
Strings in New Stanford Pascal - page 1

Strings in New Stanford Pascal

First of all: please excuse possible errors in my English; I am German and not a
native English speaker … I will do the best I can.

A string in Standard Pascal usually means a packed array of char (of fixed length).
I already tried to make working with arrays of char more comfortable by allowing
assignments of string constants of shorter length, and recently even char array
variables of shorter length; the rest of the longer target variable is filled with blanks.

And I recently allowed to use a CHAR (n) definition instead of ARRAY [1..n] of
CHAR, which means the same. There is no need any more to define types for every
needed length n of char arrays, because CHAR (n) is allowed everywhere where a
type identifier is allowed, too. BTW: PACKED is ignored at the moment in Stanford
Pascal.

But in other languages a „string“ usually means a variable which can hold a
character string of varying length, for example VARCHARs or CHAR (n) VAR in PL/1.

There are different ways to implement strings; using length fields or string terminator
characters (like in C). I chose length fields like in PL/1. My string implementation was
inspired by the implementation of IBMs Pascal/VS, but I only had a user manual –
I didn't know anything about the internal representation of the Pascal/VS strings.

After thinking some time about possible implementations, I realized that I would need
two length fields for a string variable, because the Pascal/VS library supports a
MAXLENGTH function and a LENGTH function – and because MAXLENGTH should
work on strings passed as by-reference parameters, too, I thought that the maximum
length should be recorded in the string variable. This way I came to a design, where
a string variable consists of three parts:

• a maxlength field at the beginning (2 bytes)

• a length field next (2 bytes)

• and the string content; the maximum possible bytes is reserved.

That is: a variable

X : STRING (20) ; // or VARCHAR (20)

will need 24 bytes.

Strings in New Stanford Pascal - page 2

Strings on the Stack

The representation mentioned before (2 length fields, MAXLENGTH and LENGTH,
followed by the string content) is only used for string variables (automatic and static).

If strings are used in expressions or passed to functions or returned from functions
(on the stack), another representation is used.

In this case, the strings are pushed and popped to and from the stack like other
variables, and so it seemed appropriate to have a shorter representation. I decided
to put only 8 bytes on the stack:

• the maxlength field (2 bytes)

• the length field (2 bytes)

• and a pointer (a cell number) to the string content

The maxlength field is always minus 1 in this case, which has the following
implications:

• the content does not follow the length field, but is addressed by a pointer
which follows the length field

• the maxlength is equal to the length (and has to be fetched from there)

• the „string on the stack“ cannot be expanded

In fact, strings are NEVER expanded. If strings are concatenated (for example), a
new string is built on the stack which is the concatenation of the two original strings.
The original strings may have been normal string variables or strings on the stack.
The result is a string on the stack, using the representation described above.

There remains a problem: where will the strings be stored, that result from
concatenations (or other string expressions)? In the end, the result of string
expressions will be assigned to „normal“ string variables, which are (hopefully) large
enough to hold the result. But the intermediate results (or results from string
functions or complicated concatenations or both) have to be stored anywhere; same
goes for string expressions involved in string comparisons. They may need up to
(several times) 32 k bytes temporarily.

To handle this, I defined a new storage area, called the „string workarea“. Its size can
be determined at startup time, and it is used by the string related P-Codes to put the
temporary strings there.

Strings in New Stanford Pascal - page 3

The String Workarea

The string workarea is used by certain P-Codes to store temporary strings.

For example:

if two strings, say A and B, and a char constant, say 'X', are concatenated and
assigned to a string variable C in the end, the following happens:

first, the string variable A is pushed to the stack, that is, an 8 byte representation of
A, consisting of its actual length and a pointer to the content, is pushed to the stack.
Then the same is done for B. There is no need to copy the content of A or B to the
string workarea, because the following concatenation will do it, anyway. The
concatenation P-Code concatenates the contents of A and B, this time copying the
result to the string workarea. The „strings on stack“ representing A and B are popped
from the stack, and a new element, describing the result, is pushed. The „used
pointer“ of the string workarea is incremented.

Now, the character X is converted to a string of length 1; that is, another string
representation is pushed to the stack. The next concatenation P-Code does again
the concatenation. The stack now contains one string element, describing the
concatenation of A, B and the character 'X'. In the string area, we have three strings,
but two of them are obsolete already: the concatenation of A and B (obsolete),
the one-byte string containing the 'X' (obsolete) and the final result.

Last step: the final result is stored to the normal string variable C. The length of the
string on the stack is checked against the allowable maxlength of C; if it is larger, a
runtime error occurs.

To prevent memory leaks in the string workarea, the „used pointer“ now is reset to
the value that it had at the beginning of the statement. There are certain P-Codes
that save and restore the string workarea „used pointer“, and these P-Codes are
inserted into the P-Code stream, whenever necessary. In every function, certain
locations (memory cells) are reserved, where these string workarea „used pointers“
can be stored.

BTW:

at the time of this writing, the new string P-Codes (all beginning with the letter V), are
not yet available on the mainframe implementation. That means: Pascal strings can
only be used by the non-mainframe versions of Stanford Pascal, at the moment.

Strings in New Stanford Pascal - page 4

Operations on Strings

First of all, strings can be assigned to other strings, regardless of their defined
maxlength. Only the actual length is checked, and there will be a runtime error, if the
target string variable is not large enough to hold the result.

Strings can also be assigned to ARRAYs of CHAR, as long as the char array is large
enough to hold the string (depending on the string's actual length, not the
maxlength). Again, there will be a runtime error, if the source string is too large.

String constants are in fact „char array constants“, but they can be assigned to
strings directly without problems (as long as the string variable is large enough to
hold the string constant).

On the contrary, char array variables and single chars cannot be assigned directly to
string variables. But (similar to Pascal/VS) there is a standard function STR which
allows such conversions.

Examples:

var C1 : CHAR ;
 C20 : CHAR (20) ;
 VC20 : STRING (20) ;

 // some possible assignments

 VC20 := 'A' ; // VC20 contains A and blanks
 VC20 := 'Test Varchar' ; // assignment of string constant
 VC20 := STR (C20) ; // STR function needed
 C20 := VC20 ; // direct assignment possible

There is no problem, if you put an (unneeded) STR call around the char and string
constants, too.

BTW, the rules for assigments between strings and arrays of char are much the
same as in Pascal/VS … the STR function was borrowed from Pascal/VS, too.

I forgot to mention: Strings are limited to 32767 Bytes; string constants (at the
moment) may not exceed 254 bytes.

Strings in New Stanford Pascal - page 5

Concatenation of Strings

Strings can be concatenated using the || operator.

Example:

 C20 := 'Bernd ' || 'Oppolzer' ;
 WRITELN ('C20: ' , C20) ;
 VC20 := 'Bernd' ;
 VC200 := VC20 || VC20 ;
 WRITE ('VC200: ') ;
 WRITELN ('<' , VC200 , '>') ;
 VC200 := VC20 || ' Oppolzer' ;
 VC200 := VC20 || ' Oppolzer' || ' Leinfelden' ;
 VC200 := VC20 || (' Oppolzer' || ' Leinfelden') ;
 VC200 := (VC20 || ' Oppolzer') || ' Leinfelden' ;
 VC200 := ((VC20 || ' Oppolzer') || ' Leinfelden') ;
 VC200 := VC20 || STR (' Oppolzer') ||
 STR (' Leinfelden') ;
 VC200 := VC20 || ' ' || VC20 ;
 VC200 := VC20 || ' dazwischen ' || VC20 ;
 VC200 := VC20 || ' dazwischen ' || STR (C20) ;
 VC200 := STR (C20) || ' dazwischen ' || VC20 ;

this coding has been used to test several variants of concatenation during the
development phase.

The || operator is handled by the compiler at the same level as the binary plus and
minus operators for arithmetic.

Strings in New Stanford Pascal - page 6

Accessing Parts of Strings

You can access single characters of strings simply by using the normal array
notation; that is: the first character in the string has the index 1, the second has index
2 and so on. The current length of a string can be examined by using the LENGTH
function, and the maximum allowable length of a string by using the MAXLENGTH
function. MAXLENGTH will also work on strings passed as var parameters to a
procedure or function and will yield different results, depending on the definition ot
the string variable passed as parameter (see „conformant string parameters“ later).

Another possibility to access parts of a string is using the SUBSTR function; see also
later.

Example program:

program TESTSTR1 (OUTPUT) ;

var S : STRING (20) ;
 I : INTEGER ;

begin (* HAUPTPROGRAMM *)
 S := 'Bernd' ;
 WRITELN ('maxlength = ' , MAXLENGTH (S)) ;
 WRITELN ('length = ' , LENGTH (S)) ;
 for I := 1 to LENGTH (S) do
 WRITE (S [I] , ' ') ;
 WRITELN ;
end (* HAUPTPROGRAMM *) .

this program prints:

maxlength = 20
length = 5
B e r n d

Strings in New Stanford Pascal - page 7

Passing Strings as Parameters to Procedures and Functions

This sample program shows three different parameter passing mechanisms
available for strings: by value, by reference (var) and by reference using dummy
arguments (const).

program TESTSTR2 (OUTPUT) ;

var S : STRING (20) ;

procedure TESTVALUE (S : STRING (30)) ;

 begin (* TESTVALUE *)
 WRITELN ('testvalue: maxlength = ' , MAXLENGTH (S)) ;
 WRITELN ('testvalue: length = ' , LENGTH (S)) ;
 WRITELN ('testvalue: content = ' , S) ;
 end (* TESTVALUE *) ;

procedure TESTCONST (const S : STRING) ;

 begin (* TESTCONST *)
 WRITELN ('testconst: maxlength = ' , MAXLENGTH (S)) ;
 WRITELN ('testconst: length = ' , LENGTH (S)) ;
 WRITELN ('testconst: content = ' , S) ;
 end (* TESTCONST *) ;

procedure TESTVAR (var S : STRING) ;

 begin (* TESTVAR *)
 WRITELN ('testvar: maxlength = ' , MAXLENGTH (S)) ;
 WRITELN ('testvar: length = ' , LENGTH (S)) ;
 WRITELN ('testvar: content = ' , S) ;
 S := 'Hugo' ;
 end (* TESTVAR *) ;

begin (* HAUPTPROGRAMM *)
 S := 'Bernd' ;
 TESTVALUE (S) ;
 TESTVALUE ('Bernd ' || 'Oppolzer') ;
 TESTCONST (S) ;
 TESTCONST ('Bernd ' || 'Oppolzer') ;
 TESTVAR (S) ;
 WRITELN ('main: S after testvar = ' , S) ;
end (* HAUPTPROGRAMM *) .

Strings in New Stanford Pascal - page 8

Passing Strings „by value“

When a string is passed by value, it is copied into the value parameter, which is a
local variable of the called procedure or function. This means that the parameter
has its own attributes which may be different from the attributes of the passed
parameter.

In the example above, the procedure TESTVALUE gets a STRING (30) parameter.
BTW: you may notice, that a type identifier with parameters is allowed in function
definitions (standard Pascal allows only identifiers at this place, no parameters).

When calling TESTVALUE, strings with other attributes may be passed as
parameters. See in the sample program:

 TESTVALUE (S) ;
 TESTVALUE ('Bernd ' || 'Oppolzer') ;

The routine TESTVALUE prints the LENGTH and the MAXLENGTH of the
parameter. Because the parameter is a local variable of TESTVALUE and has its
own attributes, the program consequently prints:

testvalue: maxlength = 30
testvalue: length = 5
testvalue: content = Bernd
testvalue: maxlength = 30
testvalue: length = 14
testvalue: content = Bernd Oppolzer

that is: the MAXLENGTH is always 30. Inside the TESTVALUE procedure, new
values could be assigned to the parameter S, but these changes will not be visible
outside of TESTVALUE.

Strings in New Stanford Pascal - page 9

Passing Strings „by reference“ (var parameters)

When a string is passed by reference, its address is passed to the called procedure
or function. Only string variables can be passed, no expressions (hence the term
„var parameter“). Every reference to the parameter inside the procedure is done
using the passed variable address, and because the address includes the
MAXLENGTH and the LENGTH fields of the string variable, the MAXLENGTH and
LENGTH attributes are known inside the called procedure, too.

If a new value is assigned to the string inside the called procedure, this has the
following implications:

• the new value will be checked against the MAXLENGTH of the target variable
(if it is too large, a runtime error will occur)

• the new value will be visible outside of the called procedure (of course).

In the sample program, I called TESTVAR and passed the variable S from the main
program. The procedure TESTVAR prints the MAXLENGTH and the LENGTH of the
passed parameter. I then assigned a new value to the var paremeter inside the
procedure. The output looks like this:

testvar: maxlength = 20
testvar: length = 5
testvar: content = Bernd
main: S after testvar = Hugo

What is interesting about the TESTVAR definition:

the procedure uses a conformant string parameter, that is: a parameter with the
length omitted. This is in fact the only possible way to specify var parameters for
strings; the length will always be inherited from the passed argument.

procedure TESTVAR (var S : STRING) ;

...

Strings in New Stanford Pascal - page 10

Passing Strings using dummy arguments (const parameters)

Pascal VS introduced another parameter passing mechanism known as const
parameters. In this case, an address is passed to the procedure or function, much
like with var parameters. But in contrast to var parameters, expressions can be
specified on const parameters, too. If necessary, the compiler builds a temporary
variable where it stores the result of the expression and passes the address of this
temporary variable (a so called dummy variable) to the subroutine. Even if the
subroutine would change the passed parameter, this would have no effect on the
passed parameter.

I decided to implement the const parameters in this compiler release, too. This
makes it possible to implement several string related functions like SUBSTR, INDEX,
VERIFY, TRANSLATE and so on in Pascal (see later). Const parameters are also
implemented for every other type, but they still need some more testing. And: at the
moment the compiler does not check that there are no assignments to const
parameters inside the called procedure or function. With strings at least,
assignments inside a function or procedure will not work, because const parameters
have a MAXLENGTH attribute of minus 1. So this way they are protected from
assigments at the moment.

See the example program above; const parameters are defined much the same way
like var parameters, but even complicated string expressions can be passed to them.
The example program prints this from the procedure testconst:

testconst: maxlength = -1
testconst: length = 5
testconst: content = Bernd
testconst: maxlength = -1
testconst: length = 14
testconst: content = Bernd Oppolzer

Const string parameters should normally be conformant string parameters
(without length specified); the length will be inherited from the passed argument.

procedure TESTCONST (var S : STRING) ;

...

Strings in New Stanford Pascal - page 11

Functions returning Strings

A Pascal function may return a string result. The result must be a conformant
string (no length specified). In fact, the string length is determined by the string
function in the moment when it assigns a string to the string function name.

Simple example:

function STRFUNC (const X : STRING ; const Y : STRING) : STRING ;

 begin (* STRFUNC *)
 STRFUNC := X || '/' || Y ;
 end (* STRFUNC *) ;

This function gets two string parameters; it does a concatenation of the two strings
with a slash in between and returns this as function result.

When I started to implement functions like SUBSTR etc. in Pascal, I soon observed
that I need some additional features to be able to better control the result of string
functions. So I introduced some builtin helper functions that are compiled inline (no
real function call) and allow for better control of function results and string handling.
Some of these functions are kind of dangerous and must be handled with care.

The following list contains ALL builtin functions added during Pascal string
development, which are compiled inline and don‘t really call a function or procedure.

STR this function converts char arrays and single chars to strings

MAXLENGTH gets the maximum length of a string variable

LENGTH gets the current length of a string variable

STRRESULT is a function of type STRING which retrieves the current
function result, when inside a string function

STRRESULTP is a function of type pointer to CHAR, which points to the
content of the current function result, when inside a string
function

REPEATSTR REPEATSTR (s, n) returns the string s repeated n times. This
function is implemented using a new P-Code instruction, and it
is used inside string functions to build new strings, containing of
n blanks (for example)

RESULTP is a function returning pointer (ANYPTR) to the function result
(usable in every function)

Strings in New Stanford Pascal - page 12

Implementing SUBSTR in Pascal

Using the helper functions mentioned above, it was now possible to implement a
function like SUBSTR completely in Pascal. In fact, this is how it is done at the time
of this writing; the SUBSTR function is known implicitly by the compiler, and it is
translated to a library call, which means a call to a function which resides in the
PASLIBX module. This function (called $PASSTR1) has an additional function code
as first parameter and implements not only SUBSTR, but also DELETE, RTRIM,
LTRIM, TRIM and COMPRESS (see later).

I‘ll show you below a development version of SUBSTR, which is not very different
from the version of PASLIBX. Of course, it would be better to compile SUBSTR inline
by means of a new P-Code instruction. This way, SUBSTR could generate still more
efficient code, for example when the arguments to SUBSTR are integer constants.
Maybe I will do this later, but at the moment I wanted to do a fast proof of concept,
and using the library call mechanism and implementing all the functions in Pascal, it
was possible to implement (almost) the whole Pascal/VS string library in roughly
three days.

This is what SUBSTR2 (development version of SUBSTR) looks like:

function SUBSTR2 (const SOURCE : STRING ; START : INTEGER ; LEN :
 INTEGER) : STRING ;

 var X : INTEGER ; P : ANYPTR ; Q : ANYPTR ;

 begin (* SUBSTR2 *)
 if LEN < 0 then
 begin
 if START > LENGTH (SOURCE) then
 EXIT (1201) ;
 LEN := LENGTH (SOURCE) - START + 1 ;
 end (* then *)
 else
 begin
 X := START + LEN - 1 ;
 if X > LENGTH (SOURCE) then
 EXIT (1201) ;
 end (* else *) ;
 SUBSTR2 := REPEATSTR (' ' , LEN) ;
 P := STRRESULTP ;
 Q := ADDR (SOURCE [START]) ;
 MEMCPY (P , Q , LEN) ;
 end (* SUBSTR2 *) ;

Strings in New Stanford Pascal - page 13

The SUBSTR2 function from the previous page needs some additional comments:

a) SUBSTR may be called with two or three parameters; if two, the compiler inserts a
minus one as the third parameter (which means, SUBSTR from the given position to
the end of the string). This is how SUBSTR2 works, too.

b) you may notice the use of the helper function REPEATSTR and STRRESULTP,
which made the implementation of SUBSTR2 (and SUBSTR) easy

c) REPEATSTR and MEMCPY are implemented by inline calls (fast) – so, apart from
the overhead to call the function, SUBSTR2 (and SUBSTR) should be reasonably
fast. The function result is built in the string workarea (see earlier paragraph).

d) EXIT (1201) simply terminates the Pascal program with a „stop code“ of 1201.
Maybe in a later version it would be better to throw a more significant run time error
like STRINGRANGE. But this has to be done in a consistent manner in the different
runtimes (Mainframe: Pascal monitor PASMONN; others: in the P-Code interpreter
PCINT), which needs some work to be done.

Strings in New Stanford Pascal - page 14

More Functions from the Pascal/VS Library (and others)

After I implemented SUBSTR successfully in PASLIBX (see above), I continued to
implement most of the other functions of the Pascal/VS library … and some more.
All these functions are known to the compiler (no definition needed) and work in the
same way as described in the Pascal/VS documentation. I also repeat here the
helper functions mentioned earlier.

Summary of all string related functions (at time of this writing):

STR this function converts char arrays and single chars to strings

MAXLENGTH gets the maximum length of a string variable

LENGTH gets the current length of a string variable

STRRESULT is a function of type STRING which retrieves the current
function result, when inside a string function

STRRESULTP is a function of type pointer to CHAR, which points to the
content of the current function result, when inside a string
function

REPEATSTR REPEATSTR (s, n) returns the string s repeated n times. This
function is implemented using a new P-Code instruction, and it
is used inside string functions to build new strings, containing of
n blanks (for example)

RESULTP is a function returning pointer (ANYPTR) to the function result
(usable in every function)

SUBSTR SUBSTR (s, n, m) or SUBSTR (s, n) – gets the Substring from s
starting at position n with length m (first format) or the rest of the
string (2nd format); same as in Pascal/VS and PL/1

DELETE deletes portions of a string; the parameters are the same as with
SUBSTR. DELETE works the same as its Pascal/VS
counterpart

RTRIM trims spaces on the right (like TRIM in Pascal/VS)

LTRIM trims spaces on the left (like in Pascal/VS)

TRIM trims spaces on both sides (different from TRIM in Pascal/VS !!)

COMPRESS replaces sequences of spaces in the string by only one space
(like in Pascal/VS)

INDEX INDEX (s1, s2) returns the index of the first occurence of s2 in
s1; zero if not found. Same as in Pascal/VS and PL/1.

VERIFY VERIFY (s1, s2) returns the index of the first character in s1
which is not in s2 (same as in PL/1)

TRANSLATE TRANSLATE (s1, to, from) translates s1 controlled by one or two
translate tables (see PL/1)

Strings in New Stanford Pascal - page 15

I hope you like the new string features of New Stanford Pascal;
please send comments and suggestions to

berndoppolzer@yahoo.com

or

bernd.oppolzer@t-online.de

