

PAGE 31

2- If LRECL' is unspecified. it defaults to a basio value of 80
lor all fll.a except OUTPUT; for that fi1e it is 132. If
the RECF" include. the V attribute. 4 is added to the basic
value. If the RECF" includes the A or" attributes, an
additional 1 is added.

3- If the BLKSIZE is unspecified, then the default depends on
whether the RECF" includes the V, F or U attribute.
V: BLKSIZE i. set to 1600 for all files except OUTPUT, for

that file it is 3200.
F: BLKSIZE i. dhosen to be the largest multiple 01 LRECL

that does not exceed the numbers given above for REC'"=V.
However, if this would cause BLKSIZE to be zero, then
BLKSIZE i. made equal to the LRECL value.

U: The BLKSltE is set equal to the LRECL.

4- If BurNO is unspecified, it default. to 3 lor all liles
except OUTPUT; for that file it defaults to 5.

To cOhfor. to the .pecificatidn of. the aevised Report �o�~�
Pa.ca1. an extra blank i. inserted at �t�H�l�.�~� end of every reoord of
a textlile on input. For �~�x�a�m�p�l�e�,� ! F is a textfile then
�.�u�c�c�e�.�s�i�~�e� calls to GET(r) �~�i�l�l� step ta �t�h�~�o�u�g�h� all the
charact.ra in th. current �i�n�p�~�t� record. �~�h�e�n� Fa is th. last
character, another call to GET(r) will cause ra to be a blank and
EOL"(r) to become True. One more call of GET(r) �~�i�l�l� atet F. to
the first character of the next �r�~�c�o�r�d�.�

At the end of a textfile, the actions are as follows.
Suppbae that Fa refers to the last character in the last record
of the input file F. Then a call to GET(r) will make �E�O�~�N�(�F�)�

t rue an d m �~� keF a ; b e a b 1 an k, h owe v erE 0 F (r) iss t ,i 1 1 f a 1. e . On e
more call of GET(r) causes EOLH(r) and EOF(r) to bdth be true and
F. is .till a blank. More �c�a�l�l�~� of GET(F) do not change this
situation.

Character-by-character input beyond the end-ai-file marker
do.s not cause a �r�u�~�-�t�i�m�e� error �~�l�a�n�k�s� ar. simply read.
However, �a�n�~� attempt to read a Booleah, Integer or Real value
past the end of tile causes a run-time error.

4.2 �P�r�o�c�e�d�u�r�e�~�F�u�n�c�t�i�o�n� Call Mechanism and Stack Organiz.tion.

Procedure Calls follow the usual OS conventions. In
addition, register 12 (aPR 12) points to the base (bottom) of the
STACK, serving as the base register for the GLOBAL variables. GPR
13 points to the base of the data area (activation record) of the
currently active procedure, �s�~�r�v�i�n�g� as Base Register for the
(very) LOCAL veri.bles. Everything in between (i.e. non LOCAL,
non GLOBAL) is accessed by loading the base address of the

�~� associated activation record from the DISPLAY table into a

PAGE 32

temporary register (aPR 14 or 1). The DISPLAY table, consisting
of 1 entry per static nesting level of the progra., is within the
GLOBAL data frame and thus always aece.sible. Note that GLOBAL
program variables start after the CHARacter Fila buffers and the
variables defined within prooedures, depending on whether the
fPRs are saved or not, start after the rPR Save Area or Function
result location. This sch.~. allows GPR 13 to point to a
Register Save Area (with the usual forward/backward links) while
being the LOCAL data Base Register at the sa.e time.

The ourrent value of the HEAP pointer is kept in the
location following the GPR Save Area and this location
corresponds to the 'NP' register of the P_Machine. GPR 10 and 11
are used as Base Registers for the currently active Procedure and
GPR 2 .. 9 as well as FPR 2 .. ~ make up the expression evaluation
stack. For more information on the organization of Run-Time stack
and the use of the Display Table aee [31 and (~I.

The following table shows thl ~tate bf the STACK/HEAP
structure whil. running a , •• cal program.

STACK . ~

GPR12--> 000- GLOBAL (bottom of run-ti •• STACK)
004- Back Link, Save Area.
008- Fotward Link, Save Area.
012- GPR Sav. Area, (GPRt4 .. GPR12).

072- Current HEAP (HEW) Pointer, 'NP'.
076- End of Heap Pointer, 'NPO'.
080- FPi Save Area.

112- Fix/Float Conversion Constant •. (~ Double Words)

144- DISPLAY(1)

180- DISPLAY(101
248- INPUTa (INPUT file buffer)
249- OUTPUTI (OUTPUT file buffer)
250- PRoa (PRO file buffer)
251- PRRa (PRD file buffer)
252- QRDti (QRb file Buffer)
253- QRRa CQRR file buffer)

(buffers for other files)

280- DATE

~

GPR13-->

NP -->

HPO -->

HEAP

290- TIME
300- OSPARM

PAGE 33

30~- First (user declared) GLOBAL pro~ra. variable.

8n+0 LOCAL (current Stack Frame)
+004 'ack Link, Save Area.
+008 Forward Link, Save Area (NIL at this time).
+012 GPR Save Areat (GPR14 .. GPR12).

+072 FUNCTION result, (unused in case of PROCEDUREs)
+080 FPR save area (optional)
+080 LOCAL (first local variable if FPRs not saved)

+,112 LOCAL (first local variable, if FPRs saved)

Hext (to be) allocated DYNAMIC variable.

(HEAP area already allocated)

8j End of HEAP and user data space.

Hote: program variables are allocated in the order df
declaration within each declaration group and the address
appearing in the sourc~ listing produced by the compiler, is the
address of the first variable allocated in that group. For
example the program listin~:

, 304 0
2 304 1
3 316 1
4 318 1

PROGRAM HONSEHSE(OUTPUT) J
VAR I j J, K : INTEGER;

CH, HXTCH : CHAR;

means that Location 304
308
312
316
317

is assigned to the variable I,

etc,

J,
K,
CH,
HEXTeH,

PAGE 34

The comments preceding the source code of the compiler,
postprocessor and the I/O module also provide some useful
information for those interested in the organization of the run­
time environment.

4.3 Hints on Run Time Errors

In case you encounter a run-time error while running a
program (i.e. a program ABEND), first check the following points
before resorting to the OS generated DUMP.

1) See if the appropriate options are specified (e.g., you should
not run a program with the C- option selected).

2) Make sure all the files used in the program appear in the
parameter list of the PROGRAM statement, and/or they are
RESETed/REWRITten before any operation ,·takes place. Also note
that the direction of operation _houle! be '~(jlDPatibie with the
file and/or the previous RESET/REWRITE on that file (i.e. no READ
from dutput or after a REWkITE etc.) If the run-time check is
enabled (either by default or an eKplicit 'D+') or a Run Profile
(execution frequency of program statemants) is requested by the
tK+t switch, it is important that the JCL for the additional
Symbol Table and/or Counter files are properly included in the
user program. A missing or incorrect DD statement for such files
may cause the program to be ter~inated in the Pascal monitor
without a clear conhedtion to the user program.

3) Check that there is a DD statement for every ft"le used in the t
progt.m and RECFM, LRECL and BLKSIZE have acceptab e values.

4) The size of the region in which you run the program should be
sufficient to accommodate the code as well as data. The program
listing gives you an approKimate idea of the size of the program
and the data area. Recursive procedures however, depending on
how deep the recursion goes, may need much more space than the
size of their local variables may suggest. You can check to see
if the run-time STACK and HEAP are colliding by comparing the
HEAP pointer (at GPR128+72) and GPR13 which points to the base of
the LOCAL data area.

5) Check for bad (uninitialized, out of range) indices as well as
illegal pointer references caused by uninitialized/NIL pointers
in the procedure causing the ABEND.

Also see the eKtended run-time checking facilities (the D+
compilation option).

PAGE 35

~.~ storage Saving Considerations

In general the P_Code aSlembler trades memory for speed and,
in partioular, it prefers a sequenoe of RX and IR type 370
instructions over the corresponding SS type instructions which
tend to be more compaot though usually slower (the difference is
quite noticeable on the larger 370 models). However, it is
possible to reduce the storage requirement of your program in
certain cases.

1) Dynamic storage is currently allocated on 8-byte boundaries.
I! you do not use this kind of storage for REAL values, you
can change the alignment factor to 4 (= INTSIZE) as opposed to
8 (~REALSIZE) in the Procedure HEW1 of the Compiler. This
should improve memory usage specially if dynamic storage is
heavily used.

2) The current sub-mdnitor releases some 36K byt.s of storage to
be used for I/O buffers .. This .p~Re could. be reduced \0 as
little as 81(, leaving the rest for the user program, by using
smaller BLKSIZEs for the files. Bt reducihg the abbve space
to 8K, you can compile the Compiler in a 128K region.

3) If you group variables and fields& with the same (internal)
type together, you may impr~ve tn. storage utilization by
cutting down on fragmentation of the memory. T~is is
particularly important in the case of ARRAYs Of RECORD. which
contain fields of differe~t types. The rearrangement of
fields, however, should not be done at the expense of clarity
and logical contipuity of data declarations.

4) See the '.ck Option in section 2.3.8.

PAGE 36

s. Examples

The following program (a small deviation from the standard
Factorial example) shows a simple -and very expensive- ·way of
generating a table of Fibonacci Numbers and it is also meant to
illustrate the Compilation. Post_Processing and Execution of a
typical Pascal program. The compiler output has been slightly
edited to compress its width across the page.

" Sample Program, including the n~cessary JCL "

// JOB
//TEST EXEC PASCAL
//COMPILE.INPUT DD *

PROGRAM fib_demo(OUTPUT)

TYPE pos_int = 0 .. 30 :

VAR i
time

: pos_int ;
: INTEGER ;

FUNCTION fibonacci(j :pos_int) : INTEGER
(*To evaluate fibonacci' j. for j >= 0,

subject to integer overflow·)

BEGIN
IF j = 0 THEN fibonacci := 0
ELSE IF j'= 1 THEN fibonacci := 1

ELSE fibonacci := fibonacci(j-l) + fibonacciej-2)
END :

BEGIN (*fib_demo*)
FOR i := 10 TO 25 DO

BEGIN time:= CLOCK(O)
WRIT!LN(' Fibonacci I " i:3, , is :'. fibonacci(i):6,

(Compute time ='. CLOCK(0)-time:5, , Hilli Sec.)') ;
END

END.
//

" Source Program listing generated by the Compiler"

LINE t P/D LC LVL < Stanford Pascal Compiler, Version of July-78 >

1 288 1) PROGRAM fib_demo(OUTPUT):
2 288 1)
3 288 1) TYPE pos_int = 0 •• 30i

,

.~

4
5
6
7
8
9

10
11
12
13
11f
15
16
17
18
19
20
21
22,
23

288 1)
288 1)
292 1)
296 1)
296 1)

81f 2)

81f 2)
84 2)
o 2)
5 2)

12 2)
29 2)
84 2)
81f 2)
o 1)

15 1)
18 1)
37 1)
53 1)
62 1)

VAR i : pos_int;
tille : INTEGER;

FUNCTION fibonaooi(j :p08_int) : INTEGER;
(*To evaluate fibonacci I j, for j >= 0,

PAGE 37

subjeot to integer overflow.)

BEGIN
IF j = 0 THEN fibonacci := 0
ELSE IF j = 1 tHEN fibonacci := 1

ELSE fibonacci := fibonacci(j-1) + fibonacci(j-Z);
EHD;

BEGI~ (*fib_dello*)
FOR i := 10 TO 25 DO

BEGIN time:= CLOCKCO);
WRITELN(' Fibonacci' ., i:3, , is :', fi.onacci(I):6,

(Compute time =', CLOCK(0)-tlme:5, ' "illi Sea.)');
END;

END.

**** HO SYHTAX ERROR(S) DETECTED.

**** 23 LINECS) READ, 1 PROC£DURE(S) COMPILEb,

**** 94 P~IHSTRUCTIONS GENERATED, 0.04 SECONDS IN COMPILATION.

" post_processor messages "

**** NO ASSE"BL~ ERROR(S) DETECTED.

**** 6?2 BYTtS OF COD! GENERATED. O,oS SECONDS IN P_CODE ASSEMBLY.

" Output of the Sample Program "

Fibonaooi I 1 0 is 55 (Compute time = If Milli Sec.)
Fibonacci I 1 1 is 89 (Compute time = 5 Milli Sec.)
Fibonacci I 12 is 144 (Compute time = 8 "i11i Sec.)
Fibonacci • 13 is 233 (Compute time! :: 12 Milli Sac.)
Fibonacoi I 14 is 377 (Compute time = 19 Mi1li Sec.)
Fibonacci I 15 is 610 (Compute time = 31 Mi11i Sec.)
Fibonacoi I 16 is 987 (Compute time = 51 "ill~ Sec.)
Fibonacci I 17 is 1597 (Compute time = 83 Mi11i Sec.)
Fibonacoi I 18 is 2584 (Compute time = 133 "i Iii Sec.)

PAG·! 38

Fibonacci I 19 is 4181 (Compute time = 215 l1illi Sec.)
Fibonacci I 20 is 6765 (Compute time = 348 Hilli Sec.)
Fibonacci • 21 is 10946 (Compute time = 565 Milli Sec.)
Fibonacci I 22 is 17711 (Compute t!me = 9111 Hilli Sec.)
Fibonacci • 23 is 28657 (Compute time = 1475 Milli Sec.)
Fibonacci I 24 is 46368 (Compute time = 2386 Milli Sec.)
Fibonacci • 25 is 75025 (Compute time = 3862 l1il1i Sec.)

The following is the result of running the same program
after having been modified to cause a Run Error.

" Output of the Compile/Post_Process step"

LINE t P/D LC LVL < Stanford Pascal Compiler, Ver.ibrt of July-78 >

1
2
3
14
5
6
7
8
9

10
1 1
12
13
14
; 5
16
17
18
19
20
21
22
23

288 1) PROGRAM fib_demo(OUTPUT);
288 1)
288 1) TYPE pos_int = 0 .. 30;
288 1)

288 1) VAR i : pos_inti
2 9 2 1) t i 1ft e : I H T·E d t R :
296 1)
296 1) FUNCTION fibonaeci(j :pos_int) : INTEGER;

84 2) (*To evaluate fibonacci t j, for j >= 0,

84 2)
84 2)

o 2)
5 2)

12 2)
29 2)
84 2)
84 2)
01)

15 1)
18 1)
37 1)
53 1)
62 1)

subject to integer overflow*)

BEGIN
IF j = 0 TdEN fibonacci := 0
ELSE It j = 1 THEN fibonacci := 1

tLSE fibonacci := fibonacci(j-1) + fibonacci(j-3);
END;

BEGIN (Ifib_demo l)
FO R i : = 10 TO 25 DO

BEGIN time:= CLOCKCO);
WRITELN(' Fibonacci I '~ i:3~ , is :'~ fibonacci(i):6,

(Compute time =', CLOCK(0)-time:5, , Mil11 Sec.)');
END;

END.

NO SYNTAX ERROR(S) DETECTED.

23 LINECS) READ, 1 PROCEDURE(S) COMPILED,

94 P_INSTRUCTIONS GENERAT~D, 0.04 SECONDS IN COMPILATION.

~

PAGE 39

**** NO ASSEMBLY ERRORCS) DETECTED.

**** 672 BYTES or CODE GENERATED, 0.05 SECONDS IN P_CODE ASSEMBLY.

" output of the GO step "

Fibonacci t 10 is :
•••• SNAPSHOT DUMP or PROGRAM ****

**** 'SNAPSHOT' was called by --) 'Pascal_MONITOR'
-*-- Run Error: 1002 from line: 1lJ of procedure: 'fibonacci'
**** SUBRANGE VALUE OUT or RANGE
**** The offending value: -1 is not in the range: O •• 30

**** Variables for 'fibonacci' are:

j = 2

•• *. procedure 'fibonacci' was called by --). 'fibonacci' from line: llJ

.* •• Variables for 'fibonacci' are: ...

r"\ ~ j = 3

***. procedure 'fibonacci' was called by --) 'fibonacci' from line: llf

.**- Variables for 'fibonacci' are:

j = 4

**** procedure 'fibonacci' was called by --) 'fibonacci' from line: PI

•••• Variables for 'fibonacoi' are:

j ;: 5

•• *. procedure 'fibonacci' was called by --) 'fibonacci' from line: 11f

**** Variables for 'fibonacaj' are:

j = 6

._** procedure 'fibonacci' was called by --> 'fibonacci' from line: 14

.*** Variables for 'fibonacci' are:

j = 7

.*** procedure 'fibonacci' was called by --> 'fibonacci' from line: 14

PAGE 40

**.* Variables for -fibonacci' are:

j = 8

* •• * procedure 'fibonacci' was called by --> 'fibonacci' from line: 14

**** Variables for 'fibonacci' are:

j = 9

.*** procedure 'fibonacci' was called by --> 'fibonacci' from line: 14

•••• Variables for 'fibonacci' are:

j = 10

•••• procedure 'fibonacci' was called by --> '.MAIHBLK' from line: 20

**** Variables for 'tMAINBLK' are:

i =
time'

10
= 25

-*** END OF DUMP ****

(

The following is the reiult of yet another tun of the same
program with the 'K+' option. The (only) source listing is
gerierated by the last ~tep in the run and it followes any other
output that the user program may prooduce. The ~rototype JeL for
this run is pro~ided in section 3(t). (Note the increased
"compute" tima.)

" Output of the Compile/Post_Process step"

**** NO ASSEMBLY ERRORCS) OETECTED.

**** 804 BYTES OF CODE GENERATED. 0.06 SECONDS IN P_CODE ASSEMBLY.

tt Output of the GO step - including the Profiler output "

Fibonacci I 10 is 55 (Compute time = ~ Hil1i !ec.)
Fibonacci I 1 1 is 89 (Compute time = 5 Milli Sec.)
Fibonacci I 12 is 144 (Compute time = 8 Mil1i Sec.)
Fibonacci I 13 is 233 (Compute time = 13 Milli Sec.)
Fibonacci I 14 is 377 (Compute time = 20 Milli Sec.)
Fibonacci I 15 is 610 (Compute time = 33 Milli Sec.)
Fibonacci I 16 is 987 (Compute time = 54 Milli Sec.)

,,-...
PAGE Ifl

Fibonacci • 17 is 1597 (Compute time .= 87 l1illi Sec.)
Fibonacci I 18 is 2584 (Compute time = lifO l1illi Sec.)
Fibonacci • 19 is 4181 (Coml»ute time = 227 Milli Sec.)
Fibonacci I 20 is 6765 (Compute time = 369 l1illi Sec.)
Fibonacci • 21 is : 10946 (Compute time = 595 l1illi Sec.)
Fibonacci I 22 is 17711 (Compute time = 963 l1illi Sec.)
Fibonacci • 23 is 28657 (Compute time = 1562 l1illi Sec.)
Fibonacci I 24 is 46368 (Compute time = 2527 l1illi Sec.)
Fibonacci • 25 is 75025 (Compute time = 4092 Milli Sec.)

/

" ouput of the PROFILE step "

LINE I RUN CNT LVL < Stanford Pascal Compiler, Version of July-78 >

1
2
3
&f
5
6
7
8
9

1) (*tK+*)
1) PROGRAM fib_demo(OUTPUT):

10

1)
1)
1)
1)
1)
1)
1)
2)

11 2)
12 2)
13 121338 2)
14 196329 2)
15 317651 2)
16 635318 2'
17 2)
18 2)
19 1 1)
20 16 1)
21 16 1)
22 16 1)
23 16 1)
24 1 1)

VAR i
time

pos_int;
lNTEGER;

FUNCTION fibonacci(j :pos_int) : INTEGER;
(*To evaluate fibonacci I j, for j >= 0,

subject to integer overflow*)

BEGIN
IF j = 0 THEN fibonacci :Z 0
ELSE IF j = 1 THEN fibonacci := 1

ELSE fibonacci := fibonacci(j-l) + fibonaQciCj-2);
EN'b;

BEGIk (*fib_demo*)
FOR i : = 10 TO 25 DO

BEGIN time:= CLOCK(O);
WRITELN(' Fibonacci •• , i:3, , is :', fibonacci(i):6,

(Compute time =', CLOCK(0)-time:5, , l1i11i Sec.)');
END;

END.

**** NO SYNTAX ERROR(S) DETECTED.

**** 24 LINECS) READ, 1 PROCEDURECS) COMPILED,

**** 100 P_INSTRUCTIONS GENERATED, 0.05 SECONDS IN COMPILATION.

PAGE 42

6. Changed Features and Hew Options

The following list is provided as a convenience to users of
previous versions of Stanford Pascal. The list briefly mentions
the features that are new or ara implemented differently from the
earlier versions. These features either correspond to the
standard Pascal now, as described in Jensen and Wirth (1), or are
described in an earlier section of this document.

-Global textfiles may now be declared .nd passed as VAR
parameters to procedures or functions.

-The character set is now the EBCDIC character set and not the 63
character set that corresponded to the CDC Scientific character
set.

-The predefined constant MAXIHT, the predefined types ALFA and
TEXT, the predefined functions and procedures PAGE, ROUHD,
tIMEt!MIT, CARD, SKIP and EXPO are provided.

-The predefined variables DATE, TIME and OSPAR~ are added.

-The sub-monitor now handle. most IBM fiie for.~ats.

-The sub-monitor now supports input and output of Boolearis.

-The sub-monitor now checks the format of Booleans, integers and
reals that are input. It also rejeqts any attempt to tead any of
these same datatypes when the end of file is reached.

-the sub-monitor will automatically
generator (PASPROF load module) if
run counts to the QRR file (i.e.,
compiled with tHe K+ option).

invoke the execution profile
the Pascal eKecution outputs
if the Pascal program was

-The input of character strings is now handled differently.

-The JCt parameters passed to the sub-monitor now include HOSHAP,
kOSPIE and HOCC.

-Us~r parameter strings may be passed to the Pascal program.

-comments may be nested (under control of the 'H+' compilation
option).

-The M (margins) compilation option has an eKtended meaning.

-The sequence number field on input cards (col.s 73-80) no longer
is printed instead of the source line number when M+ is
specified.

PAGE Cf3

-Compilation input is no longer restricted to card image format.
The input may oontain any of the allowed file formats, but only
the first 120 characters in·each record are significant.

-The M (margins) compilation option has an extended meaning.

-The sequence number field on input cards (col.s 73-80) no longer
is printed instead of the souroe line number when M+ is
specified.

-Compilation input i8 no. longer restricted to card image format.
The input may contain any of the allowed file formats, but ~nly
the first 120 characters in each record are significant.

-Subranges such as 1 •• 10 are acceptable labels in CASE statements
or the variant parts of records. Also subranges may appear in
con s tan t s 0 f t y peS E T ; e . g ., [1 •• 4 J i s eq u i val en t t 0 [" 2 , 3 , 4 J •

-Functions of type SET may be declared.

-The tag field of a Case variant record .ay tie lett unnamed.

-The offsets of variables in
differently.

-the first
significant.

12 characters of

the stack are now assigned

Pasoal identifiers are now

-Lower case letters may be used in identifiers and reserved
words.

-External Pascal procedures may be created and used.

~rORTRAN subroutih.s/function~ may be called from ~l.cai
programs. (A separate version of the sub-monitor is not reqUired
for this.)

-The different versions of the run-time support routine PMONSRC
are now merged into a· single progrllm and with the use of
(boolean) assembly time SWitches, one may get the compact object
form suitabl. for system ~rograms, or the full sized object to be
used in conjunction with user programs.

PAGE qq

Acknowledgements

This note owes a great deal to Nigel Horspool of McGill
University who, amongst other things, converted a group of
chronologically ordered sections into the present document. He
also upgraded the I/O interface to provide support for various OS
file formats. The SNAPSHOT routine is written by Eral Waldin of
SLAC and the run-time profile gen.rator PRorlLER is due to
Richard Sites of Los Alamos Scientific Laboratory. The programs
in the TESTLIB are oontributed by many people and it is hoped
that it will evolve into a library of utility routines of general
interest to Pascal users.

References:

(1) K. JENSEN, N. WIRTH~ 'Pascal, User Manual and Report' (2nd
ed.), Springer-Verlag, Hew York, '975.

[21 K. HORI, U. AMMAN, K. JENSEN, H~ NAGEL. 'The Pascal "PH
Compiler, Implementation Not"i~ 8erichte des Instituts
fur Informatik, E.T.H. Zurich, bi:c. 1974.

(3) D. GRIES. 'Compiler Construction for Digital Computers', John
Wi 1 ey and Sons, New Yo rk, . 1971 .

("I) S. HAZEGHI. 'Bootstrap and Adaptation of a Pascal Compiler on
the IBM/370 System', CGTM-194, Stanford Linear Accelerator
Center, July 1979.

[5J S. HAZEGHI, L. WANG. 'A Shott Note on High Lev.l Languages
and Microprocessors', Conference Proceedings of the 2nd West
Coast Computer Fair, Saq Jose, CA., March 1978.

[6 J E. GILBERT, D. WALL. 'SOPAIP!LLA Mail1tenance Manual', CSL
Technical Report no. 158, Stanford University, March 1978.

[7] B. HITSON. 'Pascal/P_Code Cross Compiler for the LSI-11',
SLAC-PUB-~246, Stahford Linear Accelerator Center, Jan. 1979.

Sassan Hazeghi, Nov. 1976.

Computation Research Group,
Stanford Linear Accelerator Center,
BOH 4349,
Stanford, CA. 94305.

Phone (415) 854-3300 x2359.

Date of last update:

PAGE '15

Jan.-26-77.
Har.-04-77.
May -20-77.
June-09-77.
Hov.-15-77.
Jul.-28-78
Sep.-18-78
May -20-79
July-01-79
Aug -09-79
Oct.-18-79

Appendix A

1- Pascal compiler error messages:

1- error in simple type.
2- identifier expected.
3- "program" expected.
4- H)" expected.
5- ":" expected.
6- illegal symbol.
7- error in parameter list.
8- "of" expected.
9- "(" expected.

10- error in type.
11- left square br~cket expected.
12- right square bracket expected.
13- "end" expected.
1'1- ";" expected.
15- integer expected.
16- "=" expected.
17- "begin" expected.
18- error in declaration part.
19- error in field list.
20- "," expected.
21- "*" expected.
50- error in constant.
51- ":=" expected.
52- "then" expected.
53- "until" expected.
54- "do" expected.
55- "to" or "do~nto" expected.
56- "if" expected.
57- "file" expected.
58- error in factor.
59- error in variable.

101- identifier declared twice.
102- low bound exceeds highbound.
103- identifier is not of a~propiate class.
10'1- identifier is not declared.
105- sign not allowed here.
106- number expected.
107- incompatible subrange types.
108- file not allowed here.
109- type must not be real.
110- tagfield type must be scalar or subrange.
111- incompatible with tagfield type.
112- index type must not be real.
113- index type must be scalar or subrange.
114- base type must not be real.
115- base type must be scalar or subrange.
116- error in type of standard procedure parameter.

PAGE '16

..

117-
118-
119-
120-
121-
122-
123-
1211-
125-
126-
127-
128-
129-
130-
13'-
132-
133-
134--
135-
136-
137-
138-
139-
140-
1111-
142-
1113-
144-
1115-
146-
147-
148-
149-
150'"
'51-
152-
153-
1511-
155-
156-
;57-
1S8-
159-
160-
161-
162-
163-
164-
165-
166-
167-
168-

PAGE 117

unsatisfied forward referenc~.

forward reference type iden~ifier in variable declaration.
forward declared; repetition of par •• eter list not allowed.
function result type must ba scalar, subrange, or pointer.
f~le value parameter not allowed.
forward declared function; repetion of result type illegal.
missing result type in function declaration.
f-format is for real type only.
error in type of standard function paraaeter.
number of parameters doe~ not agree with declaration.
illegal parameter 8ubstitution.
result type of parm function does not agree with declaratn.
type conflict of operands.
exprelsion is not Of set type.
only tests on equality all~wed.
strict inclusion not allowed.
file comparison not allowed.
illegal type of operand(s).
type of operand must be boolean.
set element must b~ scal~r ,r su~range.
set element types not co*patible.
type of variable is not an array.
index type is not compatible with declaration.
type of variable is not a record.
type of variable must be a file br pointet.
illegal para~~ter substitutfbn.
illegal type of loop control variable.
illegal type of expression.
type conflict.
assignment of fiies not allowed.
l.~el type inqompatible wiih seleatin~ expression.
subrenge bounds must be scalar.
index type must not be integer.
aSSignment to standatd function is hot allowed.
aSSignment to formal fUrlction is not allowed.
no such field in this record. \
type error in read.
aotual patameter ~ust be a variable.
control variable may not be declated on inter •• diate level.
multiply defined case label.
too many cases in case statement.
missing corresponding variarit declaration.
real or string tagfields not allowed.
previous declaration was not forward.
duplicate forward declara,tions.
par a met e r s i 2 emu s t bee o:n s tan t .
missing variant in declaration.
sUbstituti·on of standard procedure/function not allowed.
multidefined label. '
multideclared label.
undeclared label.
undefined label.

169- error in base set.
170- value parameter expected.
171- standard file~as redeclared.
172- undeclared external file.
173- FORTRAN procedure or function eKpected.
174- Pascal procedure or function expected.
175- missing file "input" in program heading.
176- missing file "output" in program heading.
177- assignment to function identifier not allowed here.
178- multiply defined record variant.

PAGE 48

179- X-opt of actual proc/func doe. not matah fQrmal declaration.
180- control variable must not be formal.
181- constant part of address out of range.
201- error in real constant- digit expected.
202- string constant must not exceed souroe line.
203- integer constant eKceeds range.
204- 8 or 9 in octal number.
205- zero length string not allowed.
206- integer part of real constant exceeds range.
250- too many nested soopes of id'~tlfierlf. ,.
211- too many n •• ted procedUres and/or·fu'ctio~ •.
252- too many forward refer*rices of pr~c~aure ~ri\~ies.
253- procedure too long.
254- too many long constants in this procedures.
255- too many errors in this source line.
256- too many external r_ferences.
257- too many externals.
258- too many local files.
259- expression too complicated.
260- too many exit labels.
300- division by zero.
301- no case provided for this value.
302- index expression out of bounds.
303- value to be assigned is out of bounds.
304- element expression 6ut of range.
390- premature end of program, Cbad prograM structure).
398- implementation restriction.
399- variable dimension arrays not implemented.
400- illegal expression.
~01- compiler consisteney check!

•

PAGE 49

~. 2- Pascal post-processor error messages:

•

253- Procedure too long (larger than 8K bytes).
--> Divide (the procedure) and conquer.

25~- Too many long (string) constants.
--> Recompile the Post_Processor with a larger value for
MXSTR.

256- Too many Procedures/Functions referenced in this Proc.
--> Recompile the Post_Processor with a larger value for
HXPRC.

259- Expression too complicated.
--> Simplify the expression by rearranging and/or breaking.

263- Too many (Compiler generated) Labels in this Procedure.
--> Recompile the Post_Processor with a larger value for
MXLBL.

281- Too many Integer constants in this Procedure.
--> Recompile the Post_Processor with a larger
MXIHT

Double 282- Too many
Procedure.
--> Recompile
MXDBL .

Wotd (REAL.SET) constants

a larger

300- Divide by Zero (result of constant propagation).

value for

in this

value for

--> Fix u~ the (const~nt) expression evaluating to Zero.
302- Index/subrange value out of range (constant propagation ?)

--> Fix up the (constant) expressioh. to be within range.
I

501- Array component too large (larger than 32K).
--> Reduce the range of the 'last (rightmost) indecies of
the array and/or reorder the dimehsions of the array so
that they are ordered from the largest (leftmost) to the
smallest (rightmost).

Compiler/Post-processor concistancy checks:

601- Type conflict of operands in the P_Program.
602- Operand should be of type 'ADR'.
60~- Illegal type for run-time checking.
605- Operand should be of type 'BOOL'.
606- Undefined P_Instruction code.
607- Undefined Standard Procedure name.
608- Displacement field Cof address) out of range.
609- Small Proc Larger than 4K.

--> Recompile the Post_Processor with ~SHRT_PROC = 300".
611- Bad INTEGER alignment.
612- Bad REAL alignment.
613- Bad REAL constant.
614- Inconsistent Procedure Table file "PRD".

--> Fix the JCL and/or the 'QRR' output of the compiler.

3- Runtime error messages:,

1001- index value out of range.
1002- subrange value out of range.
1003- actual parameter out of range.
100Q- set member out of range.
1005- pointer value invalid.

PAGE 50

1006- stack/heap collision (i.e. program needs mor stakspace).
1007- illegal input/reset operation.
1008- illegal output/rewrite operation.
1009- synchronous i/o error.
1010- program exceeded the specified running time.
1011- invalid file definition.
1012- not enough space available.
1013- undefined or obsolete submonitor call (should not occur).
1014- LINELIMIT exceeded for output file.
1020- illegal input past end of file.
1021- bad BOOLEAN on input.
1022- bad INTEGER on input.
1023- bad REAL on input.

200X- program interruption code ·x·,
--> enable debug option 'D+' and rerun the program.

3001- external error (e.g. bad parameter to .ath routines etc.)

X1XX- unable to callan 'snapshot' after a run error
(this happens if there is not enough space or if snapshot
was not included in the load module br if the nosnap
parameter was specified in jcl) other digits of the return
code to be interpreted as above

•

