

PAGE 32

temporary register (GPR 14 or 1). The DISPLAY table, consisting
of ' entry per static nesting level of the program, is within the
GLOBAL data frame and thus always accessible. Note that GLOBAL
program variables start atter the CHARacter File buffers and the

variables defined within procedures, depending on whether the
FPRs are saved or not, start after the FPR Save Area or Function
result location. This scheme allous GPR 13 to point to a

Register Save Area (with the usual forwards/backward links) while
being the LOCAL data Base Register at the same time.

The current value of the HEAP pointer is kept in the
location following the GPR Save Area ' and this location
corresponds to the 'NP' register of the P_Machine. GPR 10 and 11
are used as Base Registers for the currently active Procedure and
GPR 2..9 as well as FPR 2..4% make up the expression evaluation
stack. For more information on the organization of Run-Time stack
and the use of the Display Table see [3) and [4].

The following table shows thé dtate of the STACK/HEAP
structure while running a Pascal progranm.

STACK

GPR12--> 000- GLOBAL <(bottom of run-time STACK)
004- Back Link, Save Area.
008- Forward Link, Save Area.
012- GPR Save Area, (GPRI4..GPR12).

072~ Current HEAP (NEW) Pointer, 'NP°'.
076- End of Heap Pointer, 'NPO'.
080- FPR Save Area.

flz- Fixs/Float Conversion Constant8. (4 Double Words)
144- DISPLAY(1]

180- DISPLAY[10] .
248- INPUT® (INPUT file buffer)
249- OUTPUT® (OUTPUT file buifer)

250- PRD3 (PRD file buffer)
251~ PRR? (PRD file buffer)
252- QRD® (QRD file Buffer)

253- QRR® (QRR file buffer)
. (buffers for other files)

280~ DATE

PAGE 33

290~ TIME
300- OSPARM
304- First (user declared) GLOBAL program variable.

GPR13--> 8n+0 LOCAL (current Stack Frame)
+004 Back Link, Save Area.
+008 Forward Link, Save Area (NIL at this time).
+012 GPR Save Area, (GPRI14.,.GPR12).

+072 FUNCTION result, (unused in case of PROCEDURES)
+080 FPR save area (optional)
+080 LOCAL (first local variable if FPRsS not saved)

+112 LOCAp (first local variable, if FPRs saved)

NP —-> 8m Next (to be) allocated DYNAMIC variable.
(HEAP area already alloc¢ated)
NPO --> 83 End of HEAP and user data space.
HEAP
Note: Program variables are allocated in the order of
declaration within each declaration group and the address
appearing in the sourceé listing produced by the compiler, 1is the

fddress of the first variable allocated in that group. For
example the program listing: '

1 304 0 PROGRAM NONSENSE(OUTPUT)
2 304 1 VAR I, J, K : INTEGER;

3 316 1 CH, NXTCH : CHAR ;

4 318 1 ..

* o o

means that Location 304 is assigned to the variable I,

308 Jdy

312 K,

316 CH,

317 NEXTCH,

etc,

PAGE 34

The comments preceding the source code of the compiler,
postprocessor and the 1170 module also provide some useful
information for those interested in the organization of the run-
time environment.

Hints on Run Time Errors

In case you encounter a run-time error while running a
program (i.e. a program ABEND), first check the following points
before resorting to the 0S generated DUMP.

1) See if the appropriate options are specified (e.g., you should
not run a program with the C- option selected).

2) Make sure all the files used in the program appear in the
parameter list of the PROGRAM statement, ands/or they are
RESETed/REWRITten before any operation takes place. Also note
that the direction of operation should be compatible with the
file and/or the previous RESET/REWRITE on that file (i.e. no READ
from dutput or after a REWRITE etc.) I1f the run-time check is
enabled (either by default or an explicit 'D+') or a Run Proifile
(execution frequency of program statements) is requested by the
'K+' switch, it is important that the JCL for the additional
Symbol Table and/or Counter files are properly included 1in the
user program. A missing or incorrect DD statement for such files
may cause the program to be terminated in the Pascal monitor
without a clear connection to the user progranm.

3) Check that there is a DD statement for every iile used in the
progtam and RECFM, LRECL and BLKSIZE have accveptable values.

4) The size of the region in which you run the program should be
sufficient to accommtdate the code as well as data. The program
listing gives you an approximate idea of the size of the program
and the data area. Recursive procedures however, depending on
how deep the recursion goes, may need much more space than the
size of their local variables may suggest. You can check to see
if the run—-time STACK and HEAP are <colliding by comparing the
HEAP pointer (at GPR123+72) and GPR13 which points to the base of
the LOCAL data area.

5) Check for bad (uninitialized, out of range) indices as well as
illegal pointer references caused by wuninitialized/NIL pointers
in the procedure causing the ABEND.

Also see the extended run-time checking iacilitiesA (the D+
compilation option).

PAGE 35

Storage Saving Considerations

In general the P_Code assembler trades memory for speed and,
in particular, it prefers a sequence of RX and RR type 370
instructions over the corresponding SS type instructions which
tend to be more compact though usually slower (the difference is
quite noticeable on the larger 370 models). However, it is
possible to reduce the storage requirement of your program in
certain cases.

1) Dynamic storage 1is currently allocated on 8-byte boundaries.
If you do not wuse this kind of storage for REAL values, you
can change the alignment factor to 4 (= INTSIZE) as opposed to
8 (5 REALSIZE) in the Procedure NEW! of the Compiler. This
should improve memory usage specially if dynamic storage is
heavily used.

2) The current sub-monitor releases some 36K bytes of storage to
be used for 1I/0 buffers. This Qpqu could be reduced to as
little as 8K, leaving the rest ior'tﬁe user program, by using
smaller BLKSIZEs for the files. By reducinhg the above space
to 8K, you can compile the Compiler in a 128K region.

3) 1f you group variables and fields K with the same (internal)

type together, you may improve the storage utilization by
cutting doun on fragmentation of the memory. This is
particularly important in the case of ARRAYs OF RECORDS which
contain fields of different types. The rearrangement. of

fields, houever, should not be done at the expense of clarity
and ;ogicnl continuity of data declarations.

4) See the Pdck Option in section 2.3.8.

PAGE 36

5. Examples

The following program (a small deviation from the standard
Factorial example) shous a simple -and very expensive- uway of
generating a table of Fibonacci Numbers and it is also meant to
illustrate the Compilation, Post_Processing and Execution of a
typical Pascal program. The compiler output has been slightly
edited to compress its width across the page.

" Sample Program, including the necessary JCL "

77 JOB
//TEST EXEC PASCAL
//COMPILE.INPUT DD *

PROGRAM fib_demo(OUTPUT) ;
TYPE pos_int = 0..30 ;

VAR i : pos_int ;
time : INTEGER ;

FUNCTION fibonacci(j :pos_int) : INTEGER ;
(*To evaluate fibonacci & j, for j >= 0,
subject to integer overflowu¥*)

BEGIN
IF j = 0 THEN fibonacci := 0
ELSE IF j = 1 THEN fibonacci := 1
ELSE fibonacci := fibonacci(j-1) + fibonacci(j-2) ;
END

BEGIN (*fib_demo¥)
FOR i := 10 TO 25 DO
BEGIN time := CLOCK(O0) ;
WRITELN(®' Fibonacci % ', i:3, ' is :', fibonacci(i):6,
' (Compute time =', CLOCK(0)-time:5, ' Milli Sec.)') ;
END ‘
END.
77

" Source Program listing generated by the Compiler "

LINE # P/D LC LVL < Stanford Pascal Compiler, Version of July-78 >

1 288 1) PROGRAM fib_demo(OUTPUT);
2 288 1)
3 288 1) TYPE pos_int = 0..30;

4 288
5 288
6 292
7 296
8 296
9 8y
10 84
11 84
12 0
13 5
14 12
15 29
16 8y
17 84
18 0
19 15
20 18
21 37
22 53
23 62

1)
L)
1)
1
1)
2)

2)
2)
2)
2)
2)
2)
2)
2)
1)
1)
1)
1)
1
1)

PAGE 37

VAR i : pos_int;
- time : INTEGER:;
FUNCTION fibonacci(j :pos_int) : INTEGER;
(*To evaluate fibonacci % j, for j >= 0,
subject to integer overflou*)
BEGIN -
IF 3 = 0 THEN fibonacci := 0
ELSE IF j = 1 THEN fibonacci := 1
ELSE fibonacci := fibonacci(j-1) + fibonacci(j-2);
END;
BEGIN (®*fib_demo*)
FOR i := 10 TO 25 DO
BEGIN time := CLOCK(0);
WRITELN(' Fibonacci & ', i:3, ' is :', fibonacci(i):é6,
' (Compute time =', CLOCK(O0)-time:5, ' Milli Sec.)');
END; .
END.

nRER NO SYNTAX ERROR(S) DETECTED.

LA A 23 LINE(S) READ, 1 PROCEDURE(S) COMPILED,

HRER 94 P_INSTRUCTIONS GENERATED, 0.04 SECONDS IN COMPILATION.

3

Post_Processor meséages "

* X" NO ASSEMBLY ERROR(S) DETECTED.

RxEx 672 BYTES OF CODE GENERATED, 0.05 SECONDS IN P_CODE ASSEMBLY.

" Output of the Sample Program "

Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci

LR B R

10 is : 55 (Compute time = 4 Milli Sec.)
11 is : 89 (Compute time = 5 Milli Sec.)
12 is : 144 (Compute time = 8 Milli Sec.)
13 is : 233 (Compute time = 12 Milli Sec.)
14 is : 377 (Compute time = 19 Milli Sec.)
15 is : 610 (Compute time = 31 Milli Sec.)
16 is : 987 (Compute time = 51 Milli Sec.)
17 is : 1597 (Compute time = 83 Milli Sec.)
18 is : 2584 (Compute time = 133 Milli Sec.)

Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci

The

L B K N N

19
20
21
22
23
24
25

is
is
is
is
is
is
is

4181 (Compute
6765 (Compute
10946 (Compute
17711 (Compute
28657 (Compute
46368 (Compute
75025 (Compute

following is the result
after having been modified to cause a Run Error.

PAGE 38 ~

time 215 Milli Sec.)

time = 348 Milli Sec.)
time = 565 Milli Sec.)
time = 914 Milli Sec.)
time = 1475 Milli Sec.)
time = 2386 Milli Sec.)
time = 3862 Milli Sec.)

of running the same program

" Qutput of the CompilesPost_Process step "

LINE % P/D
1 288

2 288

3 288

4 288

5 288

6 292

7 296

8 296

9 84
10 84
K 84
i2 0
13 5
14 12
is 29
16 84
17 84
18 0
19 15
20 18
21 37
22 53
23 62
* % %R NO
% % % % 23

LC

1
1)
LB
1)
n
1)
1)
1)
2)

2)
2)
2)
2)
2)
2)
2)
2)
1)
1)
1)
1)
1)
1)

LVL < Stanford Pascal Compiler, Versioh ot July-78 >

PROGRAM fib_demo(OUTPUT);

TYPE pos_int = 0..30;

v

AR

pos_int;

time : INTEGER;

FUNCTION fibonacci(j :pos_int) : INTEGER;
(%To evaluate fibonacci # j, for j >= 0,

BEGIN
IF j

= 0 THEN f{ibona

subject to integer overflou¥*)

cci := 0

ELSE IF j = 1 THEN fibonacci := 1

ELSE fibonacci :=
END;

BEGIN (¥*fib_demo¥*)

FOR 1
BEGIN

:= 10 TO 25 DO
time := CLOCK

WRITELN(' Fibonacci

L]

(Compute time =*,
END;
END.

SYNTAX ERROR(S) DETECTED.

LINE(S) READ,

ExER 94 P_INSTRUCTIONS GENERATED,

fibonacci(j-1) + fibonacci(j-3);

(0);
$ ', i:3, ' is :', fibonacci(i):6,
CLOCK(0)-time:5, ' Milli Sec.)');

! PROCEDURE(S) COMPILED,

0.04 SECONDS IN COMPILATION.

% % % %

* %% ¥

PAGE 39

NO ASSEMBLY ERROR(S) DETECTED.

672 BYTES OF CODE GENERATED, 0.05 SECONDS IN P_CODE ASSEMBLY.

Output of the GO step "

Fibonacci ®* 10 is

% % % %
3% % %
%% xR
3% 3% % %
* 3% % %

3% % % *

%% % %

% % 3% %

%3 % %

*% XN

* % %R

% % 3% %

3% % % %

% % 3¢ %

* % % %

3% 3% % *

% % % %

SNAPSHOT DUMP OF PROGRAM *¥¥¥
'SNAPSHOT' was called by --> 'Pascal_MONITOR'
Run. Error: 1002 from line: 14 of procedure: 'fibonacci’
SUBRANGE VALUE OUT OF RANGE ~
The offending value: -1 is not in the range: 0..30
Variables for 'fibonacci' are:

= 2
procedure 'fibonacci' was called by -->:'£ibonacci' from
Variables for 'fibonacci' are:

= 3
procedure 'fibonacci' was called by --> 'fibonacci' from
Variables for 'iibonacci' are:

= 4 |
procedure 'fibonacci' was called by --> 'fibonacci' from
Variables for ‘'fibonacci' are:

= 5
procedure ‘'fibonacci' was called by --> 'fibonacci' from
Variables for 'fibonacci' are:

= 6
procedure ‘'fibonacci' was called by --> 'fibonacci' from
Variables for 'fibonacci' are:

= 7

procedure 'fibonacci' was called by --> 'fibonacci' from

line:

line:

line:

line:

line:

line:

14

14

14

14

14

14

PAGE 40

*%%% Variables for 'fibonacci' are:

b = 8

%#%% procedure 'fibonacci' was called by --> 'fibonacci' from line:

*%x%% Variables for 'fibonacci' are:

J =9

%#x%* procedure 'fibonacci' was called by --> 'fibonacci' from line:

#%¥%x% Variables for 'fibonacci' are:

b = 10

®#%%% procedure 'fibonacci' was called by --> '$SMAINBLK' from line:

#%%¥% Variables for '$SMAINBLK' are:

i = 10
time- = 25

kx%% END OF DUMP #®%xx

The following is the result of yet another run of the same
program with the 'K+' option. The (only) source listing is
gennerated by the last &tep in the run and it followes any other
output that the user program may broodﬂce. The zrototype JCL for
this run is provided 1in section 3(§). (Note the increased

“"compute" time.)

* Qutput of the Compile/Post_Process step "

* X X% NO ASSEMBLY ERROR(S) DETECTED.

14

14

20

EXXN 804 BYTES OF CODE GENERATED, 0.06 SECONDS IN P_CODE ASSEMBLY.

" Output of the GO step — including the Profiler output "

Fibonacci 10 is : 55 (Compute time 3 Mi]lli 8ec.)
Fibonacci 11 is : 89 (Compute time 5 Milli Sec.)
Fibonacci 12 is : 144 (Compute time 8 Milli Sec.)

13 Milli Sec.)
20 Milli Sec.)
33 Milli Sec.)
54 Milli Sec.)

13 is : 233 (Compute time
14 is : 377 (Compute time
15 is : 610 (Compute time
16 is : 987 (Compute time

Fibonacci
Fibonacci
Fibonacci
Fibonacci

L R

LINE & RUN CNT LVL < Stanford Pascal Compiler, Version of

QOO JOUTLE WN =

-

1

13
14
15
16
17
18
19
20
21
22
23
24

* % %

%* % % %

% % % %

Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci

v

L R R R K R K K B J

17 is : 1597 (Compute time
18 is : 2584 (Compute time
19 is : 4181 (Compute time
20 is : 6765 (Compute time
21 is : 10946 (Compute time
22 is : 17711 (Compute time
23 is : 28657 (Compute time
24 is : 46368 (Compute time
25 is : 75025 (Compute time

o ouwououu N

" Ouput of the PROFILE step "

121338
196329
317651
635318

16
16
16
16

1)
1
1)
1)
1
1)
1)
1)
1)
2)

2)
2)
2)
2)
2)
2)
2)
2)
1)
1)
1)
1)
1)
1B

(¥$K+ %)
PROGRAM fib_demc(OUTPUT);

TYPE pos_int = 0..30;

VAR i : pos_int;
time : INTEGER;

FUNCTION fibonacci(j :pos_int)
(*To evaluate fibonacci # j,

87
140
227
369
595
963

1562
2527
4092

Milli
Milli
Milli
Milli
Milli
Milli
Milli
Milli
Milli

PAGE 41

Sec.)
Sec.)
Sec.)
Sec.)
Sec.)
Sec.)
Sec.)
Sec.)
Sec.)

July-78 >

: INTEGER;

tor j >=

0.,

subject to integer overflow*)

BEGIN ‘
IF j = 0 THEN fibonacci := 0
ELSE IF j = 1 THEN fibonacci

r= |

ELSE fibonacci := fibonacci(j-1) + fibonacci(j-2);

END;

BEGIN (*fib_demo¥*)
FOR i := 10 TO 25 DO

BEGIN time := CLOCK(O0);
WRITELN(' Fibondcci % ', i:3,

'is

.
H

! (Compute time =', CLOCK(O0)-time:5,

END;
END.

* NO SYNTAX ERROR(S) DETECTED.

24 LINE(S) READ,

100 P_INSTRUCTIONS GENERATED,

1 PROCEDURE(S) COMPILED,

?

fibonacci(i):6,
Milli Sec.)'):;

0.05 SECONDS IN COMPILATION.

PAGE 42

Changed Features and Neu Options

The following list is provided as a convenience to users of

previous versions of Stanford Pascal. The list briefly mentions
the features that are new or are implemented differently from the
earlier versions. These features either correspond to the

standard Pascal now, as described in Jensen and Wirth [1], or are
described in an earlier section of this document.

-Global textfiles may now be declared and passed as VAR
parameters to procedures or functions.

-The character set is now the EBCDIC character set and not the 63
character set that corresponded to the CDC Scientific character
set.

-The predefined constant MAXINT, the predefined types ALFA and
TEXT, the predefined fupctions and procedures PAGE, ROUND,
LINELIMIT, CARD, SKIP and EXPO are provided.

-The predefined variables DATE, TIME and OSPARM are added.

-The sub-monitor now handles most IBM file formats.

-The sub-monitor now supports input and output of Booleans.

-The sub-monitor now checks the format of Booleans, integers and
reals that are input. It also rejects any attempt to read any of
these same datatypes when the end of file is reached.

-fhe sub-monitor will automatically invoke the execution protfile
generator (PASPROF load module) if the Pascal execution outputs

run counts to the QRR file (i.e., if the Pascal program was
coltpiled with tHe K+ option).

-The input of character strings is now handled differently.

-The JCL parameters passed to the sub-monitor now include NOSNAP,
NosPIE and NOCC.

-User parameter strings may be passed to the Pascal program.

-Comments may be nested (under control of the 'N+' compilation
option).

-The M (margins) compilation option has an extended meaning.
-The sequence number field on input cards (col.s 73-80) no longer

is printed instead of the source line number when M+ is
specified.

PAGE 43

-Compilation input is no longer restricted to card image format.
The input may contain any of the allowed file formats, but only
the first 120 characters in each record are significant.

-The M (margins) compilation optiqn has an extended meaning.

-The sequence number field on input cards (col.s 73-80) no longer
is printed instead of the source line number when M+ is
specified.

-Compilation input is no longer restricted to card image format.
The input may contain any of the allowed file formats, but only
the first 120 characters in each record are significant.

-Subranges such as 1..10 are acceptable labels in CASE statements
or the variant parts of records. Also subranges may appear in
constants of type SET; e.g., [1..4) is equivalent to [1,2,3,4].

-Functions of type SET may be declared.
~The tag field of a case varianf record may be left unnamed.

-The offsets of vafiables in the stack are now assighed
ditferently.

~-The {first 12 characters of Pascal identifiers are now
significant.

-Lower case letters may be used in identifiers and reserved
words.

-External Pascal procedures may be created and used.

~FORTRAN subroutihes/functions may be called {from Pascal
programs. (A separate version of the sub-monitor is not required
for this.)

-The different versions of the run-time support routine PMONSRC
are now merged into a single progrdam and with the wuse of
(boolean) assembly time suitches, one may get the compact object
form suitable for system programs, or the full sized object to be
used in conjunction with user programs.

PAGE uy
Acknowledgements

This note owes a great deal to Nigel Horspool of McGill
University who, amongst other things, converted a group of
chronologically ordered sections into the present document. He
also upgraded the I/70 interface to provide support for various OS
file formats. The SNAPSHOT routine is written by Eral Waldin ot
SLAC and the run-time profile generator PROFILER is due to
Richard Sites of Los Alamos Scientific Laboratory. The programs
in the TESTLIB are contributed by many people and it is hoped
that it will evolve into a library of utility routines of general
interest to Pascal users.

References:

1] K. JENSEN, N. WIRTH. ‘'Pascal, User Manual and Report' (2nd
ed.), Springer-Verlag, New York, 1975,

[2) K. NORI, U. AMMAN, K. JENSEN, H, NAGEL. ‘The Pascal "p*
Compiler, Implementation Note$';, Berichte des Instituts
fur Informatik, E.T.H. Zurich, bkc. 1974.

[3] D. GRIES. 'Compiler Construction for Digital Computers', John
Wiley and Sons, Neu York, 1971.

[4] S. HAZEGHI. 'Bootstrap and Adaptation of a Pascal Compiler on
the IBM/370 System', CGTM-194, Stanford Linear Accelerator
Center, July 1979, '

[5] S. HAZEGHI, L. WANG. 'R Shott Note on High Level Languages
and Microprocessors', Conference Proceedings of the 2nd West
Coast Computer Fair, San Jose, CA., March 1978.

[6] E. GILBERT, D. WALL. 'SOPAIPILLA Maintenance Manual', CSL
Technical Report no. 158, Stanford University, March 1978.

{71 B. HITSON. 'Pascal/P_Code Cross Compiler for the LSI-11',
- SLAC-PUB-2246, Stanhford Linear Accelerator Center, Jan. 1979.

Sassan Hazeghi, Nov. 1976.

Computation Research Group,
Stanford Linear Accelerator Center,
Box 4349,

Stanford, CA. 94305.

Phone (415) 854-3300 x2359.

Date of last update:

PAGE 45

Jan.-26-77.
Mar.-0u4-77.
May =-20-77.
June-09-77.
Nov.-15-77.
Jul .-28-78
Sep.-18-78
May -20-79
July-01-79
Aug -09-79
Oct.-18-79

PAGE 46

Appendix A

1- Pascal compiler error messages:

1- error in simple type.
2- identifier expected.
3- "program" expected.
4- ")" exypected.
5- ":" expected.
6- illegal symbol.
7- error in parameter list.
8- “of" expected.
9- "(" expected.
10- error in type.
11- left square bracket expected.
12- right square bracket expected.
13- "end" expected.
14- ";" expected. '
15- integer expected.
16— "=" expected.
17- "begin" expected.
18- error in declaration part.
19- error in field list.
20- "," expected.
21- "%¥v expected.
50- error in constant.
51- ":=" expected.
52- "then" expected.
53- "until" expected.
54- "do" expected.
55— "to" or "downto" expected.
56- "if" eupected.
57- "file" expected.
58~ error in factor.
%9- error in variable.
101- identifier declared tuice.
102- low bound exceeds highbound.
103- identifier is not of appropiate class.
t04- identifier is not declared.
105~ sign not allowed here.
106- number expected.
107- incompatible subrange types.
108- file not allowed here.
109- type must not be real.
110- tagfield type must be scalar or subrange.
111- incompatible with tagfield type.
112- index type must not be real.
113- index type must be scalar or subrange.
114- base type must not be real.
115- base type must be scalar or subrange.
116~ error in type of standard procedure parameter.

117-
118-
119-
120-
121-
122-
123-
124-
125-
126-
127-
128-
129-
130-
131-
132~
133-
134-
135-
136-
137-
138-
139-
140-
141~
142
143~
“luf
145-
146~
147-
148~
149~
150~
151-
152-
153-
154~-
155~
156~
i57-
168~
159-
160-
161~
162~
163-
164-
165-
166-
167-
168-

PAGE 47

unsatisfied foruard reference.

forward reference type iden*ifier in variable declaration.
forward declared; repetition of parameter list not allowed.
function result type must be scalar, subrange, or pointer.
file value parameter not allowed.

forward declared function; repetion of result type illegal.
nissing result type in function declaration.

f-format is for real type only.

error in type of standard function parameter.

number of parameters does not agree with declaration.
illegal parameter substitution.

result type of parm function does not agree with declaratn.
type conflict of operands.

expression is not of set type.

only tests on equality allowed.

strict inclusion not allowed.

file comparison not allowed.

illegal type of operand(s).

type of operand must be boolean.

set element must be scaldr ¢or subrange.

set element types not compatible.

type of variable is not an array.

index type is not compatible with declaration.

type of variable is not a record.

type of variable must be a file or pointer.

illegal parameter substitution.

illegal type of loop control varlable.

illegal {ype of expressxon

type conflict.

assignment of files not allowed.

label type 1nzompat1b1e with selecting expression.
subrange bounds must be scalar.

index type must not be integer.

assignment to standard function is not allowed.

assignment to formal function is not allowued.

no such field in this record. |

type error in reéad.

agtual parameter must be a variable.

control variable may not be declared on intermediate level.
multiply defined case label.

too many cases in case statement.

missing corresponding variant declaration.

real or string tagfields not alloued.

previous declaration was not forward.

duplicate forwuard declarations.

parameter size must be constant.

missing variant in declaration.

substitution of standard procedure/function not allowed.
multidefined label.

multideclared label.

undeclared label.

undefined label.

169-
170~
171-
172-
173~
174~
175-
176~
177~
178~
179-
180-
181-
201-
202-
203-
204~
205-
206-
250-
281~
252-
253~
254~
255-
256-
257-
258-
259-
260-
300~
301~
302-
303-
304
390-
398-
399-
400-
401-

PAGE 48

error in base set.

value parameter expected.

standard file was redeclared.

undeclared external file.

FORTRAN procedure or function expected.

Pascal procedure or function expected.

missing file "input® in program heading.

missing file "output™ in program heading.
assignment to function identifier not allowed here.
multiply defined record variant.

X-opt of actual procsfunc does not match formal declaration.
control variable must not be formal.

constant part of address out of range.

error in real constant- digit expected.

string constant must not exceed source line.
integer constant exceeds range.

8 or 9 in octal number.

zero length string not allowed.

integer part of real constant exceeds range.

too many nested scopes of idéntifiers. .

too many nested procedures ahd/or fuplctiohs.

too many forward references of proctdure éntries.
procedure too long. ‘

too many long constants in this procedures.

too many errors in this source line.

too many external references.

too many externals.

too many local files.

expression too complicated.

too many exit labels.

division by zero.

no case provided for this value.

index expression out of bounds.

value to be assigned is out of bounds.

element expression out of range.

premature end of program, (bad program structure).
implementation restriction.

variable dimension arrays not implemented.
illegal expression.

compiler consistency check !

PAGE 49

2- Pascal post-processor error messages:

253~

254-

256-

259~

263~

281-

282-

300-

302-

501-

Procedure too long (larger than 8K bytes).

--> Divide (the procedure) and conquer.

Too many long (string) constants.

--> Recompile the Post_Processor with a larger value for
MXSTR.

Too many Procedures/Functions referenced in this Proc.

-=> Recompile the Post_Processor with a larger value for
MXPRC.

Expression too complicated.

~-=-> Simplify the exupression by rearranging ands/or breaking.
Too many (Compiler generated) Labels in this Procedure.

~-=> Recompile the Post_Processor with a larger value for
MXLBL.

Too many Integer constants in this Procedure.

-=> Recompile the Post_Processor with a larger value for
MXINT

Too many Doubie Word (REAL,SET) constants in this
Procedure. '
--> Recompile the Post_Processor with a larger value for
MXDBL. .

Divide by Zero (result of constant propagation).

-=> Fix up the (constant) expression evaluating to Zero.
Index/subrange value out of range (constant propagation ?)
-=> Fix up the (constant) expressiohito be within range.
Array component too large (larger than 32K).

-=~> Reduce the range of the lagst (rightmost) indecies of
the array andsor reorder the dimensions of the array so
that they are ordered frém the largest (leftmost) ¢to the
smallest (rightmost).

Compiler/Post-processor concistancy checks:

601~
602-
604-
605~
606
607-
608~
609-

611-
612-
613-
614~

Type conflict of operands in the P_Progran.

Operand should be of type 'ADR'.

Illegal type for run-time checking.

Operand should be of type 'BOOL'.

Undefined P_Instruction code.

Undefined Standard Procedure name.

Displacement field (of address) out of range.

Small Proc Larger than U4K.

--> Recompile the Post_Processor with "SHRT_PROC = 300".
Bad INTEGER alignment.

Bad REAL alignment.

Bad REAL constant.

Inconsistent Procedure Table file "PRD".

-=> Fix the JCL and/or the 'QRR' output of the compiler.

PAGE 50 —~

3- Runtime error messages: .

1001-
1002~
1003-
1004~
1005~
1006-
1007-
1008-
1009-
1010-
1011~
1012-
1013~
1014
1020~
1021-
1022~
1023-

200X-

3001-

X1XX-

index value out of range.

subrange value out of range.

actual parameter out of range.

set member out of range.

pointer value invalid.

stack/heap collision (i.e. program needs mor stak space).
illegal input/reset operation.

illegal output/reurite operation.

synchronous is/70 error.

program exceeded the gspecified running time.

invalid file definition.

not enough space available.

undefined or obsolete submonitor call (should not occur).
LINELIMIT exceeded for output file.

illegal input past end of file.

bad BOOLEAN on input.

bad INTEGER on input.

bad REAL on input.

program interruption code 'X°',
--> enable debug option 'D+' and rerun the progranm. ' _ .fﬁ\

external error (e.g. bad parameter to math routines etc.)

unable to call on 'snapshot' after a run error

(this happens if there is not enough space or if snapshot
was not included 1in the load module or if the nosnap
parameter was specified in jcl) other digits of the return
code to be interpreted as above

