area variables may have any storage class, and internal or external scope;
they may be parameters, elements of arrays, elements of structures, etc.
Because'they can be of any storage class, they can even be based.

The area size specification is the third and final type of "extent. " (The
other two were array bounds and string lengths.) Static area variables can
have only constant extents (as is true of extents of any static variables).
Area variables.of the three dynamic storage classes can have their sizes
given by expressions (for based areas in the current language, the REFER option
must be used and the area must be'a component of a structure). Area parameters
may have an "asterisk extent" indicating inheritance of the extent from the

a c t u a l a r e a argument (which may be d i f f e r e n t . i n d i f f e r e n t i n v o c a t i o n s) .

The main purpose of an a r e a v a r i a b l e i s t o mark o f f an a r e a of s t o r a g e in -
s ide 'wh ich based a l l o c a t i o n s may be made. Generat ions o'f based v a r i a b l e s
i n a r e a s can a l s o be f r eed . (We w i l l see how t o do t h e s e t h i n g s l a t e r .)

. . The system manages t h e space within an a r e a ; space which i s f r e e d can b e
a l l o c a t e d t o something e l s e . An a r e a v a r i a b l e i s au toma t i ca l ly i n i t i a l i z e d
t o t h e "empty" s ta te on a l l o c a t i o n .

Areas may b e passed as arguments and r e tu rned a s func t ion values. ' They may
b e ass igned t o o t h e r a r e a v a r i a b l e s . They may se rve ' as r eco rd v a r i a b l e s i n
r eco rd t r ansmis s ion s ta tements . Movement of' an a r e a va lue (by assignment ,
r eco rd 110, e t c .) c o n s i s t s of t h e mass movement of i ts con ten t s and c o n t r o l ,
in format ion , preserv ing i n t a c t any l i s t s t r u c t u r e s t h a t happen t o e x i s t w i t h i n
i t . More on t h i s l a t e r . See LRM 223 and LRM 224.

1'1.8. The EMPTY b u i l t i n func t ion .

The c o n t e n t s of an a r e a v a r i a b l e may. b e r e s e t t o t h e i n i t i a l , , "empty" s t a t e
by a s s ign ing t h e va lue of t h e EMPTY ' b u i l t i n f u n c t i o n t o - i t . T h i s h a s t h e
e f f e c t of f r e e i n g a l l t h e based gene ra t ions i n s i d e t h e a r e a a t once. . S e e
LRM 225 and t h e e n t r y f o r EMPTY i n LRM 18.

11.9. Area assignment and t h e AREA condi t ion .

There i s a c e r t a i n p o i n t i n each a r e a beyond which no gene ra t ions of based
v a r i a b l e s e x i s t ; beyond t h a t p o i n t i s f r e e space. Up t o t h a t po in t i s "used"
space. Note t h a t t h e used space may c o n t a i n h o l e s r ep re sen t ing f r e e d gener-
a t i o n s (t h i s space , l i k e t h e f r e e space a t t h e end, i s a v a i l a b l e f o r subse-
quent a l l o c a t i o n s i n t h e a r e a) .

When an a r e a va lue (i . e . ' , t h e va lue of an a r e a v a r i a b l e o r a func t ion r e f -
e rence t h a t r e t u r n s an a r e a va lue) is ass igned t o an a r e a v a r i a b l e , , o n l y t h e
used p o r t i o n is copied t o t h e t a r g e t . The c o n t r o l in format ion which i s a l s o
moved i d e n t i f i e s t h e p o r t i o n of t h e a r e a which is used. I f t h e s i z e of t h e
t a r g e t a r e a i s i n s u f f i c i e n t t o con ta in t h e used p o r t i o n of t h e a r e a va lue
being a s s igned , the AREA cond i t i on occurs .

Defau l t s t a t u s f o r t h e AREA c o n d i t i o n i s enabled; i t cannot be d i sab led . I n
t h e absence of an e s t a b l i s h e d on u n i t , s tandard system a c t i o n i s t o i s s u e a
message and r a i s e t h e ERROR cond i t i on . . .

The AREA cond i t i on i s one of t h e few f o r wh ich ' a u s e f u l a c t i o n is de f ined on
normal r e t u r n from an on u n i t . h he t a r g e t area . re ference i s re-evaluated and
t h e assignment i s re-attempted. I n o t h e r words, i n an AREA on u n i t you may

f r e e . t h e t a r g e t area and a l l o c a t e a l a r g e r one, change t h e va lue of a sub-
s c r i p t used i n t h e t a r g e t a r e a r e f e r e n c e , o r change t h e va lue of t h e p o i n t e r
used t o l o c a t e a b a s e d , a r e a t a r g e t . See LRM 226 and t h e e n t r y f o r AREA i n
LRM' 116.

. .

11.10. A l l o c a t i o n i n an a r e a . .

To a l l o c a t e a based v a r i a b l e i n s i d e an a r e a , u se t h e I N op t ion of t h e
ALLOCATE s t a t emen t .

ALLOCATE B I N (A) SET (P) ;
Here, A i s a n area v a r i a b l e . The I N o p t i o n i s a l s o used i n t h e FREE s t a t e -
ment t o denote f r e e i n g i n an area:

FREE P -t B I N (A);

I f an .attempt a t a l l o c a t i o n i n an a r e a f a i l s (because of i n s u f f i c i e n t f r e e
space) t h e AREA c o n d i t i o n occurs . On normal r e t u r n frbm an AREA on u n i t
e n t e r e d f o r this r e a s o n , . t h e a l l o c a t i o n i s rea t tempted a f t e r re -eva lua t ing
t h e a r e a named i n t h e I N o p t i o n (which presumably has been changed i n t h e :

on u n i t) . . .

Question: If a l ist s t r u c t u r e i s b u i l t up i n an a r e a , t h e va lues of t h e
p o i n t e r v a r i a b l e s fmrolved w i l l b e a b s o l u t e addresses of l o c a t i o n s i n s i d e '

t h a t a r e a ; what purpose, then , can a r e a assignment s e rve? Even though t h e
based v a r i a b l e , g e n e r a t i o n s a r e copied i n such a n assignment, none of t h e
p o i n t e r v a l u e s i s changed.

'l'o overcome this problem we in t roduce ano the r type of program-control d a t a
i tem.

11.11. O f f s e t s .

An " o f f s e t " v a l u e is an a d d r e s s - r e l a t i v e t o t h e s t a r t of t h e s to.rage a l l o -
c a t e d t o a p a r t i c u l a r a r e a v a r i a b l e . An o f f s e t v a r i a b l e i s a v a r i a b l e
which can hold such a va lue . An example of a d e c l a r a t i o n of an o f f s e t
v a r i a b l e is:

D.CL OFST OFFSET (A) ;
where A i s an a r e a ' v a r i a b l e .

O f f s e t v a r i a b l e s may be used e s s e n t i a l l y fn te rchangeably w i t h p o i n t e r v a r i -
a b l e s , O f f s e t and p o i n t e r va lues may b e converted i n t o each o t h e r . Both
k i n d s of v a r i a b l e s are c a l l e d , because of t h e i r use and thejr dnterchange-
a b i l i t y , l o c a t o r v a r i a b l e s .

When an o f f s e t v a r i a b l e is used t o l o c a t e a based v a r i a b l e , e i t h e r i n exp l i -
c i t o r i m p l i c i t l o c a t o r q u a l i f i c a t i o n (gene ra l i z ing now on t h e e a r l i e r term

11 po in t e r ' q u a l i f i c a t i o n ") , t h e o f f set va lue i s i m p l i c i t l y converted t o a
p o i n t e r va lue by adding t o i t t h e address of t h e a r e a named i n i t s d e c l a r a t i o n .

When a based a l l o c a t i o n is made i n an a r e a , and t h e SET op t ion names an o f f -
set v a r i a b l e , t h e va lue ass igned t o t h e o f f s e t v a r i a b l e is t h e o f f s e t of t h e
a l l o c a t e d gene ra t ion r e l a t i v e t o t h e a r ea . (Actua l ly , a t t e n t i o n may focus
on s e v e r a l d i f f e r e n t a r e a s here : t h e one named i n t h e I N op t ion and t h e one.
named i n t h e d e c l a r a t i o n of t h e o f f s e t v a r i a b l e . Furtherinore, e i t h e r of. t h e s e
may b e omi t ted and s t i l l implied by v a r i o u s ' t h i n g s . See LRM 227. However,
t o keep t h i n g s .simple assume bo th a r e a s a r e t h e same.)

By us ing t h e f a c i l i t i e s desc r ibed h e r e , l i s t s t r u c t u r e s b u i l t up w i t h i n a r e a s
can be-made t o t a l l y r e l o c a t a b l e , i . e . , they won't con ta in any abso lu t e ' ad-
dresses--only r e l a t i v e ones.. Thus, t h e list s t r u c t u r e s r e t a i n t h e i r v a l i d i t y

'when a r e a va lues a r e ass igned , and when they are w r i t t e n ou t and l a t e r read
back i n (even i f they a r e read i n t o a d i f f e r e n t l o c a t i o n) . Thus, whole l i s t
s t r u c t u r e s may b e s t o r e d and r e t r i e v e d very e f f i c i e n t l y a s r eco rds i n record
d a t a s e t s .

See LRM 228 through LRM 231.

11.12. E x p l i c i t o f f s e t / p o i n t e r conversion.

Besides t h e i m p l i c i t . o f f s e t t o p o i n t e r conversion d iscussed a l r e a d y , t h a t
conversion may be fo rced e x p l i c i t l y u s ing t h e POINTER b u i l t i n f u n c t i o n .
Suppose a based v a r i a b l e i s a l l o c a t e d i n a r e a A and o f f s e t v a r i a b l e 0 i s s e t
t o - i t s o f f s e t i n A . Suppose t h e , a r e a A is ass igned t o B. B now con ta ins a
gene ra t ion of t h e based v a r i a b l e (c a l l i t Q) a t . t h e same o f f s e t a s t h e one
i n A. 0 may be. used t o l o c a t e e i t h e r t h e one i n A o r t h e ' o n e i n B. I f 0
was dec l a red a s

DCL 0 OFFSET (A) ;
t hen 0 -+ Q locates che m e i n A because 0 undergoes i m p l i c i t conversion t o
p o i n t e r r e l a t i v e t o t h e a r e a (A) w i t h which i t was dec l a red . To l o c a t e t h e
Q i n . B we may write

POINTER(0, B) -+ Q
o r we may a s s i g n 0 t o , s ay , M, dec l a red as

DCL M OFFSET (B) ;
and then w r i t e

M -, Q.

The OFFSET b u i l t i n f u n c t i o n conve r t s a p o i n t e r va lue t o an o f f s e t r e l a t i v e
t o t h e . g i v e n a r e a . 'The p o i n t e r v a l u e must b e an address w i t h i n t h e a r e a .

See t h e r e l e v a n t p a r t s of LRM 18.

11.13. Locate-mode 110.

The kind of r eco rd 1 / 0 demonstrated i n Lessons 8 and 9 is c a l l e d move-mode I / O
because d a t a may b e t r a n s f e r r e d , o r moved, between b u f f e r s and v a r i a b l e s i n
t h e program.. (~ u f f srs a r e used- f o r blocked r eco rds and i n o t h e r c ircumstances .)
It i s p o s s i b l e by us ing based v a r i a b l e s . t o g a i n acces s t o d a t a r i g h t i n t h e
b u f f e r s . The technique i s c a l l e d locate-mode 1 / 0 because d a t a i s loca t ed d i -
r e c t l y i n t h e b u f f e r s and n o t moved between them and program v a r i a b l e s . This
c o n s t i t u t e s a u se of based v a r i a b l e s e n t i r e l y d i s t i n c t . f r o m l i s t process ing o r
system programming.

11.14. READ s t a t emen t w i t h t h e SET op t ion . '

The INTO o p t i o n of a READ s ta tement may be rep laced by t h e SET dp t ion i n t h e , .
c a s e of a s e q u e n t i a l , keyed o r non-keyed, i n p u t o r update f i l e . The SET op t ion
c o n t a i n s a r e f e r e n c e t o a p o i n t e r v a r i a b l e , e .g . ,

READ FILE (F) SET (P) ;
'lhe next record- (o r t h e d e s i r e d r eco rd , i n t h e c a s e of a keyed f i l e - - i . e . ,
when t h e KEY o p t i o n is used) is. read and l e f t i n t h e b u f f e r (i n t h e c a s e of
blocked r eco rds i t was probably a l r e a d y . t h e r e) ; i ts addres s is re tu rned i n
t h e p o i n t e r v a r i a b l e . That p o i n t e r . v a r i a b l e may be used t o l o c a t e a based
v a r i a b l e , th& e f f e c t . of which i s t o acces s t h e record r i g h t t h e r e i n t h e b u f f e r .

I n t h e c u r r e n t language t h e f i l e must have t h e BUFFERED a t t r i b u t e . This
a t t r i b u t e is n o t i n t h e ANSI s t anda rd , and locate-mode I/O can be done with-
o u t i t .

Once t h e - next READ s t a t emen t f o r t h e same f i l e is executed, o r i f t h e f i l e
is c losed , t h e p o i n t e r v a l u e obta ined on t h e previous read may no t be used
t o l o c a t e a , b a s e d v a r i a b l e . This i s because t h e con ten t s of t h e b u f f e r may
have been changed by t h e subsequent r ead , o r t h e b u f f e r may have d isappeared
because of t h e f i l e c l o s i n g .

RW. . .SET and READ...INTO may be intermixed on t h e same f i l e (a s w e l l a s
READ. . .IGNORE) ,

' How do we know what based v a r i a b l e t o u s e t o look a t a record i n a b u f f e r ?
The READ...SET, a l though i t does gene ra t e a p o i n t e r v a l u e , i s u n l i k e t h e
ALLUCATE sfatement and t h e ADDR b u i l t i n f u n c t i o n because no a t t r i b u t e s a r e
implied f o r t h e s t o r a g e whose addres s i s being r e tu rned . I f , i n f a c t ,
d i f f e r e n t k inds of r eco rds can e x i s t i n t h e d a t a s e f , and i f different based
v a r i a b l e s would be a p p r o p r i a t e f o r t h e d i f f e r e n t r eco rds , then t h e program
must a n t i c i p a t e what kind of r eco rd comes next and u s e t h e r i g h t based
v a r i a b l e . It is i l l e g a l t o u se t h e "wrong" one because you might address
s t o r a g e o u t s i d e . t he b u f f e r , o r g e t t h e wrong a t t r i b u t e s f o r st0rag.e i n s i d e
t h e b u f f e r . The " r igh t " based v a r i a b l e , of cou r se , is one which has t h e
same a t t r i b u t e s and s t r u c t u r i n g a s t h e v a r i a b l e from which t h e record was
p rev ious ly w r i t t e n .

One a d d i t i o n a l freedom is permi t ted t o e a s e t h e burden of l o g i c a l l y a n t i c -
i p a t i n g what kind of record comes nex t . The a t t r i b u t e s of t h e based v a r i - . .

a b l e through which you acces s t h e record i n t h e b u f f e r on ly need t o d e s c r i b e
a "head" o r i n i t i a l p o r t i o n of t h e record . I . e . , i f a record i s r e a l l y
descr ibed by a s t r u c t u r e such a s

DCL 1 S1 BASED,
2 CODE a t t r ,
2 ...
* 9

then i t is l e g a l t o r e f e r . t o t h a t s t o r a g e through a based v a r i a b l e dec l a red
as

DCL 1 S 2 BASED,
2 CODE a t t r ;

I n o t h e r words, t h e e a r l i e r r u l e t h a t t h e a t t r i b u t e s o f - t h e based v a r i a b l e
must exac t ly .ma tch those of t h e gene ra t ion of s t o r a g e being accessed w a s
too s t r o n g ; they only need t o match a s f a r as' they go. This permi ts t h e . -

beginning of t h e r eco rd t o b e accessed through, S2.CODE. ~ e p e n d i n g . on what , .

i s found t h e r e , you may then u s e t h e same' p o i n t e r v a l u e wi th some o t h e r
a p p r o p r i a t e based v a r i a b l e t o acces s t h e whole r eco rd .

1 n . o t h e r words, t h e s t ruc tu re .mapp ing r u l e s a r e guaranteed by t h e language
t o map a s t r u c t u r e cha t matches t h e beginning of another s t r u c t u r e e x a c t l y
t h e same a s t h e beginning of t h a t o t h e r s t r u c t u r e .

See LRM 232 and LRM 233.

Note t h a t a REWRITE s ta tement wi thout t h e FROM o p t i o n which fo l lows a READ
s ta tement w i th t h e SET o p t i o n i s ve ry e f f i c i e n t ' indeed; t h i s is e f f e c t i v e l y
a no-op. The whole b u f f e r i s even tua l ly w r i t t e n back o u t t o t h e d a t a s e t
(a s t h e r e s u l t of execut ing one o r more REWRITE'statements,for r eco rds i n
t h e b u f f e r) ; b u t on ly a f t e r t h e whole b u f f e r has been processed (i . e . , when
a subsequent read des igna te s a re,cord n o t i n t h e b u f f e r , o r when t h e f i l e
i~ cloec 'd) , .

11.15. The LOCATE s t a t emen t . . .
\

Locate-mode ou tpu t i s performed by 'execut ing a LOCATE s ta tement i n s t e a d of
a WaPTE s ta tement . It a p p l i e s t o s e q u e n t i a l ou tpu t f i l e s which have t h e
BUFFERED a t t r i b u t e .

A s ta tement such as
LOCATE B FILE (F) SET (P) ;

causes a gene ra t ion of s t o r a g e f o r t h e based v a r i a b l e B t o be a l l o c a t e d . i n
t h e next a v a i l a b l e s l o t i n t h e b u f f e r f o r f i 1 e . F . The addres s of t h a t
gene ra t ion is re tu rned i n P. P may subsequent ly be used t o add res s t h e
record i n t h e b u f f e r by l o c a t i n g B.

Notice we s a i d B i s a l l o c a t e d i n t h e b u f f e r . That means t h a t a d j u s t a b l e . a .
e x t e n t s a r e eva lua t ed a t t h a t t ime and any i n i t i a l i z a t i o n s s p e c i f i e d by
t h e d e c l a r a t i o n of B a r e c a r r i e d ou t then.

The gene ra t ion of t h e based v a r i a b l e a l l o c a t e d i n t h e b u f f e r . r e m a i n s ac- .
c e s s i b l e u n t i l t h e nex t execut ion of e i t h e r a LOCATE s ta tement o r a WRITE
s t a t emen t f o r t h e same f i l e , o r u n t i l t h e f i l e i s c losed . A t t h a t t i m e
(bu t n o t be fo re) t h e b u f f e r i s e l i g i b l e f o r t ransmiss ion t o t h e d a t a s e t .

See LRM 234 through LRM 236.

11.16. Review.

New p o i n t e r v a l u e s a r e "generated" by:
(a) 'Reference t o t h e ADDR b u i l t i n f u n c t i o n .
(b) Reference t o t h e NULL b u i l t i n f u n c t i o n .
(c) By a l l o c a t i o n of a based v a r i a b l e no t i n an a r e a .
(d) Locate-mode inpu t (READ,..SET).
(e) Locate-mode output (LOCATE) .
(f) Conversion from an o f f s e t va lue .
(g) Record i n p u t o p e r a t i o n s (t h e v a l u e may n o t be v a l i d) .

They a r e propagated by assignment.
They may b e used i n t h e fo l lowing ways:

(a) To l o c a t e a gene ra t ion of a based v a r i a b l e .
(b) I n e q u a l i t y comparison ope ra t ions .
(c) I n r eco rd output ope ra t ions .

New o f f s e t v a l u e s are "generated" by:
(a) A l l o c a t i o n of a based v a r i a b l e i n an a r e a .
(b) Conversion from a p o i n t e r va lue .
(c) Record i n p u t o p e r a t i o n s (t h e v a l u e i s v a l i d)

They a r e propagated by assignement.
They may b e used a s fo l lows:

(a) To l o c a t e a gene ra t ion of a based v a r i a b l e (a f t e r conversion t o
pointer).

(b) and (c) : Same a s f o r p o i n t e r .

New a r e a v a l u e s a r e "generated" by:
(a) Reference t o t h e EMPTY b u i l t i n func t ion .
(b) Updating a n a r e a v a r i a b l e by a l l o c a t i n g o r f r e e i n g a based

v a r i a b l e i n i t ,
(c) Record i n p u t ope ra t ions .

They a r e propagated by assignment.
They may b e used a s fo l lows:

(a) To l o c a l i z e a based a l l o c a t i o n .
(b) I n r eco rd output ope ra t ions .

1 1 . 1 7 . Homework p r o b l e m s .

(I11~) W h a t s i m p l e r e x p r e s s i o n has the k a m e v a l u e as ADDR(P + B) ? '

A s ADDR(X) + B?

(I l l B) In the. s t a t e m e n t l a b e l e d L , i s the reference t o the b a s e d v a r i a b l e
B a reference t o E o r t o F ?

DCL P PTR;
DCL (E , F) ;
DCL B . . . BASED (P) ;
P = ADDR(E) ;
BEGIN ;

DCL P PTR;
P = ADDR (F) ; , .
L : B = B + l ; . .

END ;.

. .

(i / l l C) What p r o b l e m s o r errors d o y o u see h e r e ? ~ s s u m e appropr ia t e
declarations.

(a) DO 'I = 1 T 0 ' 1 0 ;
. ALLOCATE X SET (P) ;

P + X = A (1) ;
END;
DO I = 10 TO. 1 BY -1; . .

B (1 1 - I) = P + X;
FREE P + X; . ,

END;

(b) ' DCL S FLOAT STATIC,
T F'LOAT BASED;

P =. ADDR(S) ;
ALLOCATE T SET (Q) ;
Q -, T = 2 0 :
P + T = 3 5 * Q + T ;
FREE Q + T , P + T ;

(lI1I.D) W h a t d o e s the c o m p i l e d code have t o d o on any reference t o P + S.U
w i t h ' S d e c l a r e d as f o l l o w s ?

. . DCL 1 S BASED,
2 N FIXED BIN,

. . 2 T (K REFER (S .N)) FLOAT,
2 U CHAR (1) ;

Why i s the f o l l o w i n g not p e r m i t t e d ?
DCL 1 S BASED,

2 T (K REFER (s.N)) OAT,
2 N FIXED BIN,
2 U CHAR (1) ;

(iI11E) Con t r a s t based and de f ined v a r i a b l e s .

(U11F) What do t h e fo l lowing mean'?
GO TO P -+ L;
CALL P + Q;

(#11G) R e c a l l t h e example of t h e procedure OBSERVE i n Sec t ion 11.6 . A
t y p i c a l r e a l i z a t i o n of t h i s procedure f r e q u e n t l y omits t h e based
v a r i a b l e NEXT-FIELD and r e p l a c e s two s ta tements w i th o t h e r s , as
fo l lows :

P = ADDR(Q + ENTRY~NEXT);
by P = Q;

and P + NEXT-FIELD = Q

by P -, ENTRY.NMT = Q;

Under t h e Optimizing compiler t h e modified program works and has
t h e d e s i r e d e f f e c t . ' I n f a c t , i t gene ra t e s t h e same code a s t h e
one i n Sec t ion 1l.b. However, it is eechnlcally i l l e g a l , arld w u n ' ~
g e t p a s t t h e Checkout compiler . Why i s i t i l l e g a l ? Hint : When
c o n t r o l reaches t h e modified s ta tement

P -t ENTRY. NEXT = Q ;
t h e f i r s t t ime, i . e . , when t h e f i r s t e n t r y i s being added t o t h e
(c u r r e n t l y empty) l i s t , t o what 'does P r e a l l y p o i n t ? I . e . , what
a r e t h e a t t r i b u t e s of t h e gene ra t ion of s t o r a g e t o which P p o i n t s ?
A r e t h e s e t h e same a s those of t h e based v a r i a b l e l o c a t e d ' b y P?
Would t h e modified program work i f NEXT w e r e . t h e second o r t h i r d
component of ENTRY i n s t e a d of t h e f i r s t ? What about t h e o r i g i n a l
program?

(iI11H) Suppose a c a l l has j u s t been made t o OBSERVE. P and Q a r e l e f t
po in t ing i n t o t h e l ist . When t h e next c a l l i s made t o OBSERVE,
they w i l l be i n i t i a l i z e d t o new va lues i n p r e p a r a t i o n f o r a new
t r a v e r s a l of t h e l is t . However, i f t h e new c h a r a c t e r s t r i n g va lue
presented on t h a t c a l l c o l l a t e s h ighe r than t h e one i n t h e e n t r y
t o which Q was l e f t po in t ing , r e s e t t i n g P and Q t u r n s o u t t o be
was t e fu l . Modify OBSERVE t o do a n i n i t i a l t e s t of Q -+ ENTRY.T
a g a i n s t S, and avoid r e s e t t i n g P and Q when t h a t is unnecessary.
Make s u r e t h i s works t h e f i r s t t i m e OBSERVE i s en te red (what w i l l
Q be ps in tgng t o t h e n ?) ,

P and Q have a l r e a d y been dec l a red STATXC a n t i c i p a t i n g t h i s change.
The o r i g i n a l program d id no t r e q u i r e t h a t .

(U11I) Wri te a procedure t o t r a v e r s e t h e list b u i l t by repea ted c a l l s t o
OBSERVE. A t each e n t r y , p r i n t ENTRY.T and ENTRY.COUNT. F ree t h e
e n t r y b e f o r e going on t o t h e next one.

Code the loop using a WHILE-only DO group, i.e., DO WHILE (...);
Then try to code the loop using the DO...REPEAT of the ANSI lan-
guage (see Section 6.5). The form will be something like

DO Q =. initval REPEAT '(nextval) WHILE (cond) ;
What common, potential error is avoided by using this form?

Suppose you have a card-image dataset containing a source program.
Sequence information exists in columns 73-80, but is has been
corrupted. Write a program that updates the dataset by replacing
th6 contents of,the sequence field of successive'cards by 00000010,'
00000020, etc. Use a sequential update file, READ. ..SET, and
REWRITE without FROM. Comment on the amount of physical I /O per-
formed. The based variable used to access a card in the buffer
should be a structure. Consecutive sequence numbers can be gen-
erated conveniently by using a numeric picture variable (see Lesson

(#11K) The technique demonstrated in section 11.14 for decoding a record
whose address has been supplied by a.READ...SET can be avoided if
the "record type code" for a record is kept in the previous record.
Then, every access to a given record can be made by using the cor-
rect based variable. (The program has to'have some convention a-
bout the first record, however.)

Let us focus on the creation of such a dataset, i . e. , one in which
each record contains information about the "type1' of the next record
in sequence. Suppose that a program which writes such a dataset
cannot know the type of a record to be produced until it is.finished
producing the previous one. What feature of locate-mode output
(LOCATE) permits the "typeu of the next tecord to be put in the
previous record after it is logically completed?.

(#11L) Consider the use of a based self-defining structure to represent
, . characrer string data of fixed, but adjustable, length. Different

generations of the based variable will contain character string.
values of different lengths. What advantage is gained by repre-
senting the data this way, instead of using a based varying-length
string with a fixed maximum length? Show a suitable declaration of
of such a structure. Write a procedure which accepts a pair of
pointers to two generations of such a based variable, allocates a
third whose character string part contains the concatenation of
their character string parts, frees the two generations, and returns
a pointer to the new generation.

12. (a) Miscellaneous features.
(b) Preprocessor.

This lesson deals almost exclusively with useful features of our
implementation which have not been standardized by ANSI.

12.1. DISPLAY statement.

The DISPLAY statement allows communication with the operator
in the form

DISPLAY (e x p r) ;
the value of e z p r is convetted (if necessary) to character
and written on the operator's console.

In our environment messages to the operator are not
enc.ouraged and really serve no useful purpose. However,
they are copied to a job's S'YSMSG output, which may be .use-
ful. It is probably a good idea, for instance, to open
file SYSPRINT explicitly very, early in the execution of a
program just to know that it is definitely "available" for
program output and system error messages. Before opening
the file, an UNDEFINEDFILE on unit should be established
for SYSPRINT. If this on unit should be entered it means
there is no way the system will be able to deliver PL/I
error messages to the user .in the normal way. The on unit
can explain that to the user, via SYSMSG, by executing some
DISPLAY statements. (The operator probably won't even
notice.. .)

By using the REPLY option on the DISPLAY statement, the
program will print a message to the operator, then'wait
for his. reply. The reply, when issued, is assigned to the
character string variable named in the REPLY option. You
should not use this form here without submitting special
instructions with your job; even then, you cannot count
on the operator remaining free enough.to notice your mess-
age and reply to it in. a timely fashion. You are charged
for the WAIT time accrued while waiting for the reply.

See LRY 237.

12 .2 . FETCH and RELEASE s t a t e m e n t s .

An e x t e r n a l p rocedu re l i n k e d i t e d i n t o a program occup ie s
c o r e s t o r a g e f o r t h e d u r a t i o n of t h e program's e x e c u t i o n ,
even i f it i s r a r e l y (o r , i n t h e ext reme case, n e v e r)
invoked. B e t t e r u s e of c o r e s t o r a g e can o f t e n be made
e i t h e r by employing o v e r l a y s t r u c t u r e s i n t h e l o a d module
(see OPG 26 and CPG 25) o r p b y u s i n g FETCH and RELEASE
s t a t e m e n t s .

An e x t e r n a l p rocedu re named i n a FETCH o r RELEASE s t a t e m e n t
i s n o t l i n k e d i t e d i n w i t h t h e rest o f t h e program (no -
e x t e r n a l r e f e r e n c e i s g e n e r a t e d) . Ra the r , it i s loaded
i n t o c o r e on e x e c u t i o n o f a FETCH s t a t e m e n t an.d d e l e t e d on
e x e c u t i o n of a RELEASE s t a t e m e n t . ' E x e c u t i o n of a CALL s t a t e -
ment naming t h e p rocedu re c a u s e s it t o be loaded b e f o r e be ing
invoked i f 'it i s n o t a l r e a d y i n c o r e ;

" F e t c h a b l e " e x t e r n a l p rocedu re s must be d e c l a r e d w i t h t h e
a t t r i b u t e s ENTRY EXTERNAL l i k e any o t h e r e x t e r n a l p rocedures .
They a r e known a s f e t c h a b l e p rocedures by v i r t u e of t h e
appearance o f t h e i r names i n FETCH o r RELEASE s t a t e m e n t s ,
o r bo th . The e n t r y names appea r ing i n t h e s e s t a t e m e n t s ~ r ~ u s L
be e n t r y c o n s t a n t s ; t h e y cannot be e n t r y v a r i a b l e s . The
f a c i l i t y i s v e r y l i m i t e d and h a s many r e s t r i c t i o n s . See
LKM 238 t h rough LKM 2 4 1 . JCL c o n s i d e r a t l v r l s w i l l Le d i s -
cussed in Lesson 1 3 ,

12 .3 . PLIRETC b u i l t i n p rocedure .

PLIRETC i s t h e f i r s t o f s e v e r a l b u i l t i n p rocedu re s d e f i n e d
by t h i s implementa t ion . A b u i l t i n p rocedure i s l i k e a
b u i l t i n f u n c t i o n e x c e p t t h a t ~t 1s ;nv&ed by a CALL s t a t e -
ment. I ts name i s known t o t h e compi le r and g e n e r a l l y
d o e s n ' t have t o be d e c l a r e d . See Lesson 10,

The PLIRETC b u i l t i n p rocedure a l l ows you t o set a s t e p
r e t u r n code which can be t e s t e d i n J C L t o de te rmine whether
a succeed ing job s t e p shou ld be execu ted o r bypassed. For
i n s t a n c e ,

CALL PLIRETC (8) ;
sets a s t e p r e t u r n code , o r comple t ion code , of 8 . The u s e r
must r e s t r i c t h imse l f t o codes between 1 and 999 . I f a job

terminates abnormally (see the discussion in Section 6.91,
a return code of 1000 or 2000 will be added to the value
set by the programmer. If the environment becomes hope-
lessly destroyed, a code of 4000 or higher, signifying
total disaster, will be returned. See CPG 3 and'0~G 3,
also CPG.26 and OPG 27. .If a job terminates normally and
the programmer has not set a return code, 0 is returned.

12.4. PLISRTx builtin procedures.

This implementation also provides direct and dynamic access
to the system SORT utility via four builtin procedures,
PLISRTA through.'PLISRTD. These are completely described.
in CPG 27 and OPG 28.

12.5. Other facilities.

This implementation has builtin procedures for access to
the system Checkpoint/Restart facilities, but these are not
implemented in our system.

Other facilities useful primarily in debugging will.be des-
cribed in Lesson 13.

12.6. The preprocessor.

PBM's P L / l has always had a preprocessor or compile-time
facility that allows the programmer to write macros, arrange -
for text substitutions in his source program durlng compila-
tion, compile certain parts of the program conditionally,
etc. Perhaps due to some of the inadequacies of the pre-
processor, the rest of the world has not considered it to
be a part of PL/I. Other vendors have not implemented i t,
and'it is not in the ANSI standard.

The,compile-time facility is not invoked unless certain
compiler options, discussed in Lesson 13, are elected. We
will assume in this lesson that the necessary options have
been turned on.

The preprocessor can be used advantageously for simple
purposes such as systematic changing of identifiers, para-
meterization of a program, and introduction of personal
abbreviations, or for more advanced purposes, such as the
wholesale mechanical generation or derivation of programs
from minimal specifications.

See LRM 242.

12.7. The preprocessor scan.

The preprocessor, when invoked, "worlcs on" the source pro-
: gram before the compiler proper sees it. The output of the

preprocessor is what qets compiled.

The preprocessor scans the source program for preprocessor
statements, which are executed when they are encountered
and not transmitted to the output, and "active" identifiers,
which are replaced in the output by some replacement text.
Any part of the source progrgm scanned in this process which
is not a preprocessor statement or an active identifier is
carried through fntaet to the output.

Every preprocessor statement starts with a percent sign (%)
and ends with a semicolon. Each preprocessor statement
type has, furthermore, a particular syntax. In other words,
once the preprocessor encounters a % in its scan, what fol-
lows up to the next semicolon must be a syntactically valid
preprocessor statement. Outside of preprocessor statements,
however, anything goes. The text outside of preprocessor
statements is "atomized" into identifiers, constants, com-
ments, parentheses, commas, and "everything else," but that
is all: in other words, these atoms need not (at this stage)
be related by any higher level syntax. The sole purpose of
this atomization is to be able to detect active identifiers
and preprocessor statements without confusing them with
parts of constants (e.g., the E in 5E-03 will never be taken
for an active identifier) or with the contents of character
string constants or comments. See LRM 243.

12.8. %DECLARE statement.

Initially, identifiers in the source pr'ogram are inactive

and thus not subject to replacement. When the preprocessor
scan encounters a %DECLARE 'statement, the named identifiers
are activated.

An active identifier., declared in a %DECLARE statement,
,represents a preprocessor variable. When it appears subse-
quently in source text outside of preprocessor statements
.it is replaced by its value. The mechanism for assigning
values to preprocessor variables will.be shown shortly.

Preprocessor variables make take on integer numeric .or
character string values only. h he %DECLARE statement, in
addition to activating an identifier. as a preprocessor
variable, assigns it some attributes used to describe the.
kinds of values it may acquire. The two kinds of values are
respective'ly declared by the FIXED and CHARACTER attributes.
No other attributes may be included. A FIXED preprocessor
variable behaves like a FIXED DECIMAL (5,O) PL/I variable;
a CHARACTER proprocessor variable behaves like a CHARACTER
VARYING PL/I variable with no maximum length. %CECLARE ~

statements can be used to declare certain other objects,
too, as we will see later. S ~ ~ ' L R M 244.

12.9. %' assignment statement.

The preprocessor assignment statement i s used to assign a
value to a preprocessor variable. The form is

% variable = expression;
The expression cannot have the full generality of PL/I
expressions. Its operands can be only preprocessor vari-
ables, preprocessor function references (see below), decimal
integer constants, string constants, and certain builtin
function references. The exponentiation operator is not
allowed. The operands of arithmetic operators are con-
verted, if necessary, to FIXED DECIMAL (5,O). All arith-
metic is performed in this precision; note, therefore,
that division behaves more like FORTRAN integer division
than regular PL/I fixed-point division.

The expression, called a preprocessor expression, is evalu-
ated and its value is assigned to the variable whenever
the preprocessor scan encounters the % assignment statement.
See LRLL 245 and LE4 246.

Note that this is a preprocessor statement, hence no
replacement activity is triggered by the appearance of
an active identifier in it. The identifier is used in
the way dictated by the particular preprocessor statement.

12.10. Rescanning and replacement.

When an active identifier which is the name of a prepro-
cessor variable is encountered outside of preprocessor
statements during.the preprocessor scan, it is removed from
the source text and its current value replaces it in'the
output. If the preprocessor variable has the FIXED attri-
butc, itc value is converted from FIXEn DECTMAL, (5,O) to
CHAR (8) for this purpose.

Before the replacement value is placed into the output it
is, in general, first rescanned for other possible active
identifiers. Replacement of them, and rescanning,
continues until no further active identifiers remain in
the value; it is then placed in the output text. The re-
scanning of the replacement value of an active identifier
can be suppressed, as explained below.

Had B been declared as CHAR instead of FIXED, and had its
value been assigned by

% B = '9';

Example :
% DCL A CIIAR, D FIXED:
% A = 'CtB'; The value of A is now the

3-character string C+B.
% B = 9; The value of B is now 9.
X = A+E; This text lies outside of pre-

1
processor statements. The

a£ ter identifier A is active. It is
initial removed and replaced by its

replacement replacement value, which is then
rtscanned.

X = C+B+E; The replacement value, C+B, con-

after
rescanning

tains an active identifier, B.
It is removed and replaced by
its replacement value, which is

i converted to CHAR (8) for this
purpose.

X = C+-9+E; The final result is as shown.

then the final result would have been
, '

X = C+9+E;

12.11. % DEACTIVATE statement'.

The % DEACTIVATE statement (abbreviated % DEACT) makes a
preprocessor variable inactive. When its name is encoun-
tered subsequently, no replacement activity occurs. The
variable retains its,value, because it may be reactivated..
See LRM 247.

12.12. % ACTIVATE statement.

when the preprocessor scan encou,nters a ' % ACTIVATE statement
(abbreviated % ACT), the identifier is'again activated for
replacement. ,One of,two options, RESCAN and NORESCAN, may
be included. The RESCAN option (which is the default if
both are omitted) specifies that the replacement value.of
the active identifier is to be rescanned for possible addi-
tional'replacement activity before being placed in the out-
put. This is also the behavior described above for identi-'
'fiers initially activated by the %.DECLARE statement. The
NORESCAN option says that the replacemenk value is to be
placed in the output text without rescanning for further
possible replacements. . .

.Example: The "expansion" of
% DCL (A,B) CHAR;
% A = 'C+Bt;
% B = =In1;
X = A+E;

% DEACT A;
X = A+E;

% ACT A NORESCAN;
X = A+E;

yields
X = C+D+E;
X = A+E;
X = C+B+E;

See LRM 248 through LRM 250.

12.13. % IF statement.

The % IF statement has one of the forms
% IF preprocessor-expr % THEN true-'part;

or
% IF preprocessor-expr % THEN true-part;
% ELSE false-part;

The true-part and false-part must be single preprocessor
statements or preprocessor DO groups (see below).

The preprocessor-expr, which is just like an expression
on the right-hand side of a % assignment statement, is
evaluated and converted to a bit string. The bit string
is interpreted as "true" or "false" in the same way as for
normal PL/I IF statements (see Lesson 6.) The preprocessor
scan resumes at the true-part, or the false-part, or the
text after the true-part if the expression is false and
there is no % ELSE clause.

Examples :
% IF'A=B+l % THEN % A=A-1;
%.IF B<C&C=D % THEN

% IF WORD = 'STOP' % THEN % WUKU = ' I ;

% ELSE % WORD = WORD I I NEXT;

See LRM 251 and LRM 252.

12.14. % DO statement.

Preprocessor DO groups may be of the non-iterative kind,
% DO; . . .; % END; or the iterative kind. In the latter
case only the'.controlled, or indexed, type of group with
one specification is allowed.

 he non-iterative preprocessor DO group is particularly
useful.with % IF statements. The contents of the DO group
may be a mixture of preprocessor statements and 'non-

" f

preprocessor text.

Example :
% IF TYPE = 'TEST' % .THEN % DO;

PUT FILE (SYSPRINT). DATA (X ,Y ,Z) ;
% END;

A s a r e s u l t o f t h e above, t h e PUT s t a t e m e n t i s --

g e n e r a t e d i n t h e s o u r c e program i f t h e p r e p r o c e s s o r
v a r i a b l e TYPE h a s t h e v a l u e TEST.

% DCL (1,J) FIXED;
% DO I = 1 TO 5 ;

% , J = 2*1 + 5;
A (1) = B (J) ;

% END;
T h i s g e n e r a t e s :

A (1) = B (7) ;
A (2) = B (. 9) ;
A (3) = B (11) ;
A (4) = B (1 3) ;
A (5) = B(1 5) ;

See LRM 253 and LRM 254.

12.15. % GO'TO s t a t e m e n t .

The p r e p r o c e s s o r GO TO s t a t e m e n t c a u s e s t h e p r e p r o c e s s o r
s can t o b e resumed from a d i f f e r e n t p o i n t i n t h e s o u r c e
program.

Any preproce ' s so r s t a t e m e n t may have a l a b e l . The l a b e l , '

and i t s f o l l o w i n g c o l o n , a r e p l a c e d between t h e p e r c e n t ,
s i .gn and t h e s t a t e m e n t keyword. E.g. ,

. .
% LAB: A = B;

. % LAB1: I F A < B % THEN % GO TO LAB;
. , .

. . .

See LRM 255 and LR4 256. . .
I

. . . .
12.16. % n u l i s t a t e m e n t . . .

The p r e p r o c e s s o r n u l l s t a t e m e n t , w h i c h l o o k s l i k e

can be used t o match n e s t e d % ELSE c l a u s e s a g a i n s t t h e
p r o p e r % I F , a s i n

% I F ... % THEN
% I F ... % THEN ...;
% ELSE % ;

% ELSE .;

X t can also be used to insert a label anywhere to serve
as the target of a preprocessor GO TO statement. Example:

% DCL I FIXED;
% I = 0;
% L: ;

3 IF I < 10 % THEN % GO TO L;

See,LRM 257 and LRV 258.

12.17. Preprocessor procedures.

The preprocessor features.we have seen so far allow for
simple calculations, simple replacement of identifiers,

' . and conditional or unconditional redirection of the pre-
processor scan. Preprocessor procedures permit more,complex
flow patterns to be set up during the preprocessor scan, , ,

. and they allow functions of arguments to be computed during
compilation.

A preprocessor procedure is like a normal'function procedure,
but it can be invoked only at compile time. Bo.th the
PROCEDURE statement and matching END statement must be
marked by leading percent signs. Statements in the body
o f the procedure are interpreted as preprocessor statements
but their percent signs are omitted. Only the sLdL&menLs
described above can be used fn preprocessor prucedu~es, ,

. plus the RETURN statement. Preprocessor procedures may
not be nested.

Declarations made inside a preprocessor procedure obey
the normal scope rules for internal names, i.e., the items
declared are not known outside the procedure. Variables
declared in a preprocessor procedure behave as if they
had static storage class; that is, they retain their!I.:.
former value across invocativr~s uE .the proce~u~r@:4..~';i$.''A.:pYe-

, ... i ..., .. -. . .
processor procedure may also reference prepro$eYssor var:i-
ables declared outside the procedure (their 's.cope is ..the
whole source program, except preprocessor.procedures,in
which they are redeclared). ,.

. .

. . .! :
A preprocessor procedure.must return a value (which may -
,be of type FIXED or type CHAR). Therefore:

The PROCEDURE statement must include
RETURNS (FIXED) or RETURNS (CHAR) .

The procedure can only be invoked by a function
reference.

It must execute a RETURN statement containing
an expression for the returned value.

The parameters of a preprocessor procedure'are declared,
inside the procedure, in the normal way. It is 'interesting
to note that the number of arguments supplied in an invoca-
tion of a preprocessor procedure need not match the number
of its parameters. Excess arguments are ignored; excess
parameters are initialized to 0 or the null string depend-
ing on their attributes (FIXED or CHAR, respectively). . .

A preprocessor procedure may be invoked either from a pre-
processor statement (in which its n'ame appears in a function
reference in a preprocessor expression.) or from non-
preprocessor text. We will examine these cases separately.

When a preprocessor procedure is invoked from a function
reference in a preprocessor expression in a preprocessor
statement, the association of arguments and parameters
occurs in the normal way, and the returned value is used
in the normal way in the preprocessor expression.' The
arguments. in the function reference must all be preprocessor
expressions; Dummy arguments are created, as usual, if con-
version is required to match the data type of the argument
to that. of the parameter, . . ,

Example :
8 DCL (AIBIC) FIXED;

.

% P: ,PROC (X,Y) RETURNS (FIXED);
DCE (X,Y) FIXED;
1F.X >= 0 THEN Y = B - 1;
RETURN (Y*X - A) ;

% END;
% A = 3;
% B = 8;
% C = 10;
% A = I3 I P(A+l, C); . .

% A = B + P(A-40, C);
On the first invocation of PI the parameters X and Y have
the values. 4 and 10. The IF statement references B,
declared outside of P; it sets Y (and hence C) to B-1, ' .
i.e., 7. The RETURN statement also references a variable.,
A,, declared outside of P. It returns the value 7 * 4 - 3 , or
25. The % assignment statement that invoked P thus assigns

8 + 25, or 33, to A. A, B, and C now have values 33, 8,
and 7. On the second invocation of P, X and Y have values
-7 and 7. Y, and thus C, .are not altered further by the
IF statement.. The value Yeturned is 7* (-7') - (-7) , or -42 :
The final values of A, B, and C are thus -34, 8, and 7.

Somewhat different rules apply to the invocation of a
preprocessor procedure when its name appears with an
argument list as a function reference in non-preprocessor
text. The general idea is that the returned value replaces
the function reference. However, this replacement activity
only occurs if the procedure name is active. Preprocessor
procedure names are activated by their appearance, during
the preprocessor scan, in a % DECLARE statement with the
ENTRY attribute, or by their appearance in a % ACTIVATE
statement. The concept of rescanning applies to replace-
ment values of preprocessor procedure references just like
it does to replacement values of preprocessor variables.
The % DEACTIVATE statement is used to prevent the name of
a preprocessor procedure from initiating replacement activity
in non-preprocessor text; the procedure is not even invoked
when it is inactive.

Perhaps the greatest difference between the two environments
in which preprocessor procedures can be invoked lies in the
interpretation of the argument list. In non-preprocessur
text, the rules for argument lists of preprocessor function
references are as follows. IYhe text between consecutive
"unprotected" commas (or between one of these commas and
the parenthesis ateither end of the argument list, or
between the parentheses when there are no commas) is consid-
ered to be an argument. The literal sequence of characters
comprising the argument is scanned for active identifiers
(and active procedure references, too!); replacements are
performed and rescanned if indicated; and when no further
replacement activity can be performed the resulting sequence
of characters is considered to be a character string valued
argument, and that is what is associated w i t h t h e parameter.
In the case of a FIXED parameter, the character string value
of the argument is converted. In any case, a dummy is made.

By "unprotected com~a" we mean a comma not inside character
string-delimiters, comment delimiters, or balanced parenthe'ses.
This rule is required in order to recognize another function
reference in the argument list. .I.e., in

P(Q(A,B)) '-.;.

we have one argument for P, "Q (A, B) I' , not two, "Q (A" and "B) " .

Although this may seem obvious, recall that very little
syntax is imposed on non-preprocessor text du'ring the pre-
processor scan.

See LRM 259 through LRE4 261.

12.18. An example.

Suppose we wish to code a table, in a PL/I program, as a
static initialized array of structures, for example:

DCL 1 TABLE (4) STA.TIC,
2 HEIGHT FLOAT INIT (3, 1.5, 1.5, O.S),
2 RADIUS FLOAT INIT (.32, -15, 1, -8) ,
2 POLISHED BIT(1)

INIT ('llBI 'llBI 'O'B, 'O'B) I
2 STYLE CHAR(1)

INIT ('A', 'L', 'El, 'A');
Each element of the array TABLE is a structure carrying
four properties of a cylindrical object. For instance,
TABLE(3) is an entry describing a single object having
height 1.5, radius 1, style 'El, and which is not polished.

The problem of maintaining such a table quickly becomes
tedious. 'Each time we wish to add a'new entry we have'to
increase the upper bound in the first line and change four
"initial" lists. When these have become long enough to,be
spread over several lines, it then becomes difficult to
tell, at a glance, what all the properties of the' i-th
entry are.

We will define some preprocessor variables and procedures
that permit us to produce the table simply by writing

TABLE (3, .32, 'llB, 'A')
TABLE (1.5, .15, 'llB, 'L1)
TABLE(1.5, 1, '0'13, IEt)
TABLE(0.5, -81 'O'B, 'A')
END TABLE

It is now obviously easy to make a new entry in the table,
and the properties of an entry can be seen at a glance.

The following declarations and definitions suffice. Five
"global" preprocessor variables are declared and initial-
ized. Procedures TABLE and END TABLE are defined, plus
another, APPEND, which is invokzd from inside TABLE. Note

that END 'TABLE must be activated for NORESCAN so that its -
replacem~nt'value, which contains the identifier TABLE,
will not be rescanned. the purpose of the TABLE procedure
is merely to append the values of its four.parameters to
four global- variables which END TABLE 'will 'use .to "emit"
the four lists of initial values. TABLE it'self generates
a null string for replacement value.

% DCL (HEIGHT I N I T ,
RADIUS-INIT,

. , POLISHED INIT,

STYLE I N ~ T) CHAR;
% DCL #ENTRIES FIXED;
% #ENTRIES = 0 ;
% HEIGHT I N I T = ' I ' ;

. , ' % RADIUS-INIT = - ;
% -.POLISHED I N I T - ' ' ;
% STYLE INTT = ";

. % TABLE? PROC (HEIGHT, RADIUS, POLISHED, STYLE)
RETURNS (CHAR) ;

DCL , (HEIGHT,
RADIUS,
POLISHED,
STYLE) CHAR;

#ENTRTES = #F:'NT~,RIES + 1 ;
HEIGHT IPJIT = APPEND (HEIGHT I N I T , .HEIGHT) ;
RADIUS-INIT = APPEND (RADIUS-INIT, RADIUS) ;
POLISHEL) :I:NIT = A P P E N ~ (P ~ T , T K H ~ TNTT, P O T ~ T S H R D) . ; -
STYLE .INIT = APPEND (STYLE INIT, STYLE) ; - RETURU (- 1 ;

% END;
% APPEND: PROC (I N I T L I S T , ITEM) RETURNS (CHAR) ; -

DCL (I N I T L I S T , ITEP4) CHAR;
IF #ENTRIES > 1 THEN

I N I T L I S T = I N I T L I S T I I ' , ' ;
RE?URN TINIT LIST 1 ITEM) ; -

% ET\JlI;
% END TABLE: PROC RETURNS (CHAR) ;

RETURN. (' DCL .1 TABLE ('
I I #ENTRIES

I 'I ') S T A T I C , '

1 1 ' 2 HEIGHT FLOAT I N I T ('

I I FIEIGIIT IPJIT -
I I ') I 1

1 1 ' 2 RADIUS FLOAT I N I T ('

I I RADIUS I N I T -

1) '2 POLISHED BIT (1) INIT ('

I I POLISHED - INIT

I I STYLE - INIT
I I I); 1 ;

% END;
% ACTIVATE TABLE NORESCAM,

END .- TABLE NORESCAN; I

12.19. % INCLUDE statement. I

It is frequently extremely useful to be able to include
kt text from a library into a source program. For instance,

common declarations need not always be written out but may
be included from a library. This is particularly valuable.
when the declarations are those of external variables and
need, therefore, to be exactly the same in all external
procedures containing them.

For the syntax of the % INCLUDE statement, see LRM 262
and LRM 263. JCL considerations will be taken up in
Lesson 13. . .

The facility provided by the % INCLUDE statement was
recently'added to the ANSI version of PL/I.

12.20. Builtin functions. available in the preprocessor.

The LENGTH, SUBSTR, and INDEX builtin functions may be
'used inside preprocessor procedures and elsewhere in pre-
processor expressions. They may be used in non-preprocessor
text only if they.are specifically declared BUILTIN in a

' % DECLARE statement (which also activates'them). Example:

% DCL SUBSTR B U I L T I N ;
% DCL S CHAR;
% S = ' S T R I N G ' ;

X = S U B S T R (S , 3) ;
% DEACT SUBSTR;

X = S U B S T R (S , 3) ;
% S = S U B S T R (S , 3) ;

X = S;
generates t h e f o l l o w i n g :

X = RING;
X = SUBSTR (STRING , 3) ;
X = RING;

S e e . LRM 2 6 4 .

1 2 . 2 1 . H o m e w o r k p r o b l e m s .

(# 1 2 A) What do you expect t o happen here?
. % P: PROC (S) RETURNS (F I X E D) ;

'DCL S F I X E D ;
RETURN (S + 1) ; . .

% END;
. .

B ACT P;
P(X) . .

(# 1 2 B) T h i s w i d e l y c i rcu la ted p u z z l e has an absurd
a n s w e r . What do you have t o w r i t e i n place of
t h e " ? " so t h a t t h e p r o g r a m w i l l p r i n t o u t a s i n g l e
quo t e? I n p a r t i c u l a r , h o w m a n y s i n g l e quotes?

PROG: PROC OPTIONS (MAIN) ;
% DCL S CHAR;
% S = ? ;
DCSA C CHAR (1 - 0 0) VAR;
CET ETRINC (E) L I S T (C) I
PUT F I L E (S Y S P R I N T) E D I T (C) (A) ;

END;

A c t u a l l y , t h e key t o getting t h e correct a n s w e r
d o e s n ' t have m u c h . t o do w i t h t h e - preprocessor.

(# 1 2 C) What happens here?'
% DCL I F I X E D ;
% I = 0 ;
% L : ; '

A (1) .= A (1) + 1;
% IF I > o % THEN % I = I + . I ;
% GO T O L ;

(#12D) How can preprocessor variables and procedures
"stack" information at compile time? For what
kinds of "language extensions," implemented with
preprocessor facilities, might this capability be
useful?

(#12E) Suppose a. preprocessor procedure, P , has one par'am-
eter declared with the CHAR attribute. What is the
value of that parameter, on entr.y to P, when P is
invoked with the argument list shown

P('ABC1) . .
(a) in a preprocessor statement?
(b) in non-preprocessor text?

(#12F) Write a "macro" (preprocessor procedure) called
STRG, meant to be used in DECLARE statements as
follows :

DCL C STRG (' ABCDEFGH ') ;
generates

DCL C CHAR (8) INIT ('ABCDEFGH ') ;
and

DCL D STRG('ISNf IT') ;
generates

DCL D CHAR (5) INIT ('ISN1'T');
Note the string length (5) in the second.expansion.

(#lZG) Write a macro, HEX ,' that translates HEX'(' 12FC ')
into '0001001011111100'~, etc. . .

. .

13. (a) Advanced JCL' and compiler options.
(b) Program de~elopmen~ and debugging.

1n this lesson we will explore some of the non-language related
features of our implementations of PL/I that enhance the useability
of the language. In 'addition, we will consider some of the exten-
sions to the language, present in our implementations, which aid
in the debugging process.

13.1. 'organization of the Checkout compiler.

The Checkout compiler is designed to meet the requirements
of the program testing and debugging part of the program
development cycle. It is not intended for the generation
and running of production code.

The compiler is vrganized as a translator and interpreter.
The translator phase replaces the conventional compilation
phase. Its goal is to produce intermediate output for the
interpretation phase. The intermediate output is a coded
representation of the source program that permits the inter-
preter to "execute" the program without repeatedly scanning
and parsing the source, applying defaults, etc. The trans-
lation phase is generally faster than a traditional compil-
ation because less work is performed; optimized machine
code is not produced. The translator concentrates on
reporting source program errors in helpful, high-level
terms. It also repairs syntax errors very effectively.

The interpreter phase, on the other hand, is much slower
'than execution of a program from machine code. This is
justified because one generally makes very few passes of
a program though the interpreter during the program's
development; most of the program's useful life will be
represented by optimized production runs. The interpreter
does far more "consistency" checking than it would be
profitable for generated machine code to do. It is capable
of detecting errors that would go undectected in an opti-
mized, production version of a program and which could lead
to unpredictable program failures ranging from wrong results
to an abend (abort). Furthermore, errors are detected and
reported as soon as they occur; in an optimized machine
code environment'the observable effects of such errors are
often far removed in time from their causes, making.debug-
ging hopelessly difficult. Finally, because the interpreter

has the complete coded form of the source program avail-
able to it,-it is able to report errors in very high level
source program.terms. As an example, the message for an
out-of-bounds subscript value tells you the name of the
array; the number of the dimension involved; the value
of the subscript itself; and, if the subscript value was
supplied by a simple variable, the name of that variable.
You are also told the statement number of the statement
containing the error.

The multiple functions of the Checkout compiler are
reflected in the variety of ways it can be used. The most
straightforward mode of use is employed when a single exter-
nal procedure, a main procedure which doesn't need any
subroutines, is to be translated and interpreted. (Note:
builtin functions, whether supported by "library routines"
or not, are not considered to be suLruuLiries in this conto~rt.)
In this mode the translator produces its output directly
in core (some of it may spill onto a temporary dataset),
and the translation phase is followed immediately, in the
same job step, by the interpretation phase. Thus, neither
the linkage editor nor the loader is used. See CPG 28.
This mode of use is called "compile and go"; like the usual
"compile, load and go" mode of other compilers, no "object
module" survives after the run.

It i3 alco possible to translate an external procedure and
save the output of translation for later executivri Ly Lhe
interpreter phase. This mode of use is mandated by the
need to link-edit (or load) separately translated external
procedures together to resolve external references. It is
also required when you need to link-edit in AMDLIB routines
or FORTRAN routines.

I

To support this mode of use, it is possible to request out-
put from the translator. Normally, output from a compiler
is in *.he form of an "object module" to be used as subse-
quent input to the linkage editor or loader. 111 t l ~ c case
of the Checkout compiler, translator output consists of
two separate parts: a normal object module and the inter-
mediate text. The object module contains a minimum of
informati.on and is much smaller than usual. Called a
"link-edit stub," it basically contains the information
needed by the linkaqe editor to resolve external references,
and it contains a little bit of executable machine code.
The intermediate text contains most of the information
about the external procedure in coded form. It is used

subsequently only by the interpreter; it is not passed
through the linkage editor or loader. See CPG 29.

The output described above is produced by the translator
in response to the OBJECT compiler option. If you use
the appropriate cataloged procedures, such as PLCCP
(described in the next section), this option ,is supplied
automatically and you need not concern yourself with it. . - .

(Another option,'NORUN, is also supplied to tell the com-
piler to stop after the translation phase rather than go
on into interpretation.), .The object module output (link-edit
stub) is "captured" in the normal way by a SYSOBJ DD card
defining a sequential dataset or a member of a partitioned
datase't. The intermediate text output is captured by a
SYSITEXT DD. card defining a partitioned dataset (not a member
thereof). This dataset has no counterpart in other IBM corn-,
pilers. The intermediate text for a given external procedure
is stored ass member whose member name is derived from the
external procedure. name and supplied automatically by the,
compiler.

The collection of obj,ect~modules is next.processed either
by'the linkage editor, to form a load module, or by the
loader. After that, execution is initiated in.the normal
way. If the linkage editor has been used, the load,module
is invoked in a separate job step. If the loader has been

'.used, the loader initiates execution.in the same job step
in. which .it resolves external references. In either case,
in the job step in which execution takes place the parti-
tioned.dat,aset containing the intermediate text modules
created by the translator must be made available via 'a DD
card for SYSITEXT. When execution begins, the executable
machine code in the link-edit stub for the main procedure
receives control. What it does is invoke the' interpreter
phase of the Checkout compiler. All of these things are
quite transparent when you use the appropriate cataloged
procedures.

See CPG 30.

1.3.2. Cataloged procedures far the Checkout .compiler.

Each Programmer's Guide contains a chapter on the IBM-supplied
cataloged procedures for the compiler in question. Note that
we do not - use the IBM-supplied cataloged procedures here.

Rather, we use our own. These are tailored somewhat to our
environment. In addition, we have arranged to offer a
similarly named family of procedures for each compiler.

The family prefix for the Checkout compiler is PLC. Members
of the standard family available in the PLC series are
PLCCLG, PLCCEG, PLCCP, PLCCEP, PLCC, PLCEP, PLCEG, and
PLCLG. One member,.PLCCD, is not available because it is -
not possible to obtain an "objec,t deck" from the Checkout
compiler. The PLC series includes two members not in'the
standard family: PLCCG and PLCG. All are briefly described
be low.

Step names used in the cataloged procedures are as follows:
PLC - Translate only. Compiler options OBJECT and

NORUN are supplied automaticaPly to cause the
translator phase to produce output, then stop.

EDT - Link-edit step.
GO - (a) Execution of link-edited program.

(b) Substitute the loader for the linkage editor,
and go right into execution.

(c) In procedure PLCCG, translation is immedi-
ately followed by execution in the single
step 11a111ecl GO.

The s t e p s preseat in each of the procedures are indicated
in the following table.

PLC EDT GO

PLCCG
PLCCLG
PLCCEG
PLCCP
PLCCEP
PLCC
PTICEP
PLCEG
PLCLG
PLCG

Note: The single step, GO, in PLCCG combines the classical
functions of the PLC and GO steps in one step.

The purpose of each procedure is briefly described here.
PLCCG: Translate and interpret a self-contained program

in the form of a single external procedure (a main
procedure) .

PLCCLG: Translate, load, and interpret. This is used if
several external procedures are being translated and
linked together by the loader. (Note: how several
external procedures can be translated in a single PLC
step is described later.) There may be other requirements
dictating the use of the loader, even if only one external
procedure is being translated. PLCCLG can be used where
PLCCG will suffice, but resources will be wasted.

PLCCEG: Translate , link edit, and interpret. The linkage
editor provides certain services not provided by the
loader, however, it is difficult to imagine how these
could be of use when the linkage editor output is not
saved.

PLCCP: Translate only. The user must capture object module
output via PLC.SYSOBJ and intermediate text output via
PLC. SYSITEXT.

PLCCEP: Translate and link edit. The user must capture
intermediate text output via PLC.SYSITEXT and load module
output via EDT.SYSPVT.

PLCC: Translate only, with object module and intermediate
text output passed in temporary datasets to another job
step.

PLCEP: Link edit only. The user must supply input to the
linkage editor (the result of a previous translation) via
EDT.SYSIN and capture its load module output via EDT.SYSPVT.

PLCEG: Link edit result of previous translation, supplied
via EDT.SYSIN,and interpret it. Again, it is doubtful
that the special services offered by the linkage editor,
but not the loader, are useful in this context. The user
must s i ~ p p l y the intermediate L e x t resulting from the pre-
vious translation via GO.SYSITEXT.

PLCLG: Process the result of previous translation, supplied

7
via GO.LDRIN, through the loader and interpret it. The
user must supply the intermediate text resulting from the
previous translation via GO.SYSITEXT.

PLCG: Interpret a previously translated and link-edited
program. The user supplies the load module library via
GO.STEPLIB and uses the symbolic parameter PROGRAM to
name the member to be exectiled. In addition, the inter-
mediate text is supplied via GO.SYSITEXT.

Typical uses of PLCCG and PLCCLG, which are the most likely
to be needed, were shown in Lesson 0. Other information
may be found in OTHER 3, and in vther publications and
courses of the Computer Center.

t

13.3. Source i n p u t convent ions .

The t r a d i t i o n a l ddname f o r sou rce i n p u t t o compi le rs i s
SYSIN. SYSIN may b e used a l s o f o r d a t a i n p u t t o your program;
r e c a l l from Lesson 7 t h a t SYSIN i s one of t h e s t anda rd f i l e s .
The d u a l f u n c t i o n s of SYSIN pose problems f o r t h e "compile
and go" mode o f o p e r a t i o n : how can bo th f u n c t i o n s be accom-
modated i n a s i n g l e job s t e p ? The Checkout compiler s o l v e s
t h i s problem by p rov id ing two d i f f e r e n t ddnames f o r t h e two
f u n c t i o n s . SYSCIN ("compiler i n p u t ") i s f o r source i n p u t t o
t h e t r a n s l a t o r , l e a v i n g SYSIN f o r d a t a i n p u t t o t h e program
d u r i n g i n t e r p r e t a t i o n .

A c t u a l l y , o t h e r s o l u t i o n s t o t h e problem are a v a i l a b l e a l s o .
I f you p r e f e r . , you may use t h e t r a d i t i o n a l SYSIN f o r source
i n p u t (i n s t e a d of t h e new SYSCIN). I f you happen t o have
d a t a i n p u t a l s o , you fo l low t h e sou rce program by a c o n t r o l
c a r d c o n t a i n i n g

*DATA ;
s t a r t i n g i n column 1 and f o l l o w t h a t . b y t h e d a t a . F ' i n a l l y ,
you,may supply bo th sou rce and d a t a , s e p a r a t e by a '*DATA

. . s t a t e m e n t , i n SYSCIN. The t h r e e c h o i c e s a r e 'demonstrated
below.

/ RXEC PT,CCG
))GO.SYSCIN DD *

sou rce
/*
//GO.SYSIN DD *

d a t a
/ *

,/,/ EXEC PLCCG
//GO.SYSIN DD *

sou rce
*DATA;

d a t a
/*

// EXEC PLCCG
//GO.SYSCIN DD *

source
*DATA;

d a t a
/ *

See CPG 3 1 and CPG 32. The l a t t e r r e f e r e n c e a l s o d e s c r i b e s
how t h e program can be executed w i t h s e v e r a l d i f f e r e n t s e t s
o f . d a t a a l l i n one job s t e p and wi thou t r e t r a n s l a t i n g it.

13.4 . . T r a n s l a t i n g s e v e r a l e x t e r n a l p rocedures a t once.

I f s e v e r a l e x t e r n a l p rocedures a r e t o be t r a n s l a t e d , l i nked
t o g e t h e r , t h e n execu ted , it i s n o t neces sa ry t o execu te one
o r more PLCC c a t a l o q e d procedures followed by a PECCLG
c a t a l o g e d p rocedure , w i t h each ca t a loged procedure t r a n s -
l a t i n g a s i n g l e PL/I e x t e r n a l procedure . You can make do
w i t h a s i n g l e i n v o c a t i o n of PLCCLG. A l l o f . t h e e x t e r n a l

p rocedu re s a r e t r a n s l a t e d i n t h e s i n g l e PLC s t e p . They a r e
s e p a r a t e d i n t h e s o u r c e i n p u t d a t a s e t by a c o n t r o l c a r d con-
t a i n i n g

*PROCESS ;
s t a r t i n g i n column 1, a s shown i n Lesson 0. See CPG 33
and CPG 34.

When you u s e PLCCG, you may a c t u a l l y t r a n s l a t e and i n t e r p r e t
s e v e r a l d i f f e r e n t complete one-procedure programs i n a s i n g l e
i n v o c a t i o n o f t h e compi l e r . A s CPG 34 d e m o n s t r a t e s , you can
have s e p a r a t e d a t a f o r e ach program by cod ing

// EXEC PLCCG ,

//GO.SYSCIN DD *
s o u r c e 1

*DATA;
d a t a 1

"PROCESS ;
s o u r c e 2

*DATA ;
d a t a 2

e t c .
/ *

o r you can u s e t h e same d a t a f o r a l l by cod ing
// EXEC PLCCG
//GO.SYSCIN DD *

s o u r c e 1
'*PROCESS ;

s o u r c e 2
e tc .
/ *
'//GO.SYSIN D.D *

common d a t a
/ *

All s o r t s o f ' . i n t e r m e d i a t e combina t ions a r e p o s s i b l e .

13 .5 . Checkout compi le r o p t i o n s .

See CPG 35 and CTUG 4 f o r a comple te d e s c r i p t i o n of compil.er
o p t i o n s . Note , however, t h a t i n some c a s e s o u r i n s t a l l a t i o n
d e f a u l t s d i f f e r from t h e I B M d e f a u l t s . . . A l i s t o f o u r l o c a l
.dcefa .u l t s , r e p r i n t e d from 'OTHER 3 , i s a t t a c h e d t o t h e s e n o t e s .

C e r t a i n compi l e r o p t i o n s a r e e f f e c t i v e d u r i n g t r a n s l a t i o n ,
w h i l e o t h e r s app ly d u r i n g i n t e r p r e t a t i o n ; some app ly d u r i n g
bo th . Two symbol ic pa r ame te r s a r e p rov ided in 0~1.r c a t a l o g e d
p rocedu re s t o p a s s o p t i o n s t o t h e compi l e r : OPTIONS i s t o

be used for translate (PLC) steps and GOOPTS for interpret
(GO) steps. (Both are defined in the single-step procedure
PLCCG.) A simple example of their use in an EXEC statement
follows :

// EXEC PLCCLG ,OPTIONS= 'FORklAT1 ,GOOPTS= 'ERRORS (20) '
Cataloged procedures with translate-only (PLC) steps supply
OBJECT and NORUN for you; whatever you may specify via OPTIONS
supplements these.

Compiler options may also be specified on a *PROCESS statement
as described in CPG 33. These modify the options specified
in the symbolic parameters, or defaulted, for the following
external procedure only.

You may pass an argument to your main procedure. The param-
eter must be declared as CHAR (100) VAR (see LRV 265). The
argument is supplied via the GOPARM symbolic parameters, as
in

// EXEC PLCCLG,GOPAN4='3,UPDATE1
If you have no argument to pass in, and indeed have no param-
eter in the main procedure to receive one, you will neverthe-
less have to suffer message

IEN12071 AN ARGU24ENT IS BEING PASSED TO MAIN PROCEDURE
XXX, BUT THE PROCEDURE HAS NO PARAMETER LIST.
ARGUMENT IGNORED.

This occurs because our cataloged procedures make it look
like a null string is being passed in as an argument when
you do not use the symbolic parametel GOPAEIM.

An argument to the main procedure may also be specified on
a *DATA statement as described in CPG 32.

13.6. Specific Checkout compiler options.

We cannot hope L u describe all tlic clvc~ilable optionn. How-
ever, a few will be mentioned here and more will be covered
later. When you have time, read about the complete set of
options in the references previously cited.

The Checkout compiler is constantly monitoring for references
to unitialized variables. To detect thern, it actually
initializes variables which you - don't initialize by using
particular unlikely bit patterns (see LFUI 266). In rare
cases the patterns used for uninitialized FIXED BINARY or
CHARACTER variables may actually represent values your

program can produce and dea-l with. In these cases you
will need to disable the automatic checking by specifying ,

GOOPTS='NODIAGNOSE1. Don't, however, do this as a matter
of routine, since the service is one of the most valuable
performed by the Checkout compiler.

Our default for the ERRORS option, ERRORS (10) , tells the :

interpreter to report and then recover from the first ten
errors that result in the raising of the ERROR condition.
Its recovery action is tailored to the specific cause of
error; in some cases it is taken after'normal returnfrom
an established ERROR on unit, while in other cases it is
taken in lieu of raising the condition. The repair of
errors is surprisingly successful. More often than not, it
permits the program to proceed to where other, unrelated,
errors are discovered in the same run.

The FORMAT option can be used to obtain a formatted source
listing--one which is "properly" indented, having no more
than one statement per line, e'tc., and generally easier to
read.

Our default for the SIZE option is SIZE(MAX). This tells
the compiler to make use of all the storage available to
it; thus, increasing the region request will automatically
give the compiler more core storage to work with. It
should be noted that the IBM PL/I compilers, unlike the
FORTRAN compilers, are designed to work in surprisingly
small amounts of storage. There is no lower limit below
which the compiler will cease to work (however, interpreta-
tion cannot proceed if insufficient storage is available
fol- Ll~e allocation ot all of your PL/I variables). Generally,
if insufficient storage is available to keep everything in
core, the compiler will "spill" onto a temporary dataset.
The amount of spilling that occurs is a function of space
available to the program, amount of PL/I storage allocated
(during interpretation), size of the program, complexity of
the program (mix of language features used), etc. If
spilling becomes excessive the extra 1/0 can cause your job
charges to increase very rapidly. The compiler monitors
the activity on the spill file; it will report a "thrashing"
condition if one should develop. It should be pointed
out that the default region of 150K established in our
cataloged procedures is probably too small except for very
simple programs; 250K will usually result in a cheaper,
faster job.

You do not have to worry about space for buffers for your
open datasets when you specify SIZE(MAX). File openings
are performed under the control of the interpreter, and it
turns out the routines are smart enough to know how much OS
space will be required for buffers; the space is made avail-
able (by spilling, if necessary) before it is requested.
However, certain requests for OS core storage may be made
without the Checkout compiler's knowledge. This can happen
in the following three cases:

(a) You invoke the SORT utility dynamically.
(b) You invoke an other-language routine which

obtains storage by executing a GETMAIN.
(c) YOU load a fetchable load module by executing

a FETCH statement.
In these cases yo11 cannot permit the Checkout compiler to
use all the storage available to it; you must reserve some.
You can reserve, say, 30K of the region by coding
GOOPTS='SIZE (-3UK) ' .

13.7.. Cataloged procedures for the Optimizing,compiler.

The Optimizing compiler produces an object module as output.
It must be link-edited or loaded prior to execution, even
if no subroutines are needed (certain housekeeping library
routines are always needed). The cataloged procedures
available for this compiler comprise a standard family of
procedures whose prefix is PLO. Members of the PLO series,
and the names of the steps they contain, are indicated
below.

PLO EDT GO
PLOCD
PLOCLG
PLOCEG
PLOCP
'PLOCEP
PLOC
PLUEY
PLOEG
PLOLG

The PLUCU cataloged procedure automatically supplies the
compiler options DECK and NOLOAW to override the opposite
defaults. The user is responsible for supplying inputs
and capturing outputs in the ways described for the PLC
series of procedures. There is, of course,. no need for
SYSITEXT.

For consistency with the Checkout compiler, the Optimizer
will also accept its source input from SYSCIN or from SYSIN.
Multiple external procedures can be compiled in a single
PLO step; they are, as before, separated by *PROCESS state-
ments. There is no use for the *DATA statement with this
compiler. See OPG 29 through OPG 31.

13.8. Optimizing compiler options.

For the Optimizing compiler, a clear .distinction is made
between compiler' and execution options. Although the com-
piler itself is not present during execution, certain
options may be specified then to select certain services
from the run-time support or to "tune" the environment.
OPTIONS, GOOPTS, and GOPARM are used exactly as they are
i.n PLC procedures. Note, however, that we do not currently
have a PLOG procedure. To execute a previously link-edited
production program, you will need to code "bare" JCL, as in
the following (which demonstrates how you communicate both
execution-time options and an argument to the main procedure).

// EXEC PGX=member ,PARfJ1=~lexe~-options/main-a~g '
//STEPLIB DD DISP=SHR,DSN=pds.containing.member

' //SYSPRINT. and other DD statements, as needed.

Compiler and execution options are described in OPG 32 and
OTUG 5. As with the Checker, we have established defaults
that differ in some instances from the IBM defaults. Ours
are tabulated at the end of these notes.

13.9. Specific Optimizing compiler options.

To obtain maximum optimization you need to specify
OPTIONS='OPT(2)'. This will increase the cost of compila-
tion to a degree, but.the gains achieved during exe~u~ion
will be worth it if the program is executed often and if
,other optimization options (MORDER, TOTAL, and CONNECTED)
are specified in the program itself.

Two execution options, ISASIZE and REPORT, are worth
studying carefully. Dynamic PL/I storage is allocated in
an area called the ISA (Init'ial Storage Area), which is
obtained at program initialization time. The allocations
performed within the ISA are reasonably efficient (in any
event, better than performing a GET-MAIN to obtain the .
storage from 0s) . If the ISA proves insufficient, addi-

tional storage will be.obtained, as needed, by GETMAIN;
the program will continue to run (as long as the additional
storage is available in the region), but.performance will
be degraded relative to a run performed with a larger ISA.
The reason you can't generally specify ISASIZE(MAX) is that
you must leave behind whatever storage will be needed for
buffers and dynamically loaded library modules. The spectrum
of' requirements of dif.ferent programs cannot optimally be
accommodated by a single default. Ours, ISASIZE(8K), differs
from the IBM default for subtle.reasons. You,can specify
your own better guess. If you know that the space required
for buffers, etc.,'is relatively constant, while.the amount
of PL/.I storage required depends on the inputs in a particular
run (as it-well might in a list-processing application), you
can reserve a fixed amour~t ul: storage far OS and let the ISA
track the region request by coding, for in.stance,
GOOPTS='ISASIZE (- 2 0 ~) ' .

In any event', you can ask the system to monitor its own
. - storage management activities and 'report on them.at the end

of a run. For this purpose, you use the REPORT option, e.g.,
GOOPTS='REPORT'. You can. specify both together, using
abbreviations, as in GOOPTS='R,ISA(-20K) ' . The storage
management report, which tells you, among other things, an
optimal ISASIZE, is produced on the file with ddname
PLIDUPIP. Thus, when you specify the REPORT option you must
add to your GO .step

//GO. P.LIDUMP DD- SYSOUT=A

A good discussion of these very important options and stor-
age management considerations is in OPG 33.

13.10. Source record formats, margins, and sequence fields.

Both the Checker and Optimizer can accept source input in
a varicty of record formats and, record lengths.

Unless you use the MARGINS compiler option to specify
otherwise, the default source margins for fixed-format
(blocked or unblocked) recurds are 2 and 72, whilc for
variable-format (blocked or unblocked) they are 10 and 100.
At the same time, unless you specify otherwise with the
SEQUENCE compiler option, the compilers will assume columns
73 to 80 of fixed-format records, or 1 to 8 of variable-
format records, have been reserved for sequence information.

Column .1 (F-format) or 9 (V-format) is assumed to contain a
listing-control character (as described under the MARGINS
option).

These two defaults automatically match source records
created by EDIT in TSO. There, as we will see in Lesson 15,
you have a choice of two dataset "types": PLI and PLIF.
The former results in V-format blocked records with sequence
information in 1 to 8, while the latter creates an F-format
dataset with sequence information in 73 to 80. V-format
records are generally more economical because trailing
blanks are not included to "complete" the record beyond the
last character you type. Note that in either case, the
first character that you type goes into the listing-control
column and is not read as part of the source.

The F-format records are also the standard "card-image"
format for card decks.

Each statement is numbered by the compiler so that it may
be uniquely. referenced in any error messages. You have
your choice as to whether .the statement numbers are to be
assigned by the compiler from the sequence 1,2, ... or are
to be taken from the sequence field of the record on. which
the statement begins. The latter choice is the default
(determined by the compi'ler options NUMBER and NOSTMT)
when the compilation is performed in TSO, because there
you do not get a source listing by default (the option
determing that is NOSOURCE). When the compilation is per-
formed in the. batch system, the default options are STMT,
.NONU?4BERt and SOURCE. The compiler assigns consecutive
statement numbers, which are shown on the source listing.
Note that if the source dataset happens to contain sequence
information in this case, as it.would if it had been created
by EDIT in TSO, the sequence information is also listed on
the source listing.

In the checkout compiler, execution-time error messages
are always accompanied by statement numbers. Under the
OpLi~ni.zing compiler, you have your choice as to whether
statement numbers are to accompany the. code offset in
run-time error messages. The cost of having them do so
is a table, kept in core during execution, and consulted
on the occasion of producing any system message. If your.
program is compiled in the batch system, the defaults there
(NOGOSTMT, NOGONUMBER, OFFSET) suppress the inclusion of

this table in the load module but print it out as part of
the compilation listing. Error messages at run time will
not contain a statement number, but you can look up the
offset appearing in the message in the offset table in the
listing to find the statement number. If your program is
compiled in TSO, you do not get a listing of the offset
table by default, so statement numbers (derived from the
sequence information) are obtained from the in-core table
and used in run-time error messages (the governing options
are NOOFFSET, GONUMBER, NOGOSTMT).

13.11. Using the preprocessor.

To use the facilities of the preprocessor (Lesson 12) you
must specify.the MACRO compiler option. If the SOURCE '

option applies., the source listing produced represents the
output of the preprocessor. To obtain, in addition, a
listing of the input to the preprocessor, use the INSOURCE
compiler option. If you wish to capture the output of the
preprocessor on cards, use the i4DECK option. Read about
these in the references previously cited for compiler
options.

If you use the %INCLUDE statement to include source text
from a library of source text members, the library (o r
libraries).will have to be named in DD statements in the
compile (PLO) or translation (FLC, or, in the cataloged
procedure PLCCG, GO) step. The ddname is either the one
you use in the %INCLUDE statement or, if that includes only
a member name and no ddname, SYSLIB.

Included text need not have the same record format as the
primary source. And if %INCLUDE is the only preprocesgor

. statement used, you need not specify the ,HACRO option;
specify the INCLUDE option instead (it. is more efficient).

See OPG 34 and CPG 36.

13.12. Mixing PL/I and FORTRAN.

We mentioned in Lesson 10, and will repeat here, that when
you link-edit PL/I and FORTRAN mixtures you must make the
FORTRAN library ayailable. Use the POSTLIB symbolic

parameter of link-edit (EDT) or lo'ader (GO) steps for that
purpose. Also, FT06F001 must be defined in the GO step, .

even if the FORTRAN program does not write on unit 6.
Review Sections 10.10 and'13.6 (for the need to use the
SIZE option of the Checker with interlanguage communication)
and CPG 24. A JCL sample follows.

// EXEC FTHC
//FTH.. SYSIN DD *

FORTRAN source
/*
// EXEC PLOCLG,POSTLIB='SYSl.FORTLIB'
//PLO.SYSCIN DD *

PL/I source
/*
//GO.FT06F001 DD SYSOUT=A
// other DD statements, as needed

13.13. JCL considerations for fetchable procedures.

A "fetchable" procedure, i.e., an external procedure to
be loaded dynamically before invocation, must be completely
'link-edited with any other external procedures it invokes
and stored as a member of the load module library named in
the STEPLIB DD statement of the execution step.

Normally you do not have to worry about specifying an
entry point to the linkage editor or loader; the standard
entry point of PL/I load modules, PLISTART, is communicated
automatically.' However, you must intervene to specify a
different entry point for a fetchable load modu1.e. The i

entry p o i n t name (and the member name under which,it is
stored) must both be.the same as the external procedure
name.

Example: A main procedure called PROG includes the follow-
ing statements.

DCL (SUBR1, SUBR2) ENTRY EXT;
IF TYPE = 1 THEN DO;

FETCH SUBR1;
CALL SUBR1;
RELEASE SUBR1;

END;
ELSE DO;

FETCH SUBR2;
CALL SUBR2;
RELEASE SUBR2 ;

END;

Complete JCL (except for JOB and account cards) for treat-
ing a production version of the program and executing it
follows:

// EXEC PLOCEP
//PLO.SYSCIN DD *

PROG source
/ *
//EDT.SYSPVT DU DISP=(NEW,CATLG),DSN=load.lib(PROG),
// UNIT=unit,SPACE=space

.// .EXEC PLOCEP
//PLO.SYSCIN DD *

SUBRl source
/ *'
//EDT. SYSPVT DD DISP=OLD ,DSN=load . lib (SUBR1)
//EDT.SYSIN DD *

ENTRY SUBRl
/ *

// EXEC PLOCEP
//PLO.SYSCIN DD *

SUBR2 source
/*
//EDT.SYSPVT DD DISP=0LDtDSN=load.lib(SUBR2)
/'/EDTaEYSIN DD *

ENTRY SUBR2
/ *
// EXEC PGN=PROG
//STEPLIB DD DISP=SHR,DSN=load.lib
//SYSPRINT and other DD statements, as needed

Ecc OPC 35 and CPG 37.

13.14. DD statements for SYSPRINT.

. .

. The following DD 'statement, for SYSPRINT is..contained in the
GO step of all PL/I .cataloged procedures::

//SYSPRINT DD SYSOUT=A,DCB=(RECFM=VBAtLRECL=137,BLKSIZE=1511)
This effectively overrides the default linesize of 120 for
print files ' and gives you 132 'instead. When you use "bare" . .

JCL for production runs of optimized code, you should write
the SYSPRINT statement as above. (We may add a PLOG cata-
loged procedure, analogous to PLCG, in the future.)

13.15. General plan for program development.

We cannot be too emphatic in our recommendations that the.
Checkout compiler be used whi'le a program is undergoing
development and testing. Although its greatest utility is
experienced in the interactive mode (Lesson 15), it is'by
far still the best debugging tool we have in batch.

As program testing proceeds, external procedures considered
debugged may be compiled under the Optimizing compiler and
link-edited with those still being tested under the Checkout
compiler (we will demonstrate this later).

If bugs are by and by disclosed in production (optimized)
code, certain features of the Optimizing compiler (also
described later) may be helpful in identifying them.
Alternatively, one or more external procedures can.be put
bsclc throuyh the Checkout compiler.

13.16. Special features for debugging.

The language itself has several debugging features to.offer.
(These have not been standardized.) Both the Checker and
Optimizer implement the CHECK condition, and the SNAP
option of ON statements. The Checker (only) .implements,.
in addition, the FLOW, SNAP, and ALL.options of the PUT
statement, and the CHECK and FLOW sta'tements. And each
compiler implements certain compiler options useful 'in
debugging situations. A general reference- for the Checker's
special features is LRM 267; others will be given later.
Also. review LRM.124. I

13.17. The CHECK condition.

The CHECK condition occurs whenever a variable to which
it applies i.s assigned a value, or a procedure or label to
which it applies is reached. The condition is normally
disabled. Like the 1/0 conditions and the CONDITION
condition, it is a qualified condition, meaning that you
state the individual items to which it applies. Standard
system action for the CHECK condition is to write a comment
on SYSPRINT showing the procadure or label redched, or the
name of the variable and its new value. CHECK can be applied
to all known names by leaving out the list of qualifying
names. See LRM 268 and the entry for CHECK in LRM 116.

13.18. The CHECK statement.

The'CHECK statement dynamically enables the CHECK condition
for variables, etc., referenced subsequently. Its primary
use ,is in an interactive environment, -however it is- also -
-useful in batch. The simplest way to get a complete trace
of assignments is to execute a CHECK statement as part of
your initialization in the main procedure.. The NOCHECK
statement nullifies the effect of the CHECK statement. See
LRM 269 through LRV 271. The Optimizer analyzes these
statements for correct syntax, then ignores them.

13.19. The SNAP option of the ON statement.

An ON statement may include the SNAP option. The effect of
this is to produce a traceb'ack through active blocks, on
SYSPRINT, whenever the action specified by the ON statement
(whether that be standard system action or execution of an
on unit) is taken. This feature, which is in the ANSI
standard, is useful in determining the cause of the condi-
tion. See LRM 272 and LRM 273.

13.20. Checkout compiler extensions of PUT statement.

Under the Checkout compiler (only), program-control vari-
ables can be transmitted by LIST- or DATA-directed output.
The value transmitted is an implementation-defined high-level
interpretation of the value. For example, the value printed
for a label variable is the name of the label constant and
information from which you can deduce the "environment"
part of the label value; for a file variable, it is the
name of the file constant which provided its value, a list
of file description attributes, and an indication of
whether the file i s open ow closed and a count of the number
of records processed; etc. Any value which has not been
initialized, or which is invalid or inaccessible,. is indicated
by a comment.

In addition, other options are permitted on,the PUT state-
ment under the Checkout compiler. The SNAP 0p.tio.n- causes
a traceback through active blocks to be printed. The FLOW -
option causes a table of the last few changes in the flow of
control to be printed. The ALL option includes the effects
of SNAP and FLOW; in addition, for all active blocks the
following is printed:

(a) The block identification.
(b) The enablement/disablement status, in the

block, of each PL/I condition.
(c) The. values, in t.he block, of all of the "ON" ,

builtin functions (ONCODE, etc.) .
(d) ,The' names and values of all variables declared

in the b,lock.

It may be
high-level
everything
executing,

seen from the above that an extremely useful
debugging printout of the status of just about
can be printed on the occasion of any error by
early in your program,

ON ERROR BEGIN;
ON ERROR SYSTEM;
PUT ALL;

END;

. .
. . See LRM 2 7 4 and LRM 2 7 5 .

13.21. Flow infdrmation.

. . .

There are .two ways that "flow information," i.e., informa-
tion about any action resulting in the interruption.of
sequential statement execution, such as a procedure invoca-
tion or return, a branch resulting from a GO TO, IF, or DO,
statement, or the raising of a condition, can be obtained
from the Checkout compiler. This information, also, can
be useful in determining what is actually happening in-a
malfunctioning program.

Data on the last several changes in the flow of control
are kept in a "flow table." The size of this table is
determined by an execution-time option, the, FLOW optlon.
Our default is 2 0 entries. The flow table is dumped onto
SYSPRINT by executing a PUT FLOW or PUT ALL statement or,
incidentally, whenever SNAP action is taken for a condition.

Altern.atively, by executing a FLOW statement you cause .the
flow data to be written on SYSPRINT as it is senerated.
The NOFLOW statement turns dynamic flow. tracing off. See
Lm4 2 7 6 through LRM 278.

13.22. Checkout compiler options for special debugging situations.

Each execution-time message from the Checkqut compiler
includes a count of the number of statements interpreted up
to that point. Suppose the first error occurs after 10000
statements have been interpreted, and suppose any output
your program may have produced before that doesn't help you
find the cause of error. Furthermore, it is assumed that
any FLOW or SNAP output produced with the error message
doesn't help. You would like to dynamically enable the
CHECK condition by executing a CHECK statement, but you don't
know where in the program to execute that. If you execute
that too early, you will get too much CHECK output.

What you do is execute the CHECK statement'early and block
its output until, say, 9900 statements have Been executed.
The blocking is accomplished by the BLOCK op,tion:

GOOPTS= 'BLOCK (9900) '

Another situation that you can get a handle on by using
appropriate execution options is an apparent infinite loop.
You can break the loop after execution of a given number of
statements or after d y i ~ e 1 1 number of lines arc printed on
SYSPRINT by using the STEP or STEPLINES execution options,
respectively. When the appropriate limit is reached, the
ERROR condition is raised. A small further allotment of
statements or lines permits you to print out some debugging
output. (The ERROR on unit shown in Section 13.20 is about
the best you can do.) This may be usefully combined with a
CHECK statement and the BLOCK execution option to produce
a trace of assignments that occur in the statements executed
just prior to interruption of the loop.

An additional source of information on debugging techniques
for batch use of the Checkout compiler is CPG 38.

. .

13.23. Mixing Optimizer and Checker compiled procedures. : , I ' '
. :..

Once one external procedure from a large program has been
debugged to your satisfaction, it may be compiled under the
Optimizing compiler and link-edited with procedures compiled
by the Checkout compiler. Execution still occurs under.the
control of the Checkout compiler, but whenever control
reaches an Optimizer-compiled procedure the procedure is
executed at full machine speed.

There are two precautions you must observe when you mix
modules in this way. First of all, if any locator variable's
(pointers or offsets) are communicated between Checker and
Optimizer procedures, then the Checker procedures involved
must be compiled in conjunction with the COMPATIBLE com~iler
option, and-execution (.under the Checker) must also be ion-
ditioned by the COMPATIBLE execution option. Secondly, the
first input seen by the linkase editor or loader must have
been produced by the checkout-compiler (this is to ensure
that the Checker will have control over all storage allocation.

You have a choice of two libraries that may be used to
resolve the library external references in the Optimizer-
produced code. The normal Optimizer library is SYSl..PLIBASE
and is provided automatically in PLO series cataloged pro-
cedures. 'This contains the full code to support library
services. An alternative, SYSl.PLICNIX, is selected auto-
matically by PLC series cataloged procedures. This brings
in much smaller amounts of code whose function it is to
bootstrap into the proper Checkout compiler interpreter
routines, which perform the services. The first library
results in a larger, faster program compared to the second.
You can specify either library in either series of procedures
by using the LIBRARY symbolic parameter. See CPG 39 and
OPG 36.

13.24. Debugging with the Optimizer.

There are a few things you can do to find problems in pure-
Optimizer code.

You can use -the SUBSCRIPTRANGE, STRINGRANGE, SIZE, and
CHECK conditions, and the SNAP.op.tion of the ON statement.
Enablement of the above conditions causes extra code to be
generated,,degrading performance and increasing core require-
ments.

Flow information can ,also Le obtained trom the Optimizing
compil'er, providing the FLOW compiler option is used during
execution. The table is dumped whenever SNAP action is
taken for a condition.

A similar option, the COUNT option, car1 be used to print a
table of statement execution counts at the end of execution.
Available in the Checker, too, this option is de,faulted on -
for the Checker and off for the Optimizer. See OPG 33. -

As a final resort, a dump can be requested. For this pur-
pose you call the PLIDUMP builtin procedure provided by our
implementation. This gives you quite a bit of high-level
(i.e., interpreted and formatted) information first, includ-
ing the contents of buffers of opened files, followed (if
the appropriate option has been specified to PLIDUMP) by a
hexadecimal dump of storage. You will need to add

//GO.PLIDUMP DD SYSOUT=A
to your JCL.

All of these debugging facilities are discussed in OPG 37.

13.25. A library maintenance technique for program development.

~ e t us present some JCL, then discuss it.

// EXEC PLOCEP,EDTIF='(16,LTIPLO) ' ,EDTOPTS=NCAL
//PLO.SYSCIN DD *
"PROCESS NAME ('PROC1') ;
PROC1: PROC . . .

6

END;
"PROCESS NAME ('PROC2 ') ;

PROC2: PROC . . ,

END;
/*
//EDT.SYSPVT DD DISP=OLD,DSN=auto.call.lib

We assume a partitioned load-module dataset whose name
replaces "auto.call.lib" above has been previously created.
This dataset wlll colitain one member fur each exLe~11a1 pro-
cedure in a program under development; the member name is
the same RS the cxt.~rnal procedure name. The members have
been processed through the linkage editor, so each is a
load module. However, no member is executable as it stands,
because it has been link-edited with the NCAL linkage editor
Ioption, which leaves external references unresolved. The
dataset will serve as an "automatic.cal1 library" in a later
link-edit or loader step that will bring all the modules
together into.an executable load module.

You run a job such as the one shown above either to compile
some external procedures for the first time or to recompile.
some after making changes. In the job shown above, two
procedures, PROCl and PROC2, are compiled. Note that the
*PROCESS statement in front of the source for each procedure
specifies the NAME compiler option. The string given with
the NX4E option will become the member name under which the
external procedure will be stored in the automatic call
library. The symbolic parameter EDTIF is assigned the value
(16,LT,PLO) so that the link-edit step will be executed
regardless of'the severity of errors discovered by the com-
piler in any procedure (without this, a suffici.,ently severe
error in one external procedure will prevent the link-editing -
of - any of them, and they will all have to be recompiled). -

The goals of the above JCL are to make it unnecessary to
recompile any external procedure that hasn't been changed
when you recompile some that have; to maintain fully up-to-
date object code at all times; and to ease the burden of
tailoring JCL. Assuming that you keep the *PROCESS statement
for a procedure with the source itself, as the first card,
then you never have to change any JCL. You merely grab
whatever decks you wish to compile or recompile and put them
in the "fixed" JCL between

//PLO.SYSCIN DD *
and

/ *
Some people prefer to maintain the source for each external
procedure as a member of a partitioned source module'dataset.
Assuming the source for each procedure starts with a *PROCESS
statement, then the extent of your "variable1 JCL for the
above job would be the minimum necessary, namely:

//PLu.SYSCIN DD DISP=SHR,DSN=source.lib(PROC1)
// DD DISP=SHR,DSN=source.lib(PROC2)

Assuming you have named your main procedure DRIVER (for
example), you can execute your program subsequently by
collecting the pieces and resolving external references
with the loader, using the following JCL:

// EXEC PLOLG,PRELIB=lauto.call.libl ,EP=PLISTART
//GO.LDRIN DD DISP=SHR,DSN=auto.call.lib(DRIVER)
// other DD statements, as needed..

Instead of resolving external references every time you
execute the program, you may do that just once. One way
uf doing this is by adding the following JCL to the job
which recompiles and updates your automatic call library.

It assumes you have an existing executable program library,
a partitioned dataset containing one member. This dataset
is scratched and reallocated each time the following JCL
is run.

// EXEC PGM=IEFBR14
//DDl DD' DISP= (MOD, DELETE) ,DSN=exec .prog . lib,
// UNIT=unit,SPACE=space . .

// EXEC PLOEP,PRELIB='auto.call.lib'
//EDT.INCLIB DD DISP=SHR,DSN=auto.call.lib
//EDT. SYSPVT DD DISP= (NEiV,CATLG) ,DSN=exec .prog. lib,
// UNIT=unit,SPACE=space
//EDT..SYSIN DD *

INCLUDE INCLIB (DRIVER)
ENTRY PLISTART
NAYE DRIVER

/*
Note that this JCL does not have any names in it that need
to be changed depending on which external procedures have
just been compiled. To execute your program, use the
following "bare" JCL:

// EXEC PGM=DRIVER
//STEPLIB DD DISP=SHR,DSN=exec.prog.lib
//SYSPRINT and other DD statements, as needed

The above JCL can be easily. adapted for use with the Check-
out compiler, or for ~hecker/~ptimizer mixtures. (In the
latter case, the requirement that a Checker module be.the
first presented to'the linkage editor can be met by keeping ,

DRIVER, i . e. , the main procedure, at the Checker level.)

Finally, this JCL can also be adapted for use with a program
containing fetchable procedures. Suppose in addition to the
main program, DRIVER, you have t w o fetchable yr .ucedu ies ,
FP1 and FP2. The only necessary modification is

,//E;DT, SYSIPJ DD *
INCLUDE INCLIB (DRIVER)
ENTRY PLISTART
NAME U l < l V C l <
INCLUDE INCLIB (FP1)
ENTRY FP1
NAME FP1
INCLUDE INCLIB (FP2)
ENTRY FP2
NAME FP2

/"

Although all three load modules are re-created each time
any procedure is compiled, the advantages of this technique
are :

(a) The JCL shown above still doesn't depend on
which procedures are compiled.

(b) If a particular external procedure happens to
be referenced by two or more of the fetchable
procedures, it is contained only once in your
automatic call library, yet it is automatically
brought in to each fetchable load module that
needs it.

CHECKOUT 'COMPILXR AND EXECUTION OPTIONS

[1 a r e u s e d t o d e n o t e t e x t t h a t may b e o m i t t e d .

COMPILER OR EXECUTION OPTION ABBREVIATED NAME DEFAULT

AGGREGATE I N0,AGGREGATE AG (NAG AG i n b a t c h
NAG i n TSO
I! i n b a t c h
N A i n TSO
BL (0)
CAPS
C S (6 0 EB)
Ncon
CT i n b a t c h
N C ~ i n TSO
D I l G
N D U
E R R O R S (1 0) i n b a t c h
ERRORS (0) i n TSO
ESD i n b a t c h
NOES9 i n TSO
P (I) i n b a t c h
F(W) i n TSO
FL.OW (2 0 , 2 0)
NPO R
N3HALT
I S i n b a t c h
NIS i n TSO
I S A S I Z E (8 1 3 2 ,

8 1 9 2 , 2 0)
LC (55)
LnsG i n b,a tch
SMSG i n TSO
N M
N M I
!IAR (2 , 7 2 , 1) f o r

F - f o r m a t
N R R (1 0 , 1 0 0 , 9) . for

V , U-format
NMD. -
NEST
N N U N i n b a t c h
N U N i n TSO
WORJ
OP i n b a t c h
NOP i n TSO
NORUN (S) i n b a t c h
NORUN(%) i n TSO
SZQ (7 3 , 8 0) f o r

P - f o r m a t
SEQ(1 ,F)) f o r

V,U-format
SZ (NAX)
NOSMAN i n b a t c h
SMAN i n TSO
S i n b a t c h

ATTRIBUTES 1 NOATTRIBII'PES

BL (n) -
cs ([4 3 I 60 I[EB l B I)
COZll NCOM
CT 1 NCT

BLOCK (n)
c a p s 1 asIs
CHAR SET ([4 8 1 6 0][E B C 3 I C i BCD])
COMPATIBLE 1 NOCOMPATIBLE
COUNT(NOCOUNT

DIkGNOSEI NODIAGNOS E
D u n r IWoDvmr
ERRORS (ri)

FLOFI (n , m) I NOFLO!J
F O P Y A T I NOFORMAT
HALT (NOHALT
INSOURCE (NOINSOURCE

-
FOR1 XFOR -
I S (N I S

LINECOUNT (n)
LMESSRGEl SMESSAGE

LC (n)
LMSG (SMSG

MACROJ FOMACBO
MARGIN1 (' c ') 1 NOMARGIN1
MARGTNS (m , n[,c 1)

M D E C K (NOHDECK
NAME (l a a a a a a a a ')
NEST 1 NOWEST
M U M E E S I B O N ~ B B E R

MD (NND
N (' a a a a a a a a ') -
N U M I N N U N

OBJECT (NOOB.3 ECT
OPTIONS 1 NOOPTIONS

Q B J 1 NOBJ
OPl NOP

SEQ!JENCF: (m, n) (NOS EQCJENCE SEQ (m,n) 1 NOSEQ

S I Z E ([- I n I [- I n K ! MAX)
SMAN (NOSHAN

SOVRCE I NOSOURCE

STEP (n[, m 1) 1 NOSTEP ST (n[,m 1) I NST
STEPLINES (n) (NOSTEPLINES , STL (n) I NSTL
STMT 1 NOSTHT -
STORAGE (NOSTORAGE STG 1 NSTG

NS i n TSO
NS T

.NSTL
STNT' i n batch
NOSTMT i n TSO
STG i n batch

. . NSTG i n TSO
S Y N T A X (' N O S Y N T A X [(W (E I S)] S Y N) N S Y N [(w (E (s)] NSYN(S) i n batch ,

NSYN (E) i n TSO
TERHINALC (o p t i o n s)]I NOTERMINAL FERN[(o p t i o n s)] I NTE RH NTERM i n batch -

VERIFY (NOVERIPY
XRYF I NOX REF

TERM i n TSO
v
X i n batch
NX i n TSO

O P T I H I Z E R C O R P I L E R O P T I O N S

. . . .
[] are u s e d t o d e n o t e t e x t t h a t m a y be omitted.

COMPIZER O P T I O N ABBREVIATED NAHE

AGGREGATE 1 NOAGGREGATE

ATTRIBUTES NOATTRIBUTES

CHARSET ([48.1 60] [E B C D I C 1 BCD])
C O M P I L E (NOCCMPILE[(WI E l S)]
COUNT(NOCOUNT
DECK 1 NODECK
DUMP1 NODDHP
ESD (IQOESD

FLOW[(n,m) J(NOFL0W
GONUMBER 1 NOGONUMBER

GOSTHT (NOGOSTHT
IN!?RFCTSE I NOIMPRECISE

INCLUDE I NOINCLUDE
INSOURCE1 NOINSOURCE

LINECOUNT (n)
L I S T [(n , m)] (N O L I S T
L N E S S A S & (S M & S S A G E

AG-I NAG

c s (C 4 8 1 6 0 I[E B I B])
cl NCC (W I E l S) I
CT 1 NCT
Dl ND
DO (NDU
P

-
GN (NGN

GS (N G S
I M P 1 NIMP

I N C (NINC
I S (N I S

MACRO(NOMACRO a1 N N
MhDl NONAP -
MARGIN1 (I c e) (NOHA'RGINI M I (' c e) I NMI
N B R G I N S (3, n[,c j) MAR (m,nC * c 3)

MDECK (NOFDECK
NRME (1 a a a a a a a a *)
NEST 1 NONEST
NUMBER 1 NONUMBER

MD(NMD
N (' a a a a a a a a ') -
N U N (NNUH

OBJECT (NOOBJECT O B J l NOBJ
O F F S E T (NOOFFSET OF 1 NOF

O P T 1 MIZE (T I M E 1 0 1.2) (N O O P T I M I Z E O P T (TIME 1 0 (2)) NOPT
O P T I O N S (NOOPTIONS OP (NOP

SEQUENCE (m, n) (Nos EQUENCE s E Q (m , n) INSEQ

S I Z E (n 1 nK l H A X)
SOURCE (NOSOURCE

DEFAULT

AG i n b a t c h . , '

NAG i n T S O
A i n b a t c h
NA i n TSO
CS (6 0 EB)
NC (S)
NC T
ND
ND u

. E S D in b a t c h
NOESD i n TSO
F (1) i n b a t c h
F.(W) i n T S O
NOFLOP
NGN i n b a t c h
GN i n T S O
NG S
IMP i n b a t c h
NIHP i n TSO
NINC
I S i n b a t c h
NIS i n T S O
LC (55)
NOL I S T
LMSG i n b a t c h
SNSG i n TSO .
N?I
NORRP
NM I
MAR (2 ,72 ,1) f o r

F - f o r m a t
1 ? 9 R (1 0 , 1 0 0 , 9) f o r

V , U-format
NM D -
NEST
NNUI! i n b a t c h
Elnn i n TSO
OB J
CF i n b a t c h
WOP i11 TSO
ROPT
OP i n b a t c h
NOP i n T S O
SEQ (7 3 , 8 0) f o r

F - f o r m a t

S E Q (1 , 8) f o r
V , U - f o r m a t

SZ (MAX)
S i n b a t c h
NS i n TSO

STMT lNOSTHT

STORAGE 1 NOSTORAGE

-
STG 1 NSTG

STHT i n b a t c h
NOSTMT i n TSO
STG i n b a t c h
NSTG i n TSO

SYNTAXINOSYNTAX[(WJEIS)] SYNINSYNI (W(E(S)] NSY N (S)
TERMINAL[(o p t i o n s) IINOTERHINAL TERtl[(o p t i o n s)]I NTERll NTERM i n b a t c h

XREP 1 NOXREP
TERM i n TSO
X i n b a t c h
NX i n TSO

O P T I N I Z E R EXECUTION O P T I O N S

[] a r e u s e d t o d e n o t e t e x t t h a t may be o m i t t e d .

EXECUTION OPTION ABBREVIATED NAME DEFAULT

COUN T I NOCO UNT
FLOW[(n , m)]I NOFLOW
I S A S I Z E (C x I,[Y I,[1)
REPORT (NOREPORT
STAE 1 WOSTAE
S P I E 1 WOSPIE

C T (NCT C o m p i l e - t ime
C o m p i l e - t i m e
I S A (8 K , 8 K , 2 0)
N R
STP. E
S P I E

14. Multitasking and asynchronous I/O.

Multitasking is perhaps the single most unique feature of PL/I,
having no parallel in other popular high-level languages. The
feature allows one to express algorithms for parallel computation
(concurrent processing) in a natural way. However, the multitasking
feature of the language, like the preprocessor, has deficiencies.
Until a little over a year ago, ANSI was well along with an improved
version of the multitasking feature. Then the committee began t o
have second thoughts. They eventually decided that new develop-
ments in computer'architecture and operating system capabilities
were coming forth so rapidly that. t.he standardization of multi-
tasking, which is intimately related to operating system capabi1i.-
ties, was actually premature. As a result, multitasking was entirely
withdrawn from the proposed standard; and, since asynchronous 1/0
uses some of the same language elements, that went too. These
features will undoubtedly be standardized in the future. For the
time being, you can expect IBM to continue to offer their version
of multitasking as an extension to the standard. Univac is offering
an amalgam of that and the earlier proposal from ANSI.

14.1 Concept of flow of control.

We may think of the execution of a "conventional" program, i.e.,
the kind we have been talking about all along, as being "tracked"
by a cursor that points to the instruction or statement being
currently executed. Normally this cursor moves forward, or down,
in the program. When it encounters an IF statement it may skip
ahead. On. encountering the END statement of a DO group it may back
up to the DO statement. For a GO TO statement, it jumps to some
other place. For a procedure call, it also jumps, and if control
reaches the procedure's END statement or one of its RERRN statements,
the cursor jumps back to the point just beyond the "point of invo-
cation." Finally, whenever a condition is raised and an on unit
entered, the cursor jumps in the same way it does for a procedure
call, with the expectation of a return jump back to the "point of
interrupt" when (and if) the on unit returns normally.

A delay (some WAIT time) that occurs for 1/0 activity when the
''cursor1' is at an 1/0 transmission statement doesn't change the
picture in any way. The program may be temporarily suspended, in
the sense that its cursor is not progressing, but the point is that
it still identifies some statement (and only one) as the current
statement.

In describing the peregrinations of the cursor we are describing
what is commonly referred to as the "flow of control." The essential
feature of a conventional program which distinguishes it from a
multitasking program is that its behavior is described by a single
flow of control; in procedure and on unit invocations we have to
"remember" the point of call or point of interrupt, so the cursor
can be restored to that point on the appropriate action by the
program, but that housekeeping doesn't alter the fact that there
is a single flow of control.

In a multitasking program there may be an arbitrary number of con-
currently active "cursors" or "flows of control." That is, several
different statements may all be ideneified as llcur~ent.ll The cursur
for each one moves along in the program in the normal way - jumping
around, ctc.

How, you say, can several statements be in a state of concurrent
execution on a single computer? Well, on our syste~il there is in
fact only one processing element. It can be servicing only one
flow of control at a time. Various things may cause the processing
element to temporarily divorce itself from one flow of control and
begin (or resume) servicing another. So the several statements
are not being executed exactly at the same time. But for all prac-
tical purposes, they logically are because there is a degree of
unpredictability in the extent to wh5ch the one processing element
will service one flow of control before something causes it to
switch to another. In any event, other computer systems may have
multiple processing elements all sharing common storage, so it is
entirely conceivable that several statements of a multitasking pro-
gram may be in states of physically simultaneous, and not just logi-
cally concurrent, execution.

Another feature of multitasking programs is that they start off
with a single flow of control, looking for all the world like a
conventional program. At some point, however, they do something
internally to establish an additional flow of control. These addi-
tional flows of control may continue for a while, then terminate,
leaving others, including the original one, still progressing. A
particular flow of control, from the moment of its birth until its
death, is called a task. To rephrase what we have already said:

(a) A conventional program has a single task.
(b) A multitasking program starts out in the conventional way,

but after a while it creates (starts, or "attaches") new
tasks. These may create yet others, etc.

(c) All of the tasks proceed concurrently, eventually dying.

Generally, individual tasks can and do proceed independently of
each other. They may each execute different portions of the code
in a program, or they may execute the same portion. This poses no
problem because the code is not self-modifying (it is "read-on1.y")
and each task can be given its own separate work area. Tasks may
also share data defined by the program, that is, several statements
being executed concurrently in different tasks can access common
data. When this, in fact, occurs in a program, that program will
generally need to employ some means of synchronizing the accesses
of the tasks to the common data. Synchronization is accomplished
through the temporary 'lsuspensionll of one or more tasks, if necessary.

1 4 . 2 . Overview of PL/I multitasking facilities.

PL/I provides language primitives for:

(a) Creating tasks.
(b) Synchronizing tasks.
(c) Terminating tasks.

14.3. When to use, and not use, multitasking.

It is natural to conclude that the ability to code "parallel processes"
by using multitasking may gain you the advantage of additional 1/0
overlap (,several tasks can do 1/0 simultaneously, and another can
be using the CPU). Actually, this overlap can be achieved in a con-
ventional, non-multitasking program by using the asynch?onous 1/0
facilities to be described later in this lesson. But, in any event,
whether there is any advantage in going out of your way to achieve
extra overlap depends on sevcral factors. Two aspects to be con-
sidered are possible system-wide gains in throughput that work to
everyone's advantage and possible lower job charges (due to decreased
WAIT time) that work to yours.

In the case of a job that occupies all, or most of, core storage, the
only thing of importance is to minimize the total residence time of
the job since it effectively has control of the whole machine during
the time it is resident. Clearly, if additional overlap allows it
to complete sooner, everyone gains by the increased throughput. The
person who runs the job should be, and in our system willbe, rewarded
through lower costs.

For a job that occupies a small.amount of core storage, overlap achieved
by. it is not so important in.terms of overall system throughput, since

- l o t s o f core storage remains for the scheduling of other jobs which

can provide overlap on an inter-job basis. Becausc of this, it can
be argued that a "small-core" job should be neither rewarded for
extra overlap nor penalized for not achieving it. Unfortunately,
our system tends to reward even small-core jobs for extra overlap.
What is worse, it is just those jobs that are subject most to certain
kinds of contention that can inhibit potential overlap,'contributing
to the variation in recorded WAIT time.

Independently of the above, one must consider the difficulty of
designing and debugging a multitasking program. Also, one must
recognize that multitasking programs incur additional operating
system overhead. (See LRM 279.) And finally, at least for sequen-
tial 1/0 you can achieve the benefits of I/O-CPU overlap without
going out of your way merely by employing buffered files (which are,
in fact, thc dcfault) .

What, then, are the logical uses for multitasking? Basically, multi-
tasking is used to express, in a natural way, algorithms exhibiting
a high degree of parallelism. An example in system programming is
the implementation of a time-sharing system supervisor: the parallel
activities are the independent, simultaneous services requested by
logged on users. An example in engineering or science fields might
be the simultaneous search for a solution by different methods where
the convergence of any method is unpredictable; another example might
be the simulation of a physical system characterized by competing
or cooperating, random or probabilistic, concurrent processes.

14.4. Attaching n tnslr.

In PL/I, an additional independent flow of control is started by
invoking a procedure with one of the multitasking options. For
exm~lple :

CALL SUBR(arg-Zist) TASK;
In this CALL statement, the TASK option is used to denote that the
execution of the procedure SiiBR-should constitute a new task. 'l'he
invoking procedure does not transfer control to SUBR in the normal
way. Rather, it goes right on with the executiorl of the next state-
ment; it does not wait for SUBR to return. SUBR is free to execute -
"in parallel" with the invoking procedure. The task represented
by the execution of SUBR survives until the procedure SUBR returns.
At that moment, the task (i. e. , the flow of control) comes to an
end. (As we will see later, there are also several other ways that
tasks can end.)

The situation described can be diagramed in the following way.

CALL SUBR(...) TASK; - - - + SUBR: PROC(...);

Contrast this to the normal invocation of a proecdure.

CALL SUBR(...); - - - SUBR: PROC(...);

F - 'z

-2,

1 \1 - END;
When SUBR is executed as a task, it is called a subtask of the task
represented by the execution of the invoking ~rocedure; that task,
in turn, is called the arent task. The main procedure has no parent
task. It is called the \ major tas .

Any task can start any number (in theory) of subtasks; these may
start other subtasks, etc. A given procedure may have several con- . .

current invocations (as tasks). This situation should be compared . .
to recursion, in which the several concurrent invocations of a. given
procedure are all part.of the same task: the one flow of,control ' .

is in the most recent invocation. . .

See LRM 280 and LRM 281.

14.5. Scheduling of tasks; priorities.

When several tasks are active simultaneously they compete for CPU
, service. Some of them may be waiting for the completion of 1/0
(or for other things) and are not demanding CPU service at the
moment. They are said not to be "ready." Amongst the ready tasks,
however, only one can be receiving service from the single CPU.
The algorithm which determines which ready task receives CPU service
is the scheduling policy of the operating system. Many different
scheduling policies are imaginable, such as "least recently served,"
"1-0~11d robi~l," etc,

In the case of OS, however, each task in the system has a priority,
and it is always the highest priority ready task that receives control.
Tasks of a multitasking PL/I program, like all other tasks in the
system, have priorities. There are facilities in PL/I, which will
be described shortly, to assign a priority to a new task, to determine
the .priority of a task, and to change the priority of a' task.

There are two ways that control can leave a task. The task may
give up control voluntarily by becoming "not ready," as, for instance,
by arriving at a point where it must,wait for the completion of an
1/0 operation. Or it may involuntarily give up control, i.e., have
control usurped from it, as the result of a higher priority task
becoming ready. The one from which control is usurped remains ready,
of course, and is not logically aware that control is usurped. The
usurping of control is usually a probabilistic or non-deterministic
happening; however, it may be occasioned by something the task.itself
does (such as raise the priority of another ready task above its own):

When a task is created as shown in the previous section, its initial
priority is set equal to that of its parent task. The PRIORITY
o tion of the CALL statement, however, can be used to assign either k ig er or lower initial priority to the new task. The effect of

CALL SUBR (. . .) TASK PRIORITY (expr) ;
is to attach SUBR as a task with a priority of n relative to that
of the parent task, where n is the value of expr (converted, if
necessary, to a binary integer).

In PL/I, priorities are always relative (ultimately to that of the
major task, which is set initially by the operating system). But
this is always sufficient because, as far as your program is concerned,
its use of priorities is for the logical purpose of controlling
which of its ready tasks is to be selected for CPU service in pref-
erence to the others.

The maximum and minimum absolute priorities of tasks are determined
by factors outside PL/I . ' Generally, you can expect ten or so priority
levels below that of the major task to be reachable. It would be '

wise, however, to assume that no higher levels are reachable.

How essential is the use of priorities for logical purposes in PL/I?
It turns out that in the current language their use is essential,
but only to 'lsimulatel' a primitive multitasking service which is
not in PL/I but is essential. It is interesting to note that the
revised multitasking ianguage eariier proposed by ANSl had this
other service ("locking" or "enqueueing") and eliminated the concept
of priority.

See LRM 282 and LRM 283.

14.6. Task values and variables.

In this section we will describe how the prior it.^ of a task may
be determined or changed. For this purpose we will need task vari-
ables and the PRIORITY builtin function and pseudo-variable.

A variable declared with the TASK attribute is hown as a task
.variable. Task values (i,e., values o f task variables), which are
a new kind of program control data, have very.limited use. They
may, of course, be propagated by assignment.

The vaiue of a task variable may be thought of as a binary integer
representing a priority.

Task variables may or may not be associated with tasks. Initially,
a task variable is not associated with any task; it is said to be
an "inactive task variable." An inactive task variable is associated

~ - - -

with a task by referencing the variable in the TASK option of the
CALL statement which creates the task. Examples:

CALL SUBRl TASK (TI) PRIORITY (-1):
CALL SUBR2 TASK (TZ(1)) PRIORITY (1);
CALL SUBR2 TASK (P + T) PRIORITY (N) ;
CALL SUBR3 TASK (S. T) PKIOKT'IY ('0) ;

In these examples, four tasks are created. They are represented
by the execution of procedures SUBR1, SUBR2 (for two of the tasks),
and SUBR3. With each is associated a task variable (respectively,
the elenlent task variable TI, the I-th element of the array T2 of
task variables, the based element task variab1e.T located by the
value of the pointer variable P, and the task variable T which is
a component ' of the structure S) .

Once a task varjab1.e is associated with a task, it is called an
"active task variable." It remains active until the task with
which it is associated terminates. It is illegal to attempt to
associate an active task variable with a task by referencing it in
a TASK option. In other words, the following is illegal:

CALL SUBM TASK [T) PRIORITY (-1) ;
CALL SUBR2 TASK (T) PRIORITY (- 2) ;

When a task variable is made active by associateing it with a task
as shown above, it is given a value (as a priority value) representing
the priority of the newly created task. The priority of the task

may be subsequently examined by use of the PRIORITY builtin function.
For example, -

N = PRIORITY (TI ;
assigns to N the priority of the task associated with the task
variable T. In keeping with the spirit of relative pr.iorities,
this value is not the absolute priority of that task, but rather the
value relative to the priority of the task in which the statement
is executed. Hence the reference PRIORITY(T). may return different
values depending on which task it i.s evaluated in.

The priority of a task, after it is initially established, may be
changed in either of two ways. One is by assigning a new task
value to the associated task variable, as i.n

CALL SUBRl 'I'ASK (T) PRIORITY (- 1) ;
CALL SUBR2 TASK (U) PRIORTTY (N) ;

I

I

T = U;
The effect of this is to change the priority of the task associated
with T to that of the task associated with U.

The second way to change the priority of a task is by using the
PRIORITY pseudo-variable. For instance,

PRIORITY(T) = -1;
This causes the priority of the task.associated with T to be set
to one less than the priority of the task executing this statement
(observe the use of relative priorities again).

A task can increase or decrease its own priority. One way of accom-
plishing that is shown by the following example:

DCL T TASK;
CALL SUBR TASK (T) PRIORITY (-1) ; .
SUBR: PROC;

*
t

6

PRIORITY (T) = 1;
1

I

END ;
By the normal scope rules, the variable T declared outside of SUBR
is also known inside SUBR. It is associated with t.he task represented
by the execution of SUBR by the CALL statement. The statement

PRIORITY(T) = 1;
increases the priority of the named task by one relative to the current
task. But the named task - is the current task in this case.

This method of changing a task's own priority would not be available
to it if no task variable was named in the TASK option of the CALL
statement that created the task. In particular, it is not available
to the major task. Thus, the second 111ethod of changing a task's own
priority is to use the PRIORITY pseudo-variable with an empty argu-
ment list :

PRIORITY() = 1;

It sho1il.d bc remarked that priority values can be llelcl by inactive
task variables. Although in this case the priority value is not
that of an actual task, it behaves as if it were. One (non-essential)
use for this is the following. If the CALL statement that creates .

a task uses t h e TASK option containing a task variable, but no
PRIORITY option, then the priority of the newly created task is
set equal to that held in the (inactive) task variable. Thus,

CALL SUBR TASK (T) ;
is equivalent to

CALL SUBR TASK (T) PRIORITY (PRIORITY (T)) ;
Both of these statements would .be in error if T had not previously
been assigned a value (as a priority).

See LRM 284 through LRM 287 and the entries for PRIORITY in LRM 18.

14.7. Event variables and values.

Suppose a parent task needs to know if one of its subtasks is still
active, i.e., in existence. You might think it would suffice to
set a BIT (1) variable to 'llB just before creating thc subtask,
then arrange for the procedure whose execution represents that
subtask to set the same variable to 'OIB just before it returns.
The parent task could then test that variable at any time. The
problem with this is that the subtask can ten~~lnate in other ways
(which we haven't seen yet) besides executing a RETURN or END
statement; it would not have a chance to set the bit variable to
'O'B in these other cases.

Event variables (those declared with the EVENT attribute) may be
employed to keep track of the status of a task. (They.may be used
for a lot of other things, as we shall see.)

Event variables havc two parts to their value: a "completion" part
represented as a BIT (1) value, and a "status" part represented
as a binary integer.

Event variables may or may not be associated with tasks. Initially,
an event variable is not associated with a task (or certain.other

things described later) and is said to be an "inactive event variable."
An inactive event variable may be associated'with a task by refer-
encing the event variable in ;he EVENT o tion of the CALL ktatement
that creates the task, as in the + .allowing. -

CALL SUBR TASK EVENT (E) ;
This serves three purposes:

(a) To make the event variable E active. It remains active
until the associated task terminates. During this time
it may not be associated with another task (or certain
other things).

(b) To set the completion part of E to the value 'OIB. It
remains 'O1B until the task terminates, at which time
4.t . is set t o ' 1. '.R autmatically.

(c) To set the status part of E to the value 0. Further use
of the status part is described later.

The parent task, or any other task for that nratter, can subsequently
examine the value of the completion part of E to determine whether
the subtask is still active. Access to thc completion part of an
event variable is gained by use of the COMPLETION builtin function.
For example

IF COMPLETION(E) THEN ...;

When an event value is assigned to an event variable, the effect is
to assign the completion and status parts simultaneously. No inter-
rupt can occur in this operation, and no task switch can or.r.1l-r 11nt.il
it is complete. But assignment to event variables particularly
to their completion parts) will be saved until later, because it
is illegal to do anything to the completion p3rt of an active event
variable (except look at it). Assi..gnment to an inactive event
variable is not useful, as yet, "because any value it inay have is
not used, and in fact is overwritten, when the event variable is
made active.

. .
See LRM 288 through LRM 291 and the entry for the COMPLETION builtin
function in LRM 18.

14.8. The WAIT statement.

Supposenow that a p.arent task, which has been executing in parallel
with a subtask it has created, has reached a point in its logic
,where it absolutely must wait until the subtask reaches its end
before going on. (Perhaps it needs a value which is set by the
subtask just before it finishes.) One thing the parent task could
do is "spin" in a right loop, repeatedly looking at the completion

part of the event variable associated with the subtask. This would
be extremely unwise, however, given a suitable alternative. For
it would waste CPU cycles. Worse than that, if the subtask does
not have a higher priority than the parent task, the loop would be
infinite since the subtask would never again get control and could
not terminate. (It is assumed the spin loop in the parent task
does no 1/0 or anything else to voluntarily relinquish control of
the CPU.)

To accomplish what is needed here, the parent task executes a WAIT
statement naming the event variable. If, at that instant, the-
completion part of the event variable has' the value lllR (indicating
the associated subtask has already terminated), the parent task
merely proceeds to the statement after the WAIT statement. On the
other hand, if it has the value 'O'B (indicating the subtask is
still executing), then the execution of the parent task is tempo-
rarily suspended; i.e., that task is made ','not ready." It remains
suspended until the subtask terminates (more precisely, until the
event variable has been marked "complete" by the termination of . .

the subtask), whereupon it again becomes "ready." This situation
is not unlike what happens when a task waits for the completion
of an 1/0 operation. 'During the period of waiting, other tasks
(including, obviously, 1ower.priority ones) may receive CPU service.

The form of the WAIT statement used for the above is:
WAIT (E) ;

In general, a WAIT statement may wait on the completion of any
number of events. A list may be specified, e.g.,

WAIT (El, E2, E3) ;
This WAIT statement will cause the task that executes it to wait
for the completion of the three events (i.e., subtask terminations,
for now) with which the event variables El., E2, and E3 have been
associated.

In addition, any item,in the list of event variables may be an
aggregate of event variables. The meaning is the same as writing
all the contained element event variables in the list. E.g., for an
array E of four event variables,

WAIT (E(*)) ;
is the same as

WAIT (E(11, E(2), E(31, E (4)) ;

, Finally, a task can wait on the completion of.any number of the
event variables specified in the list; it need not wait on the

completion of all of them. For example,
WAITTI, E2) (3) ;

causes the current task to be suspended until at least one of El and
E2 is marked complete. In general, an expression may be given for .
the wait count.

See LRM 292 and LRM 293.

14.9. Termination of tasks.

'l'ermination of a task is said to be normal if the procedure whose
execution represents the task reaches a RETURN statement or its
END statcmcnt. In this case, the status part of the assor.iated
event variable, which was set to 0 automatically when the task was
created, is left with this value. There are several ways a task
can terminate abnormally. Two we will consider here are the follow- --
ing :

(a) It may execute an EXIT statement. See LRM 294.
b) Theblock which created it can terminate.

Thisforces termination of the subtask. Example:

BEGIN ;
CALL SUBU 'IASK JiWr (El) ;
CALL SUBR2 TASK EVENT (E2) ;
WAIT (El, E2) (1) ;

Elm ;

Two subtasks are started by the begin block which then
waits for the completion of either one. As soon as one
.completes (normally, presumably), the WAIT statement is
satisfied, so the parent task proceeds. This causes
termination of the begin block. That will force the
abnormal termination of the remaining subtask.

When a task terminates abnoml.ly, the status part of its associated
event variable is set to 1 if it is still 0. See LRM 295.

A parent task may determine whether a subtask has terminated normally
or abnormally by examining the status.part of its associated event
variable after termination. This is achieved by use of the STATUS
builtin function. See the entry for the STATUS builtin function in
LRM 18.

Although it is illegal to assign an event value to an active event
variable (because, in particular, an attempt may not be made to
affect its completion part in this or any other way), it is legal
to assign a value to its status part only. This is acco*ished by
use of the STATUS pseudo-variable. (See entry in LRM 18.) A non-
zero value assigned in this way will be left untouched if the task
terminates abnormally.

Note that execution of an EXIT statenlent in the major task is
equivalent to execution of a STOP statement in any task. Review
LRM 112 and LRM 113.

14.10. Sharing data among tasks.

In general, two tasks can connnyicate through any variables hown to
both of them. Which variables are known is determined in the usual
way by the block structure and scope of names. The programmer,
however, is responsible for synchronizing (by using event variables
and the WAIT statement in ways to be shown later) simultaneous refer-
ences, one of which may change the value of a variable, in two or
more tasks. Further details are given at LRM 296. Considerations
for the sharing of files between tasks are given at LRM 297.

14.11. Inheritance of on units across tasks.

In Lesson 6 we decribed the search process for an established on ,

unit to handle the occurrence of a condition. The search.proceeded
from the current block out along the chain of active blocks to the .

main procedure (if necessary). The same process is used in multi- ,

tasking situations, i. e. , if a11 established on unit is not 'found
in any of the active blocks of a subtask in which the condition
occurs, the search continues in the active blocks of the parent
task. (Note that those blocks must still be active, for otherwis,e
the subtask would have been terminated abnormally earlier.)

If an on unit is found in one of the blocks of the parent task, it
is ii~vcrkell i l l Llie ~lormal way. However, note that its execution is
part of the flow of control through the subtask, not through the
parent task. Tl~e parer~L task continues doing whatever it was doing
when the condition occurred in the subtask. That parent task could
even raise the same condition and execute the same on unit in parallel
with the subtask! See LRM 298.

The situation described in the last paragraph is only one way in
which the same section of code can be in simultaneous .execution
by different tasks. Other ways result from the following:

(a) The same procedure is attached multiple times as a task.
'

(b) An internal or external procedure is called in the normal
way by two or more tasks concurrently.

(c) A program, even one which does no multitasking, can be
made resident in the operating system, so that if several
users happen to execute it simultaneously they will share
one copy of the code and all static data rather than having
their own separate copy. As far as the operating system
is concerned, the execution of that common code by each
of those users is a separate task. This situation, in
which a program has several concurrent executions as
separate tasks without itself creating any subtasks. is

X .

called multiprogramming.
Whenever part of the code of any external procedure can be executed
by two or- more tasks simultaneously, that kxternal procedure must
specify OPTIONS(REENTRANT) on its procedure statement. This will
tell our compiler.to use dynamic storage (behaving, in fact, like
automatic storage) for any writeable workspace it needs for the
procedure, so that each of its "executors" will have a separate
copy. (It might otherwise use static storage - which is shared
amongst all the executors.) The programmer, too, must observe the
same requirement and use automatic storage for any local variables
of a reentrant procedure. See LRM 299 and LRM 300.

Before leaving this subject, we will give emphasis to a point 110e
adequately made in the LRM. The establishmenr. sratus of on units
in a parent task is essentially "frozen" when it attaches a subtask,
as far as the subtask is concerned. That is, if the search for an
established on unit should go back as far as the blocks of the parent
task, the effects of any ON or REVERT statements executed there
after the creation of the subtask will not be observed by the sub-
task. They will, however, have their usual effect on the on units
that may be entered by the occurrence of a condition in the parent
task. Fnr example,

ON FOFL X = 1;
CALL SUBR TASK;
ON POFL X = 2;
L1: A statement that raises FOFL;
SUBR: PROC;

L2: A statement that raises FOFL;
END ;

Execution of the statement labeled L1 causes X to be assigned the
value 2. Execution of L2 causes it to be assigned the value 1, even
if the parent task has already executed its second ON statement.

Also, at this point it should be remarked that standard system action
for the FI'NISH condition, which was said in Lesson 6 to terminate
the program, actually only terminates the task in which it is raised.
The termination is normal only if the raising of FINISH results
from the execution of a procedure END or RETURN statement for the
task. In particular, standard system action for ERROR, raised in
a task, causes a message to be printed, FINISH to be raised, and
that task (only) to be terminated (abnormally). Thus, another
legitimate use,of multitasking might be merely to isolate the effects
of catastrophic errors and prevent termination of the whole program
by one.

14.12. EVENT option of DISPLAY statement.

Recall, from Lesson 12, that execution of
DISPLAY (expr) REPLY (variabZe) ;

prints a message (the value of expr) to the operator, then causes
the program to be suspended until his reply is received (and stored
in variabZe],. The wait is just like that for an 1/0 operation.
By adding the EVENT option to the DISPLAY statement, the program,
instead, goes on with the next statement without waiting for a reply.
The event variable named must be inactive, i. e. , not currently
associated with a task or, we can now add, with an operator reply.
Its use in a DISPLAY statement makes it active and initializes the
completion part to 'O'B. It remains in this state until two things
have happened:

(a) The operator's reply has been received.
(b) A WAIT statement referencing the event variable has been

executed. Note that examination of the completion part
by use of the COMPLETION builtin function will reveal a
value of 'OIB if it is performed before a WAIT statement
references the event variable, even if the operator's .

reply has already been received.

When both conditions are met, the event variable is set inactive
and its completion part is set to '1'B. Its status part is not
used. See LRM 301.

14.13. Asynchronous I/O.

We have already remarked several times in passing that execution of
1/0 transmission statements may result in an implicit wait for the .'
completion of the 1/0 operation, during which time the ,task executing
the statement is in a "not ready" state. As with the DISPLAY state-
ment, the EVENT option can be added to most transmission statements
to allow the task executing the transmission statement to proceed to
the following statement. The WIT statement is used subsequently

when the task f inal ly arrives a t that point where it absolutely needs
t o be sure the 1/0 operation has completed before proceeding.

Rules for the use and management of 1/0 event variables are similar
t o those fo r display events. Specifically:

(a) The event variable referenced by the EVENT option of an
asynchronous transmission statement must be inactive, i . e . ,
not currently associated w i t h a task, or an outstanding
operator reply, or, we ca.q now add, an asynchronous 1/0
operation.

(b) Execution of the transmiss'ion statement causes the event
variable to become active, se ts i ts completion par t t o
the value 'O'B and its status part to 0.

(c) While thc event variable is activc, it is i l l ega l to
change the value of i ts completion part (as by assignment
t o the event variable) or t o associate the event variable
w i t h a task, operator reply, or another asynchronous 1/0
operation.

(d) The event variable remains active, and i ts completion
par t continues to have the value 'O'B, un t i l two conditions
are met: the 1/0 operation has physically en=, and the
event variable has been referenced i n a WAIT statement.
As w i t h display events, but unlike task events, execution
of the WAIT statement (eventually) is a prerequisite to
set t ing the completion part of the event variable to 'LIB.

References w i l l be given la ter .

Asynchronous 1/0 can be used to overlap CPU use w i t h 1/0 operations,
t o overlap 1/0 operations on different f i l e s , or even t o overlap 1/0
operations.on the same f i l e . In certain cases of the l a t t e r use,
the NCP ENVIRONMENT option (or JCL DCB parameter) must be employed
t o specify an upper bound on the number of I/O operations that can
be outstanding simultaneously fo r a given f i l e . See LRM 302 and
LRM 303; further information is i n 'the Programmer's Guides.

Note that the performance of asynchronous 1/0 operations does not
involve the creation of new tasks. (Neither does the execution of
a DISPLAY ... REPLY ... EVENT statement.) The fac i l i ty may be used i n
a conventional program. Thus, the WIT statement and event variables
have uses both i n multitasking and i n conventional programs.

14.14. Conditions in asynchronous I/O.

We have seen that execution of an 1/0 transmission statement can
raise a variety of conditions (ENDFILE, TRANSMIT, RECORD, e tc .) .
I f an asynchronous 1/0 statement causes one or more of these condi-
tions to occur, the on units are not entered unt i l the WAIT s ta te-
ment is executed. That is, thei r execution is made synchronous
with respect to the flow of control through the task. I f an on
unit is to be entered, then the following occurs when the WIT
statement is f inal ly executed:

(a) The event variable remains active.
(b) Its status part is s e t t o 1.
(c) Its completion part remains a t 'O'B.
(d) The on unit .is entered.
(e) I f the on unit returns normally to the point of interrupt

(the WIT statement), a further on unit may be entered.
(f) When a l l on units have been executed and have returned

normally, the completion part of the event variable is
s e t to ' 1 ' B and the event variable i s made inactive.

(g) The event variable is similarly marked complete and
made inactive i f an on mi t terminates abnormally, i . e . ;
by a GO TO out of block. Any additional pending on
units w i l l not be entered.

The EVENT option can be added t o READ, WRITE, REWRITE, .or DELETE
statements i n cases described a t LRM 304. The f i l e must have the,
UNBUFFERED at tr ibute. Additional information is found in LRM 305
through LRM 311 as well as the entries for the,applicable 1/0
conditions i n LRM 116.

14.15. Review of exclusive f i l e s .

In Lesson 9 we briefly introduced the EXCLUSIVE attr ibute, NOLOCK
option of the READ statement, and the UNLOCK statement. These were
shown to be of use i n synchronizing two independent concurrent con-
ventional programs which update a common data base. They may also
be employed to synchronize multiple tasks of a single program which
independently update a shared data base. Review the material and
references from Lesson 9.

14.16. 'Physical" events.

We may characterize the task completion events, operator reply
events, and asynchronous 1/0 completion events with which event
variables may be associated, as described above, as "physical"
events. The event variables are marked complete automatically
when the associated physical act ivi ty comes to an end. (In the
case of display and 1/0 events, but not task completion events,
a WIT statement naming the event variable must also be executed
before the variable can be marked complete.) Generally, the
program is largely unable to influence directly the completion
of one of these kinds of physical ac t iv i t ies ; the act ivi ty com-
pletes in due course. (This is not l i t e r a l l y true i n the case
of task events. We have seen how a task can be terminated abnor-
mally, essentially a t w i l l , by having the block which created it
terminate. And, of course, even the nomal completion of a task
is guided by program logic within the twk. Generally, however,
the task proceeds un t i l normal completion while making unpredict-
able progress, and therefore it is useful to think of i ts comple-
t ion a.i a physical event.)

14.17. "Abstract," or programmed, events.

The PL/I programmer may also define.abstract or logical events
that do not necessarily correspond to particular physical act ivi ty .
Rather, they correspond to the program having reached a certain
"state , " which can have any meaning the programmer desires. The
"completion1' and "status" of thes'e abstract events can be freely
s e t by the programmer, and tasks can be made to wait for the com-
pletion of an abstract event.

So f a r we have seen no use for "inactive" event variables except
that they are available for association with a physical event.
As soon as they are associated with it, they become active and
(essentially must be l e f t alone un t i l the physical event runs i ts
course. They are automatically marked "incomplete" a t the s t a r t
of the physical ac t iv i ty and "complete" a t i ts end. During th is
time they may be the subject of a W1'1' statement.

Inactive event variables, we can say now, can be used to mark the
completion of abstract events. The general technique is to s e t
one's completion part t o 'O 'B a t some point in time and t o ' 1 ' B
a t a l a te r oint i n time. Once it has been assigned a value, any P task can WA T on the event variable. (There is never any res t r ic-
t ion on which event variables may be waited upon except that thei r

completion parts must have been .assigned a definite value before
they are referenced i n a WIT statement .) The task is suspended
i f , a t the time the WIT statement is. encountered, the referenced
event variable has the completion value 'OIB, but it is not sus-
pended i f a t , t h a t moment it has the value ' 1 ' B . I f it is suspended,
it remains suspended un t i l some other task assigns the value ' l l B
to the event variable's completion part . Note, of'course, that i n
general a WIT statement may present a l i s t of event variables and
a number of them which must be marked complete before the wait is
sat isf ied.

How does one assign a value to the completion par t of an event
variable? One way is t.0 use the CWLETION pseudo-variable, as i n

COMPLETION (E) = ' 1 ' B ;
or

COMPLETION (E) = N > 0 ;
(See the entry i n LRM 18.) This leaves the status par t of the
event variable unchanged. Another way is t o assign an event value
(obtained by referencing another event variable 'or invoking a func-
t ion that returns an event value) t o the event variable. ' This
propagates the completion and status parts simultaneously, with no
poss'ibility of interrupt or a task switch un t i l the whole assign-
ment is complete. Examples w i l l be presented la ter . See LRM 312.

14.18. The DELAY statement.

Another statement that may have a marginal use i n multitasking
situations is. t h e TIETAY statement. The form is

DELAY (expt) ;
The current task is suspended for a number of milliseconds given
by the value of e x p . I t is exactly as i f an 1/0 operation that
required the specified amount of WIT tirue were being performed.
The DELAY statement may usefully be employed in a loop i n a high
priori ty task to l e t a lower pr ior i ty task gain control un t i l the
expiration of the delay, whereupon the higher priori ty task w i l l
usurp.contro1 from it. I t may then examine the progress of the
l m ~ r priori ty task (by accessing shared variables, for instance)
and ei ther go back through the 'loop and delay again, or do some-
thing clse. See LRM 3 i 3 and LRM 314.

14.19. Examples of abstract events.

,The f i r s t example w i l l be developed i n stages .

We assume a program w i l l "produce" and "consume" 100 (say) values.
A value i s available for consumption as soon as it is produced. A
very simple conventional program can be bu i l t around a loop such as

DO I = 1 TO 100;
CALL PRODUCE (X) ;
CALL CONSUME (X) ; . .

END ;
However, we assume that the acts of producing and consuming a single
value are each very laborious, involving a ' lot of 1/0 act ivi ty that
could be overlapped (i . e . , logically the consumer I s 1/0 act ivi ty is
independent of the producerl's and can be overlapped with i t) . So
one improvement using task events might be

CALL PRODUCE (X) ;
DO I = 1 TO 99;

Y = X;
CALL C O N W (Y] , TASK EVEWT (N) ; ,

CALL PKODUCE (X) TASK EVENT (EX) ;
WIT (M,N) ;

ENIJ ;
CALL CONSUME (X) ;

Here, the 2nd value is being produced while the 1st is being consumed,
and so on.

The only real criticism of th is multitasking solution is that subtasks
a r e created 198 times (only two are active simultaneously, of course).
There is a considerable overhead involved in creating a task which we
would l ike t o avoid.

Ol~r solution w i l l be to have the main rogram (the major task] creaee
two subtasks, just once, and wait for % 0th of them to complete. One
w i l l be responsible for producing values, the other for consuming
them. We w i l l arrange for the consumer to wait un t i l the producer
has produced a value i n some workspace belonging to the producer.
When the producer has produced such a value, it w i l l inform the con-
sumer that it may proceed. We wi l l make it the responsibility of the
consumer, when it receives the signal t o proceed, to move the value
t o its own workspace. The producer w i l l wait for th is action to be
completed. The consumer w i l l signal the producer when it has com-
pleted the move. A t that point, the producer wi l l be free to produce
another value while the consumer is busy consuming the last one. If
the consumer happens to f inish f i r s t , it w i l l wait for another value
t o be made available (as signaled by the producer). If the producer
happens to f in ish f i r s t , it w i l l wait fo r the consumer to catch up
and signal that it has moEd the new value to its workspace.

Study the following solution carefully!

PROG: PROC . OPTIONS (MAIN) ;
DCL (PRODUCE, CONSUME) EWTRY EXT;
E L (X, Y) . :. ;
DCL (PRODUCED, MlvED, E l , ,E2) EVENT ;
COMPLETION (PRODUCED) , ' COMPLETION (MNED) = ' 0 ' B ;
CALL PRODUCER TASK EVENT (El) ;
CALL CONSUMER TASK EVEWT (E2) ;
WAIT (El, E2) ;

PRODUCER: PROC;
DCL I FIXED BIN;
DO I = 1 TO 100;

CALL PRODUCE (X) ;
COMPLETION(PR0DUCED) = '1'R;
WAIT (mVED);
COMPLETION(M0VED) = 'O'B;

END ;
END;

CONSUMER: PROC;
DCL I FIXED BIN;
DO I - 1 TO 100;

WIT' (PRODUCED) ;
COMPLETION (PRODUCED) =' ' 0 ' B ;
Y = X;
CCMPLETION(M0VED) = '1'B;
CALL CONSUME (Y) ; .

.END;
END;

END; /* PROG */

The kind of control flow achieved i n th is program is known as a
classical "caroutine" structure. I t is characterized by an order ly '

' 'handshaking' ' of two paral lel processes. Notice the symmetry: the
operations'. performed by .one task on PRODUCE11 and MOVED are the same
as those performed by the other task on MOVED.and PRODUCED,.respec-
tively . Also notice that al.1 the tasks can execute a t the. s'ame
priority.

In the second example, we w i l l assume that we have two tasks doing
"ms t l y i ndepkndenttl things. Every once i.11 a while', however, each.
task needs to update. some data shared between the two tasks. In
other words, there is a region in each task, called a "cr i t ica l
region," i n which a l l operations on the shared data are performed,
having the following properties: I f neither task is in i ts c r i t i c a l
region, the f i r s t one to arrive a t i ts c r i t i c a l region is permitted

unconditionally to enter it. I f , however, a task arrives a t its
crit . ica1 region while the other is already i n its, the one just
arriving must wait un t i l the other leaves i ts c r i t i c a l region.
Thus, we are guaranteed that both tasks w i l l not be i n thei r c r i t i c a l
regions simultaneously.

I t might appear that th i s problem is solved by having both tasks
execute code l ike the following:

WAIT (NOT IN CRITICAL REGION) ;
COMPLETIO~(N~ - IN - CRITICAL - REGION) = ' 0 ' B ;

c r i t i c a l region

COMPLETION (NOT IN CRITICAL REGION) = I I B ;
Here, NOT I N C R I T I ~ REGION isVini t ia l ly complete. Let us suppose
task 1 aryivgs a t thi? code well i n advance of task 2 , ' so that it i s ,
say, i n the middle of its c r i t i c a l region when task 2 arrives a t i ts
WAIT statement. The event variable w i l l be found t o be marked illcam-
plete. So task 2 w i l l indeed wait un t i l task 1 leaves i ts c r i t i c a l
region and se t s the event variable complete. 'But the danger,here is
that the two tasks may arrive a t thei r WAIT statements nearly 'simul-
taneously. They w i l l both find the event variable marked complete
and both w i l l proceed. (For example, assume task 2 has a higher
pr ior i ty than task I. but is not, a t the moment, "ready," i . e . , assume
it is waiting for I/O. Task 1 is proceedillg. I t passes i ts WIIT
statement but before it has a chance to s e t the event variable incom-
plete, task 2 EZ&es its I / O , becomes ready, and usurps control
from task 1 by virtue of its higher priori ty. I t executes i ts WIT
statemen.t and also proceeds. Being a t a higher priori ty, task 2 con-
tinues and se t s the event variable incomplete, then enters i ts c r i t -
i c a l region. Let's assume it does some 1/0 i n there, so it re l in-
quishes control to task 1. Task 1, already past i ts WAIT statement,
s e t s the already incomplete event variable irlco~nplete and proceeds
in to i t s c r i t i c a l region. Both tasks are now i n thei r c r i t i c a l
regions, and that is what we wanted t o avoid.)

You might say ' 'The probability that the adverse, timing hypothesized
above permits both tasks to enter thei r c r i t i c a l reginns j s incredibly
and acceptably small; don't worry about it." But is the r isk worth
taking? The fai lure of the program's logic, i n that one chance out of
a mi'llion, could cause the destruction of a crucial data base! I t is
the essence of multitasking that programs be provably correct regard-
l e s s o f sequence of any actions that can be performed in paral lel . -

Our solution w i l l be shown in pieces. We w i l l need a special task,
represented' by the' procedure GRANTOR, which w i l l execute a t a higher
priori ty than any other' task i n the program. Thik is an absolute
necessity. GRANTOR w i l l spend most of Tts time waiting for a request
to perform a service, so it w i l l not consume much of the CPU resource
and won't generally interfere with the lower priori ty tasks. The
idea, however, is that when' one of the two tasks asks GRANTOR to
perform a service,'-OR must get control immediately and i n par-
t icular not l e t ' the other' task proceed. I t must also not relinquish
control un t i l it is finished performing the service requested. This,
too, is essential and is achieved by coding GRANTOR so that it does
no 1/0 or anything else that can cause it to wait un t i l it has
finished its duty.

. .

The main program is shown f i r s t . I t s t a r t s by in i t ia l iz ing some
event variables, lowering i ts awn priori ty, then creating GRANTOR
a t a higher priori ty. 'GRANTOR w i l l immediately take control. I t
w i l l wait for a request . The main program w i l l resume a t that point
and w i l l then i n i t i a t e the two tasks containing the c r i t i c a l regions.
(These must never execute a t a pr ior i ty as high as GRANTOR'S.) . When
both of these tasks have finished, the main program t e l l s GRANTOR t o
terminate normally (that is one of the services it can be asked to
perform) then waits for it to do so.

PROG: PROC OPTIONS (MAIN) ;
DCL (GRANTOR, TASKl, TASK2) ENTRY EXT ;
DCL (G, ' T l , T2) EVENT;
DCL (TAKE, GIVE, QUIT, LOCK(2)) ml' EXT;
CWLETION(T~), C W X I ' I O N (G I V E) , COMPLETION(QU1T) = 'O 'B;
COMPLETION (LOCK (*)) = ' 1 ' B ;
PRIORITY() = -1
CALL GRANTOR TASK PRIORITY (+I) EVENT (G) ;
CALL TASKl TASK EVENT (Tl) ;
CALL TASK2 TASK EVENT (T2) ;
WIT (Tl, T2) ;
COMPLETION(QU1T) = '1'B; /* TELL GRANTOR TO END */
WIT (G) ; /* WIT FOR IT TO DO SO */

END;

The code i n the vicinity of TASK]. ' s c r i t i c a l region w i l l look l ike
T r n = EV1;

c r i t i c a l region

GIVE = EVl;

Here, EV1 is a local event variable declared and in i t ia l ized i n
TASK1 as follows':

DCL EV1 EVEWT;
COMPLETION (EV1) = ' 1 ' B ;
STATUS(EV1) = 1;

LOCK is an array of' event variables declared i n TASKl,...TASKZ, and
GRANTOR as i n PROG:

DCL LOCK (2) EVENT EXT;
The code i n the vicini ty of TASK2's c r i t i c a l region w i l l be similar,
namely :

TAKE = EV2;
WIT (LOCK (2)) ;

c r i t i c a l region

GIVE = EV2;
In TASK2, 'EV2 is declared m a i n i t i a l i z e d as fo,llows:

DCL m2 EVENT;
COMPLETION (EV2) = ' 1 ' B ;
STATUS (EV2) = 2;

,Obviously, TASK1, TASK2, and GRANTOR a l l declare TAKE and GIVE as
external event variables. (Remember, they were in i t ia l ized by the .

main program.)

As soon as e i ther task assigns t o TAKE, GRANTOR w i l l proceed (because
it .is waiting ' for the completion of any one of several event variables,
including T m , and it has a higher priori ty) . Note that the task

, , ' . performing the assignment also succeeds i n calu~lulicating the value 1 . .
or 2 (us'ed to identify the requesting task) to GRANTOR via the status
part of TAKE. The assignment statements TAKE = EV1 and TAKE = EV2
are not interruptible. ' When GRAWTOR gets control, it w i l l s e t the
element of the LOCK array corresponding to the requesting task ei ther
to complete' or to incomplete, depending on whether the other task is
not, or is, already i n i ts c r i t i c a l region. I t w i l l do some other
housekeeping, then go dormant again waiting for another 'request. The
task which made the request w i l l e i ther wait or not, depending on the
value assigned t o i t s element of LOCK. Even i f the other task has
become ready before the requesting task executes i ts WAIT statement
(i .c . , whilc CRlWTOR has control), when it m&es i t s request t o -
GRANTOR for permission to enter i ts c r i t z a l region, GRANTOR w i l l
observe that it has already granted that permission to the f i r s t task
and w i l l s e t the second task's element of LOCK t o incomplete.
Finally, when ei ther task leaves its c r i t i c a l region, it "gives back"
the permission it was granted by making another request to GRANTOR.
Note that i f the other task is waiting for permission t o enter,
GRANTOR must now s e t that task 's element of LOCK complete.

The code for GRANTOR is as follows:

GRAiiOR: PROC;
DCL (TAKE, GIVE, QUIT) EVEWT EXT ;
DCL LOCK (2) EVEWT EXT;
DCL (WANTOR, GIVER, OMER) FIXED BIN;
DCL OWI'ElI BI'l' (1) INIT (1 0 ' B) ;
lI0 WHILE (' l lB) ; /* LOOP TERMINATED BY RETURN */

UIT (TAKE, G I V E , QUIT) (1) ; /* AWIT A REQUEST */
IF COMPLETION (TAKE) THEN DO; /* WANTS TO ENTFX */

WANTOR = STATUS (TAKE) ; /* WHO W S ? */
COMPLETION (LOCK (MAWOR)) = -I OWNED ;

/* GRANT PERMISSION IFF RIGHT TO ENTER
NOT ALREADY OIWED BY OTHER TASK */

OWNED = '1'B;
COMPLETION(TAKE) = 'O 'B; /* RESET */

END;
ELSE IF COMPLETION(G1VE) THEN DO; /* READY TO LEAVE */

G I V E R = STATUS (GIVE) ; /* WHO M S TO LEAVE ? */
CrrHER = 3 - GIVER; /* INDEX OF OTHER TASK */
IF COMPLETION(LOCK(OTHER)) THEN /* IT WANTS I N */

COMPLETION (LOCK ((YI'HER)) = ' 1 ' B ;
/* LET I T IN , BUT LEAVE OWNED ON */

ELSE owmn = ' o 'B ;
COMPLETION(GIVE) = 'O'B;

END;
ELSE /* REQUEST TO QUIT */ RETURN;

m D ;
END;

14.20. J C L considerations.

Whenever you use a cataloged procedure that link edi ts or loads a
multitasking program, you must use the TASKLIB symbolic parameter
i n the way shown below

TASKLIB = 'SYS1.PLITASK1
See OPG 38.

In addition, the ISASIZE execution option may be used t o specify,
via its second and th i rd operands, the s i ze of the ISA acquired
for each task other than the major task, and the maximum number of
tasks (including the major task.) that can be active simultaneously.
The f i r s t operand of ISASIZE is used, a s shown i n Section 13.9, t o
specify the s ize of the major task 's 1%. (Reread t.hat wcti.on and
the reference given there, OPG 33.) Note that ISASIZE is an execu-
t ion option of the Checkout compiler as well as the Optimizer, No
mention was made of ISASIZE in connection with the Checker, i n
Lesson 13, because i n that compiler i ts f i r s t operand is ignored
and the value specified fo r the SIZE operand is used instead. See
CPG 40.

In our system, the default for ISASIZE i n a multitasiing program is
ISASIZE (8K, 8K, 20) . Typical use of TASKLIB and ISASIZE (together)
is demonstrated i n the' following:

// EKEC PLOCLG, TASKLIB=.'SYSl .PLITASK' ,GOOPTS= ' ISA(30K, 10K, 4) ' . .

14.21. Homework problems.

(# 14A) Describe the differences between multiple concurrent
invocations of a given procedure as separate. tasks'
and multiple concurrent invocations of a given pro-
cedure by recursion.

(#14B) L i s t a l l the PL/I actions you c m think of that w i l l
cause the current task t o relinquish control t o
another ready task i n your program.

(#14C) How can you create a subtask a t a priori ty higher
than that of the major task without reaching a
pr ior i ty level higher than that assigned in i t i a l l y
to the major task by the operating system?

(#14D) Execution of the GO TO statement i n the following
example is i l legal . Can you explain why?

CALL SUBR TASK;
L: . ' ,

, ,

SUBR: PROC;

GO TO L;

;

.Under what conditions is execution of the .GO .TO
statement i n the following example legal? Tllcgnl?
.. ON FOFL GO TO L ;

CALL SUBR TASK;
L: ...

(#14E) Give several reasons why a task must be (abnormally)
terminated' when' the' block contai-n the' CALL s ta te- '
ment that created' it terminates'.

(#14F) Recall that the event variable ksocia ted w i t h an
asynchronous I /O. . operation is marked complete only
as part of the'execution of a WIT statement refer-
encing i t , : even ' i f the 1/0 operation is physically
complete- ear l ier . Thus, it would appear there is
no way to "test" whether an 1/0 operation is complete.
or not without being forced' to wait i f it isn't:
There is a tricky '(though legal) way t o t e s t its
completion periodicaliy, however, without being
forced t o w a i t . Can you find i t ? . Weak hint:' You
w i l l need a second event variable..

(Very di f f icul t) Generalize' the "cr i t ica l region"
problem i n the following way:

(a) Permit any number of tasks t o have
c r i t i c a l regions, rather' than just two.

(b) Permit any task to have any number'of
c r i t i c a l regions, each identified i n
some convenient way.

(c) Make sure that only one task a t a time
is permitted to enter a c r i t i c a l region
of type "x". A given task may have
several different c r i t i c a l regions of
type "x", as well as c r i t i ca l . regions
of other types. While a task is i n a . .
c r i t i c a l region of type "x", another
task may b'e in a c r i t i c a l region of a
different. type.

Hints: Since no bound is s e t on the nlnnher of tasks
ur c r i t i c a l regions, you w i l l need t o use list processing
techniques (based variables, pointers, etc.) . Be sure
that based'storage is freed in the same task i n which it
is allocated. You w i l l need a task w i t h the "high.
priority, non-interruptible" properties of GRANTOR. You
tjill need t o communicate more information to it with.
each request than you can conveniently represent i n the'
s tatus part of an - event variable, ' so
instead create the senrice task each time you need' a
sewice fromzt and communicate v ia arguments; it w i l l
end normally when it has provided. the service.

15. The Checkout compiler in TSO.

In Lesson 13, the use of th'e.Checkout compiler in the batch system
was outlined. In addition, special features of PL/I useful in
debugging, particularly in a batch environment, were described.
While the value of the Checkout compiler in batch cannot be
belittled, neither can its unique capabilities in a conversational
environment be overstressed. The Checkout compiler is "at home"
in TSO, and in this lesson we hope to convey a sense of excitement
about its truly outstanding potentia1.h this environment for con-
tributing to productivity in the development and debugging process.

The notes for 'this lesson cover a brief orientation lecture which
is meant to precede a taped demonstration of the Checker in TSO.

15.1. Creating a PL/I source dataset.

To create a source dataset containing a PL/I program, in
TSO, enter the EDIT command with either of the "dataset"
types" PLI or PLIF, as in

EDIT PROG PLI NEW
You will be prompted with line numbers. As you type each
line, remember that the first character you type goes into
the column reserved (by our default compiler options) for
a listing control character; it is not part of the source
program. (Except when you want a blank line, overprinting,
or a page eject in the listing, type a blank as .the first
character.)

PLIF dataset type produces a dataset having FB-format
records with an LRECL of 80. The EDIT line numbers are
.placed in columns 73-80. . The first character you type goes
into column 1; the next 71 or less go into columns 2 through
72. These are the default conventions assumed by the com-
piler for source margins and sequence information for source
datasets consisting of fixed-length records.

PLI dataset type produces a dataset having VB-format .records
with an LRECL of 104. The first four bytes of a record are
used by the system to indicate the length of the remainder
of the record. The EDIT line numbers are placed in columns
1-8 of the data portion of the record, i.e., immediately
followi'ng that length prefix. The first character you type
goes into column 9. The next 91 or less go into columns 10
through 100. Short records are produced if you do not type

all 91 possible characters. These conventions match those
assumed by the compiler, by default, for variable-length
records.

Note that the use of either dataset type results in the
appending of the "dataset qualifier" PLI to the dataset
name given in the EDIT command.

PLI dataset type is generally more efficient than PLIF data-
set type, in that short lines won't waste space. However,
you cannot conveniently dump such a dataset onto cards.
You would have to use the COPY command of TSO first to make
a copy of the dataset in card image format. You will need
several operands of the COPY command to arrange for this
change of format and movement of the line numbers. Note
that lines containing in excess of 71 source characters
would be truncated during the copy.

A guide to the use of the editor may be found in CTUG 5 and
OTUG 6. The two terminal users guides should be consulted,
by those new to TSO, for chapters on other basic aspects of
using TSO.

15.2. Invoking the Checker.

The Checkout compiler is invoked with the PLIC command in
TSO. Before we get into that, we must mention the need for
you to iss'ue the-IPLIC command first. This is used once
per session, before the Checker is entered. It allocates
the file SYSPLIC to the system da.taset SYS1.PLICLNK required
by the Checker. In addition, it allocates files SYSIN and
SYSPRINT to the terminal. Use of the IPLIC command will not
be necessary if you use the PLICKLGN logon procedure (it per-
forms the above three allocations). If you have not used
IFLIC or PLICKLGN, the response to your PLIC command will be
a rather fast READY not accompanied by any further information.

The Checkout compiler absolutely cannot run in our 70K
regions. For very small programs it might squeeze by in
140K. If the program is of moderate size, the amount of
"spilling" performed when only 140K is available will be
painfully slow and expensive for you, and probably detri-
mental to the performance of TSO for everyone. The use of
the 200K region will result in more efficient processing of
typical programs.

The PLIC command has the general form
PLIC d s n k e y w o r d - o p e r a n d s

For example,
PLIC PROG

or
PLIC PROG LMSG HALT MACRO

The d s n is the source dataset name. (PLI is appended as
a dataset qualifier automatically.) You are actually invok-
ing what is known as a "prompter". for the Checkout compiler.
Its main function is to allocate files and datasets required
for y0u.r compilation and then invoke the compiler itself.
Some of the k e y w o r d - o p e r a n d s are defined by, and used by,
the prompter only. The majority of them, however, translate
into compiler options and are assembled by the prompter as
a string of compiler options to be passed to the.compiler.
If you specify operands erroneously, you will be prompted
by the prompter for corrections.

How can you find out about operands of the PLIC command? Two
ways :

(a) Use the TSO HELP command. This is available for
the purpose of finding.out about the operands
of any TSO command.

(b) S~~TUG 6.

~ypical or ordinary use of the PLIC command serves the same
purpose as the' PLCCG cataloged procedure (Lesson 13), i.e.,
the compiler proceeds from translation into in'terpretation
without creating an object module. This is suitable for the
execution of a self-contained main program not requiring
link editing with other external procedures. Object modules
and intermediate text modules may be created for later com-
bining by the linkage editor or loader and execution under
the interpreter phase of the Checker (references and a few
brief notes will be given later). . .

We will here mention a few essential operands of PLIC.

One of the most essential is the PRINT operand. It. controls
the allocation of the file used for SYSPRINT. Note that
when you use the PLIC command, the allocation of SYSPRINT
to the terminal previously established by IPLIC or PLICKLGN
is not actually used (it would be used for isolated execu-
tion under the interpreter phase).' The default for the
PRINT operand is PRINT (*) , which says to allocate the f i l e

t o be used f o r SYSPRINT t o t h e t e r m i n a l . G e n e r a l l y , you
can r e l y on t h i s d e f a u l t . R e c a l l t h a t SYSPRINT i s used by
t h e t r a n s l a t o r phase f o r l i s t i n g s and s i m i l a r o u t p u t s you
select v i a o p t i o n s , and it i s used (g e n e r a l l y) by t h e pro-
gram i t s e l f (and by t h e sys tem) a s a s t a n d a r d o u t p u t f i l e
d u r i n g e x e c u t i o n . So, a l l o c a t i o n t o t h e t e r m i n a l i s q u i t e
r e a s o n a b l e . Note t h a t you w i l l n o t be f looded by l i s t i n g s , -
e tc . , s i n c e t h e compi le r o p t i o n s f o r them have been set
" o f f " i n t h e d e f a u l t s t h a t app ly when t h e compi ler i s used
c o n v e r s a t i o n a l l y (see OTHER 3 a g a i n) .

Another v e r y u s e f u l c h o i c e i s PRINT(dsname). The f i l e used
f o r SYSPRINT w i l l be a l l o c a t e d t o a d a t a s e t having d a t a s e t
name dsname.LXS'1'. It it d o e s n ' t e x i s t , it is c r e a t e d f u r
you w i t h r e c o r d fo rmat VBA. You can submit a job t o l i s t
it l a t e r . What makes t h i s e s p e c i a l l y v a l u a b l e i s t h a t any
subsequen t i n t e r a c t i o n s t h a t you have w i t h t h e Checker (i t s
prompts and your r e p l i e s) w i l l be recorded on t h a t d a t a s e t .
Thus , you w i l l have a "hardcopy" r e c o r d o f your s e s s i o n ,
which i s n i c e i f you a r e a t a t u b e .

But , you a s k , wou ldn ' t you m i s s s e e i n g SYSPRINT ouput pro-
duced by your program? Y e s , b u t you can a r r a n q e t o have
a copy o f wha t -goes t o t h e d a t a s e t dsname.LIST d u r i n g i n t e r -
p r e t a t i o n s e n t t o t h e t e r m i n a l a t t h e same t ime (shown l a t e r) .
A1so;note t h a t a l l compi le r d i a g n o s t i c s (bo th d u r i n g t r a n s -
l a t i o n and i n t e r p r e t a t i o n) a r e a u t o m a t i c a l l y cop i ed t o t h e
t e r m i n a l , w i t h o u t cl o p e a i f i c r c q u e s t from you, if you have
used PRINT (dsname) .

I f you u s e an operand f o r a compi le r o p t i o n , such a s SOURCE,
t h e l i s t i n g i s produced on tke f i l e used f o r SYSPRINT, a s
governed by t h e PRINT operand. You can a l s o embed t h a t
o p t i o n i n t h e TERMINAL . ..-.,. .., .,.,..- ,... .- , ..,& operand . .,... ", .,,,-,. ,. ., .." (which i s , i t s e l f , a compi le r
o p t i o n) , a s i n TERMINAL(S0URCE). The l i s t i n g r e q u e s t e d i s
produced on t h e t e r m i n a l independent of t h e a l l o c a t i o n of
t h e f i l e used f o r SYSPRINT.

A l l d i a g n o s t i c messages have a long form and a s h o r t form.
Which you g e t i s governed by t h e comp'i'ler 'opt ion
LME'SS AGE /'SME S'SAGE .

I n TSO t h e d e f a u l t (u s i n g t h e a b b r e v i a t i o n) i s SMSG. Note
two t h i n g s :

(a) The long messages are generally much more
informative, and you would do well to request
them while you are still a beginner. Invoke
PLIC as follows:

PLIC dsn M S G
(b) If you have started a session with the default

SMSG, you can change to LMSG during the session
(demonstrated later). Or, there is a way you
can ask for the text of the long form of a
specific diagnostic you have just been given
(they are always acc~mpanied by their message
numbers) .

15.3. General behavior of the Checker in TSO.

As a consequence of our default options, the Checker pro-
ceeds as follows.

First it proceeds through translation. Syntax checking
occurs first. If sufficiently severe syntax errors are
found, control is turned over to you at the terminal. You
can use various facilities of the Checker to correct the
syntax errors that are reported, then go on. Next "global"
checking of the programfor consistency' is performed.. Again,
jf sufficiently severe errors are found, control is sent to
the terminal and you are given a chance to correct them.

Following that, interpretation begins. .As the program
proceeds, various things can happen. which',again cause
control to be sent to the terminal. You can interact with
the program in several ways, modify it, etc., and go on.

Whenever control-is sent to the terminal, you are prompted
for a request. A prompt always ends in a " ? " but that may
be preceded.by other characters which denote the state of
the Checkout compiler. A variety of responses' from you are
permitted, depending on the state.

15.4. When control is passed to the terminal.

In general, when control has been passed to the terminal
you may issue a subcommand. These are considered to be
subcommands of the PLIC command just like CHANGE, LIST,

SAVE, etc., are subcommands of EDIT. There are a very
large number of subcommands of PLIC.

In addition, when control is passed to the terminal during
interpretation (identified by the prompt " ? " without any
preceding characters), you may enter PL/I statements from
the terminal ("immediate-mode PL/IW). These are immedi-
ately translated and interpreted. Almost any PL/I state-
ment, no matter how complex, is allowed. You may enter a
DO g r o u p , a begin block, etc.

One of the subcommands is HELP. It serves various purposes,
depending on the operands written with the subcommand.
HELP is valid in response to any prompt. When used without -
any operands, i.e.., as just HELP or HI the reply will be an
explanation of the current state followed by a list of sub-
commands valid in that state. Whenever you don't know what
is expected o'f y.ou ,' type H.

Two other uses of the HELP command are as follows:
(a) To ask for an explanation of a particular sub-

command. Fnr i n s t a n c e , H LIST (or just H L)
requests information on the LIST subcommand.
H H requests information on the HELP subcommand.

(b) To ask for the long form of a particular compiler
diagnostic whose short form has just been given
to you. Example: H 1093 (here, we assume the
short-form message was prefixed by the message
number IEN10931).

Another useful subcommand, valid most of the time, is OPTIONS.
It can be used to list or change compiler options. For
instance, OP LMSG sets the.LMESSAGE option for subsequent
diagnostics.

The MONITOR subcommand is used to initiate the copying at
the terminal of all output directed to a stream file allo-
cated to a dataset. F'or instance, if SYSPRINT has been
effectively allocated to a dataset (by use of the PRINT
operand of PLIC as shown above), you can get a copy of
SYSPRINT output at the terminal by issuing the subcommand
MONITOR SYSPRINT. NOMONITOR terminates monitoring.

How can you force control to be passed to the terminal
before execution starts, so that you can issue a MONITOR

subcommand? One way is to use the HALT compiler option,
specified as an operand on the PLIC command. It causes
control to be passed to the terminal when the main pro-
cedure (any external procedure, actually) is entered for
the first time. When that happens, you can type

MON (abbreviated ; SYSPRINT implied)
GO (causes execution to resume).

Several other subcommands will be described later. A
wealth of information is found in'CTUG 7 and CTUG' 8:

15.5. What sends control to the terminal?

We have already mentioned that the translator sends control
to the terminal if it finds severe enough errors (the
required severity is determined by the setting of certain
compiler options). It also sends control to the terminal ,

if you interrupt it (by depressing the BREAK key, for
instance). In all cases, the prompt is "T?" to indicate
that the translator has sent control to the terminal.

During execution there are many ways control can be sent to
the terminal. Some are the result of unique extensi0.n~ to
the language implemented only by the Checkout compiler.
Others are the result of slight redefinitions of'the language
as implemented by the Checkout compiler. A few'of these are
as follows.

(a) Execution of a HALT statement sends control to .

the terminal. See LW4 315.
(b) Standard system action for the FINISH condition

has been redefined to send control to the
terminal. You are thus given a chance to re-
execute the program, possibly after modifying it,
before terminating your session.

(c) Standard system action for the ERROR condition
has been redefined to send control to the terminal.
By use of appropriate subcommands you can deter-
mine the cause of the error and correct it, then
resume execution from an appropriate point in
the program.

(d) An additional condition, the ATTENTION condition,
is available in the interactive environment. The
ATTN condition "occurs" during execution when the

I
BREAK key is depressed. Standard system action
is to send control to the terminal. You can, of
course, establish an ATTN on unit and thereby

use the BREAK key to affect the logic of your
program (but not in a program compiled by the
Optimizer).

See LRM 316.

In all of the above cases, a message is printed at the.
terminal explaining why control was passed to it.. You are

. . then prompted with "? " .

In the case of either prompt, "T?" or "?", you may issue
various subcomrnands. One of these, the GO subcommand, is
used to resume processing just after the point frnm which
eoritrol was passed to the terminal. . (GO may be abbreviated
by a null line.) In response to a " ? " prompt you may, in
addition, enter immediate-mode PL/I statements. The GO TO
statement is an immediate-mode statement useful in this '
context to resume execution at a designated statement. The
language has'been extended to allow a line number after the
keyword GO TO, so that you may resume execution at an un-
labeled statement. In connection with this, GO TO 0 is
taken by convention to mean "start execution again from the
beginning. "

Further information on the passing of control to the
terminal is in CTUG 9.

15.6. Interactive debugging.

Rather than write a lot about this subject, we will demon-
s t r a t o it. Thc main poinL, lluwever, is that one does not
need to switch back and forth between different TSO pro-
cessors (EDIT, a compiler, LOADGO). One c a n dn ~ l l one's
debugging and program amending within the environment of
the Checkout compiler, generally without even retranslating
the program as it is amended. This is possible because

(a) An internal copy of the original source dataset
is avail.able for a variety of purposes at all
times. When control is at the terminal, sub-
commands can be used to list it, modify it, and
save it in an external dataset.

(b) PL/I statements may be executed in immediate
mode to try to understand the nature of an
execution error that has caused control to be

passed to the terminal. Through the use of
subcommands, "breakpoints" may be established
in the program and execution resumed. You can
arrange to execute statements attached at the
breakpoints or to have control return to the
terminal when one is reached.

(c) Statements, or groups of statements, may be
added, changed, or deleted without requiring
retranslation of the whole program or loss of
the execution environment.

(d) Rather general text editing subcommands are
provided within the Checker to cope with more
extensive or arbitrary source program changes.
Their use mandates a retranslation, but that
is accomplished by another subcommand.

Extensive information on the facilities for, and techniques
of, interactive debugging may be found in LRV 317 and
CTUG 10 through CTUG 12 (CTUG 11 contains numerous examples).

Topics for further study .

Consult the two TSO User's Guides (CTUG and OTUG) for inform-
ation on the following topics, not covered in these notes.

(a) Use of the Checker in TSO to translate several
external procedures, followed. by their linking
and execution (using LOADGO, or LINK and CALL).
Interactive execution (program amending; etc.)
is still possible, but if one retranslates an
external procedure he will need to leave the
Checker en~ironmen~ to use. LOAUGU or L l N K again.

(b) Mixing Checker and Optimizer modules in TSO.
(c) . Compiling under the Optimizer in TSO.
(d) Operands of LINK and LOADGO (PLIBASE and PLICMIX)

that imply the PL/I libraries.

Also review Section 7.25, "Stream I/O to a Terminal."

Fetchable load modules (see Section 12.2) may be used in
TSO providing execution of the program is initiated by
the CALL command and the fetchable load modules are members
of the partitioned dataset named in the CALL command.

Key to versions of manuals referenced.

OPG

OTUG

CPG

OS PL/I Checkout and Optimizing Compilers:
Language Reference Manual

GC33-0009-3

OS'PL/I Optimizing Compiler:
Programmer's Guide

SC33-0006-3

OS PL/I Optimizing Compiler:
TSO User's Guide

SC33-0029-2

OS PL/I Checkout Compiler:
Programmer's Guide

SC33-0007-2

CTUG OS PL/I Checkout Compiler:
TSO User's Guide

SC33-0033-2 plus TNL SN33-6132

XEFERENCES FOR LESSONS 1-5

Lm1 1. p. 10, "Identifiers"

~ ~ 4 2 . p.15, "The characteristics. ..these features."

L&Y 3. p. 49, "When a. ..is compiled."

LR31 4. p. 432-433, "DECLARE"

LRM 5. p. 49, "DECLARE AND DEFAULT STATEMENTS"

LRM 6. p. 73-75, Up to "Examples of Declarations"

LRM7. p.289, Figure 19.4

LPtM 8. p. 392, Figure I. 1, note 1.

LRM 9. p. 396, "BINARY and DECIMAL"

LFUI 10. p. 398, "COMPLEX and REAL" .

LRM 11. p. 410, "FIXED and FLOAT" .

LRM 12. p. 421, "Precision Attribute"

LRM 13. p. 15-19, "ARITHMETIC DATA" stopping at "Numeric Character
Data"

LRl4 14. p. 427, Gellerctl rule 2.

LRM 15. p. 339, Explanation and Figures F.4a and F.4d.

LRM 16. p. 324-339, Section F

LRii 17. p. 345, "Mathematical Built-In Functions" and "ACCURACY
OF THE MATHEMATICAL FUNCTIONS"

p. 347-352, Figures G.l and G.2

LRM 18. p. 353-367, (Descriptions of each built-in function)

LRM 19. p. 344, "Arithmetic Built-In Functions"

LR.1 20. p. 472-473, Figure K.l

LRs4 21. p . 21, ':Character-String Data" topping before the
discussiorl of VARYING.

"Bit-String Data" stopping before the discussion
of VARYING.

LXY 23. p. 197, "Editing by Assignment" stopping before the
discussion of VARYING.

LRM 2 4 . p. 39-40

LRM 25. p. 341,

LRM 26. p. 40,

LRV 27. p. 38-39,

LRM 28. p. 38,

LRii 32. p. 21-22,

LRM 35 (none)

LRii 36. p. 396,-397,

LRM 3 7 . p. 344,

LRM 38. p. 420 '421,

LN4 39. p. 22,

LRM 40. p . 202-203,

LFW 4 1 . p. 305,

LRM 43. p. 19-21,

LRM 4 4 . .p. 199-202,

LRM 45 . p . 305,

LRM 46. p. 306-314,

"COMPARISON OPERATIONS "

~ x p l a n a t i o n and F i g u r e s F.5a and F.5b.

" CON.CATENATION OPERATIONS " -

"BIT-STRING OPERATIONS" s topp ing a tWBoolean
Bu i l t - In Funct ion" , .

"Operat ions u s ing Bu i l t - In Func t ions"

"USE OF BUILT-IN FUNCTIONS"

"COMBINATIONS OF OPERATIONS"

F igu re F . l .

"Cha rac t e r - s t r i ng v a r i a b l e s may a l s o be d e c l a r e d ... c u r r e n t l e n g t h , i n b y t e s . "

"A b i t - s t r i n g v a r i a b l e may be g iven ... current
l e n g t h of t h e s t r i n g , i n b i t s . "

" A ' s t r i n g v a l u e ... va ry ing l e n g t h s t r i n g
v a r i a b l e . "

"BIT. CHARACTER. and VARYING"

"St r ing-handl ing B u i l t - I n Functions."

"PICTURE I'

"Cha rac t e r - s t r i ng v a r i a b l e s ... on ly a d i g i t . "

"Charac te r -S t r ing P i c t u r e SpecLf i ca t ions"

"Data a s s igned t o a v . a r i ab l e d e c l a r e d ' w i t h a
c h a r a c t e r - s t r i n g p i c t u r e s p e c i f i c a t i o n .

i~ r a i s ed . ' '

" P i c t u r e Cha rac t e r s f o r C h a r a c t e r - s t r i n g Data".;

."Numeric Cha rac t e r Data"

"PICTURE SPECIFICATION^ (a l l excep t ' 'Character-[
S t r i n a P i c t u r e S ~ e c i f i c a t i o n s " ')

Two pa rag raphs , beginning "Ar i thmet ic d a t a . . . "

" P i c t u r e Cha rac t e r s f o r Numeric Cha rac t e r Data"

LRM 47. p. 25-27,

LRM 49 . p. 432-433,

LRM 5 1 . p. 27 ,

LRM 5 2 . p. 43-45,

LRM 5 5 . p. 4.16-417,

LRM 5 6 . . p. 4 6 9 - 4 8 3 ,

LRii 57 . p. 31-32,

LRM 58 . p. 391,394,

LRM 59.. p. 45-46,

LRM 6 0 . p. 29-30,

LRM 61 . p. 45,

LW4 62 . p. 46,

LRM 63 . p. 427-429,

' E M 64. p. 399,

LRM 65. p , 400,

LRM 6 6 . p. 30,

LRM 67 . p. 399-403,

LRM 6 8 . p. 52,

LRii 6 9 . p. 61,

LRM 7 0 . p. 73-74 ,

"ARRAYS" stopping at "Cross-Sections of Arrays"

"Dimension Attribute"

"Factoring of Attributes"

"AGGREGATE ARGUMENTS "

"Cross-Sections of Arrays"

"Array Expressions" stoppinq at "Array-and-
. Structure Operations"

"STRUCTURES"

"LIKE Attribute"

"LIKE"

"Structure Mapping"

"ALIGNED and UNALIGNED Attributes"

"ALIGNED and UNALIGNED"

"Structure Expressions" stopping at "Structure
Assignment BY NAME"

"ARRAYS OF STRUCTURES"

"Array-and-Structure Operations"

"structure Assignment BY NAME''

"Assignment Statement"

General rule 2.

"DEFINED Attribute"

"DEFINED"

"PROCEDURE STATEMENT"

"PROCEDURE BLOCKS"

"It is not...two uses of the name C."

LRM 71. p. 74-75,

LRM 72. p. 75,

LRM 73. p. 73-74,

LE4 74. p. 75,

LRM 75. p. 76-77,

LRM 76. p. 409,

LRM 77. p. 78,

LRV 78. p. 13,

LRbl 81. p. 81-83,

LRM 82. p. 433-435,

LRM 83. p. 78-79,

LRM 84. p. 85,

LRV. 85.. p. 32-33, '

LRM 88. p. 85-86,

LRM 89.. p. 86-89,

LRM 90. p. 394-396,

LKivl 91. 'p. 399-400,

LRM 94. p. 398,

"Contextual Declaration"

"Implicit Declaration"

"The appearance of.. .the same block) .I1

"Since a...in error.h

"Internal and External Attributes"
stopping at "Note. " -

"EXTERNAL and INTERNAL"

"Scope of Member Names of External Structures"

"A block...PROCEDURE statement."

"DEFAULT Statement"

"DEFAULT "

"?4ultiple Declarations and Ambiguous References"

"The purpose...class of storage used."

"INITIAL Attribute"

"Static Storage"

"Automatic Storage" stopping before "EFFECT OF .

RECURSION ON AUTOMATIC VARIABLES"

"Controlled Storage"

"AUTOMATIC, STATIC,' CONTROLLED and' BASED"

General rules 3 and 7a.

"ENTRY" stopping at General .rule 6.

"ENTRY attribute" stopping at "Entry ~xpressions
as Aruurnents"

"CONNECTED"

LRM 9 5 . p . 4 5 7 , "RETURN"

LRM 9 6 . p. 4 4 0 - 4 4 1 , "ENTRY"

LRY 9 7 . p . 4 1 0 - 4 1 2 , "GENERIC"

LRM " S u b r o u t i n e s a n d F u n c t i o n s "

CPG 1. ' p . 2 7 , "AGGREGATE O p t i o n "

CPG 2. p. 4 0 , "AQQREQATE LENGTH TABLE"

OPG 1. p. 2 2 , "AGGREGATE O p t i o n "

OPG 2 . p . 3 7 , "AGGREGATE LtENG'.I?H TARLE"

CTUG 1. p. 1 1 6 , "AGGREGATE I NOAGGREGATE "

OTUG 1. p . 5.9,' "AGGREGATE I NOAGGREGATE 'I

. .

OTHER 1.

OTHER 2 .

G. Weinberg, P L / I _ P r o g r a m m i n g : _ -_ ._+ L_ A M a n u a l of
.I-^*;. -4.. -'- ..-

, S t y l e , section 1.5.1. M c G r a w - ~ i l l , ('1970)

K . D r i t z , T h e Precision

REFERSNCES FOR LESSONS 6-10

LRM 1 0 1 . p; 4 4 8 , " N u l l S t a t e m e n t "

LRM 1 0 2 . p. 4 3 7 - 4 3 8 , G e n e r a l r u l e s 1 and 6 .

L R M 1 0 3 . ' p . 4 3 8 , G e n e r a l r u l e 2 .

LRLY 1 0 4 . p. 4 3 7 - 4 4 0 , It DO" --
"LABEL" LRM 1 0 5 . p. 4 1 5 - 4 1 6 ,

LRM 1 0 6 . p. 4 1 3 , R u l e 1 6 .

LRM 1 0 7 . p. 6 9 - 7 0 , " R e a c t i v a t i o n of an A c t i v e P r o c e d u r e (R e c u r s i o n) "

LRM 1,08. p. 4 4 5 - 4 4 6 , "GO TO"

LRM 1 0 9 . p. 1 1 3 - 1 1 5 , " E n t r y E x p r e s s i o n s as A r g u m e n t s "

LRM 1 1 0 . p. 4 0 6 , G e n e r a l r u l e s 8 and 9 .

LRM 111. p. 4 0 4 - 4 0 6 , I' ENTRY It

LKM 113. .p. 4 5 9 , " STOP "

LRY 1 1 4 . ' p. 2 0 7 ; "When a . . . C h e c k o u t C o m p i l e r . "
. ,

LRM 1 1 5 . p. 3 7 8 , " C 1 , a s s i f i c a t i o n of C o n d i t i o n s "

'LRM 1 1 6 . p. 3 7 9 - 3 9 0 , D e s c r i p t i o n s of i n d i v i d u a l cond i t ions

LRM 1 1 7 p. 1 2 7 1 3 , "A cond i t ion p r e f i x ... P r o g r a m C h e c k o u t ' . "

LRM 1 1 8 . p. 2 0 7 , "The p r o g r a m m e r . . .when t h e y occu r . "

LRM 1 1 9 . p t 2 0 7 - 2 0 8 , " C o n d i t i o n P r e f i x e s "

LRM 1 2 0 . p. 2 0 8 , " S c o p e of t h e C o n d i t i o n P r e f i x "

:
!I 1 2 2 . p. 4 5 9 , "SIGNAL" --

LRM 1 2 3 . "CONDITION"

LW4 124. p. 207-215, "Exceptional Condition Handling and .Program
Checkout "

LRM 125. p. 448-449, ' "ON" -
LRM 126. p. 250-252, "ORDER AND REORDER OPTION"

LRM 127. p . 429-430, "BEGIN"

LRM 128. p. 452, General rule 5.

LRM 129. . p . 249-278, "Efficient Programming!'

LlUY 130. p . 119, "PL/I in~1~des...execution of a program."

LRM. 131. p . 432, "CLOSE"

LRM 132. . p. 120-123, "Files "

LRM 133. . p. 391-424, "Attributes"

LRM 134. p. 124-129, "Opening and Closing Files"

LRM 135. p . 449-450, "OPEN" --:.-.-

LW4 136. p. 122, "STREAV and RECORD Attributes "

LWl 135. p. 122, "INPUT, 'OUTPUT, and UPDATE ~ttributes"

LRM 138.

LRV 139.

LRN 140.

LRM 141.

LRY 142.

LRM 143.

LRM 144.

LRM 145.

LRM 146.

LRM 147.

"PRINT Attribute"

"ENVIRONMENT Attribute"

"EI'WI RONIdENT AL LL iLu Le "

Figure 1.2.

"Data Specifications"

"LIST-DIRECTED TRANS2.11SSIONn

"List-directed Data specification"

"DATA-DIRECTED TRANSMISSION"

"Data-directed Data Specification"

LRV 148. p. 141-142, "Edit-directed Data Speci,fication" stopping
at "General rule"

,LRM .149.

.LRY 150.

LRM 151.

;LRM 152.

LRM 155.

LRM 156.

LRM 160.

LRM 161.

LRM 162. p.

LRM 163. p.

LW4164. p.

LRM 165. p.

LRii 166. p.

LRY 167,. p.

LW4168. p.

L w 169. p.

LRii 170. p.

LRM 171. p..

172. p.

LRM 173. p.

"Data Format Items"

"Edit-directed Format Items"

"Control Format Items"

"Remote Format Items"

"STRING Option in GET and PUT Statements"

"Data Transmission Statements"

"Options of Transmission Statements"

'I GET " -

"STANDARD FILES"

"Print Files"

"In record-oriented...deblocked automatically."

"SEQUENTIAL, DIRECT. and TRANSIENT Attributes"

"KEYED Attribute''

"Environment Attribute"

"CONSECUTIVE, INDEXED, and REGIONAL Data Sets"

"INTO Option"
----=- -- - . - .---

"BUFFERED and UNBUFFERED Attributes"

"BACKWARDS At.tribute "

"IGNORE Option"

"Consecutive Organization" stopping before
"SEQUENTIAL UPDATE"

"SEQUENTIAL UPDATE"

"IN-LINE CODE OPTIMIZATION (TOTAL)"

"Optimization of Input/Output operations"

LRT4 174.

LRY 175.

LRM .176.

LRM 177.

LRM 178.

LRM 179.

LRM 180.

LRM 181.

Lrdf 102.

L&Y 183.

LRM 184.

LRnl 185.

LRM 186.

LRM 187.

LRii 188.

LWJI 189.

LRM 190.

LRM 191.

LRM 192.

LRM 193.

LRM 194.

LRM 195.

LRM 196.

LRM 197.

LRM 198.

"Indexed Organization" stopping at "KEYS"

"KEYFROM and KEYTO Options"

"KEY Option"

"KEYS"

"CREATING A DATA SET"

"KEY CLASSIFICATION. (GEPJKEY) "

"DUMMY RECORDS "

"SEQUENTIAL ACCESS" and "DIRECT ACCESS"

"xegional Organization" stopping at "REGIONAL (1)
.ORGANIZATION"

"~GIONAL (1.1 ORGANIZATION^^

"REGIONAL(2) ORGANIZATION"

"REGIONAL (3 ORGANIZATION^

"DELETE "

"WRITE"

"UNLOCK" .-. -.--

"EXCLUSIVE Attribute"

"UNLOCK Statement".

"NOLOCK Option"

"If the parameter ... can be passed."
"Condition-handling Built-in Functions"

"Condition Codes (ON Codes)"

"Multiple Interrupts"
-,

LRY 199.

LRM 200.

LRM 201.
I

LW4 202.
I

.LRV 203.
I

LRM 204.

Lml 205.

LRi4 206.

LRM 207.

LRM 208.

LRT4 209.

LRM 210.

CPG 3.

CPG 4.

"Interlanguage Communication Facilities"
through "or FORTRAN routines."

"Passing Arguments to a PL/I Procedure" and
"Invocation"

Syntax rule 4.

General rule 8.

Syntax rule 5.

General rule 7.

"Passing Arguments to a COBOL or FORTRAN
Routine" and "Invocation"

"Interrupt Handling"

"OPTIONS"

"Establishing the.PL/I Environment"

"FORTRAN INTERFACE"

"Using Common Storage"

Figure 12 .l.

"Data Sets and file^"

CPG 5 . p. 83-90, "Defining Data Sets for Stream Files"

CPG 6.

CPG 7.

CPG 9.

CPG ..,.. 10.
' :

88-90, "Tab Control Table"

90, "STANDARD FILES"

91, "CREATING A CONSECUTIVE DATA SET" . .

91-95, "ACCESSING A CONSECUTIVE DATA SET".

95-96, "EXAMPLE OF CONSECUTIVE DATA SETS and "PUNCHING
CARDS AND PRINTING"

96-99, "INDEXED Data Sets" stopping at "CREATING AN
INDEXED DATA SET"

CPG 12. P

CPG 13. P

CPG- 14. P

CPG 15. P

CPG 16. P

CPG 17. P

CPG 18. P

99-103, "CREATING AN.INDEXED DATA SET" stopping at
"Dummy Records"

103, " Dummy, Re cp rd s "

103-104, "ACCESSING AN INDEXED DATA SET"

104, "REORGANIZING AN INDEXED DATA SET"

104-105, "EXAMPLES OF INDEXED DATA SETS"

105-106, "AYEGIONAL Data Sets" stopping at "CREATING A
REGIONAL DATA SET"

109-110, . "REGIONAL (1) Data Sets"

CPG 19. p. 110, "Regional (2) Data S c t 3 "

CPG 20. p. 110-118, "Regional (3) Data Sets"

CPG 21. p. 107-109, "CREATING A REGIONAL DATA SET"

CPG 22. p. 109, "ACCESSING A REGIONAL DATA SET"

CPG 23. p. 163-173, "Linking PL/I and Assemble-r Language Modules."

CPG 24. Pa .481 "MIXING OBJECT MODULES" through "bytes available"

OPG 3 . . p. 163, Figure 12-1.

OPG 4. p. 28, "OPTIMIZE Option"

OPG 5. g . 7 3 - 8 9 , "Bata Sets and Flles"

OPG 6. p. 91-99, "Defining Data Sets for Stream Files"

OPG 7. p. 97-98, "Tab Control Table"

OPG 8. p. 98-99, "STANDARD F'ILESII

OPG 9. p . 101-102, "CREATING A 'CONSECUTIVE DATA SET!!

OPG 10. p. 102-103, "ACCESSING A CONSECUTIVE DATA SET"

OPG 11. p. 103-105, "EXAMPLE OF CONSECUTIVE DATA SETS" and "PUNCHING
CARDS AND PRINTING"

OPG 12. p. 107-108, "Indexed Data Sets" stopping at "CREATING AN
INDEXED DATA SET"

, ~ P G 13. p. 108-114, "CREATING AN INDEXED DATA SET" stopping at
"Dummy Records "

OPG 14. p. 114, "Dummy Records"

OPG 15. p. 114-115, "ACCESSING AN INDEXED DATA SET1'
. .

OPG 16. p. 115, "REORGANIZING AN INDEXED DATA SET"

. OPG 17. p. 115-116,

OPG 18. p . 116-118,

OPG 19. p. 120-121,

OPG 20. p. 121-122,

OPG 21. p. 122-124,

OPG 22. p. 118-120,

OPG 23. p. 120,

OPG 24. p. 165-175,

"EXAMPLES OF INDEXED DATA SETS"

"Regional Data Sets" stopping ,at' "CREATING A
REGIONAL DATA SET"

"RESIONAL (1) Data Sets"

"Regional --, (2) . Da-ta Sets"

"Regional (3) Data setsi1

"CREATING A REGIONAL DATA SET"

"ACCESSING A REGIONAL DATA SET"

"Linking PL/I and Assembler-Language Modules"

OPG 25. p. 211-212,. "IBM System/360 Models 91 and 195"

CTUG 2. ' p. 85-87, "Conversational Input"

CTUG 3. p. 87-89, "Conversational Output"

 TUG 2. P. 67, w~~~~~~~~ (TIME I o 1 2) 1 NO OPTIMIZE^^
OTUG 3. p. 39-41, "Conversational Input"

JG 4. p. 41-42, "Conversational Output"

REFERENCES FOR LESSONS 11-15

LRM 211. P= 89, "A based variable...area variables."
, ,

LRM 212. P- 89, "BASED VARIABLES1'

LRM 213. p. 89-90, "LOCATOR QUALIFICATION"

LRM 214. P * 90, "POINTER VARIABLES" stopping at "Setting
Pointer Variables"

LRM 215. P* 91, "ADDR BUILT-IN FUNCTION"

LRM 216. p. 426, General rules 7, 8, 12.

LRM 217. ' p. 444, General rules 3-5.

LRM 218. p. 93-94, "SELF-DEFINING DATA (REFER OPTION) "

.LRM 219. p. 397, General rule 6.
7

LRM 220. p. 403, General rule 5.

LRLY 221.

LRM 222.

LRM 223.

LR2.I 224.

LRM 225.

LRM 226.

LRM 227.

LRM 228.

"MULTIPLE GENERATIONS OF BASED VARIABLES",
"NULL HUPLT-IN FlJNCTTnN", and "TYPES OF LIST"

!!AREAS 11 stopping ac "Uffset Variables"

"EMPTY Built-In Function"

"AREA ON-Condition"

"ALLOCATE Statement with the IN Option"

"Offset variables"

LRM 229. P= 98, "Offset Expressions"

LRM 230. p. 99-100, "AREA ASSIGNMENT"

LRM 231. p. 100, "INPUT/OUTPUT OF AREAS"

LRM 232. p. 156, "SET Optionn

LRM 233. p. 456, General rule 9.

LRM . 2 3.5'. p. 157-160 ,

LRl4 238 .

LR! 239.

LRM 240.

LRM 241 .
I

LRLi 242.

LRM 243 .

LRM 244.

LRM 245.

, LRV 246 .

LRM 247 .

LRM 248 .

. LRM 249.

LRM 250 .

LRM 252 . p. 464 ,

LRM 253. p. 235;

LRM 254. p. 463-464,

LRf4 255. p. 237 ,

LRII 256. p. 464,

I 2 5 7 . p. 2 3 7 ,

LRM 258. p. 465,

"LOCATE Statemen tl'

"Processing Modes"

I' LOCATE I' \

' "DISPLAY" except General rule 4.

"FETCH AND RELEASE STATEMENTS"

"Dynamic Loading,of an External 'Procedure" ' .

Up to "Preprocessor Input and Output"

"Preprocessor Input and Output' stopping at
"Rescanning and Replacement"

"%DECLAREw stopping at ~eneral rule 4.

"Preprocessor Expressions" '

"%assignment Statement"

"%DEACTIVATEn

"Rescanning and.ReplacementN

"Preprocessor Variables"

"The % IF statement...IF statement."

"Preprocessor Do-group"

"The %GO TO statement...avoiding text."

"%GO TO"

"The preprocessor null statement...ELSE clause."

"%null Statement"

LRM 259. p. 233-235,

LRM 261. p. 466,

LRM 262. p. 235-236,

LRM 263. p. 464-465,

LRM 264. p. 235,

LRM 268. p. 211-212,

LRM 269. p. 218-220,

LRM 273.

LRM 274.

LRYl 275.

LRM 276.

' LRM 277.

LR! 278.

LRfl 279.

LKM 280.

LRM 281. p . 241,

LRM 282. p.' 242,

'"Preprocessor Procedures" stopping at
' "SUBSTR. . .Functionsw

" %PROCEDURE1'

"Preprocessor RETURN"

"Inclusion of ~xternal Text"

"SUBSTR, LENGTH, and INDEX Built-In Functions" . "

".Passing an Argument to the M.ain Procedure?'

"UNINITIALIZED VARIABLES"

"Execution-time Facilities of the Checkout
'Compiler "

"CHECK Condition"

"CHECK and NOCHECK Statements"

"CHECK"

"NOCHECK"

"ON Statement" -- -
General rule 6.

."Current Status List"

Syntax rules 3 through 5.

"FT,T)W St~tement" a'cd "MOFLOW C t a t e m t n kt'

"FLOW"

"NOFLOW"

"~ultitasking may allow ... system overheads."
First five paragraphs of "Multitasking"

"Creation of Tasks" stopping at "CALL STATEMENT"

"PRIORITY Option" up to "If the option does - .
not appear. . . "

LRM 2 8 3 . p. , 2 4 2 ,

LRM 2 8 4 . p. 2 4 - 2 5 ,

LRM 2 8 5 . p . 2 4 2 - 2 4 3 ,

LW.4 2 8 6 . p . 4 3 0 ,

LRLY 2 8 7 . p . 4 2 3 - 4 2 4 ,

LRM 2 8 8 . P * 2 4 1

LRM 2 8 9 . p . 2 4 1 ,

LkM 2 9 0 . p. 4 3 0 ,

LRM 2 9 1 . p. 4 0 7 - 4 0 8 ,

LRii 2 9 2 . P - 2 4 4 1

LRIq 2 9 3 . p. 4 5 9 - 4 6 0 ,

LRM 2 9 4 . p . 4 4 1 - 4 4 2 ,

LRM 2 9 5 . p. 2 4 5 - 2 4 6 ,

LR4 2 9 6 . p . 2 4 3 - 2 4 4 ,

LRM 2 9 7 . p . 2 4 4 ,

LRM 2 9 8 . p . 2 4 0 ,

LRM 2 9 9 . p . 2 4 0 - 2 4 1 ,

LRM 3 0 0 . p . 4 5 1 ,

LRM 3 0 1 . p. 4 3 7 ,

LFUq 3 0 2 . p . 1 7 1 ,

L R ~ I 3 0 3 . p. 1 5 7 ,

LRM 3 0 4 . p. , 1 5 6 - 1 5 7 ,

LRM 3 0 5 . p. ' 2 4 4 ,

' 3 0 6 . p. 4 0 8 ,

LRM 3 0 7 . p. 4 3 6 ,

"PRIORITY OF TASKS"

" TASK DATA

"PRIORITY O p t i o n " and "PRIORITY BUILT-IN .

FUNCTION AND PSEUDOVARIABLE"

G e n e r a l r u l e s 1, 2 , 4 , and 5.

"TASK" --
"EVENT DATA"

"EVENT O p t i o n " except l a s t p a r a g r a p h

G e n e r a l r u l e 3 .

"EVENT" except G e n e r a l r u l e 1 0 .

Two p a r a g r a p h s of "WA1.T STATEMENT"

G e n e r a l r u l e s 1 through 4 .

"EXIT"

" T e r m i n a t i o n of T a s k s "

"SHARING DATA BETWEEN TASKS"

"SHARING F I L E S BETWEEN TASKS"

" I n genera l , t h e r u l e s . . . i ' n t h i s chapter ."

" T a s k i n g a n d ~ e e n t r a b i l i t y "

S y n t a x ' r u l e 4 .

G e n e r a l r u l e 4 .

"NUMBER OF CHANNEL PROGFWMS (NCP) 'I

" N o t e t h a t . . . w a i t e d f o r . "

"EVENT O p t i o n "

"An e v e n t va r iab le . ..abnormal r e t u r n . "

G e n e r a l r u l e 1 0 .

Genera l r u l e 5 .

LRX308.

LRX 309.

LRM 310.

LRM 311.

-LRii 312.

LRM 313.

LRM 317.

CPG 25.

CPG 26.

CPG 27.

CPG 28.

CPG 29.

CPG 30.

CPG 31.

CPG 32.

CPG33 . ,

CPG 34.

CPG 35.

p . 455,456,

p . 458-459,

p . 461,

p . 460,

p . 244-245,

p . 245,

p . 436,

p . . 4 4 6 ,

G e n e r a l r u l e 7.

G e n e r a l r u l e 5 .

G e n e r a l r u l e 3 .

G e n e r a l r u l e s 5 t h r o u g h 8 .

"TESTING AND SETTING EVENT VARIABLES"

"DELAY STATEMENT"

"DELAY "

" HALT "
.-

" ~ x e c u t i o n - t i m e ~ a c i l i t i e s o f t h e Checkout
Compi ler" u p t o " T r a c i n g F a c i l i t i e s "

"Program Amending"

" OVERLAY I'

"Xe tu rn Codes "

"P,L/I S o r t "

"When L i n k - e d i t i n g i s R e q u i r e d . "

Two p a r a g r a p h s o f " L i n k - e d i t S t u b s and O b j e c t
Modules I'

" L i n k - e d i t S t u b (SYSLIN)" and " I n t e r m e d i a t e
T c x t and Dictionary (SYSITEXT)"

F i r s t p a r a g r a p h o f "Pr imary I n p u t (SYSCIN
o r SYSIN) I'

" l j m A S'l'ATEMENT "

"PROCESS S TATENENT "

"Batched Compi la t ion"

" O p t i o n a l F a c i l i t i e s "

CPG 36. p. 43-45, "Compile-time Processing (preprocessing)"

CPG 38. p. 151-1'61, "Prdgrarn Checkout"

CPG 39. p. 48-50, "Combining PL/I Modules from the Optimizing
221, and Checkout Compilers"

CPG 40. P. 301 "ISASIZE Option"

OPG 26.

OPG 27.

OPG 28.

OPG 29.

OPG 30.

OPG 31.

OPG 32.

OPG 33.

OPG 34.

OPG 35.

OPG 36.

OPG 37.

OPG 38.
. . . .

CTUG 4.
, .

CTUG 5.

\

"OVERLAY STRUCTURES

"Return Codes"

"PL/I Sort"

"Inwut (SYSIN. or SYSCIN) "

"Specifying Compiler 0pt.ions in the PROCESS
Statement"

"Batched Compilation"

"Optional Facilities"

"EXECUTION-TIME OPTIONS"

"Compile-time Processing (preprocessing)"

"LINK EDITING FETCHABLE LOAD MODULES "

"Combining PL/I Modules from the Optimizing
and Checkout Com~ilers"

"Program Checkout"
. .

"Multitaskina Usina Cataloaed Procedures"

p. 111-131, "Compiler Options"

p.. 11-23, " C r e d k i ~ l y and Updating PL/I Programs"

CTUG 6. p. 107-110, "PLIC Command"

CTUG 7. p. 133-191, "Subcommands of PLIC Command"
CTUG 8. . .p. 40-41, Figure 1.6.

CTUG 9. p. 42-44, "Control Passing to ~erminal"

CTUG'10. p. 25-44, "Debugging a Program"

CTUG 11. , p. 45-83, "Debugging Techniques "

CTUG 12. p. 133-191, "Subcommands of PLIC'. Command"

OTUG 5. p. 55-70, "Compiler Options"

OTUG 6. p. 11-25, "Creating and Updating PL/I Programs"

OTHER 3. S. M. PraSLein, editor. Arsonne National - -
Laboratory Computer User's Guide,
chapters 9 and 12.

1 7 - 1
I N D E X

*DATA c o n t r o l s t a t e m e n t
13.3, 13.4, 13.5, 13.7

*PROCESS c o n t r o l s t a t e m e n t .
13.4, 13.5, 13.7, 13.25

X s y m b o l 12.7 % A C T I V A T E s t a t e m e n t
12.12, 12.17 % A s s i g n m e n t s t a t e m e n t
12.9 % D E A C T I V A T E s t a t e m e n t
12.11, 12.17

%DECLARE s t a t e m e n t ... 12.8,
12.17

%DO s t a t e m e n t 12.14
% E L S E c l a u s e .. 12.13, 12.16
% E N D s t a t e m e n t 12.14,

12.17
% G O TO s t a t e m e n t 12.15,

12.16
XI F

c l a u s e 12.13 ... s t a t e m e n t 12.1'3, 12.16
% I N C L U D E s t a t e m e n t . . 12.19,

13 .11
'IrlNull s t a t e m e n t 12.16 '%PROCEDURE s t a t e m e n t

12.17
%THEN c l a u s e 12.13

f o r m a t item 7.19
A b n o r m a l t e r m i n a t i o n '

o f a p r o g r a m ... 6.9, 12.3
of a t a s k ... 14.9, 14.11,

14.16
A135 b u i l t i n f u n c t i o n ' ... 1.17
A b s t r a c t e v e n t s 14.17,

14.19
. ACOS b u i l t i n f u n c t i o n

1.20
A c t i v e

e v e n t v a r i a b l e s 14.7,
14.14, 14. 17.

i d e n t i f i e r s 12.7
p r e p r o c e s s o r f u n c t i o n

r e f e r e n c e s 12.17
t a s k v a r i a b l e s 14.6

A c t u a l ' a r g u m e n t s 5.9,
5 .11

A D D b u i l t i n f u n c t i o n . . 1. 17
A D D R b u i l t i n f u n c t i o n

11.2
A d d r e s s 11.1
I \ . d j u s t a b l e e x t e n t s 5.4,

5.6, 5.7, 5.10, 5.11,
10.7, 11.5, 11.7, 11.15

AFTER b u i l t i n f u n c t i o n
(ANSI) 2.18

AGGREGATE c o m p i l e r o p t i o n . .
3.10

A g g r e g a t e p a r a m e t e r s . . 5. 13
A g g r e g a t e s 3.1, 14.8 A L I G N E D a t t r i b u t e 3. 1 1
A l i g n m e n t a t t r i b u t e s 3.11

r e q u i r e m e n t s . . 3.10, 3.11
ALL

b u i l t i n f u n c t i o n 10.5
o p t i o n 13.16, 13.20,

13.21 ALLOCATE s t a t e m e n t 5.7,
11.4, 11.10

ALLOCATION b u i l t i n f u n c t i o n
10.5

AMDLIB 13.1
ANST S t a n d a r d ... 0.2, 1.18,

1.20, 2.18, 4.9, 5.7,
5.9, 5.10, 5.12, ' 5 . 13 ,
5.14, 6.5, 6.7, 6.18,
6.19, 7.10, 7.15, 7.21,
7.22, 8.9, 9.11, 10.3,
10.4, 10.5, 11.3, 11.5,
11.14, 12.0, 12.6,
12.19, 13.16, 13.19,
14.0, 14.5

A N Y b u i l t i n f u n c t i o n . . 10.5
Area' a s s i g n m e n t 11.7, 11.9 s i z e 1.1.7, 11.9
A R EA a t t r i b u t e 11.7 c o n d i t i o n 11.9
Areas 11.7

e m p t y 11.7, 11.8
A r g u m e n t l i s t s e m p t y 10.4 A r g u m e n t s 5.9, 5.1.1,

12.17
p a s s i n g t o m a i n p r o c e d u r e

13.5
A r i t h m e t i c o p e r a t i o n s

1.14
c o n v e r s i o n r u l e s 1,. 15
p r e c i s i o n r u l e s 1.16

A r r a y s 3.2 A r r a y s a s p a r a m e t e r s
5.11, 5.13

A r r a y s of s t r u c t u r e s . . 3.14
ASIN b u i l t i n f u n c t i o n

1.20
A s s i g n m e n t s t a t e m e n t

1 . 1 2 , 2 . 6 , 2.9, 2.16
A s s i g n m e n t s

a rea 11.7, 11.9

INDEX

a r i t h m e t i c 1 . 1 2
a r r a y 3 . 4 . b i t s t r i n g 2.9. 2 16
BY NAME 3 . 1 5 c h a r a c t e r s t r i n g 2.6.

2'. 16
e n t r y :..... ., 6 . 8
e v e n t 14 .7 . 1 4 . 1 7
f i l e 7 - 3

. f i x e d - l e n g t h b i t s t r i n g . .
2 . 9

f i x e d - l e n g t h c h a r a c t e r
s t r i n g 2 . 6

l a b e l 6 . 7
s t r u c t u r e 3 . 12. 3 . 1 5
v a r y i n g - l e n g t h b i t s t r i n g

2 . 16
v a r y i n g - l e n g t h c h a r a c t e r

s t r i n q 2 . 1 6
A s t e r i s k e x t e n t s 5.11.

1 0 . 7 , '!I. 7
A s y n c h r o n o ' u s 1/0 14 .0 .

1 4 . 3 , 1 4 . 1 3 , ' 14.14 ATAN . b u i l t i n f u n c t i o n
1 . 2 0 ATAND b u i l t i n f u n c t i o n
1 . 20 ATANH b u i l t i n f u n c t i o n
1 . 2 0 A t t a c h i n g a t a s k 14.4 .
1 4 . 5 , 1 4 . 6 , 1 4 . 7 , 14 .11 ... ATTENTION c o n d i t i o n 1 5 . 5

A t t r i b u t e s
a l i g n m e n t 3 . 1 1
a r i t h m e t i c 1.5 . 1.6.

1 . 19
d e f a u l t 1 .4
d e f i n i t i o n o f 1.2 d i m e n s i o n 3 & 3 f i l e d e s c r i p t i o n 7.3.

7 . 8 , 7 . 1 0 o f a r e t u r n e d Value
5 . 14

o f c o n s t a n t s 1 .11 . o f p a r a m e t e r s 5 11.
5 . 1 2

r o l e o f 1.2 s c o p e 4 .4
s t o r a g e c l a s s 5 . 1 2 .

1 1 . 3
s t r i n g 2 . 3 s t r u c t u r e 3 .8 . 3 . 9

AUTOMATIC a t t r i b u t e 5.6
A u t o m a t i c c a l l l i b r a r y

1 3 . 2 5
A u t o m a t i c v a r i a b l e s ... 5 .6 ,

5 . 15. 14 .11

B f o r m a t item 7 . 1 9 BRCKWARDS a t t r i b u t e 8 .9 B a l a n c e d p a r e n t h e s e s
1 2 . 1 7 Base a t t r i b u t e s 1 . 5

B a s e e l e m e n t s (o f
s t r u c t u r e s) 3 . 7

Based
r e f e r e n c e s 1 1 . 3 v a r i a b l e s 1 1 . 3 BASED a t t r i b u t e 11 .3 Based v a r i a b l e s 1 1 . 3
a c c e s s i n g r e c o r d s i n

b u f f e r s 1 1 .. 1 3
i n l ist p r o c e s s i n g . . 11 .6
i n s y s t e m programming

1 1 . 3
B a t c h e d c o m p i l a t i o n ... 13 .4
BEFORE b u i l t i n f l l n c t i o n

(ANSI) 2 . 1 8
R ~ g i . n h l o c k s 4 . 5 . 6 . 2
BEGIN s t a t e m e n t . . 4 . 8 , 6 . 1 9 B e l o n g i n g t o 4 3
B I N P . R Y

a t t r i b u t e 1 . 5
b u i l t i n f u n c t i o n 1 . 1 7

B i n a r y t r e e 1 1 . 6
BIT

a t t r i b u t e 2 . 3
b u i l t i n f u n c t i o n 2 .18

B i t s t r i n g
v a l u e s 2 . 2 v a r i a b l e s 2.3. 2 .15

B i t s t r i n g s
f i x e d - l e n g t h 2 . 9 . i n % I F c l a u s e 1 2 1 3
i n I F c l a u s e 6 . 1
i n WHILE c l a u s e 6 . 4 . v a r y i n g - l e n g L 1 1 2 16

B l o c k
e n t r y 5 .6 t e r m i n a t i o n 5.6. 6 .7 .

14 .9 , 1 4 . 1 6 OLOCI(c x e c u t i o n op t i u n
13 .22

B l o c k s t r u c t u r e 1 4 . 1 0
B l o c k s 4.8. 6 . 7
BOOL b u i l t i n f u n c t i o n

2.18
Bounds 3.3. 5 .4 . 5 . 1 1 BREAK k e y 1 5 . 5
BUFFERED a t t r i b u t e 8.9.

1 1 . 1 4 , 11 .15 . B u f f e r s 11.14. 1 1 1 5 . BUILTIN a t t r i b u t e 10 3.
12 .20

when r e q u i r e d 10 .4 B u i l t i n f u n c t i o n s 5 . 1 2 .

10.1, 12.20, 13 .1 .
a r i t h m e t i c 1.17
a r r a y a r g u m e n t s 3.5

c o n d i t i o n - h a n d l i n g -. . 10.5
m a t h e m a t i c a l .. 1.20, 10.5
m i s c e l l a n e o u s 10.5
m u l t i t a s k i n g 14 -6 ,

14.7, $14.9
s t o r a g e c o n t r o l 10.5,

11.2, 11.6, 11.8, 11.12
stream 1/0 10.5
s t r i n g - h a n d l i n g 2.18

B u i l t i n p r o c e d u r e s ... 5.12,
12.3

BY c l a u s e 6.5
BY N A M E o p t i o n 3 . 1 5

C f o r m a t item 7. 19
CALL command o f T S O ... 15.7
CALL s t a t e m e n t ... 4.1, 5.9,

12.3, 14.4, 14.5, 14.6,
14.7

C a t a l o g e d p r o c e d u r e s .,. 0.7
C h e c k o u t c o m p i l e r ... 13.2
O p t i m i z i n g c o m p i l e r

13.7
PLC series ... 13.2, 13.4,

13.23
PLO ser ies , . . 13.7, 13.23

CEIL b u i l t i n f u n c t i o n
1.17

C H A R b u i l t i n f u n c t i o n
2. 18

... CAARACTER a t t r i b u t . ~ 2 . 3 ,
12.8

C h a r a c t e r s t r i n g v a l u e s 2.1
v a r i a b l e s 2.3, 2.15

C h a r a c t e r s t r i n g s
f i x e d - l e n g t h 2.6
v a r y i n g - l e n g t h 2.16

CHECK
c o n d i t i o n .. 13.16, 13.17,

13.18, 13.24
s t a t e m e n t . . 13.16, 13.18,

13.22
C h e c k o u t c o m p i l e r c a t a l o g e d p r o c e d u r e s

13.2
c o m p i l e r o p t i o n s ... 13.5,

13.6, 15.2
d e v e l c p m e n t a n d t e s t i n g . .

13. 15 i n TSO 15.2
o r g a n i z a t i o n 13.1

s p e c i a l d e b u g g i n g f e a t u r e s
13.16

s t o r a g e managemen t . . 13.6
C h e c k p o i n t / R e s t a r t f a c i l i t i e s 12.5 CLOSE s t a t e m e n t 7.6 ... C l o s i n g a f i l e 7.6, 7.'8,

11.14, 11.15
COLLATE b u i l t i n f u n c t i o n

(ANSI) 10.5
COLUMN f o r m a t item 7.20 C o m p a r i s o n o p e r a t i o n s

2.14, 6.1, 6.4
COMPATIBLE c o m p i l e r a n d e x e c u t i o n o p t i o n

13.23 C o m p i l e - t i m e f a c i l i t y
12.6

C o m p i l e r o p t i o n s 13.5,
13 .6 ,13 .8 , 13.9, 15.2

C o m p i l i n g
i n b a t c h 13. 10 i n TSO 13.10, 15.2,

15.7
s e v e r a l e x t e r n a l

.... p r o c e d u r e s a t o n c e
13.4, 15.7

COMPLETION
b u i l t i n f u n c t i o n ... 14.7,

14.12
p s e u d o - v a r i a b l e 14.17

C o m p l e t i o n c o d e s 6.9,
12.3

C o m p l e t i o n . p a r t o f e v e n t
v a r i a b l e s 14.7,

14.8, 14.12, 14.14,
14,17

COMPLEX
a t t r i b u t e 1.5
b u i l t i n f u n c t i o n 1.17
p s e u d o - v a r i a b l e ; 1.18 C o n c a t e n a t i o n 2.12

C o n c u r r e n t e x e c u t i o n
14.1, 14.11

C O N D I T I O N
a t t r i b u t e 6.17
c o n d i t i o n 6, 17

C o n d i t i o n c o d e s .. 6.9, 12.3 C o n d i t i o n p r e f i x e s 6.12
C o n d i t i o n s

c o m p u t a t i o n a l 6.11,
6.19

c o n v e r s a t i o n a l p r o c e s s i n g
15.5

d i s a b l e m e n t o f 6.12
e n a b l e m e n t o f 6.12
e s t a b l i s h m e n t o f , . . 6.13,

6.15, 14.11

I N D E X

e x c e p t i o n a l 6.10
1/0 7.5, 7.24, 8.17,

14.14
o c c u r r e n c e of 6.11,

6.16, 14.11
p r o g r a m c h e c k o u t ... 6.11,

13.17
p r o g r a m m e r named 6.17
r a i s i n g o f 6.13
s t a t u s of 6.12
s t o r a g e c o n t r o l 11.9
s y s t e m a c t i o n 6.11,

15.5
C O N J G b u i l t i n f u n c t i o n

1.17
CONNECTED a t t r i b u t e . . 5.13,

1 3 . 9
C o n n e c t e d r e f e r e n c e s . . 3.6,

I- -,. 13
C o n s e c u t i v e d a t a s e t s .. 8.12

a l t e r i n g 8.15
c r e a t i n g , 8.13
r e t r i e v i n g 8.14

CONSECUTIVE s u b o p t i o n
8. 11, 8.12

C o n s t a n t s
a r i t h m e t i c . . , 1.11
b i t s t r i n g 2.8
c h a r a c t e r s t r i n g 2.5
e n t r y 4 . 6 , 1 2 . 2
f i l e 7.2
l a b e l 6.7
named 4 . 3

C o n t a i n i n g procedure ... 4 .3
C o n t e x t u a l d e c l a r a t i o n s

1.4, 4.3
C o n t r o l f l o w 14.1
C o n t r o l format items

7.18, 7.20
C o n t r o l v a r i a b l e s 6.5
C o n t r o l l e d

arguments 5.9
p a r a m e t e r s 5.9
v a r i a b l e s 5,7, 5.1,

11.4
CONTROLLED a t t r i b u t e . . . 5.7
C o n t r o l l e d DO g r o u p s . . . 6.5
C o n v e r s a t i o n a l d e b u g g i n g . . .

15.6
CONVERSION c o n d i t i o n

6.11, 7.19, 7.24, 7.26
C o n v e r s i o n s 1.12, 1.13

a r i t h m e t i c t o s t r i n g
2.11

b e t w e e n p o i n t e r a n d o f £ s e t
11.12

d u r i n g 1/0 ... 7.15, 7.16,
7. 19

i n a r g u m e n t / p a r a meter
m a t c h i n g 5.12

i n a r i t h m e t i c a s s i g n m e n t s
1.13

i n a r i t h m e t i c o p e r a t i o n s .
1.15, 2. 11

i n s t r i n g a s s i g n m e n t s
2.10

i n s t r i n g o p e r a t i o n s
2.11

s t r i n g t o a r i t h m e t i c
2.11

COPY
b u i l t i n f u n c t i o n (A N S I) , . .

2.18
command o f TSO 15.1.
o p t i o n . . ,. 7.22

c o r o u t i n e s 1 4 . 1 9
C05 b u i l t i n f u n c t i o n . . 1 .20
COSD b u i l t i n f u n c t i o n

1.20
COSH b u i l t i n f u n c t i o n

1.20
COUNT b u l l t i n f u n c t i o n

10.5
COUNT c o m p i l e r o p t i o n

13.24
C r e a t i n g a t a s k 14.4,

14.5, 14.6, 14.7, 14.11
C r i t i c a l r e g i o n s ' 14. 19
Cross s e c t i o n s o f a r r a y s . ..

3.6

Data
f o r m a t items . . 7.18, 7.19
l i s t items 7. 13
l ists 7.13
p r o b l e m 2.11
p r o g r a m c o n t r o l 4.7,

7.2, 11.1, 1 1 .7, 11.10,
13.20, 14.7

DATA o p t i o n 7.16, 7.22
D s t a , , d i r e c t e d t r a n s m i s s i o n .

7.16, , 13.20
DATAFIELD b u i l t i n f u n c t i o n .

10.5
Dataset o r g a n i z a t i o n . . 8.11
DataseLs 7 . 1
DATE b u i l t i n f u n c t i o n

1 0 * 5
Ddname 7.4
D e a c t i v a t i o n o f a c t i v e

i d e n t i f i e r s 12.11
D e b u g g i n g , 13. 1, 15.6

f e a t u r e s ... 13. 16, 13.22,
13.24

DECAT b u i l t i n f u n c t i o n

INDEX

(A N S I) 2'.18
DECIMAL a t t r i b u t e 1.5

b u i l t i n f u n c t i o n 1.17
DECK c o m p i l e r o p t i o n . . 13.7
D e c l a r a t i o n s

. i n s i d e p r e p r o c e s s o r
p r o c e d u r e s 12.17

o f e n t r y c o n s t a n t s . . 4.7,
5.11, 5.12, 5.14 ... o f e n t r y v a r i a b l e s 6 - 8 ... o f l a b e l c o n s t a n t s 6.7

r o l e o f 1.3
s c o p e o f . . 4.3, 4-.7, 4.8,.

6.7 t y p e s o f 1.4 DECLARE s t a t e m e n t 1.3.
1 . 4 4.3

D e f a u l t
a t t r i b u t e s 1.4. 1.8.

3.11, 4.5, 4.9
d e c l a r a t i o n s ... 5.8. 5.14 DEFAULT s t a t e m e n t 1.4.

4.9, . 5.8
D e f a u l t s t a t u s o f c o n d i t i o n s

6.12 DEFINED a t t r i b u t e 3.16.
5.10

D e f i n i n g 3.16 . I S U B :.... 3 18. 10.7 s i m p l e 3.17 s t r i n g o v e r l a y 3.19
t y p e s o f 3.20

D E L A Y s t a t e m e n t 14.18
DELETE s t a t e m e n t 8.6.

9.7, 9.9, 9.10, ,9.11,
14.14

D e t e r m i n i n g s t a t e of F r o c e s s o r i n T S O
15.4

D I M b u i l t i n f u n c t i o n . . 5.11 D i m e n s i o n a t t r i b u t e 3.3
Direct access 8.4. 9.1.

9.2, 9.5, 9.6, 9.8, 9.9
DIRECT a t . t r i b u t e 8.4
D i s a b l e m e n t o f a c o n d i t i o n .

6.12 DISPLAY s t a t e m e n t 12.1.
14.12 DIVIDE ' b u i l t i n f u n c t i o n
1.17

DO g r o u p s 6.2. 6.3. 6.5 s p e c i f i c a t i o n s 6.5 s t a t e m e n t s 6.2. 6.4.
6.5 DO g r o u p s 6.2. 6.3. 6.5

c o n t r o l l e d 6.5

i n d e x e d 6.5
i t e r a t i v e 6.3. 6 .5
n o n - i t e r a t i v e 6.2 . p r e p r o c e s s o r 12 14
WHILE-only 6.4

DOT b u i l t i n f u n c t i o n (ANSI)
10.5

Dummy . a r g u m e n t s 5.12. 12 17 ... r e c o r d s 9.7. 9.8. 9.9.
9.10

Dumps 13.24
Dynamic l o a d i n g 12.2.

13.13
Dynamic s t o r a g e 1 1 . 7.

14.11
a l l o c a t i o n 5.1. 5.6.

5.7, 11.4, 11.10
d e a l l o c a t i o n (f r e e i n g) ...

5.6, 5.7, 11.4, 11.10

.......... E f o r m a t item 7.19
EDIT

command o f TSO 13.10.
15.1

o p t i o n 7.17. 7 - 2 2
E d i t - d i r e c t e d t r a n s m i s s i o n .

7.17
E d i t i n g f e a t u r e s o f Check .ou t

c o m p i l e r 15.6 ... EDTIF s y m b o l i c p a r a m e t e r
13.25'

ELSE c l a u s e 6.1
Empty a reas 11.7. 11.8
EMPTY b u i l t i n f u n c t i o n

11.8
E n a b l e m e n t of a c o n d i t i o n ..

6.12
E N D s t a t e m e n t 4.1. 4.8.

6.2, 6.4, 6.5, 6.9,
14.9, 14.11 ENDFILE c o n d i t i o n 7.24.
8.17, 14.14

ENDPAGE c o n d i t i o n 7.24
E n t r y c o n s L a 1 1 t s 4.6. 4.7.

12.2
d e c l a r a t i o n s . . 4.7, 5.11,

5.12, 5.14, 6.8
l a b e l s 4.1. 4.6
v a l u e s 6.8
v a r i a b l e s 6.8

ENTRY
a t t r i b u t e 4.7. 5.12.

12.17
s t a t e m e n t 5.16

E n t r y p o i n t s ... 5.16. 13.13

I N D E X

.... E n v i r o n m e n t 10.6. 13 .20 3.5 o t h e r - l a n g u a g e 10.9 e l e m e n t 6 .1 p a r t of e n t r y v a l u e . . 6.8 p r e p r o c e s s o r 12.9
p a r t o f l a b e l v a l u e .. 6.7 s t r u c t u r e s a s o p e r a n d s i n ENVIRONMENT a t t r i b u t e 3.13 7.10. 8.10. 8.11. 8.12. E x t e n t s 5.4. 5.10. 11 5

9 .3 E x t e r n a l
s q u i v a l e n c i n g o f d a t a e n t r y c o n s t a n t s 4.7

3 . 16 names 4.4 EFF b u i l t i n f u n c t i o n .. 1.20 p r o c e d u r e s 4.1. 4.3.
E R P C b u i l t i n f u n c t i o n 5.11. 12.2. 13.4. 13.13.

1.20 13 .25
E r r o r v a r i a b l e s 4.5. 5.8

d e t e c t i o n 13 .1 EXTERNAL a t t r i b u t e 4.4.
messages 13.10 . 15.2. 4.7

15 .4 S R R O R c o n d i t i o n 6.11.
6 .16 r 7.5. 7.8. 7.24. F format item 7.19
11.3. 13.20. 14.11. 15.5 ~'ETUH stateii~erlt 1 2 . 2 T R R O R S c o m p i l e r o p t i o n F e t c h a b l e p r o c e d u r e s
1.7.6 12.2. 13.13. 13.25. 15 .7

.
E s t a b l i s h m e n t of c o n d i t i o n s F i e l d w i d t h I . ' i Y

6 . 13. 6 . 15. 14.11 F i l e
E v e n t . c o n s t a n t s 7 . 2

v a l u e s 14 . 7. 14.17 v a l u e s 7.2
v a r i a b l e s 14.7. 14.8. v a r i a b l e s 7 . 2

14.10. 14.12.. 14.14. F I L E
14.17. 14.19 a t t r i b u t e : 7.2

EVENT o p t i o n 7 .4 . 7 .22
a t t r i b u t e 14.7 F i l e d e s c r i p t i o n a t t r i b u t c ~
o p t i c n 14.7. 14.12. 7.3. 7.8. 7:10 14 .13 F i l e s 7 . 1

E v e n t s FINISII c o n d i t i o n 6.11.
a b s t r a c t 14.17. 14.19 6.16. 14.11. 15.5 d i s p l a y 14.12 . 14.16 FIXED
I/O 14.13. 14.16 a t t r i b u t e 1.5. 12.8
o p e r a t o r r e p l y 14.12. b u i l t i n f u n c t - i o n 1 . 1 7

14 .16 F i x e d - l e n g t h b i t s t r i n g s ...
p h y s i c a l 14.16. 1 4 . 1 7 2.9
p r o g r a m m e d . . 14.17. 14.19 F i x e d - l e n g t h c h a r a c t e r
t a s k 14.7 s t r i n g s 2.6
t a s k c O M p l e r l o n 14.7. FIXEDOVZRPLOW c o n d i t i o n

14.8 . 14.9. 14.16 6 . 1 1 E x c e p t i o n a l c o n d i t i o n s FLOAT
6 . 10. 10.8 a t t r i b u t e 1.5

EXCLUSIVE a t t r i b u t e . . 9.11. b u i l t i n f u n c t i o n 1.1.7
14 .15 FLOOR b u i l t i n f u n c t i o n

E x c l u s i v e f i l e s 9.11. 1 . 17
1 4 . 1 5 F L OF?

EXIT s t a t e m e n t 14.9 c o m p i l e r o p t i o n 13.24
EXP b u i l t i n f u n c t i o n . . 1.20 e x e c u t i o n o p t i o n ... 13 . 2 1 E x p l i c i t d e c l a r a t i o n s o p t i o n 1 3 . 16. 13.20.

1.4. 4.3. 4.7. 6 .7 13 .21
' E x p l i c i t o p e n i n g . . 7.4. 7.8 s t a t e m e n t ... 13.16. 13 . 2 1
E x p l i c i t p o i n t e r F low of c o n t . r o l 14 . 1.

q u a l i f i c a t i o n ' ... 11.3 14.11. 14.14
F x p r e s s i o n s 2.14 ' e s t a b l i s h i n g . . 14 . 1. 14.4

a r r a y s a s o p e r a n d s i n t e r m i n a t i n g 14 .1

I N D E X

Flow t a b l e 13.21, 13.24
Flow t r a c i n g . . 13.21, 13.24
F o r m a l p a r a m e t e r s 5.9,

5.11 .

F o r mat
items 7.17, 7.18, 7.26
l i s t 7. 17, 7.18

FORMAT
c o m p i l e r o p t i o n 13.6
s t a t e m e n t 7.21

FORTRAN
c o m m u n i c a t i o n w i t h PL/I ..

c o m p a r i s o n t o PL/I .. 0.8,

3.3, 3..16, 4.1, 4.2,
4.5, 5.1, 5.9, 5.11,
5.12,5.14, 5.16, 6.5,
7.13, 7.26, 8.18, 9.14,
10.6, 10.9

l i b r a r y 13.12
s u b o p t i o n :... 10.7

FREE s t a t e m e n t .. 5.7, 11.4,
11.30

PROM o p t i o n 8.7, 11.14 FT06F001 D D s t a t e m e n t
13.12 ... F u n c t i o n r e f e r e n c e s 4.1,
5.9, 5.14, 12.17

..... G e n e r a t i o n s o f s t o r a g e
5.7,5.15., 11.4, 11.15

G E N E R I C a t t r i b u t e 5.17
S e n e r i c p r o c e d u r e s 5.17
G ~ . n e ~ i c s e l e c t i o n 5.17
G E N K E Y s u b o p t i o n 9.5
GET s t a t e m e n t ... 7. 12, 7.25
G l o b a l c h e c k i n g 15.3 G O subcommand o f PLIC

15.4, 15.5
GO TO

o u t o f b l o c k . . 6.7, 6.13,
14.14

s t a t e m e n t 6.6, 15.5 ... G O N U M B E R c o m p i l e r o p t i o n
13.10

GOOPTS s y m b o l i c p a r a m e t e r . .
13.5, 13.8

GOPARM s y m b o l i c . p a r a m e t e r
13.5, 13.8

H A L T
c o m p i l e r o p t i o n 15.4
s t a t e m e n t , 15.5

H a r d c o p y r e c o r d o f PLIC u s e .
15.2

HBOUND b u i l t i n f u n c t i o n
5.11

HELP
command o f T S O 15.2
subcommand o f PLIC . . 15.4

H I G H b u i l t i n f u n c t i o n
, 2.18

1/0 t r a n s m i s s i o n s t a t e m e n t s
7.7

r e c o r d 8.6, 14. 13
stream 7.12

I d e n t i f i e r s 1.1
a c t i v e 12.7, 12.10

I F
c l a u s e 6.1
s t a t e m e n t 6.1, 6.2

IGNORE o p t i o n 8.9, 9.2,
11.14

I I A G
b u i l t i n , f u n c t i o n 1. 17
p s e u d o - v a r i a b l e 1.18

I m m e d i a t e - m o d e P L / I
s t a t e m e n t s 15.4,

15.5
I m p l e m e n t a t i o n e x t e n s i o n s . .

11.3
I m p l e m e n t a t i o n - d e f i n e d

f e a t u r e s 0.2
I m p l i c i t d e c l a r a t i o n s

1.4, 4.3, 4.9
I m p l i c i t o p e n i n g .. 7.4, 7.8
I m p l i c i t p o i n t e r

q u a l i f i c a t i o n . :. 11.3
1N o p t i o n 11.10
I n - l i n e 1/0,...... 8. 16
I n a c t i v e

b l o c k s 6.7 .

e v e n t v a r i a b l e s 14.7,
14.17

p r e p r o c e s s o r p r o c e d u r e s . .
12.17 ... p r e p r o c e s s o r v a r i a b l e s
12.11

t a s k v a r i a b l e s 14.6
INCLUDE c o m p i l e r o p t i o n

13.11
I n c l u s i o n of t e x t f r o m a

l i b r a r y 12.19,
13.11

I n d e x :. 9.1
I N D E X b u i l t i n f u n c t i o n

2. 18, 12..20
I n d e x e d d a t a s s t s 9.1

a l t e r i n g 9.6, 9.7

INDEX

c r e a t i n g 9 . 4
r e t r i e v i n g 9 . 5

I n d e x e d DO g r o u p 6 . 5
INDEXED s u b o p t i o n 8.. 11,

9 . 1
I n f i n i t e l o o p s 1 3 . 2 2 ,

1 4 . 8
I n h e r i t a n c e o f on u n i t s

6 . 13; 14 .11
INITIAL a t t r i b u t e 5 . 3 ,

1 1 . 4
I n i t i a l ' S t o r a g e Area

1 3 . 9 , 1 4 - 2 0
I n i t i a l v a l u e s 5.3
I n i t i a l i z a t i o n . . , 5 .1 , 5.. 3 , '

5.6, 5 . 7 , 1.1.4, 1 1 . 1 5
INPLlT a t t r i b u t e . . 7 .10 , 8 . 8
I n p u t s t r e a m

d a t a - d i r e c t e d 7 .16
e d i t - d i r e c t e d 7 . 1 7 ,

7. '19, 7.20
l i s t - d i r e c t e d 7 .15

INSOURCE c o m p i l e r o p t i o n ...
.13 .11

INTER s u b o p t i o n 1 0 . 8
I n t e r a c t i v e d e b u g g i n g

1 5 . 6
I n t e r l a n g u a g e c o m m u n i c a t i o n

1 3 . 1 2
common s t o r a g e 10.9
o v e r v i e w 10.6 .. I n k c r m e d i a t c t e x t 1 3 . 1

1 5 . 2
I n t e r n a l

e n t r y c o n s t a n t s 4 .7
names 4.4
p r o c e d u r e s 4.2

INTERNAL a t t r i b u t e 4.4 ,
4 . 7

I n t e r p r e t a t i o n ...,.... 1 5 . 3
I n t e r p r e t e r p h a s e . . , . . 13 .1 . I n t e r r u p t i n g t h e . , t e r m i n a l . .

1 5 . 5
INTO o p t i o n 8. '7, 11 .14
I n v o c a t i o n 5. 9, 5 .15 ,

5. 1 8 , 6 . 7 , 6 . 8 , 6 .13 ,
1 4 . 4 , 14 .11

. I P L I C comma.nd o f TSO , . 1 5 . 2
ISA 1 3 . 9 ... TSASIZE e x e c u t i o n o p t i o n

1 3 . 9 , 1 4 . 2 0
ISUS d e f i n i n g ... 3.18, 1 0 . 7
I t e r a t i o n f a c t o r 5.3 ,

. 7 . 1 8
I t e r a t i v e DO g r o u p 6.3 ,

6 . 5

JCL c o n s e c u t i v e d a t a s e t s
8 . 1 3 , 8. 15

DCB p a r a m e t e r s 8 .11 ,
1 4 . 1 3

ddname 7 . 4
d i s p o s i t i o n p a r a m e t e r

9 . 1 1
errors a n d UNDEFINEDFILE c o n d i t i o n 7 .5
f o r e x e c u t i n g . p r o d u c t i o n

p r o g r a m s 13 .8 ,
13 .14

f o r f e t c h a b l e p r o c e d u r e s .
1 3 . 1 3

f o r i n t c r l a n g u a g e
c o m m u n i c a t i o n . . 10. 10

f o r m u l t i t a s k i n g ... 14.20
f o r p r o g r a m de .ve lopment . .

1 3 . 2 5
~ U L s o u r e e t e x t l i b r a r i e ~

1 3 . 1 1 FT06F001 DD s t a t e m e n t
13 .12 i n d e x e d d a t a s e t s 9 . 3 NCP o p e r a n d 14 .13

p a r a m e t e r f o r dummy r e c o r d s 9 . 7
p a r a r n ~ t . e r f o r e x t e n d e d

s e a r c h 9 . 1 0
PLC s e r i e s c a t a l o g e d p r o c e d u r e s 13. 2,

13 .4 PEfDUMP D D s t a t e m e n t
13.9, 1 3 . 2 4

PLO ser ies c a t a l o g e d
p r o c e d u r e s 13.7 r e c o r d f o r m a t 8 . 7 r e c o r d l e n g t h 7 .11 r e g i o n r e q u e s t 13.6 ... r e g i o n a l d a t a s e t s 9 . 1 0 s t e p c o n d i t i o n c o d e

6. 9, 1 2 . 3 SYSCfN D D s t a t e m e n t
13 .3 , 1 3 . 7 , 1 3 . 2 5 SYSIN D D s t a t e m e n t
1 3 . 3 , 13 .7 SYSITEXT D D s t a t e m e n t
13 .1 , 13 .7 SYSLIB D D s t a t e m e n t
1 3 . 1 1 SYSOBJ D D s t a t e m e n t
13 .1 SYSPRINT DD s t a t e m e n t
13 .14

t e s t i n g p r o g r a m s d u r i n g
t h e c o u r s e 0 . 7

17-9 .

INDEX

KEY
c o n d i t i o n 9.12
o p t i o n 9.2. 9.6. 9.7.

11 .14
Key s e q u e n c e 8 .4 . 9.1.

9 . 4
Keyed

d a t a s e t s . . 8.2, 8 . 5 , 9.1,
9.8 .

.. f i l e s 11 14 r e c o r d s 8 . 2
KEYED a t t r i b u t e 8.5
KEYFROH o p t i o n 9 - 2 Keys 8 .2
KEYTO o p t i o n 9.2
Known i n 4.3

L a b e l c o n s t a n t s 6 .7
v a l u e s 6 .8 v a r i a b l e s 6 .7

LABEL a t t r i b u t e 6.7
L a b e l s

entry 4.1. 4 . 6
on a p r e p r o c e s s o r s t a t e m e n t 12.15.

1 2 . 1 6
s t a t e m e n t 6.6. 7 .21 ... L a n g u a g e v i o l a t i o n s 1 1 . 3 L B O U N D b u i l t i n f u n c t i o n

5 .11 LENGTH b u i l t i n f u n c t i o n
2 . 18. 5 . 11. 12.20

L e v e l n u m b e r s 3.8
L i b r a r y

APlDT..IB 13 .1
a u t o m a t i c c a l l 13 .25
FORTRAN 10.10. 13.12 m a i n t e n a n c e t e c h n i q u e

1 3 - 2 5
o f e x e c u t a b l e p r o g r a m s ...

13 .25 PL/I l i b r a r i e s i n TSO
15 .7

s o u r c e t e x t 12.19.
13 .11 .. . SYS1 FORTLIB 13.12

SYS1 . PLIBASE 13 .23 . SYS1 PLICMIX 13 .23
SYS 1 . PLITASK 14 .20

LIBRARY s y m b o l i c p a r a m e t e r .
1 3 . 2 3 L I K E a t . t . r i b u t e 3.9

L I N E
f o r m a t item 7.20
o p t i o n 7.22 ... L i n e n u m b e r s 13.10. 15 .1

.... LINEN0 b u i l t i n f u n c t i o n
10 .5 . LINESIZE o p t i o n .I...... 7 11

LINK command o f T S O ... i 5 . 7
L i n k e d i t i n g 12.2
L i n k - e d i t s t u b . . ' 13.1, 15.2 L i n k a g e e d i t o r 13 .1 .

13 .12 , 13.13, 13.23,
13.25

L i n k e d l i s t 11.6
LIST o p t i o n 7.15. 7 .22 . L i s t p r o c e s s i n g 11 6
L i s t s t r u c t u r e s 11.6

ce loca tab le 11 .11
L i s t - d i r e c t e d t r a n s m i s s i o n .

7 .15 , 13.20
L i s t i n g c o n t r o l 13 .10 .

15.1 ... LMESSAGE c o m p i l e r o p t i o n
15.2 L o a d e r 13.1. 13.12.
13.13, 13.23, 13.25 LOADGO command o f TSO
15.7

LOCATE s t a t e m e n t ...:. 11 .15
L o c a t e - m o d e

I/o 11 .13 . i n p u t 11 14
o u t p u t '1 1 . 15

L o c a t o r
q u a l i f i c a t i o n ...:.. - 11.11 ... v a r i a b l e s 11.11. 13 .23 L o c a t . o r s 11 11

L o c k e d r e c o r d s 9.11
LOG b u i l t i n f u n c t i o n .. 1 . 2 0
L o g i c a l o p e r a t i o n s .$. . 2 .13 ,

6.1; 6.4 LOG10 b u i l t i n f u n c t i o n
1 .20 LOG2 b u i l t i n f u n c t i o n
1.20

LOOP t e r m i n a t i o n 6 .5
L o o p s 6 .5
LOW b u i l t i n f u n c t i o n . . 2.18

...... HACRO c o u ~ p i l e r o p t i o n
13.11

M a c r o s 12 .6 ... Main p r o c e d u r e 4.1. 6.9.
13 .5 M B I N s u b o p t i o n 4.1 Major s t r u c t u r e s 3 .7

Ha j o r t a s k s ..I.. 14.4. 14 .6 .
14.9

M a p p i n g
of a r r a y s 3.3. 10 .7 of s e l f - d e f i n i n g d a t a

I N DEX

1 1 . 5
of s t r u c t u r e s 3 . 1 0 ,

1 1 . 1 4
M a r g i n s

s o u r c e 1 3 . 1 0 M A R G I N S c o m p i l e r o p t i o n
1 3 . 1 0

M a t c h i n g
o f a r g u m e n t s a n d

p a r a m e t e r s 5 . 1 1 ,
1 2 . 17

of a t t r i b u t e s i n b a s e d r e f e r e n c e s 1 1 . 3 ,
1 1 . 1 4

of a t t r i b u t e s i n d e f i n i n g
3.20

of d a t a l is ts a n d format
l is ts 7 . 1 8

of s i z e s o f r e c o r d and
r e c o r d v a r i a b l e . . 8 . 7

Ma t h e m a t i c a l b u i l t i n
f u n c t i o n s 1 . 2 0

M A X b u i l t i n f u n c t i o n . . 1 . 1 7
Maximum

l e n g t h 1 2 . 8 p r e c i s i o n 1 .9
M e s s a g e t o t h e o p e r a t o r

1 2 . 1 , 1 4 . 1 2
M I N b u i l t i n f u n c t i o n .. 1 . 1 7
M i n o r s t r u c t u r e s 3 . 7
M i x i n g C h e c k e r a n d O p t i m i z e r

c o d e ... 1 3 . 1 5 , 1 3 . 2 3 ,
13.. 2 5 , 1 5 . 7

MOD b u i l t i n f u n c t i o n . . 1 . 1 7
Node a t t r i b u t e s 1 . 5
M o d e l 1 9 5 1 0 . 8
Modes of stream t r a n s m i s s i o n

7 . 1 4
MONITOR subcommand uf PLIC .

1 5 . 4 Move-mode 1/0 1 1 . 1 3
M u l t i p l e

e n t r y p o i n t s 5 . 1 6
generations ... 5 . 7 , 5.15,

1 1 . 4 , 1 1 . 6
i n v o c a t i o n s ... 5 . 1 5 , 6 . 7 ,

6 . 8 , 1 4 . 4
M u l t i p l e a s s i g n m e n t ... 1 . 1 2
MULTIPLY b u i l t i n f u n c t i u u . .

1 . 1 7
M u l t i p r o g r a m m i a g 1 4 . 1 1
M u l t i t a s k i n g

d e f i n i t i o n of 1 4 . 0
when t o u s e 1 4 . 3

NAME
c o m p i l e r o p t i o n 1 3 . 2 5

c o n d i t i o n 7 . 2 4
Named c o n s t a n t s .. 4 .3 , 4 . 4 ,

4 . 6 , 6 . 7 , 7 . 2
Names

s c o p e of 4 . 4
NCRL l i n k a g e e d i t o r o p t i o n .

1 3 . 2 5
NCP s u b o p t i o n 14. 1 3
N e s t i n g 4 . 2 , 4 . 8 , 6.2
NOCHECK s t a t e m e n t 1 3 . 1 8
NODIAGNOSE c o m p i l e r o p t i o n .

1 3 . 6
NOFLOW s t a t e m e n t 1 3 . 2 1
NOGONUHBEF c o m p i l e r o p t i o n .

1 3 . 1 0
NOGOSTNT c o m p i l e r o p t i o n ...

1 3 . 1 0
NOLOAD c o m p i l e r o p t i o n

1 3 . 7
NOLOCK o p t i o n . . 9 .1 1 , 1 4 . 1 5 N Q M A P s u b o p t i o n 1 0 . 7 ,

1 0 . 8
NOMAPIN s u b o p t i o n 1 0 . 7 ,

1 0 . 8
NOHAPOUT s u b o p t i o n ... 1 0 . 7 ,

1 0 . 8
N o n - i t e r a t i v e DO g r o u p

6 . 2
N o n - p r e p r o c e s s o r t e x t

1 2 . 7 , 1 2 . 8 , 1 2 . 1 0 ,
1 2 . 1 4 , 1 2 . 1 7

NONUMBER c o m p i l e r o p t i o n ...
1 3 . 1 0

NOOFFSET c o m p i l e r o p t i o n ...
13 .10

NORESCAN o p t i o n 1 2 . 1 2
Normal r e t u r n (f r o m a n o n

u n i t) 6 . 1 3 , 6 . 1 6 ,
1 [I . 1 '1

Normal t e r m i n a t i o n
of a p r o g r a m ... 6 .9 , 1 2 . 3
of a task ... 1 4 . 3 , 1 4 . 1 1 ,

1 4 . 1 6
NORUN compiler o p t . i n n ,.

1 3 . 1
NOSOURCE c o m p i l e r o p t i o n ...

1 3 . 1 0
NOSTMT c o m p i l e r o p t i o n

1 3 . 1 0
Not r e a d y 1 4 . 5 , 1 4 . 8 ,

1 4 . 1 3 , 1 4 . 1 8
NULL b u i l t i n f u n c t i o n

1 1 . 6
N u l l s t a t e m e n t 6 . 1 , 6 . 2
N u l l s t r i n g

c o l l s t a n t 2. 1 7
v a l u e 2.17

NUMBER c o m p i l e r o p t i o n

1 7 - 1 1

I N D E X

1 3 . 1 0
Number o f d i g i t s a t t r i b u t e .

1 . 5

OBJECT c o m p i l e r o p t i o n
1 3 . 1

O b j e c t m o d u l e 1 5 . 2
O c c u r r e n c e of a c o n d i t i o n . .

6 . 1 1 , 6 . 1 6 , 14 .11
OFFSET a t t r i b u t e 11 .11 ... b u i l t i n f u n c t i o n 1 1 . 1 2 c o m p i l e r o p t i o n 13. 10 O f f s e t s 1 1 . 1 1
ON s t a t e m e n t .. 6 . 1 3 , 1 3 . 1 6 ,

1 3 . 1 9 , 1 3 . 2 4 , 14. 1 1
On u n i t s 6 . 1 3 , 1 4 . 1 1 ,

1 4 . 1 4
ONCHAR

b u i l t i n f u n c t i o n 1 0 . 5
p s e u d o - v a r i a b l e 1 0 . 5

ONCODE b u i l t i n f u n c t i o n
1 0 . 5 ... ONCOUNT b u i l t i n f u n c t i o n
1 0 . 5

ONFILF b u i l t i n f u n c t i o n
1 0 . 5

ONKEY b u l l t i n f u n c t i o n
1 0 . 5

ONLOC b u i l t i n f u n c t i o n
1 0 . 5

O N S O U R C E
b u i l t i n f u n c t i o n 1 0 . 5
p s e u d o - v a r i a b l e 1 0 . 5

OPEN s t a t e m e n t ... 7 . 4 , 7 . 8 ,
7 . 1 1

O p e n i n q a f i l e 7 .4 , 7 . 8
O p e r a t i o n a l e x p r e s s i o n s

2. 14
O p e r a t i o n s

a r i t h m e t i c 1 . 1 4
.... c o m p a r i s o n 2 . 1 4 , 6 . 1 ,

6 . 4 ... l o g i c a l 2 .13 , 6 .1 , 6 . 4
p r e c e d e n c e o f 2 . 1 4
p r i o r i t y o f 2.14
s t r i n g 2.12

O p e r a t o r c o m m u n i c a t i n g w i t h
1 2 . 1 , 1 4 . 1 2 ... r e p l y t o m e s s a g e 1 2 . 1 ,
1 4 . 1 2 ... OPT c o m p i l e r o p t i o n 1 3 . 9

O p t i m i z a t i o n 1 3 . 9 e f f e c t o n c o n d i t i o n s
6 . 19 ... O P T I Y I Z E c o m p i l e r o p t i o n

6 . 1 9
O p t i m i z i n g c o m p i l e r c a t a l o g e d p r o c e d u r e s

1 3 . 7 ... c o m p i l e r o p t i o n s 1 3 . 8 ,
1 3 . 9

d e b u g g i n g 1 3 . 2 4
o p t i m i z e d p r o d u c t i o n c o d e

1 3 . 1 5
s t o r a g e m a n a g e m e n t . . 13.9

O p t i o n s
c o m p i l e r 1 3 . 5 , 1 3 . 6 ,

1 3 . 8 , 1 3 . 9 , 1 5 . 2
OPTIONS

a t t r i b u t e 1 0 . 8
o p t i o n .. 4 . 1 , 1 0 . 7 , 1 4 . 1 1
subcommand of P L I C . . 1 5 . 4
s y m b o l i c p a r a m e t e r

1 3 . 5 , 1 3 . 8
ORDER o p t i o n 6 . 1 9
O t h e r - l a n g u a g e e n v i r o n m e n t .

1 0 . 9
OUTPUT a t t r i b u t e 7 . 1 0 ,

8 . 8
O u t p u t stream

d a t a - d i r e c t e d 7 .16
e d i t - d i r e c t e d 7 . 1 7 ,

7 . 1 9 , 7 . 2 0
l i s t - d i r e c t e d 7 . 1 5 OVERFLOW c o n d i t i o n 6. 11 O v e r l a p of CPU a n d 1/0

1 4 . 3 , 1 4 . 1 3
O v e r l a y s 1 2 . 2

P f o r m a t item 7 . 1 9
P a g e

f o o l i ~ ~ y s 7 . 2 4
h e a d i n g s 7 . 2 4

PAGE
format item 7'. 20
o p t i o n ' 7 . 2 2

PAGENO b u i l t i n f u n c t i o n (ANSI) 10 . 5 PLGESIZE o p t i o n 7 . 1 1 ,
7 . 2 4

P a r a l l e l
c o m p u t a t i o n 1 4 . 0 e x e c u t i o n 1 4 . 4 , 1 4 . 1 9

P a r a m e t e r a t t r i b u t e
d e s c r i p t i o n s ... 5 .3 1 ,

5 . 1 2
P a r a m e t e r l ists .. 4 . 1 , 4 .3 ,

5 . 1 6 P a r a m e t e r s 4 .3 , 5 . 9 ,
5 . 1 1 , 1 2 . 1 7 d e c l a r a t i o n s o f 4 . 3 ,
5 . 9

I N D E X

.... P a r e n t t a s k s 14.4, 14.5 ... P a r t i a l d e c l a r a t i o n s 4.9
P a s s i n g a n a r g u m e n t t o t h e

ma in p r o c e d u r e . . 13.5
P a s s i n g c o n t r o l t o t h e

t e r m i n a l 15.3,
15.4, 15.5

P h y s i c a l e v e n t s 14.16,
14.17

P h y s i c a l s e q u e n c e 8.4,
9.9, 9.10

P i c t u r e
c h a r a c t e r s 2.21
s p e c i f i c a t i o n 2 - 2 1

PICTURE a t t r i b u t e 2.20
P i c t u r e d d a t a 2.20

c h a r a c t e r 2.21
n u m e r i c 2.22

PLC s e r i e s c a t a l o g e d
p r o c e d u r e s . . , . . 13.2,

13.4, 13.23
PLI d a t a s e t t y p e 13.10,

15.1
PLIC command o f TSO ... 15.2 PLICKLGN l o g o n p r o c e d u e

15.2
PLIDUMP

b u i l t i n p r o c e d u r e . . 13.24
D3 s t a t e m e n t 13.9,

13.24
PLIF d a t a s e t t y p e ... 13.10,

15 .1
PLIRETC b u i l t i n p r o c e d u r e ..

1 2 . 3
PLISRTA b u i l t i n p r o c e d u r e . .

12.4
PLISRTB b u i l t i n p r o c e d u r e . .

12.4
PLTSRTC b u i l t i n p r o c e d u r e . .

12.4
PLISRTD b u i l t i n p r o c e d u r e . .

12.4
PLISTART 13.13
FLU series c a t a l u y e d

p r o c e d u r e s 13.7,
13.23

P o i n t o f i n t e r r u p t ... 6.13,
14.14

P o i n t e d t o by 1 1 . 3
P o i n t e r

q u a l i f i c a t i o n 11.3
v a l u e s 11.1

POINTER
a t t r i b u t e 11.1
b u i l t i n f u n c t i o n ... 11.12

P o i n t e r q u a l i f i c a t i o n
e x p l i c i t 11.3
i m p l i c i t 11.3

...... POLY b u i l t i n f u n c t i o n
10.5 ... POSITION a t t r i b u t e 3.19,
3.20

POSTLIB s y m b o l i c p a r a m e t e r .
13.12 ... P r e c e d e n c e o f o p ~ r a t i o n s
2.14

P r e c i s i o n
a t t r i b u t e s 1.5
r u l e s 1. 16

PRECISION b u i l t i n f u n c t i o n .
1.17

P r e c i s i o n s
d e f a u l t 1.8
maximum 1.9

P r e p r o c e s s o r ... 12.6, 13. 1 1 ... DO g r o u p s 12.13, 12.14 express ions 12.9,
12.13, 12.20

p r b c e d u r e s , 12.17
s c a n 12.7
s t a t e m e n t s . . 12.7, 12.13,

12.17
v a r i a b l e s 12.8

PRINT
a t t r i b u t e 7.10
o p e r a n d 15.2 p r i n t f i l e s 7.10, 7.15,

7.20, 7.22, 7.23, 7 .26 '
P r i o r i t y

a s s i g n i n g 14.5
c h a n g i n g 14.5, 14.6
d e f i n i t i o n o f 14.5
d e t e r m i n i n g ... 14.5, 14.6
r e l a t i v e . , . , . . 14.5, 14.6
u s e d i n s c h e d u l i n g t a s k s .

14.5
PRIORITY

b u i l t i n f u n c t i o n 14.6
o p t i o n 14.5
p s e u d o - v a r i a b l e 14.6 P r i o r i t y o f o p e r a t i o n s

2 - 14
P r o b l e m d a t a 2. 11
P r o c e d u r e

b l o c k s 4.8
names 4.6 ... PROCEDURE s t a t e m e n t 4.1,

4.8, 5.14, 5.15, 5.16,
6.19

P r o c e d u r e s
e x t e r n a l 4.1, 4.3,

5.11, 12.2, 13.4, 13.13,
13.25 ... f e t c h a b l e 12.2, 13.13,
13.25, 15.7

g e n e r i c 5.17

17-13

I N D E X

i n t e r n a l 4.2
m a i n 4.1,,6.9, 13.5
p r e p r o c e s s o r 12.17
r e c u r s i v e 5.6, 5.15,

6.7, 6 .8
PROD h u i l t i n f u n c t i o n

.10.5
P r o g r a m

a m e n d i n g 15.6
d e v e l o p m e n t 13.1,

13.15, 13.25
t e r m i n a t i o n o f 6.9 P r o g r a m c o n t r o l d a t a

2.11, 4.7, 7.2, 11.1,
11.7, 11.10, 13 .20 , ' 14 .7 ... Programmed e v e n t s 14.17,
14.19

Programmer -named c o n d i t i o n s
6. 17 P r o m p t e r 15.2

P r o m p t i n g f o r i n p u t ... 7.25
P r o m p t s 15.3, 15.5
P s e u d o - v a r i a b l e s 10.1

a r i t h m e t i c 1. 18 a r r a y a r g u m e n t s 3.5
c o n d i t i o n - h a n d l i n g . . 10.5
m u l t i t a s k i n g 14.9,

1 4 . 1 7
s t r i n g - h a n d l i n g 2.19

PUT s t a t e m e n t . . 7.12, 7.25,
13.16, 13.20, 13.21

Q u a l i f i e d
c o n d i t i o n s 6.17, 7 -5,

7. 24, .8.17, 9.12, 13.17
n a m e s 3.7

9 f o r m a t item 7.21 R a i s i n g of c o n d i t i o n s
6. 13

R e a c t i v a t i o n o f i n a c t i v e
i d e n t i f i e r s 12.12

B E A D s t a t e m e n t ... 8.6, 8.7,
8.9, 8.14, 8.15, 9.2,
9 .5, 9.6, 9.9, 9.10,
9.11, '11.14, 14.14,
14 .15 Ready 14.5, 14.8

REAL
a t t r i b u t e 1.5 b u i l t i n f u n c t i o n 1.17
p s e u d o - v a r i a b l e 1.18

Record
d a t a s e t s 7.9, 8.1

. f i l e s 7.9, 8,1, 11.14
v a r i a b l e s 8.1, 8.7

RECORD a t t r i b u t e 7.9, 8.'1 c o n d i t i o n 8.17, 1 4 . 1 4
R e c o r d e d k e y s 8..2, 9.1,

9.2, 9 .10
R e c o r d s 8.2, 11 .14
R e c u r s i o n ... 6.7, 6.8, 14.4
RECURSIVE o p t i o n 5.15
R e c u r s i v e p r o c e d u r e s . . 5 . 6 ,

5.15, 6.7, 6 . 8 .
R e e n t r a n t c o d e 14 .11
REENTRANT s u b o p t i o n . . 14 .11
Refer o b j e c t 11. 5
REFER o p t i o n 11.5, 11.7 .
R e g i o n n u m b e r 9.8, 9.9,

9.10
R e g i o n request . . , 13.6, 15.2
R e g i o n a l d a t a se t s

a l t e r i n g 9.9
c r e a t i n g 9.9
r , e t r i e v i n g 9.9 R E G I O N A L s u b o p t i o n 8.11 ... R e g i o n a l (1) d a t a s e t s 9.9

R E G I O N A L (1) s u b o p t i o n . . 9.8
R e g i o n a l (2) d a t a s e t s . . 9.10
R E G I O N A L (2) s u b o p t i o n . . 9.8
R e g i o n a l (3) d a t a s e t s . . 9.10
R E G I O N A L (3) s u b o p t i o n . . 9.8
R e g i o n s 9.8
R e l a t i v e p r i o r i t i e s . . 14,. 5,

14.6, 14 .18
RELEASE s t a t e m e n t 12.2
R e l o c a t a b l e P i s t s t r u c t u r e s

11,. 1 1
Remote format items . . 7.18,

7 .21
REORDER o p t i o n . . 6.19, 13 .9 REPEAT b u i l t i n f u n c t i o n

2. 1 8 R e p e t i t i o n f a c t o r s 2.5
R e p e t i t i v e s p e c i f i c a t i o n s , . .

7.13
R e p l a c e m e n t o f a c t i v e i d e n t i f i e r s

12.10
o f a c t i v e p r e p r o c e s s o r

f u n c t i o n ref e ~ e n c e s . .
12.17

REPLY o p t i o n ... 12. 1, 14. 12 REPORT e x e c u t i o n o p t i o n
13.9 RESCAN o p t i o n 12. 1 2 R e s c a n n i n g 12 .10

. Re t u r n c o d e s 6.9,. 12.3 RETURN s t a t e m e n t 5.14,
5.16, 6.9, 12.17, 14 ,9 ,
14 .11 R e t u r n e d v a l u e s 4.1,

17-14

I N D E X

5. 14, 12.17 SINH b u i l t i n f u n c t i o n
RETURNS 1.20

a t t r i b u t e 5.14 SIZE
o p t i o n .. 4.1, 5.14, 5.16,

12.17
REVERSE b u i l t i n f u n c t i o n

(ANSI) 2.18
REVERT s t a t e m e n t 6.15,

14.11
REWRITE s t a t e m e n t . . , . . 8.6,

8.7, 8.15, 9.2, 9.6,
9.9, 9.10, 9.11, 11.14,
14.14

R e w r i t i n g i n p l a c e 8.15 ROUND b u i l t i n f u n c t i o n
1 . 17

R u n - t i m e e n v i r o n m e n t .. 10.6

....... S c a l e a t t r i b u t e s 1.5 S c a 1 ~ f a c t o r a t t r i b u t e
1.5

S c h e d u l i n g p o l i c y 14.5
S c o p e 4.3 o f a d e c l a r a t i o n 4 . 3 ,

4.7, 4.8, 6.7
o f a name 4.4, 12.17,

14.10
S c o p e a t t r i b u t e s . . 4.4, 5.8
s e l f - d e f i n i n g d a t a . , . . 11.5
S e n d i n g c o n t r o l t o t h e

t e r m i n a l 15.3,
1 5 . 4 , '15.5 ... SEQUENCE c o m p i l e r o p t i o n
13.10 S e q u e n t i a l a c c e s s 8.4,
8.12, 9.1, 9.2, 9.4,
9.5, 9.6, 9.8, 9.9,
9.10, 11.14, 11.15 ... SEQUENTIAL a t t r i b u t e 8.4 SET o p t i o n 11.4, 11.14,
11.15

S h a r e d
daLa 14.10 d a t a b a s e 9.11, 14.15 f i l e s 14.10, 14.15
v a r i a b l e s 14.10 ... S h a r i n g d a t a among t a s k s

14.10 SIGN b u i l t i n f u n c t i o n
1.17 SIGNAL s t a t e m e n t 6.16 S i g n a l i n g a n a t t e n t i o n
15.5

.... c o m p i l e r o p t i o n 13.6,
13.12. 14.20 c o n d i t i o n 6.11, 7.24,
13.24

SKIP
f o r m a t item 7.20
o p t i o n 7.22 ... SMESSAGE c o m p i l e r o p t i o n

15.2
SNAP o p t i o n .. 13. 16, 13.19,

13.20, 13.21, 13.24
SORT u t i l i t y 12.4
S o u r c e

i n p u t c u n v e n . L i o n s . . 13. 3,
13.7, 13.10, 15.1

1 i s t . i n g s 13.11, 15.2
m a r g i n s 13. 10
r e c o r d f o r m a t s 13.10 . s e q u e n c e t l e l d ... ,. 13. 10 SOURCE c o m p i l e r o p t i o n

13.10, 13.11, 15.2 S o u r c e k e y s 8.2, 9.2,
9.9, 9.10

S o u r c e t e x t
i n c l u s i o n of 12.19,

13.11 ... l i b r c l r i c s 12.19, 13. 11 S p i l l f i l e 13.6, 15.2 SQRT b u i l t i n f u n c t i o n
1.20

S t a n d a r d f i l e s 7.23 S t a n d a r d s y s t e m a c t i o n
6.13, 6.14

S t a t e o f p r o c e s s o r i m p l i e d
by p r o m p t i n g t e x t .. -.

,15.3 S t a t e m e n t l a b e l s 6 . 6 ,
7 - 2 1

.... S t a t c m c n t n u m b e r s 13.10 STATIC a t t r i b u t e 5.5
S t a t i c v a r i a b l e s ,..... 5.5,

5.15
STATUS

b u i l t i n f u n c t i o n 14.9
p s e u d o - v a r i a b l e 14.9

S t a t . u s of c o n d i t i o n s . . 6. 12
S t a t u s p a r t o f e v e n t

v a r i a b l e s 14.7,
14.9, 14.14. 14.17 STEP e x e c u t i o n op t i o n
13.22

S i m p l e d e f i n i n g 3.17 ' STEPLINES e x e c u t i o n o p t i o n .
SIN b u i l t i n f u n c t i o n ,. 1.20 13.22 S I N D b u i l t i n f u n c t i o n STNT c o m p i l e r o p t i o n

1.20 13.10

. I N D E X

S T O P s t a t e m e n t ... 6.9, 14.9
S t o r a g e a l l o c a t i o n 5.1,

5.6, 5.7, 11 .4
i n a b u f f e r 11.15
i n a n a r e a ? . 11.7, 11. 10,

11 .11
S t o r a g e ' c l a s s 12.17

a t t r i b u t e s 5.2, 5.8,
5 .9, 5.10, 11.3

S t o r a g e managemen t
C h e c k o u t c o m p , i l e r ... 13.6
O p t i m i z i n g c o m p i l e r

13.9
r e p o r t 13.9

s t r e a m
d a t a s e t s 7.9
f i l e s 7.9

STRERM a t t r i b u t e 7.9
STSING ... b u i l t i n f u n c t i o n 2.18,

10 .5
o p t i o n 7.22
p s e u d o - v a r i a b l e 2.19,

10 .5 *

S t r i n g o p e r a t i o n s 2. 12 S t r i n g o v e r l a y d e f i n i n g
3 . 19 S T R I N G R A N G E c o n d i t i o n
6.11, 13.24

S T R I N G S I Z E c o n d i t i o n . . 6.11
S t r u c t u r e

m a p p i n g 3.10 q u a l i f i c a t i o n 3.7 S t r u c t u r e s 3.7
a s r e c o r d v a r i a b l e s . . 8.7
o f a r r a y s 3.14 S t r u c t u r i n g a t t r i b u t e s

3.8
S u b c o ~ u u ~ a n d s o f PLIC ... 15.4
STJBSCRIPTRANGE c o n d i t i o n ...

6.11, 13.24
S u b s c r i p t s 3.2
SUBSTR

b u i l t i n f u n c t i o n ... 2.18,
12.20

p s e u d o - v a r i a b l e 2.19
S u b t a s k s ..:...... 14.4, 14,. 9
SUBTRACT b u i l t i n f u n c t i o n

(ANSI) 10.5
S U M b u i l t i n f u n c t i o n . . 10.5 ... S y n c h r o n i z a t i o n o f task's

14.1, 14.10, 14.15,
14. 19 Syntax c h e c k i n g 15.3

SYSCIN DD s t a t e m e n t . . 13.3,
13.7, 13.25 ... SYSTN nn statement 7.23,
13.3, 13 .7

SYSITEXT D D s t a t e m e n t
13.1, 13.7

SYSLIB D D s t a t e m e n t . . 13.1'1
SYSOBJ DD s t a t e m e n t ... 13.1
SYSPFINT DD s t a t e m e n t

7.23, 13.14, 13.21,
13.22, 15.4

a l l o c a t i o n i n TS 0 ... 15.2
S y s t e m a c t i o n ... 6.13, 6 .14
SYSTEM o p t i o n 6.14
S y s t e m p r o g r a m m i n g 11.3

TAN b u i l t i n f u n c t i o n .. 1.20
TAND b u i l t i n f u n c t i o n

1.20
TANH b u i l t i n f u n c t i o n

1.20
T a s k c r e a t i o n 14.1, 14.4,

14.5, 14.6, 14.7, 14 .11
d e f i n i t i o n o f 14.1
d e t e r m i n i n g n o r m a l i t y o f

t e r m i n a t i o n - 14.9
d e t e r m i n i n g w h e t h e r s t i l l

a c t i v e 14.7
m a j o r ... 14.4, 14.6, 14.9
p a r e n t 14.4, 14 .5
s y n c h r o n i z a t i o n 14.1,

14.10, 14.15, 14 .19
t e r m i n a t i o n . . 14. 1, 14.9,

1 4 . 1 1 , ' 14.16
v a l u e s 14.6 v a r i a b l e s 14.6

TR S K
a t t r i b u t e 14.6
o p t i o n 14.4, 14.6

TASKLIE s y m b u l i c p a r a m e t e r .
14.20

T e m p o r a r i e s ' 5.12
T e r m i n a l

r e c e i v i n g c o n t r o l .. 15.3,
15.4, 15 .5 ... TERMINAL c o m p i l e r o p t i o n
15.2

T e r m i n a l 1/0 7.25
T e r m i n a t i o n o f a b l o c k 5.6, 6 .7 ,

14.9, 14.16
of a l o o p 6.5.
o f a p r o g r a m ' 6.9 ... o f 'a t a s k 14.9, 14.11,

14.16
THEN c l a u s e :.... .. 6.1 TIME b u i l t i n f u n c t i o n

10.5
T I T L E o p t i o n 7.4
TO c l a u s e 6.5

17-16
IN DEX

TOTAL o p t i o n 8.16 s u b o p t . i o n 13.9 T r a c e b a c k . 13.19
T r a c i n g a s s i g n m e n t s 13 17,

13.18, 13.22
f l o w o f c o n t r o l ... 13.21.

13.24
TRnNSLETE b u i l t i n f u n c t i o n .

2.18 T r a n s l a t o r p h a s e 13.1 ... TRANSMIT c o n d i t i o n 7.24.
8.17, 14.14

Trees 11.6 TRUNC b u i l t i n f u n c t i o n
1.17

TSO 7.25 CALL command 15.7 c o m p i l i n g u n d e r T S O
13.10, 15.2, 15.7 COPY command 'I 5 . 1

c r e a t i n g s o u r c e d a t a s e t s .
13.i0, 15.1 . EDIT command 13 10.
15.1

. HELP command 15.2 I P L I C command 15.2 L I N K command 15.7
LOADGU comruand 15.7 PLIC command 15.2
P L I C K L G N l o g o n p r o c e d u r e .

15.3,

... U N A L I G N E D a t t r i b u t e 3.11
UNBUFFERED a t t r i b u t e . . 8.9,

14.14 Unconnected r e f e r e n c e s
3 . 6. 5.13 UNDEFINEDFILE c o n d i t i o n
7.5. 7.0. 7.24. R . 17 ... UNDERFLOW c o n d i t i o n 6.11 n n i n i t i a l i z e d v a r i a b l e s
5.3, 13.6, 13.20

UNLOCK s t a t e m e n t 9.11.
111 . 15

U N SPEC ... b u i l t i n f u n c t i o n 2.18.
10.5, 11.3

p s e u d o - v a r i a b l e 2.19.
10.5 UPDATE a t t r i b u t e 8.8

..... a u t o m a t i c 5.6. 14.11
b a s e (i n d e f i n i n g) . 3.17 b a s e d 1 1 3 c o n t r o l l e d 5.7. 11.4 d e f i n e d 3.17. 5.10 e l e m e n t 3 6 . 5 ..I. e n t r y 6.8 e v e n t .14.7. 14.8.

14.10, 14.12, 14.14,
14.17 e x t e r n a l 4.5. 5.8 f i l e 7.2 l a b e l / 6.7 l o c a t o r 11.11. 13.23 p r e p r o c e s s o r 12.8

p r o g r a m c o n t r o l 13.20
r ~ p r e s e n t a t i o n o f

a r i t h m e t i c d a t a . . '1.7
r e p r e s e n t a t i o n o f s t r i n g

d a t a #....... 2 . 17 s t a t i c 5.5 task 14.6 u n i n i t i a l i z e d 5.3.
13.6, 13.20

V A R Y I N G a t t r i b u t e 2.15.
2.17

V a r y i n g - l e n g t h b i t s t r i n g s .
2.15, 2.17

V a r y i n g - l e n g t h c h a r a c t e r
s t r i n g s .. 2.15, 2.17,

12.8 VERIFY b u i l t i n f u n c t i o n
2 . 18

....... WAIT s t a t e m e n t 14.8.
14.10, 14.12, 14.13,
14.14, 14.16, 14.17,
14.19

... W a i t i n g u i ~ an e v c n t 1 4 . 8
WHILE c l a u s e 6.4. 6.5
WHILE-only DO g r o u p 6.4
WRITE s t a t e m e n t . . 8 . 6. 0.7,

8.13, 9.2, 9.4, 9.6,
9.9, 9.1n, 11.15, 14.14

......... x forma. t item 7 . 2 0

Z E R O D I V I D E c o n d i t i o n . . 6 . 1 1

..... V A R I A B L E a t t r i b u t e 6.8
V a r i a b l e s 1.1

a g g r e g a t e 3.1

