
i -EW2rt to the -4M3G High Order-Language Working Group (HoLWQ)
44Janff S77 -W -

ExEcu]!ivE sumay

I>. LANGUAGE EVALUATION COORDINATING COM412TTEE

0 Prepared y~:

Seaiomrs CE1N-TACS V

I!WEM0 Fort Monmouth, NJ

Brown University
Peter Wegner' Providence, RI
(Techrrin~t A-J visor)

Derek/Morris), CENTACS, Fort Monmouth, NJ

Dougls A-1ite ADC, Rome, NY
XIAKrenl-02~r/ ELCSanDiego, CA
Lloy Capbal BR, AerdenMD

Calvn SowaterHAVIRWashington, DC

hApptoved f~t Public 10100M-

/ ~ tibuOo /;2lut

Table of Contents

0. Executive Summary

1. Introduction

1.1 Background
1.2 Languages and Contractors

2. The Requirements

2.0 General and Specific Requirements
2.1 Data and Types
2.2 Operations
2.3 Expressions and Parameters
2.4 Variables, Literals and Constants
2.5 Definition Facilities
2.6 Scopes and Libraries
2.7 Control Structures
2.8 Syntax and Comment Conventions
2.9 Defaults, Conditional Compilation, Language Restrictions
2.10 Efficient Object Representations
2.11 Program Environment
2.12 Translators
2.13 Language Definition, Standards and Support

3. Language Evaluations

3.0 Summary of Languages and Evaluations
3.1 PL/I Evaluation
3.2 Pascal Evaluation
3.3 ALGOL 63 Evaluation
3.4 HAL/S Evaluation
3.5 PEARL Evaluation
3.6 SPL/I Evaluation
3.7 PDL/2 Evaluation
3.8 LTR Evaluation
3.9 CS-4 Evaluation
3.10 LIS Evaluation
3.31 Euclid Evaluation VtsO f
3.12 ECL Evaluation NTIS 1rfto SC0111
3.13 Moral Evaluation not *, s
3.14 RTL/2 Evaluation UNAKNOUNCED -

3.15 FORTRAN Evaluation JUSTIFICATION
3.16 COBOL Evaluation
3.17 ALGOL 60 Evaluation of
3.18 TACPOL Evaluation IISTRIBUION/A¥AILAILITY COC.
3.19 CMS-2 Evaluation
3.2D SIMULA 67 Evaluation
3.21 Jovial J3B Evaluation
3.22 Jovial J73 Evaluation
3.23 Coral 66 Evaluation

4. Discussion, Recomnendations, and Conclusions

4.1 Discussion
4.2 Recommendations
4.3 Conclusions

5. Guide to the Supporting Documents

5.1 Language Requirements
5.2 Documents used as a basis for the Evaluation
5.3 Documents produced by the Language Evaluations

A

0.Executive Summr

he objectives.of the language evaluation coordinating

committee are to evaluate, summarize, and structure the findings

of the language evaluation reports. In this executive summary,

we present the essentials of these findings. An expanded

version of this summary is found in SectionA.

Among all the languages considered none was found that satisfies the

requirements so well that it could be adopted as the Common Language.

Each feature or capability mentioned in the requirements

document can essentially be found in some existing language,

hence, some minimal collection of languages exists which

collectively would contain all these features and capabilities.

However, there are important embedded computer system

applications that could make good use of all the major re-

quirements. In fact, most of the requirements would be

useful in any embedded computer system applications.

rH

All evaluators felt that the development of a single language satisfying

the requirements was a desirable goal.

3

- w

It is clearly possible to design a language by brute

force containing all the technical features and capabilities

of the requirements. Problems arise, however, when one adds the

general requirements such as simplicity, uniformity, reliability,

design integrity, implementation efficiency, etc.

The concensus of the evaluators was that it would be possible to produce

a language within the current state of the art meeting essentially all the

requirements.

Some evaluators felt that certain requirements should be

modified. However, it was felt almost unanimously that the de-

velopment of a language meeting essentially all of the requirements

was both feasible and desirable. The precise degree of trade-off

between potentially conflicting requirements (such as simplicity

and generality) can be determined only after a substantial

amount of additional work on the design of the language.

Almost all the evaluators felt that the process of designing a language

to satisfy all the requirements should start from some carefully chosen base

language.

4

Working from a base language would reduce the amount of

work required and would reduce the opportunities for making

errors. There was no consensus as to which base language to use,

but every evaluator indicated that some of the languages con-

sidered were more suitable for this role than others. There was

unanimous agreement among evaluators concerning the unsuitability

of certain languages to serve as base languages.

Even though almost all felt that a modification effort

should start from a base language, all felt that a design team

must have the freedom to make any changes to a base language they

feel is warranted. Hence, the specification for the design effort

should be carefully written to avoid any artificial or unde-

sirable restrictions on a design team. For example, upward com-

patibility with a base language should not be a restriction.

Without exception, the following languages were found by the evaluators

to be inappropriate to serve as base languages for a development of the Common

Language: FORTRAN, COBOL, TACPOL, CMS-II, JOVIAL J73, JOVIAL J3B, SIMULA 67,

ALGOL 60, and CORAL 66.

This should not be interpreted as a statement concerning

the technical merits of these languages. Some of the languages

on this list are among the most widely used of the languages con-

sidered. It is only a statement concerning their suitability to

serve as bases for a language modification relative to all the

other languages considered. The reasons for rejecting these

languages are varied and are discussed in some detail in

Section 3 of this report.

The languages that remain are: PASCAL, ALGOL 68, PL/I,

LIS, EUCLID, CS-4, PDL/2, RTL-2, LTR, PEARL, SPL/I, HAL/S,

ECL, and MORAL.

We believe the following recommendation is consistent with

almost all the evaluations.

Proposals should be solicited from appropriate language designers for

modification efforts using any of the languages PASCAL, PL/I, or ALGOL 68 as

base languages from which to start. These efforts should be directed toward

the production of a language that satisfies the DoD set of language require-

ments for embedded computer applications.

The languages that have not been found to be in-

appropriate to serve as base languages are HAL/S, PEARL, SPL/I,

PDL/2, LTR, RTL/2, MORAL, EUCLID, LIS, CS-4, and ECL. Most of

these are modifications of one of the languages PASCAL, PL/I, or

ALGOL 68 for an application area close to that with which we

are concerned. Many of these languages have features that

satisfy certain important DoD language requirements in especially

interesting ways. Hence, many of these languages are relevant

design experiences that should be considered. The design teams

should feel free to make as much use as is deemed appropriate of

any of these languages.

6

At some appropriate time some choice should be made among these design

efforts to determine which are most worthy of being continued to completion.

1. INTRODUCTION

1.1 Background

The high costs for software for systems developed within

the Department of Defense is receiving increased attention

from the highest levels of management. The major part of these

F costs is for software for what are called "embedded computer

systems." Such systems would include tactical weapon systems,

command and control systems, avionics systems, etc.

As part of the overall process of investigating the costs

of software, in January 1975 a High Order Language Working Group

(HOLWG) was chartered by the Department of Defense with repre-

sentatives from the three services. The purpose of this group

is to investigate the requirements and specifications for pro-

gramming languages for embedded computer applications and to

recommend the adoption or implementation of the necessary language

or languages to achieve an appropriate degree of commonality

of programming language usage in the services.

The first task undertaken by the HOLWG was to formulate a

set of requirements for a language, or a set of languages, for

these apnlications. This task which involved the user, research,

and development organizations in the services, and the general

research and industrial communities, resulted in Jan.1976 in

a document informally called "TINMA-N." This document which in-

volved several iterations was believed at the time to be the

final set of DoD language requirements for embedded computer

applications.

8

- -

The HOLWG then initiated a number of studies to investigate

how closely certain existing standard languages came to satisfy-

ing these requirements. Besides the language studies sponsored

by the services through the HOLWG, several other evaluations

of other existing languages against the TINMAN set of require-

ments were also volunteered. Some of these by organizations

outside the United States.

The present report has been prepared by a subcommittee of

the HOLWG. Its purpose is to report to the HOLWG a consolidation

of the evaluation studies. Based on the results reported from

these studies the subcommittee has attempted to resolve differences,

identify consensus positions, and to determine the basic findings

of these studies.

1.2 Languages and Contractors

The task of evaluating languages against the TINMAN re-

quirements was carried out by six contractors, two chosen by each

service. Softech and CSC were chosen by the Army. Intermetrics

and RLG were chosen by the Navy. IBM and SAI were chosen by the

Air Force. The 23 evaluated languages and the contractors who

evaluated them are indicated in figure 1. The languages above

the line represent the initial set of languages chosen for

evaluation,,while the languages below the line represent

languages added after the evaluation process was initiated.

9

I

J- -m

SOFTECA INTERMETRICS RLG CSC' SAI IBM OTHER

FORTRAN X x
'COBOL x x
PL/I X X
TACPOL X X X
HAL/S
CMS-2 X x
CS -4 x x x X
J-3B X X
J-73 X X
ALGOL 60 x
CORAL 66 X x x
ALGOL 68 X x
SIMULA 67 X
PASCAL X X

LIS X. x
LTR x
RTL/2 x
PEAiRL X x
SPL/I x
EUCLID X
MORAL X
ECL x
PDL/2 x

Figure 1.

*The IBM evaluation of PL/I was not done under the Air Force
sponsored contract.

2. The Requirements

In order to make this document more self contained we shall

briefly describe the set of DoD language requirements

used for the evaluations. The brief description of each re-

quirement given below is necessarily incomplete but does

give an idea of the nature of each requirement. From Jan. 1976

when the TINMAN document first appeared until the present time,

many comments and critiques have been prepared. These toge-

ther with a workshop on the TINMSAN requirements held at Cornell

in late Sept. and the intensive use of the requirements in

the language evaluations, has led to a better understanding of

how the requirements should be formulated, and resulted in a

new requirements document called the IRONTAU which appeared in

Jan. 1977. In this document the DoD requirements have been

organized in a very different fashion from that found in TINMAN,

but the requirements are sufficiently similar in substance

that the recommendations given here are not affected.

2.0 Organization of General and Specific Requirements

There are two levels of DoD requirements which we shall

refer to as general and specific. General requirements are

global language characteristics related to the overall design

objectives for the language while specific requirements are

concerned with specific language features. The general re-

quirements may be summarized as follows:

• 11

Simplicity: avoid unnecessary generality or complexity
Reliability: properties to aid in program safety and error

detection
Readability: readability is more important than writability
Maintainability: emphasize modularity, clarity, documentation,

few default5
Efficiency: no sacrifice of run time efficiency for generality
Implementability: state of the art features with known

implementation
Machine Independence: well defined interface to object machines
Portability: adaptable to different object machines and

different applications
Definition: unambiguous, complete, understandable definition

The above objectives reflect the fact that the costs of the

operations and maintenance part of the software life-cycle for

embedded computer applications are generally considerably greater

than the costs of program development, and the fact that embedded

computer applications are often subject to stringent real-time

constraints.

These general requirements serve to motivate the choice of

specific requirements, and in many instances constrain the way

that a specific requirement should be realized or implemented.

The 98 specific TINMAN language requirements are grouped

into the following 13 categories:

A. Data and Types (7 requirements)
B. Operations (11)
C. Expressions and Parameters (9)
D. Variables, Literals and Constants (6)
E. Definition Facilities (8)
F. Scopes and Libraries (7)
G. Control Structures (8)
H. Syntax and Comment Conventions (10)
I. Defaults, Conditional Compilation and Language Restrictions (7
J. Efficient Object Representations (5)
K. Program Environment (5)
L. Translators (9)
M. Language Definition, Standards and Control (6)

The above organization of language characteristics is some-

what different from the organization of language descriptions

12
- -.-

in programming language manuals and language definitions.

The IRONMAN requirements specification has reorganized the re-

quirements so that they correspond more closely to the order

of presentation of language features in language definition

documents, but has not substantially altered the overall re-

quirements for the common language. In order to bring the

reader up to date concerning requirements, the 13 categories

of IRONMAN requirements are listed below:

1. General Requirements (8)
2. Syntax and Comment Conventions (9)
3. Data Types (3)
4. Expressions (7)
5. Constants, Variables, and Declarations (7)
6. Control Structures (5)
7. Functions and Procedures (9)
8. Input-Output (5)
9. Parallel Processing (6)
10. Exception Handling (6)
11. Machine Dependent Specifications (6)
12. Library, Separate Compilation, Generic Definitions (4)
13. Standards, Translation and Support (7)

The 98 individual specific TINMAN requirements are briefly

characterized below.

2.1 Data and Types

The requirements in the "Data and Types" category may be

summarized as follows:

Al. Date types determinable at compile time and unalterable
at run time.

A2. Integer, fixed, float, Boolean, character, array and
record types.

A3. Precision specs for floating point arithmetic and
variables.

A4. Exact fixed point numbers with user specified range and
fractional part.

AS. Character sets with user defined collating sequence.
A6. Arrays with static lower bound and dynamic upper bound.
A7. Variant records fully discriminated at run time.

Al is a general requirement on data types. A2 specifies

the set of required data types. The remaining requirements

specify in greater detail the characteritics of required data

types. Requirement A7 is intended as a substitute for the

union data types.

2.2 Operations

The TINMAN requirements on operations may be summarized as

follows:

Bl. Assignment and reference operations for data types
B2. Equivalence operator for all data types
B3. Relational operations for numeric and enumeration types
B4. Arithmetic operations 4, -, *, /, , * , unary minus
B5. Truncation and rounding of least significant digits
B6. Boolean operators and, or, not, xor, short circuit mode
B7. Direct assignment for comformable composite data types
B8. No implicit type conversion
B9. No conversion required for numeric ranges, range

checking optional
BIO. I/0 operations for files, channels, terminals
BII. Power set operations (logical operations on Boolean

vectors).

BI and B2 specify operations applicable to all data types.

B8 specifies a restriction on conversion between types. The re-

maining requirements indicate specific types required by the

language and properties of some of these types.

2.3 Expressions and Parameters

The TINMAN requirements on e.tpressions and parameters may

be summarized as follows:

Cl. Side effects evaluated left to right
C2. Readable expressions with few levels of operator

precedence
C3. Expressions permitted whenever constants and variables

allowed
C4. Constant expressions evaluated before run time.
C5. Consistent rules for parameters of procedures, arrays,

declarations, etc.
C6. Type agreement of formal and actual parameters
C7. Classes of formal parameters
C8. Optional parameter attributes in procedure declaration
C9. Procedures with variable number of parameters

14

Cl - C4 are concerned with properties of expressions.

C5 - C9 are concerned with parameters of procedures and arrays.

2.4 Variables, Literals, and Constants

The TINMAN requirements on variables, literals and parameters

may be summarized as follows:

Dl. Identifiers with constant values may be defined
D2. Constants will have some value in programs and data
D3. Declared variables may be initialized. No default

initial values
D4. Range and step size for fixed point variables must be

specified
D5. Arrays and records may have components of any type
D6. Pointer variables must be as safe as other variables

Dl and D2 specify properties of literals and constants.

D3 - D6 specify certain properties of variables.

2.5 Definition Facilities

The TINMAN requirements on definition facilities may be

summarized as follows:

El. Users will be able to define new data types
E2. Defined types will behave like built-in types
E3.- There will be no default declarations
E4. Operations will be extendable to new data types
E5. Type definitions do not automatically inherit operations
E6. New types may be defined by enumeration, Cartesian

product, discriminated union, power set
E7. Type definition by free union and subsetting is not desired
E8. Type initialization and finalization procedures are

definable

2.6 Scopes and Libraries

Fl. Distinction between scope of allocation and scope of access
F2. Access to identifiers can be limited both at their point

of definition and point of call
F3. Scope of identifiers will be determined at compile time
F4 Libraries will be supported and easily accessible
F5. Libraries will not exclude routines written in other

languages
F6. Libraries and compools will be indistinguishable
F7. Standard library definitions for machine dependent

interfaces

is
0w

Fl - F3 are concerned with scopes and rules for accessing

identifiers while F4 - F7 are concerned with the interface be-

tween the language and libraries.

2.7 Control Structures

The TINMN requirements on control structures may be

summarized as follows:

GI. Structured control mechanisms, parallel processing,
exception and interrupt handling

G2. Go-to only within most local access scope
G3. Fully partitioned if-then-else, case statement, Zahn's

device
G4. Iterative control with local control variable
G5. Recursive and non-recursive routines
G6. Parallel processes, synchronization, critical regions
G7. User defined parameterized exception handling
G8. Real and simulated time, relative priorities, synchroniza-

tion

GI lists the desired control mechanisms. G2 - G5 indicate

desired conventional control structures. G6, G7, G8 respectively

indicate requirements for parallel processing, exception handling

C and real-time.

2.8 Syntax and Comment Conventions

Hl. Free format, statement delimiter, easily parsed
H2. No modification of source language syntax
H3. Language definable in 64-character ASCII set
H4. Formation rules for identifiers and literals
H5. No continuation of lexical units across lines
H6. Keywords will be few, reserved, informative, not con-

fusable with identifiers
H7. Uniform readable comment convention
H8. No unmatched parenthesis are permitted
Hg. No language imposed distinction between function calls

and data selection
HI0. Symbols in same context cannot have different meaning

2.9 Defaults, Conditional Compilation, LanguaQe Restriction

II. No undefined defaults which affect result of computation
12. Defaults which optimize implementation of language

features are encouraged

1M

13. Compile time variables which specify object com-
puter environment

14. Conditional compilation
15. Simple base language which allows efficient definition

of complete language
16. Translator restrictions should be part of language

definition
17. Object machine restrictions should not be part of

language definitions

2.10 Efficient Object Representation

J1. No run-time costs for unused generality
J2. Language design should allow safe optimizations
J3. Encapsulated access to hardware facilities and machine code
J4. Object representation of data structures can be specified
J5. Programmer can specify routine calls to be open or closed

2.11 Program Environment

KI. Language will not require an operating system
X2. Language will support integration of independent modules
X3. Linkers, loaders, -debuggers, and other systems soft-

ware available
(4. Documentation, editing, testing and other support

software available
X5. Optional assertions, debugging specs, measurementprobes

2.12 Translators

Li. No supersets. Features not permitted are forbidden
L2. No subset implementations will be allowed
L3. User control of optimization and compile time costs
L4. Translators for a variety of object machine;
L5. Translator is not required to run on object machine
L6. Syntax checking but not error correction by translator
L7. Error diagnostics specified as part of language definition
L8. Internal translator structure not part of language

standard
L9. Translators will be written in the source language

2.13 Language Dafinition Standards and Control

M1. Individual features must be state of the art
M2. Unambiguous and clear language definition
M3. Tutorial and reference documents, defined by abstract computv
M4. Configurations control to ensure translators conform to

standard
M5. Support agent respunsible for maintaining language and

support software
M6. Standards and support agents for libraries

17

3. Language Evaluations

3.0 Summary of Languages and Evaluations

Of the 23 languages considered, three were recommended as

base languages, eleven were recommended as relevant to the de-

sign effort or deserving of further consideration as potential

base languages and nine were regarded as not acceptable to serve

as base languages. The 23 languages are ligted below.

A: Recommended Languages (These languages each represent

a different synthesis of large amount of previous experience, and

constitute the nucleus of a family of derived languages).

1. PL/I: Includes concepts from FORTRAN, ALGOL 60 and C03oL

2. PASCAL: A successor of ALGOL 60 emphasizing simplicity

3. ALGOL 6S: A successor of ALGOL 60 emphasizing generality

B: Languages which are Relevant and Deserving of Further
Consideration

4. HAL/S: PL/I based, NASA Language, strongly typed, real-time

5. PEARL: PL/I-based, German process control language

6. SPL/I: PASCAL-based NRL real-time signal processing language

7. PDL/2: PASCAL with parallel processing, independent module

facilities, Texas Instr.

8. LTR: PASCAL-based official French common language

9. CS-4: PASCAL-based real-time with extension facilities,

Intermetrics

10. LIS: PASCAL-based French system implementation language

11. EUCLID: PASCAL-based experimental language emphasizing

verification

18

12. ECL: Extensible language with good support en-

vironment, Harvard University

13. MORAL: New British language for embedded computer

applications

14. RTL/2: Real-time British language developed at ICI

C: Languages Not Acceptable

15. FORTRAN: Developed by IBM in 1954-58

16. COBOL: Business data processing language developed in

1959-61

17. ALGOL 60: Block structure language developed in 1957-60

18. TACPOL: Army language developed in the late 1960.'s

19. CMS-2: Navy language developed in 1966-69

20. SIMULA 67: Simulatipn language developed in Norway

21. JOVIAL J3B: Air Force language developed in 1972

22. JOVIAL J73: Air Force language developed in 1969-73

23. CORAL 66: British common languageafor real-time

applications

(, (

3.1 PL/I Evaluation:

Evaluators

PL/I was evaluated by IBM and Intermetrics.

Language Descriptiqn

PL/I was developed in the period 1962-66 by an IBM-sponsored

design group. It includes concepts and features from FORTRAN,

ALGOL 60 and COBOL, taking over its expression syntax from

FORTRAIT, its statement syntax, block structure and type

declarations from ALGOL 60 and its data description facilities

from COBOL. It is rich in data types, data attributes, control

structures and input-output features. However, it is not

strongly typed and lacks extensibility, parallel processing,

synchronization and real-time features.

Overall Evaluation

IBM strongly recommended PL/I as a potential base language,

and presented a fairly detailed discussion of how the language

could be modified to meet what they interpret as essentially

the TINHAX1 requirements. Intermetrics felt that the language

should be rejected because it lacks too many of the DoD re-

quirements. It was designed for a different purpose (ex-

pressive power rather than readability, reliability and

modifiability) and it was developed before many of the modern

language features required by TINMAN were properly understood.

PL/I is the most controversial of the languages considered.

Hawever, since the use of PL/I as a base language is recommended

by an important and credible group of designers, we believe

that this group should have an opportunity to further explore

20

its approach to the development of a common DoD language.

Moreover, there is a great deal of experience in the develop-

ment of subsets and derivatives of PL/I and some of these

derivatives such as HAL/S and PEARL may well be suitable design

experience.

V Positive Features

PL/I is more widely used by an order of magnitude than any

of the other proposed base languages.

There is a great deal of experience in subsetting and

modification of PL/I.

A great deal of care and effort has been lavished on the

language definition. The defining document BASIS 1 has re-

cently been adopted as an American PL/I standard by ANSI.

The availability of this standard may make it easier to define

the modified language. The work on language definition has

resulted in a better understanding of the language which will

be helpful in language modification efforts. The tools and

support software for PL/I may'be useful in developing tools

and support software for a modified language.

I%: has already considered in some detail how PL/I

should be modified to meet the requirements of TINMAJN.

PL/I has an advantage over PASCAL and ALGOL 68 in the

area of external procedures and common data.

Ne ative Features

PL/I was designed with different cbjectives from those

stated in TINMAIX4. In particular, PL/I was designed to pro-

mote power of expression and ease of writing programs, while

11

the DoD requirements emphasize readability, modifiability,

maintainability, security, and efficiency. Achievement of the

latter kinds of objectives would require large changes in the

language specification.

PL/I was developed too early to incorporate advances of

design technology of the mid and late 1960's in the areas of

data types, control structures, extensibility, modularity,

programming methodology, etc. Such developments have not been

reflected in the recently adopted standard.

The PL/I language design suffers from a lack of design

integrity since it has not been entirely successful in in-

tegrating the wide variety of language concepts and features

from FORTRAN, ALGOL 60, COBOL, and other sources into a

single homogeneous language.

PL/I provides too much freedom of expression for the user,

attempting to assign.meanings to programs in cases which should

be treated as errors. The current emphasis is to introduce

restrictions that enforce good programming methodology.

PL/I is a complex language for which the consequences of

addition and deletion cannot be easily foreseen.

There is some concern that it would be difficult to

evaluate a language design starting from PL/I as a basi be-

cause the complexity of the base language and the magnitude of

the language changes would make it very difficult for a de-

sign evaluation team to evaluate the proposed new language.

22

.......

3.2 PASCAL Evaluation:

Evaluators

PASCAL was evaluated by Softech and RLG.

Language Description

PASCAL was developed in the late 1960's by Niklaus Wirth

as a successor to ALGOL 60 emphasizing simplicity (as opposed to

the generality of ALGOL 68). It provides richer declarative

facilities than ALGOL 60, including records (structures), files,

pointers, scalar types (enumeration types), sets and programmer-

defined types, but is other.qise as simple as possible. For

example, it excludes parameters called by name, own variables

and arrays with dynamic bounds. It has strong (compile time

checkable) typing and control structures designed to encourage

good programming style.

Overall Evaluation

Softech recommends PASCAL because relatively few features

need to be deleted, and because those features which it does

have are well-designed and very much in the spirit of the DoD

requirements. RLG also feels that PASCAL is suitable as a

base language.

Positive Features

PASCAL is a strongly typed well designed language with

extensibility and control structure facilities very much in

the spirit of the DoD requirements.

It is very popular as a starting point for designing new

languages. It has served as a starting point for larger

23 4

..I: ., ; T . , ' i - : : .

general purpose languages, such as CS-4 and LIS, for signal

processing languages, such as SPL/I, for real-time languages,

such as PDL/2, and LTR, and for experimental languages for

concurrent programming (concurrent PASCAL) and program verifi-

cation (EUCLID).

It has a formal axiomatic definition which has been widely

used as a basis for program verification.

It is a simple language which can be easily understood

both by programming language designers and by applications

programmers.

Negative Features

The experience with PASCAL is largely in a research en-

vironment. It has not been widely used for large production

programs. However, extensions of PASCAL for use in embedded

computer environments have been developed in a number of

places (see PDL/2).

Because the language is small, a lot of features will

have to be added, such as parallel processing, real-time,

error handling, and precision facilities. In adding these

features there ary many opportunities for errors and loss of

design integrity.

It does not permit independent program and data modules.

There are some slight problems with existing language

features such as the fact that dimensions of array parameters

must currently be bound at procedure declaration time. These

problems can easily be fixed up.

24

3.3 ALGOL 68 Evaluation

Evaluators

ALGOL 68 was evaluated by Softech and SAI

Language Description

ALGOL 68 was developed during the period 1963-69 by the

IFIP working group 2.1 (WG2.1) as the "official" successor to

ALGOL 60. It has the block structure of ALGOL 60 with a much

richer set of data types (called modes in ALGOL 68). It has

an infinite number of modes obtainable from eight basic modes

by mode constructors such as ref for specifyii pointers, proc

for specifying procedures, struct for specifying record structures,

and long, short for specifying numerical precision. There are

complex but consistent rules for implicit mode conversion

(coercion). There is a fairly rich set of input-output (transput)

operations, a well designed set of facilities for parallel

processing, but no real-time facilities. The language has a

"standard prelude" which defines convenient language extensions, a

"library prelude" for defining library facilities and a

"system prelude" for defining the operating system environment.

The language definition uses an expressive but difficult-to-

master syntactic mechanism called W-grammars to express

program structure.

Overall Evaluation

ALGOL 68 is recommended as a potential base language by

both Softech and SAI because its design integrity, consistency

and clean definition make it more appropriate as a starting

point for language design than a base language designed in

2S

an ad hoc manner. It is the language most consistently

recommended by its evaluators among all the candidate base

languages. However, we talked toxmany people who were skeptical

of using ALGOL 68 as a base language because it is not well

understood or widely used in the U.S.A. and because there are

apparently difficulties in implementing the language.

Positive Features

ALGOL 68 is designed in an exceptionally clean manner.

Because language features are "orthogonal" (independent), it is

easy to determine the consequences of adding and deleting

features.

ALGOL 68 is a large language which already contains many of

the more difficult required features. Features not in ALGOL 68

would have to be added to many of the other candidate languages

too, but can be added more cleanly in ALGOL 68.

SAI states that one immediately sees how to add abstract

data types, sets, fixed point numbers, or other data types,

while reducing the generality of the go-to, eliminating flex

arrays and certain operations, etc.

The language definition reflects the cleanness of the

language design and is helpful in determining the effect of

language modifications.

The control structures of ALGOL 68 encourage writing of

clean programs.

The strong typing aids in program reliability.

26

The reference concept with explicit local generators and

heap generators appears to be well suited to the dynamic storage

allocation philosophy of the DoD language, but will require

some additional language-level specification to explicitly

distinguish all stack and heap storage.

Negative Features

ALGOL 68 appears to be difficult to implement. Apart from

the British implementation at the Royal Radar Establishment (RRE),

there does not seem to be a widely used implementation of the

language. It is not clear whether the implementation problems

are intrinsic or simply due to a lack of resources.

ALGOL 68 is less widely used than competitor languages

like PASCAL. It is not clear whether the language is intrinci-

cally too "difficult" for applications programmers or whether

the lack of user enthusiasm is due to a lack of implementaticns

and poor expository manuals.

The current language definition is difficult for the un-

initiated but is said to be an advantage rather than a hindrance

to its use as a base language once the forbidding terminology has

been mastered.

The complex coercion rules make it difficult for the programmer

to determine the effect of certain program constructs and will have

to be replaced by explicit mode conversion functions in order to

meet the TINMAN requirements. It seems a pity to throw away

this language capability, since it is not clear that mode

conversion in a cleanly designed, strongly typed language leads

to unreliability.

27

3.4 HAL/S Evaluation

Evaluators

HAL/S has been evaluated by IBM.

Language Description

HAL/S is a PL/I-style language developed by Intermetrics

for NASA in the early 1970's and designed especially for use on

airborne computers and other embedded-systems in connection with

the space shuttle program. Its data types include arrays,

structures and pointers. Non-recursive procedures may be de-

clared but not passed as procedure parameters. It requires

strong type specifications for both declared identifiers and

procedure parameters, has a wide range of control structures

for structured programming, multiprogramming and error handling,

and provides independently compilable program and data modules

which facilitate the construction on large programs. It has

a real-time processing facility with a flexible facility for

scheduled processes in a process queue. Execution and storage

allocation for scheduled processes is left to the operating

system. The language is carefully designed so that storage

requirements for all programs and tasks can be determined at

process initiation time. The operating system must decide

when initiating a process whether there is enough free memory

for that process to operate.

Overall Evaluation

IBM has recommended HAL/S as a base language.

HAL/S does not provide recursive procedures, multi-dimensional

arrays with dynamic bounds and other forms of dynamic storage

28

allocation in order to achieve efficient runtime code while

providing multiprogramming, error handling and real-time

facilities.

Positive Features

There is experience in using HAL/S for embedded

computer applications.

The language is reasonably clean in spite of the

fact that it contains pointers, multiprogramming, error

handling, real-time control, independent modules and other

difficult to handle features.

The language has proved sufficiently successful to be

under active consideration for a number of new military and

civil embedded computer applications. It is being considered

by the Air Force as the on-board language for the interim upper-

stage (IVS), by Collins Radio as the language for the AP-101

on-board guidance and navigation computer and by Boeing as a

standard language for civil avionics applications. The language

manuals and language specification are clear and adequate.

Negative Features

Substantial modifications to HAL/S would be required i

in the area of language extensibility. There are no user de-

fined types nor any kind of encapsulation mechanism. It has

no recursive procedures or other dynamic storage allocation

features. Finally, a number of features of HAL/S used to solve

parallel processing and real-time problems may be in need of

updating. They were designed in the late .1960's and should be

re-examinod in the light of more recent research.

29

3.5 PEARL Evaluation

Evaluators

PEARL was evaluated by CSC and was also evaluated by GMD

in Bonn, Germany. It was also evaluated by John Williams.

Lanage Description

The process and Experiment Automation Real-Time

Language (PEARL) is a PL/I style language which was developed

in Germany in the period 1968-73 by a working group of ex-

perts from industry and universities. Implementations are

available or are underway on eight different process control

computers. PEARL is a procedure oriented language designed for

reliability, efficiency, portability and machine independence

in real-time and process control applications. PEARL has

standard data types as well as clock and duration data types,

but no mode definition facilities. Procedures are not re-

garded as data types and must be declared reentrant if they

are to be interruptable and executable by several tasks simultane-

ously. A PEARL program can consist of a series of separately

compilable modules each having a system division with information

about the system configuration, device interconnection, proc-ess

signals and terminals and a problem description with module,

task and procedure declarations. Tasks may have four states

referred to as running, runnable, suspended or dormant, may

be synchronized by semaphore variables, may be schedaled using

clock and duration data types and mpy be interrupted by pro-

grammed or real-time interrupts.

30

Overall Evaluation

PEARL is comparable to HAi,/S in being a PL/I-based

procedure oriented language with parallel processing and real-

time facilities. Its portability and machine independence

is impressive and it certainly deserves consideration.

Positive Features

It contains well-developed real-time process control

and parallel processing facilities.

There has been some experience both in language im-

plementation and in using the language for process control

applications.

The language-system interface is specified in a sys-

tem division and appears to have been well worked out.

Re ative Features

PEARL, like PL/I, appears to lack a clear concept

of data type. It is not strongly typed and lacks data-type

definition facilities and extensibility features.

PEARL does not have pointers, recursive procedures,

a fixed point data type or adequate exception handling features.

It lacks a well defined interface to routines com-

piled in assembly language or other higher level languages.

PEARL is still an experimental language. It has

not been used as an operational language for any really

large embedded computer applications and has not been

adopted as a standard language by government or industry.

31

3.6 SPL/I Evaluation

Evaluators

SPL/I was evaluated by CSC. The discussion below

is based in part on discussions with Richard Harrington of NRL.

Language Description

SPL/I was developed in the period 1972-76 by the

'Naval Research Laboratory (NRL) in cooperation with Intermetrics.

It was developed originally as a Signal Processing Language (SPL)

for processing real-time analog inputs and performing fast

Fourier transforms and other digital filtering operations for

analyzing and processing these inputs. However, the language

is general-purpose with block structure, strong typing, standard

primitive types, arrays, structures, pointers, procedures with

input, output and input-output parameters, no implicit mode

conversions, etc. The language has arrays with dynamic bounds,

recursive procedures and permits truly dynamic storage alloca-

tion but allows optimization when dynamic storage allocation

is not required. Procedures can be separately compiled and

can contain global data. Multiprocessing with synchronization

can be performed using process, signal and resource data types.

Real-time applications can be handled using a machine-independent

clock facility. An error-handling escape mechanism is available.

SPL/I was initially used for underwater signal pro-

cessing with the PROTEUS computer, but it is now available

on the Navy A21/UYK-20 and AYK-14 computers, and is being con-

sidered for non-Navy embedded computer applications.

32

i ".

Overall Evaluation

SPL/I is comparable to HAL/S. It was developed

slightly later than HAL/S. It has the advantage of being

able to make use of the design experience of HAL/S and the

disadvantage that there is less operational experience with

SPL/I than with HAL/S. It is more ambitious than HAL/S in

handling parallel processing and real-time applications with

dynamic rather than static allocation within individual

processes, and is in this respect closer to the spirit of

the DoD requirements than HAL/S.

Positive Features

SPL/I substantially satisfies the parallel pro-

cessing and real-time requirements. Moreover, it appears to

satisfy the requirements of simplicity, reliability, main-

tainability and machine independence. Thus, it must certainly

be considered by any design team modifying any language to meet

the requirements.

Experiments with PROTEUS indicate that object code

produced by the Intermetrics SPL/I compiler is only M0 slower

than good assembly language code for the same program.

In the opinion of CSC, SPL/I is a cleaner, more

readable and simpler language than CS-4.

Negative Features

SPL/I does not include a type definition facility,

enumeration types, precision specifications, and other important

DoD language requirements. The control structures of SPL/I, in-

cluding both sequential and parallel, are not the best ones possible

and their designs should be re-examined.

33

3.7 PDL/2 Language Evaluation

Evaluators

PDL/2 was evaluated by Texas Instruments Inc.

Language Description

The Process Design Language PDL/2 was developed by

Texas Instruments Inc. in the mid 1970's for the Ballistic

Missile Defense Advanced Technology Center (BMD) to meet the

needs of B14D real-time software design. It is a PASCAL-based

language which extends PASCAL by adding tasking and synchroniza-

tion primitives, variable length arrays, vector and array opera-

tions, assertion statements, independent compilation and common

variables, code generation, macro substitution facilities. A

compiler for PDL/2 has been implemented on the BMD advanced

scientific computer (ASC).

Overall Evaluation

PDL/2 is a direct extension of PASCAL in the direction

of embedded computer applications, and should be carefully

studied as an example of an attempt to do precisely the kind

of design by language modification recommended in this report.

PDL/2 should be carefully looked at by a design team modifying

PASCAL to meet the requirements.

Positive Features

PDL/2 represents a language modification effort which

goes a substantial way towards converting PASCAL into a language

meeting the DoD requirements.

34

Negative F~atures

Substantial modifications in the areas of precision,

exception handling, and other areas are needed to make the

language conform with the DoD requirements.

The specific mechanisms used for tasking, synchronization,

global data specification, etc. should be carefully analyzed

to determine whether they can be significantly improved.

I3

3.8 LTR Lanouaae Evaluation

Evaluators

LTR was evaluated by Alan Demers at Cornell. Con-

versations with Pierre Parayre of the French Naval Programming

Center were helpful in developing this evaluation.

Langquag2e scription

LTR was designed in France in 1968 for the realiza-

tion of multitask real-time systems. It is block structured,

strongly typed, and has a rich and adequate set of data types

and control structures. In addition, it includes the con-

cepts of task, event, resource, system time, delay, interrupt

real-time I/0, and primitives for handling these entities.

LTR has proved to be well suited for modular programming and

structures programming and is almost entirely portable be-

tween 16 and 32 bit computers. Since 1973 LTR has been used

for programming a number of complex operational systems, and

assembly language has been almost completely circumvented.

LTR is the official.French common language for em-

bedded computer applications in the Navy, Army and Air Force.

It has also been adopted as the common language for civilian

air traffic control. It has been used as the language for

developing a Naval Technical Data System (NTDS) similar to

that for which CMS-2 is being used in the US, and for a

battlefield tactical system called ATTILA (similar to TOS).

overall Evaluation

LTR has been widely used by the French Department of

Defense as a language for embedded computer applications,

36

.-. r- - w .A! =

and clearly satisfies many of the DoD requirements for a

common language. It is, therefore, very relevant to the

common language design effort. According to Parayre,

there is an able French language design group at CII who

would be eager and willing to develop and submit a preliminary

design for the common DoD language. Such a design would be

based on great experience with HOLs for embedded computer

application.

Positive Features

The language is strongly typed and contains modern

notions of control structure and modularity.

LTR appears to be a highly efficient language. LTR

has well designed real-time features. The ability to create

and destroy processes, process communication and scheduling,

interrupt handling, and direct I/0 are all present with about

as high a level of machine independence as one could expect.

LTR is the only example of an apparently successful

common HOL for embedded computer applications. The existence

of such a language should increase our confidence in the

feasibility of this project. At the same time, we should try

to learn from the French experience, either by soliciting

preliminary design based on LTR or by involving a member of

the French group in some other way to provide inputs concern-

ing technical and managerial experience in introducing a

common language.

Negative Features

The equivalence mechanism, quality variables and

the free type option for pointers allow strong type checking

to be defeated.

37

*NNr

The limitation to one-level structures.

The implementation of FOR loops with the test at

the bottom.

The language is oriented to 8-byte machines.

The real-time features require a special LTR

monitor so that the language is operating system dependent.

38

3.9 CS-4 Evaluation

Evaluators

CS-4 was evaluated by Intermetrics, CSC, RLG and SAI.

Language Description

CS-4 was designed by Intermetrics for the Navy in

the mid 1970's and is not yet implemented because work on

its 'implementation was stopped as part of the "freeze" on DoD

new programming language development pending outcome of the

HOLWG study. The design of CS-4 was strongly influenced by

PASCAL, HAL/s and modern programming language concepts. The

language has strong-type checking with few implicit conversions,

powerful data structuring tools with full safety, ability to

define new abstract types (although not new infix operators),

support for parallel processing and exception handling, user

control over precision and range of variable values, and

adequate control structures. There are adequate separate

compilation facilities and good facilities for escape into

machine language. CS-4 has no pointers, recursive procedures,

machine independent interfaces to hardware components or generic

procedures. Although the language is fairly well designed,

there are, in the opinion of CSC, clumsy design features in

the area of parallel processing and in the wordiness of

declarations. The language is large and certain features

would have to be deleted.

Overall Evaluation

Intermetrics is very positive concerning the

suitability of CS-4 as a base language while RLG and CSC

39

are mildly positive but not enthusiastic. Intermetrics

feels that CS-4 is particularly strong in the areas of

reliability, maintainability, transportability and language

power. CSC and RLG are concerned with the complexity and

lack of implementation of CS-4. Since CS-4 represents a

large and skillful design effort with similar goals to

those of the current DoD effort further refinement of this

design to meet the specific DoD requirements should certainly

be considered. However, CS-4 is not as well defined a starting

point for a new design as an already implemented language,

and it may well be that designers might wish to design a

CS-4 like language while using some other language as a base

language.

Positive Features

The language has made extensive use of modern

language design principles and includes many of the language

features specified in the DoD language requirements.

The language has been specially designed to satisfy

current notions of reliability, maintainability and trans-

portability. However, this claim cannot be convincingly

verified, since there is no impl-mentation and no user ex-

perience for the language.

Strong typing, extensibility, parallel processing,

precision specification and separate compilation are incor-

porated in the language design. It is only one of the languages

considered that meets the requirements in all five of the

above areas.

40

Negative Features

The language is not implemented.

Although the language description is generally

clear, there is no really precise language definition.

The language is so large that a clean definition

or an implementation is necessary to determine whether claims

made for the language are in fact true.

The language lacks pointers and recursive pro-

cedures. These features could easily be introduced into

the language but would considerably complicate the implemen-

tation.

.41

3.10 LIS Evaluation

Evaluators

LIS has been evaluated by SAI and Alan Demers at Cornell.

Language Description

LIS was designed by Jean Ichbiah and the French

company CII~as a system implementation language. It is

strongly typed, has a rich set of data types and control

structures, has good facilities for independently compiled

program and data modules, and specifies machine dependent

features in separately defined modules called implementation

parts. It has coroutines but no parallel processing, excep-

tion handling or real-time facilities.

Overall Evaluation

LIS has most of the features of a modern block

structure language and is designed to meet criteria of

efficiency, reliability and modularity. The experience and

ingenuity of the LIS design group is considerable, and it is

quite possible that a good language meeting the DoD require-

ments could be designed starting from LIS as a base. Since

the French approach is inevitably likely to be different from

that of U.S. design groups, it might be instructive comparing

the results of a French design effort with the results of

design efforts by U.S. Software houses.

Positive Features

LIS has been designed according to modern notions

of efficiency, reliability and modularity.

42

The goals of system programming languages, such as

LIS, overlap to a considerable degree with the goals of

languages for embedded computer applications.

he notions of independently compiled program and

data modules and of implementation parts are better worked

out than in comparable other PASCAL-oriented languages.

It is one of the best designed extensions to PASCAL

that is available.

NeQative Features

LIS lacks precision specification, fixed point data

type, operator extension, generic procedures, parallel

processing, real-time facilities and exception handling

facilities.

43

- - -J

3.11 EUCLID Evaluation

Evaluators

EUCLID has been evaluated by CSC.

Language Description

EUCLID is a PASCAL-based language designed specifically

to facilitate program verification. Restrictions are placed on

certain language constructs which allow the compiler and

verifier to make stronger inferences about language properties,

thereby increasing reliability, efficiency and verifiability.

These restrictions include explicit control over imported and

exported identifiers in procedures and modules, and guarantees

that two identifiers in the same scope (including procedure

parameters) can never refer to the same or overlapping variables.

Extensions of PASCAL include parametrized types, modules which

can contain procedures and data components, and assertion

specifications. Deletions from PASCAL include input-output,

reals, multidimensional arrays, labels, gotos, and pro-

cedures as parameters.

Overall Evaluation

EUCLID is a "small" experimental language which

meets only very few of the DoD requirements. However,

language designers starting from a language in the PASCAL

family should seriously consider adopting some of the re-

strictions and extensions of EUCLID in order to enhance the

reliability, efficiency and verifiability of the new language..

Although enlargement of EUCLID to meet the DoD requirements

would introduce considerable complexity, CSC feels that this

44

approach to meeting the requirements, might if done with

great care, result in an acceptable common language.

Positive Features

EUCLID's approach of enhancing reliability by

placing restrictions on tricky uses of procedure parameters,

identifiers and other language features may well become

standard in the design of future languages.

EUCLID appears to be a well-designed language and

'its approach to the inclusion of parametrized types, modules

and assertions deserves to be studies.

EUCLID has a clear language description. This

approach to language description, which was pioneered by

PASCAL, should be considered as a possible norm for language

descriptions produced by language design teams for the common

language.

Negative Features

EUCLID is a small experimental language which

satisfies only a small number of the DoD requirements.

EUCLID is not intended for the programming of

large embedded computer applications. It has no real-time

parallel processing or numerical precision facilities.

45

3.12 ECL Evaluation

Evaluators

A partial evaluation of ECL was received from

Stephen Squires of NSA/CSS.

Language Description

ECL was developed by Ben Wegbreit and first described

in his doctoral dissertation in June 1970. It consists of a

programming language called EL/i and a system built around

this language which allows on-line interactive construction,.

testing, symbolic debugging and running of programs. It

allows extensibility to permit flexibility during program

development as well as contractability to permit optimization

for production purposes. It is a block structured language

with a rich set of data types (called modes) and mode definition

facilities. According to the evaluator, almost all language

deficiencies, such as precision specification and fixed point

variables, can be added to the language by extensions. Parallel

processing and exception handling requirements are said to be

satisfied by the multipath control and TRAP facilities (these

facilities do not appear to be in the December 1974 language

manual). The language manual describes an impressive set of

supportive software including compile time facilities, built

in library routines and support packages for debugging, tracing,

testing, metering, etc.

Overall Evaluationi

ECL is probably too rich and flexible a language

to be adopted as a realistic base for the common language.

-46

"1

However, it has something to teach us in the areas of ex-

tensibility and language system interface facilities, and

should therefore be studied by language designers using

some other language as a base. EL/l is a large well-de-

signed language, and the possibility of starting from EL/1

and developing a language meeting the DoD requirements by

language extension and contraction should not be altogether

ruled out.

Positive Features

ECL is a large well designed language which satisfies

many of the difficult DoD requirements and can be made to

satisfy many of the remaining ones by language extension.

Because the language is well designed it might be

possible to develop the required language by placing re-

strictions on a suitably extended language.

Negative Features

ECL was designed for an experimental interactive

programming environment rather than for production programming

in embedded computer applications.

ECL is too rich in extension facilities, pattern

matching, control structures, non-deterministic algorithms

and a number of other areas.

47

3.13 MORAL Evaluation

Evaluators

MORAL was conducted by Software Sciences
Limited (SSL).

Language Description

MORAL was developed in 1975-76 by the Royal Radar

Establishment (RRE). Its development is based on "MASCOT,"

an approach to the design of real-time systems. In the interests

of portability it is constrained by the adoption of CORAL 66

as a target language for the implementation of MORAL. MORAL is

a block structured strongly typed language with integer, fixed

*point, floating point, array and record (group) data types.

It lacks an explicit boolean data type and precision specifica-

tions but has enumeration types and mode definition facilities.

The language supports synchronization and real-time facilities

but leaves the task of creating new processes to the operating

systems. Exception handling is not 'eplicitly supported but

its effect can be accomplished by an interrupt mechanism.

Overall Evaluation

MORAL is a clean language designed specifically for

real-time embedded computer applications. It handles real-time

requirements differently from that envisaged by the TINMAN

specification, by placing more responsibility on the operating

system. It meets a surprisingly large number of the require-

ments and should be seriously considered by design teams as

a relevant language.

Positive Features

MORAL was designed for the same purpose as the common

DoD language.

48

It meets a surprisingly large number of the require-

ments.

It is one of the most recently designed languages

considered and has made good use of ideas in PASCAL, ALGOL 68,

CORAL 66 and other languages.

Neative Features

A prototype translator for the language was com-

pleted in September 1976, but the language has not yet been

fully tested.

The real-time features of the language are dependent

on its operating system.

The language design was constrained by requiring

CORAL 66 to be the target language of the associated translator.

49

' - -" 2

3.14 RTL/2 Evaluation

Evaluators

RTL/2 was evaluated by Imperial Chemical Industries (ICI)

and by Alan Demers at Cornell.

Language Description

RTL/2 is an ALGOL-based language developed in Britain

by ICI (Imperial Chemical Industries). It is strongly typed

with standard data types and control structures. A program

consists of a number of independently compiled modules each

consisting of an environment description and compilable units

called bricks. These are procedure bricks which consist of

procedure bodies, data bricks which are like compools and

stack bricks which can be created during execution to provide

work spaces for tasks. Standard I/0 facilities and an error

recovery system are not part of the language but are supplied

as support tools to increase portability. It has recursive

procedures but no nesting of procedure declarations. It has

no dynamic arrays. It was designed with the same overall ob-

jectives as the proposed DOD common language but reflects

the state of the art in 1969.

Overall Evaluation

RTL/2 appears to be a soundly constructed, relevant

language. Its notion of bricks provide a mechanism for

scopes and environments more flexible than conventional block

structure and its stack bricks allow task creation and real-

time facilities to be built up from lower level primitives.

50

. ...' ,' ~~ , r n. '' : - oL _

Positivo Features

It has strong typing, standard data types and

standard control structures.

Its notion of bricks is an interesting and perhaps

useful way of blending block structure and with independent

modules.

It provides hooks to standard I/0 procedures, error

recovery procedures and real-time facilities in an operating

system.

There are 150-200 real-time systems programmed in

RTL/2 of which half are outside ICI. The applications include

process control, factory automations, laboratory systems,

communications and on-line banking. Many (including all

those in ICI) employ operating systems written in RTL/2.

RTL/2 was developed as a result of a requirements

evaluation similar to that of TINMAN. The RTL/2 experience

of language development and language use might be useful as

an input to the design effort.. ICI has offered its help,

possibly in association with an American Software Company.

Negative Features

It has no extensibility features, precision features

for numerical variables or explicit real-time features.

51

-- r ---

3.15 FORTRAN Evailuation

Evaluators

FORTRAN was evaluated by Intermetrics and IBM.

Language De-)scriotion

FORTRM- was developed in the period 1954-58, was

essentially the first higher level language, and is still the

most widely used language after COBOL. Its subroutine structure

and CO21GN data blocks was not taken up in block structure

languages. However, its lack of data description facilities,

control structures, Pointer variables and recursive procedures

illustrate that there has been some progress in language de-

sign since the development of FORTRAN. The FORTRA'N evaluation

was per-F ,rmed for the 1966 ANSI standard. A revised draft

standard for FORT:RI has been prepared and is being considered

by ANST but has not yet been approved. Since it is in principle

possible that substantive changes to this draft standard may

still be made, it was not considered for purposes of this

evaluation.

Overall Evaluation

Both contractors feel that, in spite of the fact that

FORTRAN has shlown remarkable resiLience and longevity, it is

not suitable as a base language because its design does not

reflect advances in language design during the last twenty years.

Positive Features

Simplicity, efficiency, subroutine structure.

Neqative Features

Lack of data types, szope rules, control structures, re-

cursive procedures, pointers, etc.

52,11L

FORTRAN reflects the language design philosophy of the

1950's and is dominated as a base language by more recently

designed prograrmming languages.

53

3.16 COBOL Evaluation

Evaluators

COBOL was evaluated by Interinl1:.cs and IBM.

Language Description

COBOL was initially developed in the period 1959-61

as a language for business data processing applications,

building on previous languages, such as Univac's Flowmatic

and IBM's Commercial Translator. COBOL has had significant

additions since its initial develupment. Its data description

facilities and its concept of environment, data and procedure

divisions are still important today but the algorithm specifica-

tion part of the language ts behind the state of the art. It

is currently the most widely used programming language in the

U.S.A. but is not intended for e-mbedded computer applications.

Overall Evaluation

Both Intermetrics and IBM agree that COBOL is not

suitable as a base language for embedded computer applications,

both because it was not designred for this class of applications

and because it is dominated as a base language by more recently

designed languages.

Positive Features

It seems to be the most widely used higher order language.

It has good I/O and data description facilities and

is adequate for specifying simple algorithms.

The distinction between environment, data and procedure

divisions is worth while.

Negative Features

It was designed for business data processing rather

than embedded computer applications.

54

Its English language notation makes programs

deceptively readable but does not aid reliability or

modifiability.

It has only a two level block structure, inadequate

data type facilities, inadequate control structure and pro-

cedure definition facilities, and too many special cases

and implementation dependencies.

The language definition is too large for its

expressive power.

55

3.17 ALGOL 60 Evaluation

Evaluators

ALGOL 60 was evaluated by SAI.

LanguaQe Description

ALGOL 60 was developed in the period 1957-60 by the

IFIP working group WG 2.1. It pioneered the notion of block

structure, data type declarations, access scopes, etc., as

well as the development of clean programming language definitions.

Et has gained wider acceptance as a production prograrmning

language in Europe than in the U.S.A. It is carefully designed

to be implementable in a stack structured run-time environment.

It has no explicit input-output facilities and lacks other im-

portant features such as record structures, pointer variables,

extension facilities, parallel processing, independent

(external) procedures, etc. It has influenced the design of

almost all subsequently designed block structure languages,

including PL/I, PASCAL and ALGOL 68, and is a "grandfather"

of more recently designed block structure languages like CS-4,

LIS, and HAL/S.

Overall Evaluation

ALGOL 60 is not directly suitable as a base language,

but its influence on the design of the new language will make

itself felt since all the recommended base languages are

"children" or "grandchildren" of ALGOL 60.

Positive Features

ALGOL 60 is one of the most important programming

languageR ever developed and has influenced the design of

almost all subsequently designed programming languages. Its de-

finition still serves as a model for current prograimming language

definitions. 56

Negative Features

Development in programming language methodology since

the design of ALGOL 60 make this language inappropriate as

a base language. PL/I, PASCAL, and ALGOL 68 have, each in a

different way built upon the design philosophy of ALGOL 60

and it is suggested that these languages, or even more re-

cently developed derivative languages be used as a base

language.

5

~i

57

3.18 TACPOL Evaluation

Evaluators

TACPOL was evaluated by Softech, Intermetrics, and RLG.

Lanquaqe Description

TACPOL is a block structured language developed for

the Army for a particular application (TACFIRE) on a particular

computer (AN/GYK-12). It is a simple, easy to learn, block

structured language with fixed point (but not floating point)

numeric data, character and bit data, arrays of up to 3 dimensions,

records (called groups), tables and overlay facilities. Although

all identifiers require data-type, declarations-type checking

can be defeated by certain built-in (intrinsic) operations

and overlay operations. Procedures can have value parameters,

quantity parameters (by reference but without type checking),

parameterless procedures and labels. Control structures in-

clude if-then-else and iteration, while and case statements.

File handling facilities are provided. Exception handling

can be performed by passing label parameters (the TACPOL ON

statement is deceptive in that it is really a conditional

statement rather than a true interrupt). Parallel treatment

of input-output and computation may be specified in special

cases but there are no general parallel processing facilities.

The above description illustrates that TACPOL has a large

number of special language features which were included for

reasons of efficiency because the inclusion of corresponding

cleanly designed general purpose features was not properly

understood. The language may be well suited to the particular

58

application for which it was designed but suffers from re-

stricted expressive power and defects in reliability, porta-

bility, and maintainability.

Overall Evaluation

All three language evaluators feel that TACPOL

is not suitable as a base language. Its features are a rather

small subset of the acceptable features of other recommended

languages such as PASCAL (sofTech).

Positive Features

TACPOL is simple and easy to learn.

Neqative Features

TACPOL lacks too many of the requirements.

It lacks enumeration types and data definition

facilities. There is no floating point data type.

Shortcomings exist in the definition of iterative

and conditional control structures, including conditional

evaluation and optional ELSE.

Recursion is not well defined. Pointers are not

supported. Arrays cannot have dynamic bounds.

Parallel processing is not supported, nor do any

time dependent features exist.

Exception handling is inadequate.

There is no facility for describing the object en-

vironment or providing an external interface to the object

machine.

Certain symbols such as the = symbol are syntactically

overloaded.

A considerable amount of defaulting is permitted.

59

There is inadequate checking for parameters

passed by reference. There is no discriminated unionj

facility.

GoI

3.19 CMS-2 Evaluation

Evaluators

CMS-2 wes evaluated by RLG and CSC.

3 Languag eDescription

C14S-2 is a Navy language developed by the Navy

in the period 1966-69. It developed from an earlier language

CS-I, and has gone through many updates, each requiring upward

compatibility with a previous language. CMS-2 now contains

most of the structured programming features common to modern

HOLs such as the case statement, WHILE and TJNTIL iteration,

block structuring, etc. and features considered necessary for

embedded military systems, such as machine code insertion, com-

pools, direct procedure linkage, direct access to hardware and

machine functions. Sorm- of these features make the language

very machine dependent and there are currently several different

versions for different computers. The evaluated language is

CMS-2-Y for the AN/UYK-7.

Overall Evaluation

Both RLG and CSC feel that the language is not

acceptab'e as a base language because it lacks too many of

the required features, inclading scope rules, precision

specification, pointers, recursion, extensibility, real time

facilities, I/O facilities, machine language interface, etc.

Although the language appears to be successful in its present

applications, it is not portable to new embedded computer

applications on new computers.

61 I

Positive Features

The language has been successfully used in embedded

computer applications and meets, those TINMAN requirements

that are met by other languages currently in use for military

systems.

Although the language is large, it is not un-

wieldly or difficult to learn. However, its design may make

it larger than necessary for the expressive power it provides.

Negative Features

Many important required features are missing such

as scope rules, precision specification, pointers, recursion,

extension facilities, parallel processing.

Lack of high level constructs leads to excessive

use of machine language. It is estimated that NTDS is coded

30% in machine language.;

The source language is defined in a machine dependent

manner and therefore even programs written entirely in the

HOL part of CAMS-2 will not be portable. For example, array

assignment, structure accessing, and the shift operator is

machine dependent.

Procedure parameters are not local to procedure

definition. Procedure linkage mechanism is not conducive to
! modularity.

Certain language constructs have unexpected and un-

necessary constraints. For exampla, FIND is restricted to

one dimentional arrays. Arrays can contain records but

records cannot contain arrays.

62

- '~~~~* ...ww_2 :.

The scaling and truncation rules of CS-2 appear

to be unnecessarily complex and can cause undesirable errors

in numerical computation.

The CMS-2 language has special purpose features

which increase translator complexity and may prevent the

translators from producing efficient object code.

CMS-2 provides excessive generality at a number of

places where it is not needed while imposing unnecessary re-

strictions at a number of places where generality is

appropriate.

CMS-2 has inconsistencies and ambiguities in its

definition. Inconsistencies include scaling rules for con-

stants, interpretation of algebraic notation in MEANS and

EQUALS statement, value of control variables on loop terminations.

Anbiguities include order of expression evaluation.

The definition of CMS-2 is more complex than necessary.

This is particularly evident in its discussion of its error

prone scaling rules.

CMS-2 does not meet the requirements of simplicity,

efficiency, reliability, maintainibility or portability. It

is an error prone excessively machine dependent language.

63

3.20 SIMULA 67 Evaluation

Evaluators

SIMULA 67 was evaluated by SofTech.

Language Description

SIMULA 67 is an extension of ALGOL 60 which contains an

important new kind of program module called a. class. A

SIMULA class just like an ALGOL block consists of a set of

declarations followed by a sequence of statements. However,

SIMULA separates creation of class data structures from ex-

ecution of the class body, thereby allowing coroutine control

structures and the simulation of objects which have independent

data and procedural attributes. The standard SIMULA extension

for simulation purposes has interesting simulated time (but

no real-time) facilities.

Overall Evaluation

SIMULA has played an important role in the evolution of

concepts of modularity but its module structure does not

conform to DoD requirements. It is not recommended as a base

language since removal of the class feature from SIMULA would

result in a weak ALGOL 60-like language which would be a poor

starting point for the design of the common language.

Positive Features

SIMULA has played an extremely important role in the

development of concepts of modularity.

The SIMULA subclass facility is an important and powerful

device for providing extensibility in programming languages.

Negative Features

The requirements of simulation languages appear to differ

and in some respects be diametrically opposed to those of

64

real-time languages, since simulation is specifically con-

cerned with modelling behavior by indirect, rather than direct

means. Thus, both efficiency and reliability are of lcs:; con-

cern in simulation languages than in real-time languages.

SIMULA has considerably advanced the state-of-the-art

but contains transitional as opposed to stable modularity and

extensibility features.

The SIMULA class concept supports records only indirectly. I
In order to meet the DoD rquirements, it would be necessary

to introduce an additional mechanism for directly realizing

records thus resulting in two different language mechanisms

for realizing essentially the same language feature.

Although classes are an important and ingeneous language

concept, they are two general and high level for the common

language. In order to meet the DoD requirements classes

would have to be removed and replaced by a set of features

(such as records and encapsulated data-types) which directly

meet individual DoD requirements. It makes no sense con-

sidering SIMULA as a base language if the class concept has

to be removed.

65

-. nm

3.21 JOVIAL J3D Eva)u-ni-ion

Evaluators

JOVIAL J33 was evaluated by SofTech and CSC.

Language D. scrintion

JOVIAL J3B was developed by Boeing, the Aerospace

Corporation and the Air Force in 1972. It is a small language

with no dynamic storage allocation or input-output. It has

some nice features, suhi as local, global, systems and COPOOL

scopes, evaluation of constants at compile time and conditional

compilation for if-then-else statements whose condition can be

evaluated at compile time. However, it does not have pre-

cision specifications, extension facilities, parallel processing,

exception handling or zeal time facilities.

overall Evaluation

JOVIAL J33 is inappropriate as ab:se language because

it lacks too many of the required features and in addition has

numerous arbitrary restrictions and inconsistencies (SofTech

evaluation) which would have to be removed or resolved before

J33 could serve as a suitable basis.

Positive Features

JOVIAL J33 has a number of nice language features.

Negative Features

Too many of the substantive DoD requirements are not

in the language. It does not have fixed point numbers, pre-

cision specifications for variables, enumeration types, type

definition and extension facilities, recursive procedures,

arrays with dynamic bounds, parallel processing, exception

66

.. . w

handling and real-time facilities.

It has some inconsistencies in areas such a parameter

passing so that deletions from the small existing language

would be required before extending the language to meet the

TINMAN requirements.

67

if - - - .

3.22 JOVIAL J73 (level 1) Evaluation

Evaluators

JOVIAL J/3 (level 1) was evaluated by Intermetrics and CSC.

Language Description

JOVIAL J73 was designed by an Air Force Committee in

the period 1969-73. It has integer, floating point, character

and bit data types and aggregate data types called tables and

blocks. Although all identifiers must be introduced by type

declarations, the language is not strongly typed because overlays

permit variables of one type to be used as if they had another

type and because there is no type checking in the use of table

data and in passing procedure parameters. JOVIAL J73 lacks I/0

facilities, does not have enumeration types, does not have mode

definition facilities and does not have parallel processing exception

handling or real-time facilities.

Overall Evaluation

JOVIAL J73 fails to meet an exceptionally large number of

the DoD requirements. It is not strongly typed, has no array and

record types, fixed point variables, enumeration types, extension

facilities, recursive procedures, parallel processing facilities,

exception handling facilities, real-time facilities, I/0 facilities,

Its defining document differs from any of the current impleman-

tations. It is not recommended as a base language.

Positive Features

JOVIAL J73 is designed to be simply compilable and to

generate efficient code.

Negative Features

JOVIAL J73 is poor with regard to reliability, transporta-

bility, and machine independence.

68

It lacks strong typing, array and record types, fixed

point variables, enumeration types, extension facilities,

parallel processing, real time and exception handling features,

and I/0 facilities.

There are problems concerning the definition of J73.

Currently, there are several different versions of J73 including

a draft standard which differs from any implemented language.

The parameter passing mechanism is inadequate both be-

cause it does not enforce type checking and because it imposes

arbitrary restrictions on passing table and blocks.

JOVIAL J73 lacks a machine independent interface to the

operating system and has no facility for machine code insertions.

It does not specify the order of expressing evaluation

and therefore allows optimizations which can change the

effect of the program.

69

,"

.. .IIlIi . . . r r ,

3.23 CORAL 66 Evaluation

Evaluators

CORAL 66 was evaluated by CSC and RLG.

Language Description

CORAL 66 was designed in 1966 by the British Royal

Radar Establishment (RRE). It was adopted in the 1970's as

an inter-service standard for military programming and has

been widely used in the British control on automation industry.

It has block structured scope, as well as independently com-

pilable segents, global COMON data, and overlay declarations.

Its data types include floating, fixed, and integer (but not

Boolean or character), arrays, packed data and table declar-

ations (in place of records). Recursive procedures must be

explicitly designated. There are no parallel processing or

real time facilities. Error conditions may be handled by

label parameters. Code statements which allow escape into

machine language are part of the language.

Overall Evaluation

CORAL 66 is too small and early a.language to be

recommnended as a base language. However, its clean ALGOL 60-like

design :s impressive and its considerable use in Britain for

military and industrial applications must be respected.

Positive Features

A clean design which incorporates both block structure

and independently compilable program and data segments.

Considerable use in both military and industrial

applications.

70
i a.

Negative Features

It was designed too early to incorporate notions

such as record structures, reference variables, enumeration

types and other ALGOL 68 and PASCAL language features.

It does not contain Boolean variables, precision

specifications, mode definition.

It does not contain parallel processing, real-

time features or clean exception handling.

71

4. Discussion, Recommendations, and Conclusions

4.1 Discussion

The Statement-of-Work for the language evaluations

called for an analysis of how each of the languages matched

each of the requirements found in the TINMAN. As part of the

attempt to consolidate all the evaluation inputs, a matrix

was constructed of TINMAN requirements vs particular languages.

The matrix was filled in by mapping contractor's individual

scoring systems into a unified joint score followed by an

averaging where more than one evaluation was done for one

language. The information provided by this matrix was of little

use for the following reasons:

* Only the specific (as opposed to general) language requirements

were considered in constructing these numbers (i.e., TINMAJ4

sections A-J).

* There was no attempt to weigh the relative importance of each

requirement relative to each of the other requirements. Each

Requirement was considered equal.

* If a language did not satisfy some requirement, the difficulty

or ease of making the required change was not distinguished

in the matrix numbers.

In certain cases, if a language did not satisfy some re-

quirement it would affect many other requirements as well. This

tended to magnify unduely the overall effect of the missing

requirement on the score.

72

* Large languages with lots of features tended to score higher

than smaller languages.

* The scoring did not reflect the fact that even though a

language might satisfy a particular requirement (perhaps only

partially), it might be the case that a better way of satisfying

the requirement entailing a significant amount of work might

make the language much better.

* Different evaluators, even when they basically agreed on

some point, tended to score differently. SofTech was con-

sistently more severe than say IBM which was rather lenient.

* Some of the languages had only one evaluation while others

had up to four evaluations.

* Some evaluations were in a form where the information could

not be included in this matrix.

The most useful information to the coordinating committee

was obtained by detailed discussions with evaluators after

their studies had essentially been completed.

4.2 Recommendations

The first question that had to be answered by the

language evaluations was: "Does a language already exist that

satisfies the DoD set of language requirements as set forth in

the TINMAN, so well that it can be adopted as the Common Language

with little or no changes required?" With unanimous agreement,

none of the evaluators found that such a language now exists.

73

The consensus of the evaluatLons was that it would be

possible to produce a single language meeting essentially all

the DoD language requirements, hence the next efforts should be

directed toward the goal of producing a single language.

Each feature or capability mentioned in the requirements

document can essentially be found in some existing language,

hence some minimal collection of languages can be found that

collectively contains all these features and capabilities.

However, there are important embedded computer system applica-

tions that could ma-.-- good use of all the major requirements.

In fact, most of the requirements would be useful in any em-

bedded computer application. It is clearly possible to de-

sign a language by brute force containing all the technical

features and capabilities of the requirements. Problems arise,

however, when one adds requirements such as simplicity, unifor-

mity, reliability, design integrity, implementation efficiency,

etc. Producing a language that satisfies all of the re-

quirements is not a straight-forward task. The consensus was,

nonetheless, that such a language can be produced and work

toward the development of a single language should proceed.

Some evaluators did feel that some of the requirements

will have to be modified. Many of these have already been in-

corporated in the new IRONMAN document. Others, concerned

for example with the precise degree of trade-off between po-

tentially conflicting requirements (such as simplicity and

generality) can be determined only after a substantial amount

of further work on the design of the language.

74

Just about all the evaiiiators felt that work toward the

production of a language satisfying the requirements should

start from some carefully chosen base language. Working from

such a base language would reduce the amount of work requiree

and would reduce the opportunities for making errors. There

was no consensus as to which base language to use, but every

evaluator indicated that some of the languages considered

were more suitable for this role than others. Each felt in

fact that it would make a substantial difference depending

on the base language chosen. There was remarkable agreement

concerning the unsuitability of certain languages to serve

as base languages.

Even though starting with some base was recommended, all

felt that a design team must have the freedom to make any

changes they feel are warranted. For example, upward com-

patibility with the base language should not be required.

The specification for a design effort must be carefully written

so as not to place any artificial or undesirable restrictions

on the design team.

The role of a base language in a design effort is

difficult to define, and it appears that any attempt to de-

fine it will not De worth the effort. A well-qualified de-

sign team working from a good base language will know how

to proceed without such a definition.

With a unanimous degree of agreement, the following

languages were found by the evaluations to be inappropriate

to serve as base languages: FORTRAN, COBOL, TACPOL, C14S-II,

JOVIAL J73, JOVIAL J3B, SIMULA 67, ALGOL 60, and CORAL 66.

75

This should not be interprested a.; a statement con-

cerning the technical merits of these languages, it is only

a statement by the evaluators that better languages exist

for the role of base languares for a design effort toward

the Common Language. Some of the languages on this list of

rejected languages are among the most widely used languages.

The detailed reasons for their unsuitability can be found in

the evaluation documents (See Sec.5). We have made an attempt

to bring this information together in section 3.

The languages that remain are: PASCAL, PL/I, ALGOL 68,

LIS, EUCLID, CS-4, PDL/2, RTL/2, LTR, PEARL, SPL-I, HAL/S,

MORAL, and ECL.

The following recommendation appears to be consistent

with almost all the evaluations: Proposals should be solicited

from appropriate language designers for modification efforts

using any of the languages PASCAL, PL/I, or ALGOL 68 as base

languages.

Some of the languages, among those listed above that

were not found inappropriate to serve as base language, can

play the following roles. The languages PL/I, PASCAL, and

ALGOL 68 each represent a different synthesis of a large amount

of design experience and each constitutes a nucleus of a family

of derived languages. The languages EUCLID, PDL/2, LIS, LTR,

and CS-4 are in the PASCAL family and to the extent that a

design team feels these experiences are useful, they can be

used as appropriate. The language EUCLID, although somewhat

of a research language (i.e., one still under development)

76

is very carefully designed to support the writing of

verifiable well-structured programs and contains many

interesting relevant properties that should be helpful to

a PASCAL modification effort. CS-4 has also not been completely

designed and tested, but the language is relevant and should

be considered by such a design effort. The language LIS con-

tains a very interesting treatment of the requirement for

separate compilation among other things end should be useful

to design teams no matter what base is used. The language LTR

is amodern real-time language standard used in France for a

wide range of applications.

A similar case can be made for the languages HAL/S and

PEARL relative to PL/I, and RTL/2 relative to ALGOL 68. Again,

the designers should have the option to use this information

to the extent they deem appropriate.

After the designers have developed their ideas to an

appropriate degree, an evaluation of these three modification

efforts should be made. This should determine which should

be further supported to completion.

4.3 Conclusions

The HOLWG language evaluation study is an inter-

esting and significant application of current techniques of

software engineering to the problem of programming language

design. A programming language may be regarded as having a

life cycle with a requirements analysis and design phase,

77

an implementation and debugging phase and an operations and

maintenance phase. Programming languages just as large

application programs have in the past been designed with in-

sufficient emphasis on requirements analysis. The present

study has emphasized requirements analysis and in so doing has

considerably increased our understanding of the nature of re-

quirements specification for programming languages. Thus, this

study should be helpful not only in the design of the DoD common

language but also in the design of other programming languages.

A great deal of work on detailed design and implementation

of the common language still remains to be done. However, the

language evaluation study has resulted in a clear recommendation

to proceed with the design of the common language by modification

of a carefully chosen base language. Moreover the language

evaluations study has allowed us to systematically evaluate

the suitability and relevance of a large number of currently

important programmed languages. The information concerning

programming languages accumulated as a result of the language

evaluation effort should prove useful not only in choosing a

base language, but also in determining how a chosen languace

should be modified to meet the DoD requirements.

78

5. A GUIDE TO THE SUPPORTING DOCUMENTS

5.1 Language Requirements

D.A. Fisher, "A Common Programming Language for the

Department of Defense -- Background and Technical Re-

quirements," Institute for Defense Analyses

Paper P-1191, June 1976.

"Department of Defense Requirements for High Order

Computer Programming Languages" - "TINVIAN" Defense Ad-

vanced Research Projects Agency, publication (known as

"TINMAN"), June 1976.

"Department of Defense Requirements for High Order

Computer Programming Languages" - "iRONMAN" January 1977.

5.2 Documents used as Basis for Evaluation

5.2.1 FORTRAN

"American National Standard (ANS) FORTRAN," ANSI X3.3-1966,

American National Standards Institute, Inc., New York, March 196-.

"Draft Proposed American Netional Standard FORTRAN,"

BSR X-3.3 X3J3/76, American National Standards Comnittee X3J3,

March 1976. (also published in SIGPLAN Notices, Vol. II, No.3,

March 1976).

5.2.2 COBOL

"American National Standard Programming Language COBOL,

"ANSI X3.23-1974, American National Standards Institute, Inc.,

New York, 1974 (less the Report Writer Module).

79

5.2.3 PL/I

"Draft Proposed Amaerican National Standard Progranmming

Language PL/I; Basis /1-12" Document BSR X353, Feb. 1975.

"Errata for BSR X353" Document X3J1/399, Jan. 1976.

5.2.4 TACPOL

"TACPOL Reference Manual" USA CSCS-.TF-4t-1, Data Systems

Division, Litton Systems, Inc. Jan. 1972.

"1CPCEI SPECIFICATION FOR COMPILER/ASSEMBLER FOR FIRE

DIRECTION SYSTEM,"

Spec. No. ELCG-00043082C, Doc. No. 595909, Vol.1 of 2,

Appendix 10, Data Systems Division, Litton Systems, Inc.

April 1971 (Formal Definition of TACPOL).

5.2.5 HAL/S

"1HAL/S Language Specification," Interrnetrics, Inc.,

Cambridge, mass., April 1973.[

5.2.6 CMS-2

"Users Reference Manual for Compiler,. Monitor Systern-2

(CY-3-2) for use with the ANILJYK-7 Computer" M-5035, Vol.1 and 2.

FCDSSA - San Diego, Cal. 15 Aug. 1975.

"a4MS-2Y Programmer's Reference Manual (Preliminary Version)" M5C--

FCDSSA - San Diego, Cal. 1 Oct. 1976.

5.2.7 CS-4

"1CS-4 Language Reference Manual and operating System interface."

Advanced Software Technology Division,-NELIC, Sarn Diego, Cal.

Oct. 1975.

80

"ICS-4 Primer, Vol.I, Basic Features." Advanced Software

Technology Division, I1ELC, San Diego, California, Feb. 1975.

5.2.8 JOVIAL/J33

"JOVIAL/J3B Extension 2 Language Specification"

Softech, Inc. Waltham, Mass., Document 2044-4.2, July 1975.

5.2.9 JOVIAL /J73

"JOVIAL J73/1 Specification" RADC Document, July 1976.

5.2.1.) ALGOL-60

P. Naur (Editor), "The Revised Re~port on the Algorithmi-c

Language ALGOL-GO."1 Communications ACM, Jan. 1963.

-4 R. Baumann, M. Faliciano, F.L. Bauer, and K. Samuelson,

Introduction to ALGOL. Prentice-Hall, Englewood Cliffs, N.J. 19--'

R.M. DeMorgan, I.D. Hall and B.A. Wichman, "A Supplement to

the ALGOL 60 Revised Report," The Computer Journal, Vol. 19,

No. 3, 1976.

5.2.11 CORAL 65

"Inter-Establishment Committee on Computer Applications

official Definition of CORAL 66", Ministry o. Defense

Her Majesty's Stationary Office London, 1970.

5.2.12 ALGOL-63

A.Varl Wijngaarden, et.al. (eds) "Revised Report on the

Algorithmic Language ALGOL 63. Springer-Varlog, 1976.

A. Van Wijngaarden, at-al., "Revised Report on the

Algorithmic Language ALGOL 63"1 Acta Informatica,

vol. 5, pages 1-236, 1975.

A.S. Tanenbaum, "A Tutorial on ALGOL 68."1 ComlputingT Sury-yo,
F Vol. 8, No. 2, June 1976.

5.2.13 SIMULA 67

O.J. Dahl, B3. Myhrhizug, and K. Nygaard, "ISIMULA .57,

Com-,mon Base Language," Non-iogian Computing Center

Publicaticn No. S-22, 1970.

P. Naur (Ed.), "Revised Report on the Algorithmic Language

ALGOL 6U,"1 Comm. ACM, January 1963, Vol.6, No.1, pp 1-17.

A. Birtwistle, 0. J. Dzhl, B. Myhrhaug, and K. Nygaard,

"-SIMULA BEGIN," Auerbach Publishers Inc.,r Philadelphia, 1973.

J. Palme, "ISIMULA as -a Tool For Extensible Program Products,

"ACM SIGPLAI Not--ices,' Fe2b. 1974, Vol.9,No.2, pp.24-40.

NCC System Progr .ining Group, "The Structure of the NCC

SIMULA, Compilers and Bench Mark Comparisons with other

Major Languages, "'Norwegian Computing Center Publication"

No. S-43, 1972.

5.2.14 PASCAL

K. Jensen and N.Wirth, "PASCAL User Manual and Report,"

Springer-VII o, 1974.

N. Wirth, "An Assessment of the Programming Language PASCAL,"

IEEE Trans. on Software Engineering, 1, 192-198. (1975)..4

N. Wirth, "The Design of a PASCAL Compiler," Software-

Practice and Experience,,l, 309-333, (1971).

82

5.2.15 LIS

J.D. Ichbiah, J.P. Rissen, and J.C. Heliary, "The Two-

Level Approach to Data Independent Programming in the

LIS System Implementation Language." Compagnie Inter.

Pour L'Informatigue, Louvociennes, France, June 1975.

"The System Implementation Language LIS," CII. Document

No. 4549 EL/EN, Jan. 1976.

J.D. Ichbiah, J.C. Heliard, "Plexes in LIS, 1975.

J.D. Ichbiah and P. Cousot, "Visibility and Separate

Compilations," 1975.

5.2.16 RTM/2

"RTL/2 Language Specification for RTL/2 Reference: 1

Version: 2", :Imerial Chemical Industries Limited, 1964

5.2.17 EUCLID

B.W. Lampson, J.J. Horning, R.L. London, J.G. Mitchell,

G.J. Popek, "Report on the Programming Language EUCLID"

5.2.18 MORAL

"A Description of the Programming Language MORAL"

Reference No: 22/1132 Software Sciences Limited, Feb. 1976.

"Mascot - A Modular Approach to Software Construction

Operation and Test" Technical Note No. 778, Royal Radar

Establishment, Procurement Executive, Ministry of Defense,

Malvern, Worcs.

83

Ll7

5.2.1D PEARL

"PEARL - Subset for Avionic Applications Language

Description" ESG Elektronik-Svstc'm-G,3sellschaft M6H-, June 197 ..

5.2.20 SPL/I

"Reference Manual for SPL/Ill Intermetrics, Inc.

5.2.21 PDL/2

* "Process Design Methodology Design specification, Vol.1,

Process Design Language" Sept. 1976, Texas Instr. Inc.

5.2.22 LTR

"1LTR Reference Manual" (French) Centre de proaramrnation de

la Marine, Paris December 1976.

1"LTR Programmers Manual: Centre de Programma-tion de la

Marine, Paris December 1976.

*5.2.23 ECL

"Reference Manual for ECL"1 Harvard University, 1974.

K 5.3 Documents Produced by Language Evaluators

5.3.l"1HOL Evaluation Project Interim Technical Report,"

Science Applications, Inc., Software Technology

Center, 211 Sutter Street, San Francisco, California 94103.

5.3.2 "Evaluation of CORAL 66"1

"lEvaluation of PASCAL"

"Evaluation of CS-4"1

"Evaluation of TACPOL"

"Evaluation of CM-2

ALO Asoociatos,Inc.11250 Roger Bacon Dr., Reston, Va. 22090

F4

5.3.3 -"Evaluation of ALGOL 603, JOVIAL J3B3, PASCAL, SIM JLA 67 and

TACPOL V3. TIN~MAN Requirerncnts for a Common High order

Programming Language,"' Oct. 1976. Sof tech, Inc.,

460 Totten Pond Road, Waltham, Mass. 02154

5.3.4 "Draft-Candidate Language Evaluation and Recommendation Report"

I.B.M.

5.. B..mas Some Characteristics for a Corrnon DoD Pro-

gramming Language arnd their Relation to PL/I" IBM, United

Kingdom Laboratories Limited, Harsley Park, Winchester.

5.3.6 "Draft Version - Candidate Languages Evaluation and Reco~rnen-

dation Report," Dec. 1976, Intermetrics, Inc., 701 ConcordAve.,

Cambridge, Mass. 02138.

5.3.7 "Candidate Language Evaluation and Recommendation Report"

Computer Sciences Corp., 6565 Arlington Boulevard,

Falls Church, Va. 22046

5.3.8 L.Campbell, "Comparative Evaluation TINMAN VS. FORTRAN"

BRL, APG, Aberdeen, Md. August 1976.

~' 5.3.9 A. jemers, "Evaluation of LIS, LTR, RTL/2"' December .1976.

5.3.10 S. Squires, "Draft Evaluation of ECL with Respect to

"TIN44XN" Dec. 1976.

5.3.11 P.Parayrc, "1LTR Evaluation towards "1TINI2AN" Require-

ments" (From Centre de Programmzation de la Marine, Paris).

5.3.12 J.G.P. Barnes, "An Informal Evaluation of RTL/2 against

TINMXV~ Oct. 1976. (From Imperial Checmical Industries, Ltd.)

5.3.13 "An Assessment of the Programming Language MOWAL

against TINMAN" Oct. 1976, Software Sciences Ltd.,

Abbey House, 282-292 fdrnborough Rd., Tarnborough Hampshire,

England.

5.3.14 "Language Evaluation of PDL/2" Texas Instrunients Dec. 197.

5.3.15 J. Williams, "An Evaluation of PEARL" Cornell Univ., Jan.1977

5.3.16 D. Morris et.al.,"DoD-i Language Evaluation Matrix" Jan.1977.

5.3.17 J. D. Ichbiah, "A Comparative Evaluation of the LIS Language
with Respect to the TINMAN Requirements" Oct. 1976

5.3.18 Thomas Martin, "A Comparative Evaluation of PEARL, the Process

and Experiment Automation Realtime Language, against the DOD-

TINMAN-Requirements for High Order Computer Programming Languages"
June 1976

5.3.19 "An Assessment of the Programming Language CORAL 66 Against The

U.S. Department of Defense TINMAN Requirements" Nov. 1976,

Software Sciences Ltd., Abbey House, 282-292 Farnborough Rd.,

Farnborough, Hampshire, England

8

t 86

