
Troubles with Procedure Parameters - page 1

Troubles with Procedure Parameters

Recently I had some trouble understanding the problems with the MANORBOY
program. This has to do with procedure parameters (that is: passing procedures or
functions as parameters to other procedures or functions).

Remember:

In Pascal (in contrast to C, for example), it is possible to create procedures inside of
other procedures. The internal procedures can access local variables of the
surrounding procedures, as long as their definitions are not hidden (because of
name collisions, for example).

To support this efficiently, the compiler has to keep track of the base addresses of
the local storage of the surrounding procedures. It does this normally in a so-called
display vector. The display vector contains the base addresses of the variables of
every static level (1 to n).

Now, what happens, if a procedure at static level 6, for example, wants to call a
procedure at static level 3 ?

In the general case, there is more than one procedure at static level 3 which can be
called. First, there is the procedure which surrounds the level 6 procedure and which
is at level 3. Calling it would be possible; this would be a recursive call. But there are
also other procedures at level 3 that can be called. There is a level 2 procedure
which surrounds the level 6 procedure, and it has more than one sub-procedures in
the general case, and all of them can be called, because their definitions are in the
scope of the level 2 procedure.

So, if the level 6 procedure calls one of these level 3 procedures, the display vector
entry for level 3 has to be changed. The level 1 and 2 entries are still valid. The level
4 and 5 (and 6) entries are invalid, but not of interest at the moment. They remain
unchanged.

Now, very important: the new called level 3 procedure has to save the old level 3
display value - and it has to restore it after completion.

If the new level 3 procedure calls a level 4 procedure, this level 4 procedure has to
do the same thing: saving and restoring the display level of its static level.

If every procedure saves and restores the display vector entry of its static level, the
display vector on return from the level 3 procedure to the level 6 procedure from the
beginning will be unchanged.

Troubles with Procedure Parameters - page 2

I had some doubts, if that would work for external modules, too. Furthermore, I
discovered, that Stanford Pascal only reserves 40 bytes for the display vector, and I
wanted to know, what happens if I wrote a test program with more than 10 levels, for
example.

The second answer first:

- Stanford Pascal is limited to 9 levels at the moment (which is not much IMO), and
the compiler itself is at this limit. If you use one more, the compiler stops immediately
with a fatal error message (P251)

- External modules have no problem; the entry procedure of the external module is at
level 2, and it acts like an internal procedure at level 2. So you can have 8 levels of
procedures in every module and call another external function (residing in a third
module) from the lowest level procedure in the module. No problem so far. The one
and only display vector is sufficient.

This all is related to the MANORBOY program as follows:

when a procedure or function is passed as a parameter to another procedure or
function, its environment should be passed, too (that is: the variables that it can see).
This is crucial for the MANORBOY program to work.

Stanford Pascal does this by copying the whole display vector together with the entry
point of the procedure, when passing procedure parameters (it is only 40 bytes at the
moment, after all). This way, when calling the procedure, which is passed as a
parameter, the environment at the time of the function call (when the procedure parm
was passed) is temporarily restored.

The only remaining problem for me now is:

this all works on the mainframe version of Stanford Pascal, but not on the PC
version; the P-Code interpreter stores the display vector at another place, and so
procedure parameters don't work at the moment.

BTW:

I added some comments on the ASMOUT file (which shows the generated 370
instructions), especially in the function prefix and suffix area. This way you can easily
examine the generated code and see the saving and restoring of the display vector
entries.

The following example shows a procedure at static level 8 (it was called LEVEL7 -
the compiler starts counting at 1, which is the main program, but I started with the
first procedure as PROCEDURE LEVEL1 ...)

Troubles with Procedure Parameters - page 3

-------------------- LOC 68 --------------------------------
 0000: $PRV0008 ENT
 0000: $PRV0008 ENT P,8,L1 LEVEL7 ,
 0000: T,T,F,F,2,8,,
 BGN $PRV0008,LEVEL7
@@ 0000: $PRV0008 CSECT
@@ 0000: BC 15,52(0,15)
@@ 0004: DC AL1(29)
@@ 0005: DC C'$PRV0008 LEVEL7 '
@@ 0022: DC CL6'STPASC' -- Compiler signature
@@ 0028: DC XL2'1803' -- Compiler version
@@ 002A: DC AL2(0) -- Stacksize
@@ 002C: DC AL2(2) -- Debug-Level
@@ 002E: DC AL2(0) -- Length of Proc
@@ 0030: DC A(0) -- Static CSECT
@@ 0034: * -- save display level 8
@@ 0034: L 0,112(12)
@@ 0038: * -- save registers and chain areas
@@ 0038: STM 14,12,12(1)
@@ 003C: ST 1,8(13)
@@ 0040: ST 13,4(1)
@@ 0044: LR 13,1
@@ 0046: * -- update current display
@@ 0046: ST 13,112(12)
@@ 004A: * -- setup base registers
@@ 004A: LR 10,15
@@ 004C: LA 11,4092(10)
@@ 0050: * -- check for enough stack space
@@ 0050: LA 1,248(1)
@@ 0054: C 1,72(12)
@@ 0058: BC 11,224(12)
-------------------- LOC 68 --------------------------------

...

Troubles with Procedure Parameters - page 4

-------------------- LOC 72 --------------------------------
 010E: RET P
@@ 010E: * -- clear stack frame using MVCs
@@ 010E: MVI 80(13),129
@@ 0112: MVC 81(167,13),80(13)
@@ 0118: * -- restore registers
@@ 0118: LM 14,12,12(13)
@@ 011C: L 13,4(13)
@@ 0120: * -- restore display level 8
@@ 0120: ST 0,112(12)
@@ 0124: * -- clear the save area
@@ 0124: MVC 0(80,1),80(1)
@@ 012A: * -- branch to return address
@@ 012A: BCR 15,14
 012C: L1 DEF I,248
 PEND

you will see that the code loads the old value of the level 8 display entry into register
0 just before the STM. This way the display entry value is stored in the save area
and reloaded at the end (into register 0 again), from where it is stored again into the
display vector position 112(12).

Troubles with Procedure Parameters - page 5

Register 12 points to a global area provided by the runtime; the layout is as follows:

STACK DS 18F 0000 BOTTOM OF RUNTIME STACK
CLOCK EQU STACK CLOCK LOCATION
NEWPTR DS A 0072 PASCAL 'NEW' POINTER
HEAPLIM DS A 0076 UPPER LIMIT OF HEAP (+1)
* ALSO POINTS TO DYN2STOR
DISPREGS DS 10F 0080 RUN TIME DISPLAY REGISTERS
DISPLAY EQU DISPREGS,*-DISPREGS
*
FL1 DS D 0120 R/W FIX/FLOAT CONVERSION HELPS
FL2 DS D 0128 R ONLY
FL3 DS D 0136 R/W
FL4 DS D 0144 R ONLY
*
CHKSUBS DS 0F ENTRY TO RUN TIME CHECK ROUTINES
INXCHK DS 3F 0152 INDEX CHECK
RNGCHK DS 3F 0164 SUBRANGE CHECK
PRMCHK DS 3F 0176 PARAMETER VALUE CHECK
PTRCHK DS 3F 0188 POINTER CHECK
PTACHK DS 3F 0200 SET MEMBER CHECK
SETCHK DS 3F 0212
STKCHK DS 3F 0224
TRACER DS 3F 0236
INPUT DS 3F 0248
OUTPUT DS 3F 0260
PRD DS 3F 0272
PRR DS 3F 0284
QRD DS 3F 0296
QRR DS 3F 0308
CLEARBUF DS XL8 0320 BUFFER TO CLEAR ACTIVATION RECORDS

Because the Display vector is at fixed addresses known to the compiler and because
it is followed by other known addresses, it is not easy to enhance the number of
allowed levels.

Let's see ...

Troubles with Procedure Parameters - page 6

I hope you enjoyed this story of New Stanford Pascal development;
please send comments and suggestions to

berndoppolzer@yahoo.com

or

bernd.oppolzer@t-online.de

