
New Stanford Pascal Compiler – Installation for MVS (TK4-) - page 1

New Stanford Pascal – Installation for MVS (TK4-) - and z/OS
(Version of 2019.07)

First of all: please excuse possible errors in my English; I am German and not a
native English speaker … I will do the best I can.

The new installation procedure uses remote jobs started by a Windows CMD file
called SUBMVS. These jobs have large instream data sets (SYSIN DD …) and put
all the files directly at the right places. I‘ll explain later how this is done.

To do the installation, you should refer to my GitHub repository
https://github.com/StanfordPascal/Pascal. It contains all the Pascal development
stuff, including scripts and testcases and so on. You could download the whole
repository as a ZIP file or simply pull it to your maschine; it is not that large.

For the MVS installation, you have to use the mvsinst subdirectory only; you can
simply ignore all the rest.

The mvsinst subdirectory should look similar to this:

 Verzeichnis von c:\work\pascal\work\mvsinst

09.06.2019 16:26 <DIR> .
09.06.2019 16:26 <DIR> ..
08.12.2017 16:49 30.143 external_procedures.odt
08.12.2017 16:49 72.047 external_procedures.pdf
11.05.2018 01:55 30.595 installation_guide_mvs.odt
11.05.2018 01:55 322.170 installation_guide_mvs.pdf
07.10.2011 22:07 61.440 nc.exe
09.06.2019 01:55 4.538 pasalloc.job
09.06.2019 09:28 8.924.018 pasc01.242
02.03.2018 23:18 6.772 pasdecod.job
10.05.2018 23:45 2.045 pasdel.job
02.03.2018 23:20 824 PASINST1.JOB
02.03.2018 23:20 2.956 PASINST2.JOB
02.03.2018 23:19 381.455 pasload0.job
09.06.2019 09:11 8.093.768 pasload1.job
09.06.2019 01:26 1.169.540 pasload2.job
09.06.2019 01:26 3.147.796 pasload3.job
02.03.2018 14:14 323 submvs.cmd
 19 Datei(en), 22.252.631 Bytes
 2 Verzeichnis(se), 37.602.398.208 Bytes frei

https://github.com/StanfordPascal/Pascal

New Stanford Pascal Compiler – Installation for MVS (TK4-) - page 2

Most important are the files PASLOAD1.JOB, PASLOAD2.JOB and
PASLOAD3.JOB, which contain all the compiler stuff. But the other files with the JOB
extension are important as well.

PASLOAD1.JOB – contains the compiler and the runtime (mandatory)
PASLOAD2.JOB – contains test programs and job control to compile them
PASLOAD3.JOB – contains older versions of the compiler (1979, 1982, 2012)

and more sample programs

Inside the load jobs, there is one large input (instream) data set, which contains data
and meta information. This meta information tells the program SPLITMVS which runs
inside the job:

- where to put the data (dataset name and member name)

- how it is coded (normal text or hex-coded binary data)

The program SPLITMVS which runs inside the load jobs is a Pascal program. It is
transferred to the target machine before the first of the 3 load jobs runs, using a job
names PASLOAD0.

At PASLOAD0 time, SPLITMVS is not yet available. That‘s why in PASLOAD0 a
program called PASDECOD does a similar job. PASDECOD is a very limited version
of SPLITMVS, written in ASSEMBLER. It is transferred as ASSEMBLER source to
the target machine and then assembled there, see PASDECOD.JOB.

That is:

- PASDECOD is transferred as ASSEMBLER source to the target system

- PASDECOD is then used to transfer SPLITMVS to the target system

- SPLITMVS is then used to transfer all the rest (all the compiler stuff)
 to the target system; SPLITMVS puts everything at the right place

- because SPLITMVS transfers only 80 byte char and object modules, some
 runs of the linkage editor are needed to build load modules.

See the description of the steps needed to prepare the Stanford Pascal system on
Hercules (or z/OS) on the following pages.

New Stanford Pascal Compiler – Installation for MVS (TK4-) - page 3

Step 1: General considerations

From some bad experience other users had, I know a little bit about the pitfalls you
probably might encounter.

What you need to accomplish in the end: run some jobs on your Hercules or z/OS
installation that I prepared for you … but I know nothing about your installation.

Known problems:

a) Codepage

My jobs and programs use the Codepage 850 (ASCII); the installation will work best
if your Hercules emulator uses the CODEPAGE 850/1047 setting. I hope that any
other setting will do, too. The only character with a possible problem should be the
vertical bar which is used for string concatenation; the compiler accepts two different
code points for this.

b) Windows dependencies

My files have been built on Windows, and that‘s why they have CRLF line ends
(0x0d0a). If you don‘t like this (that is, if you are on Unix or Linux), you should
change my files before you use them.

My SUBMVS.CMD script sends job control to MVS (on Hercules) using the
socket interface; the Hercules configuration line looks like this:

000C 3505 ${RDRPORT:=3505} sockdev ascii trunc eof

I use a programm called NC.EXE to send files from Windows to the Hercules
machine (which listenes to the port 3505 at localhost). The call of the NC program
looks like this in the SUBMVS.CMD script:

nc -w1 127.0.0.1 3505 <%1

If you are not using Windows, you will have to find another way to send jobs from
your client machine to the Hercules target. Or: you could send the job control files to
the target machine using FTP (or another file transfer mechanism). But …

New Stanford Pascal Compiler – Installation for MVS (TK4-) - page 4

c) The jobs are large

The size of the jobs (PASLOAD1 etc.) doesn‘t matter much, if you send them from
your client machine to the Hercules target. Because then, the large instream file will
not be stored. Instead, the instream file will be separated by SPLITMVS into smaller
files, which are stored directly at the desired place.

But: if you decide to copy the whole job (PASLOAD1, PASLOAD2 etc.) to the target
machine, you will probably run into space problems. I don‘t recommend this. If you
absolutely want to do this, then make sure that you have a disk which is large
enough to hold the data.

d) The jobs expect the HLQ of the datasets to be PASCALN

if you want another HLQ, see next paragraph …

Step 2: Choose a HLQ for New Stanford Pascal

Choosing HLQ = PASCALN makes life easier; the distributed jobs will work without
change, and the JCL procedures which are distributed in
PASCALN.COMPILER.PROCLIB even need no change etc.

Choosing another HLQ (for example HERC01) is possible, of course, but it requires
you to change almost every installation job and you will have to specify the HLQ later
on every compile job (or change the default in the procs).

For the rest of this paper, I will assume that you choose the standard HLQ =
PASCALN.

From this point on, I talk about starting certain jobs most of the time, giving their
name. It doesn‘t matter in general, if the job is started from remote using SUBMVS or
a similar script, or from a TSO session (if the job has been transferred to the target
machine). But there is one difference: if the job is started from remote, it needs
USER and PASSWORD information, to be controlled by RAKF.

New Stanford Pascal Compiler – Installation for MVS (TK4-) - page 5

Step 3: Check if you can use the prepared PASC01 volume

For the 2019.07 version, I first tried another (maybe shorter) installation method:

The distribution contains a prepared PASC01 volume (file PASC01.242), which you
can probably add to your Hercules TK4- machine and this way make the PASCAL
installation much easier.

If you decide to try this, you should do the following:

a) prepare an empty PASC01.242 volume of type 3350 in your dasd subdirectory:

dasdinit pasc01.242 3350 PASC01

b) add this line to your TK4_.CNF file:

0242 3350 dasd/pasc01.242

c) Start Hercules and run the Jobs PASDEL and PASALLOC (see later);
if you have done this, you will have empty PASCALN-Files on the new PASC01
volume

d) Bring down Hercules and replace the file PASC01.242 in your dasd subdirectory
with the file PASC01.242 from the mvsinst subdirectory

e) Start Hercules again; now the Pascal compiler is completely installed and usable.
If this works for you, you can skip the rest of the paper or go directly to Step 13:
Verifying the Pascal compiler installation.

New Stanford Pascal Compiler – Installation for MVS (TK4-) - page 6

Step 4: Delete an old installation using Job PASDEL

This job deletes an old installation (if present). Take care !!

You will have to change the HLQ, if you didn‘t choose PASCALN.

This can be skipped, if you never installed Stanford Pascal before.

OTOH: this must be done, no matter if you plan to use the prepared PASC01.242
volume or if you plan to use the load jobs PASLOAD1/2/3 etc.

Step 5: Create datasets for the Pascal system using Job
PASALLOC

This job runs IEFBR14 and creates all missing datasets with the proper attributes.

You will have to change the HLQ, if you didn‘t choose PASCALN.

Caution: the prepared job PASALLOC expects that you have a 3350 volume
named PASC01; that‘s why every DD statement contains a line like this:

// UNIT=3350,VOL=SER=PASC01,

this is meant for the situation where you plan to create an empty PASC01 volume
which you replace with the prepared PASC01.242 file in the next step.

If you don‘t have a PASC01 volume of type 3350 or plan to use another volume,
you should change these UNIT and VOL parameters. A simple solution would be
UNIT=TSO; in this case TK4- chooses volumes freely from the available volume
pool. But then of course you will not be able to switch to the prepared PASC01.242
volume; you will have to execute the PASLOADx jobs instead.

New Stanford Pascal Compiler – Installation for MVS (TK4-) - page 7

After executing PASALLOC, you should see the following datasets starting with
PASCALN (here on volume PASC01):

 PASC01=3350-00 CU=3830-02 ------ RFE DSLIST --------------------- Row 1 of 21

 Command ===> __ Scroll ===> CS
 S DATA-SET-NAME------------- VOLUME ALTRK USTRK ORG FRMT % XT LRECL BLKSZ REFDT

 ' PASCALN.COMPILER.CNTL PASC01 30 8 PO FB 26 1 80 19040 19160
 ' PASCALN.COMPILER.LOAD PASC01 180 131 PO U 72 3 19069 19160

 ' PASCALN.COMPILER.MESSAGES PASC01 30 3 PO FB 10 1 80 19040 19160
 ' PASCALN.COMPILER.PAS PASC01 1200 551 PO FB 45 4 80 19040 19160

 ' PASCALN.COMPILER.PROCLIB PASC01 30 2 PO FB 6 1 80 19040 19160
 ' PASCALN.COMPILER.TEXT PASC01 120 40 PO FB 33 2 80 19040 19160

 ' PASCALN.DBGINFO PASC01 120 67 PO FB 55 2 80 19040 19160
 ' PASCALN.OLDCOMP.CNTL PASC01 150 1 PO FB 0 1 80 19040 19160

 ' PASCALN.OLDCOMP.SAMPLE PASC01 150 130 PO FB 86 1 80 19040 19160
 ' PASCALN.OLDCOMP.SOURCE PASC01 300 188 PO FB 62 2 80 19040 19160

 ' PASCALN.RUNTIME.ASM PASC01 60 32 PO FB 53 2 80 19040 19160
 ' PASCALN.RUNTIME.LOAD PASC01 60 32 PO U 53 1 19069 19160

 ' PASCALN.RUNTIME.MATHLIB PASC01 65 13 PO U 20 1 19069 19160
 ' PASCALN.RUNTIME.MATHTEXT PASC01 60 10 PO FB 16 1 80 19040 19160

 ' PASCALN.RUNTIME.TEXT PASC01 60 16 PO FB 26 1 80 19040 19160
 ' PASCALN.TESTPGM.ASM PASC01 150 2 PO FB 1 1 80 19040 19160

 ' PASCALN.TESTPGM.CNTL PASC01 150 8 PO FB 5 1 80 19040 19160
 ' PASCALN.TESTPGM.LOAD PASC01 150 126 PO U 84 1 19069 19160

 ' PASCALN.TESTPGM.PAS PASC01 150 101 PO FB 67 1 80 19040 19160
 ' PASCALN.TESTPGM.TEXT PASC01 150 1 PO FB 0 1 80 19040

 END TOTALS: 3365 TRKS ALLOC 1462 TRKS USED 29 EXTENTS

This is in fact NOT the initial view, but some time later, when the volume has been
replaced with the prepared PASC01.242 volume from the mvsinst subdirectory; but
the initial view looks much the same, with different numbers of allocated and used
tracks (ALTRK, USTRK).

Once again:

the simple solution at this point, if you have all the files allocated on the type 3350
volume PASC01, would be:

- bring down Hercules
- replace the file PASC01.242 on subdirectory dasd with the prepared file
PASC01.242 on subdirectory mvsinst
- start Hercules again
- and you‘re ready (go to Step 13)

If you don‘t want to do this for whatever reason, you will have to continue with the
next steps.

New Stanford Pascal Compiler – Installation for MVS (TK4-) - page 8

Step 6: Upload the PASDECOD program using the Job
PASDECOD

This job compiles and links the ASSEMBLER program PASDECOD, which is used to
decode the binary information on the following job (which makes up the Pascal
program SPLITMVS).

Step 7: Run PASLOAD0 (Upload SPLITMVS)

PASLOAD0 transfers some OBJ files to PASCALN.RUNTIME.TEXT; these OBJ files
are needed to build the SPLITMVS utility that puts everything in the right place.

These are the OBJ files (old 2017.12 version; PC directory):

07.12.2017 23:54 39.760 PASLIBX.OBJ
07.12.2017 23:54 31.600 PASMONN.OBJ

07.12.2017 23:54 37.680 PASSNAP.OBJ
07.12.2017 23:54 17.760 PASUTILS.OBJ

07.12.2017 23:54 10.800 SPLITMVS.OBJ

PASCALN.RUNTIME.TEXT should look similar to this after PASLOAD0:

 PASCALN.RUNTIME.TEXT on PUB001 ------------------------------------- Row 1 of

 Command ===> __ Scroll ===> C
 _NAME___ _TTR__ VV.MM CREATED _____CHANGED_____ INIT _SIZE MOD __ID__

 . PASLIBX 000101
 . PASMONN 000301

 . PASSNAP 000401
 . PASUTILS 000601

 . SPLITMVS 000603
 END 000604 2017-12-07 PUB001 MOD IBMOSVS2

New Stanford Pascal Compiler – Installation for MVS (TK4-) - page 9

Step 8: Run PASINST1 to build the SPLITMVS load module

The Job PASINST1 builds the SPLITMVS load module from the OBJ files in
PASCALN.RUNTIME.TEXT. This should be a no-brainer and complete with RC = 0.

SPLITMVS will be used in PASLOAD1, 2 and 3 (see later) and put everything at the
right place.

SPLITMVS is a Pascal program, BTW. If you complete the installation successfully,
you will see the source code of SPLITMVS on PASCALN.TESTPGM.PAS.

Step 9: Run the Jobs PASLOAD1, PASLOAD2 and PASLOAD3
(SPLITMVS) to put everything at the right place

The jobs PASLOAD1, PASLOAD2 and PASLOAD3 run the Pascal program
SPLITMVS. The jobs contain large instream data sets; SPLITMVS reads this data
and builds (many) small members from this information and puts them at the right
places.

PASLOAD1.JOB – contains the compiler and the runtime (mandatory)
PASLOAD2.JOB – contains test programs and job control to compile them
PASLOAD3.JOB – contains older versions of the compiler (1979, 1982, 2012)

and more sample programs

only PASLOAD1.JOB is really mandatory to run and test the compiler.

If PASLOAD1 (PASLOAD2, PASLOAD3) completes successfully, the most critical
part of the installation is done.

Caution: I observed situations where PASLOAD1 – for example – terminated before
all files from the input have been transferred. In this case I had to examine the job
output, make sure, up to which file the transfer was successful, edit the PASLOAD1
job so that the rest will be transferred and restart the PASLOAD1 job once again.
I had to repeat this three or four times in certain cases, until the whole PASLOAD1
job was installed succesfully.

Watch out for the ++FILE headers in the input stream which mark the beginning of a
new file.

New Stanford Pascal Compiler – Installation for MVS (TK4-) - page 10

Step 10: Run Job PASINST2 to complete the installation

The job PASINST2 builds load modules from different TEXT objects, including the
load modules for the two compiler passes (PASCAL1 and PASCAL2).

The first steps of PASINST2 show a return code of 8, which is OK, but the last two
steps should return zero:

 J E S 2 J O B L O G

10.17.33 JOB 158 $HASP373 PASCALNI STARTED - INIT 1 - CLASS A - SYS TK4-
10.17.33 JOB 158 IEF403I PASCALNI - STARTED - TIME=10.17.33

10.17.33 JOB 158 IEFACTRT - Stepname Procstep Program Retcode
10.17.33 JOB 158 PASCALNI LKEDA IEWLF880 RC= 0008

10.17.33 JOB 158 PASCALNI LKEDB IEWLF880 RC= 0008
10.17.33 JOB 158 PASCALNI LKEDC IEWLF880 RC= 0008

10.17.33 JOB 158 PASCALNI LKEDD IEWLF880 RC= 0008
10.17.33 JOB 158 PASCALNI LKEDE IEWLF880 RC= 0008

10.17.33 JOB 158 PASCALNI LKED1 IEWLF880 RC= 0000
10.17.33 JOB 158 PASCALNI LKED2 IEWLF880 RC= 0000

10.17.33 JOB 158 IEF404I PASCALNI - ENDED - TIME=10.17.33
10.17.33 JOB 158 $HASP395 PASCALNI ENDED

After this final installation step, the load libraries PASCALN.COMPILER.LOAD and
PASCALN.RUNTIME.LOAD should contain the executable modules
(PASCALN.COMPILER.LOAD: the two compiler passes PASCAL1 and PASCAL2
and PASCALN.RUNTIME.LOAD: 5 executable objects, which are linked to the
applications as needed).

Step 11: Copying Compiler procedures to SYS2.PROCLIB

There are five JCL procedures to support the work with Stanford Pascal:

• PASNC (compile and create FB 80 object file in TEXT dataset),

• PASNCG (compile and go, doesn‘t create any objects),

• PASNCL (compile and link, creates load module in LOAD dataset),

• PASNCLG (compile, link and go, creates load module in LOAD dataset).

These five procedures are distributed in file PASCALN.COMPILER.PROCLIB.

New Stanford Pascal Compiler – Installation for MVS (TK4-) - page 11

I strongly suggest that you copy these five members to SYS2.PROCLIB, so that
you can call them from everywhere.

These is another procedure PAS1982T, which can be used to run the 1982 McGill
version of the compiler. It can be used to compare this old version to the actual
version. I had to do this sometimes to look if certain errors were already present in
the 1982 version, or if I have inserted them. But to use the 1982 compiler, you will
have to compile it before, using the actual compiler.

The 1979 Stanford version, which is present on the distribution, too, does not
compile with the actual compiler, but it is present in executable form elsewhere
on TK4-.

Step 12: Troubleshooting – Known problems

a) With z/OS, the module name of the linkage editor is IEWL; IEWLF880
will not work

b) The compiler needs the Fortran library SYS1.FORTLIB for certain subroutine calls
(SIN, SQRT etc.). To reduce this Fortran dependency, I removed SYS1.FORTLIB
from the compiler procedures and inserted PASCALN.RUNTIME.MATHLIB instead.

So: on TK4- (Hercules), you should copy SYS1.FORTLIB to PASCALN.RUNTIME.
MATHLIB. Same goes for a z/OS installation.

If you don‘t have a SYS1.FORTLIB on your system, you could build one from
PASCALN.RUNTIME.TEXT(MATHLIB); this is distributed with PASLOAD1 and
is a image of SYS1.FORTLIB in XMI format. There is a Job called PASFORTL
on PASCALN.COMPILER.CNTL, which builds the PASCALN.RUNTIME.MATHLIB
from this XMI file.

New Stanford Pascal Compiler – Installation for MVS (TK4-) - page 12

Step 13: Verifying the Pascal compiler installation

To verify the installation, I suggest that you run some example programs, using the
sample jobs on PASCALN.TESTPGM.CNTL.

For example:

- PRIMZERL: computes a large table of primes and does some prime factor
computations using this table

- FIBOK: computes some Fibonacci numbers using a very expensive recursive
algorithm

- FIBDEMO: the same as FIBOK, but ends with ABEND 1002 due to a logic error
(and shows the PASSNAP features, a language specific abend handler)

- TESTPAS: old sample program from the 1979 Stanford installation (still working)

You could also try the Pascal source code formatter PASFORM:

use PASFORM on PASCALN.COMPILER.CNTL to compile it and PASFORM on
PASCALN.TESTPGM.CNTL to run it on the first pass of the compiler (output goes to
PASCALN.TESTPGM.PAS).

Have fun with this new version of the Stanford Pascal compiler;
please send comments and suggestions to

berndoppolzer@yahoo.com

or

bernd.oppolzer@t-online.de

mailto:bernd.oppolzer@t-online.de
mailto:berndoppolzer@yahoo.com

