
PL360, A Programming Language fbr the 360 Computers

N I K L A U S W I R T H *

Stanford University, Stanford, California

ABSTRACT. A programming language for the IBM 360 computers and aspects of its imple-
mentat ion are described. The language, called PL360, provides the facili t ies of a symbolic
machine language, bu t displays a s t ruc ture defined by a recursive syntax. PL360 was designed
to improve the readabi l i ty of programs which must take into account specific character is t ics
and l imitat ions of a par t icular computer . I t represents an a t t empt to fu r ther the s tate of the
art of programming by encouraging and even forcing the programmer to improve his style of
exposition and his principles and discipline in program orgailization. Because of its inherent
simplicity, the language is par t icular ly well suited for tutorial purposes.

The a t t empt to present a computer as a systematical ly organized en t i ty is also hoped to be
of interest to designers of future computers.

KEY WORDS AND PHRASES: language, programming language, symbolic machine language,
assembly language, phrase s t ruc ture language, compiler, precedence g rammar , $360, error
diagnosis, ALGOL-like

CR CATEOORIES: 4.1, 4.10, 4.11, 4.2, 4.21, 4.42

CONTENTS

Page

1. INTRODUCTIONs HISTORICAL BACKGROUND~ ANn AIMS . 38

2. DEFINITION OF THE LANGUAGE . 39

2.1. Terminology, Nota t ion , and Basic Definitions . 39
2.2. Da t a Manipu la t ion Faci l i t ies . . 42
2.3. Control Faci l i t ies . 49

3. EXAMPLES . 53
4. THE OBJECT CODE . 56
5. ADDRESSING AND SEGMENTATION . 59

5.1. Program Segmenta t ion . 60
5.2. Da t a Segmenta t ion . 60
5.3. Program Loading . 61
5.4. Problems Connected With I npu t - O u t pu t Programming . 61

6. COMPILER METHODOLOGY . , . 62
6.1. General Organizat ion . 62
6.2. Identifier Tables . 63
6.3. Handl ing of Syntact ic Errors . 64

7. DEVELOPMENT OF THE COMPILER . 66
8, PERFORMANCE . 67
9. REFLECTIONS ON THE 360 A R C H I T E C T U R E . 67
REFERENCES . 69
APPENDIX 2. EXAMPLE OF COMPILED CODE . 69
APPENmX II . FORMAT OF PL360 PROGRAMS . 70
APPENDIX I I I . PL360 SYNTAX . 72

* Present address: I n s t i t u t fair Operations Research und elektronische Da tenve ra rbe i tung
der Universi t~t Ziirieh, Sumatras t rasse 30, Ziirieh, Switzerland 8006.

Journal of the Association for Computing l~achinery, Vol. 15, No. 1, January 1968, pp. 37-74.

38 NIKLAuS WIRTtt

1. I n t r o d u c t i o n , His tor ica l Background, and Aims

:I:n an era of feverish and prolific activity in the design of more and more sophis-
ticated and intricate programming aids, the proposal of a machine-dependent lan-
guage may seem anachronistic to some readers. In this report we describe an attempt
to provide a tool for those applications where it is essential to conceive programs as
closely as possible in terms of a specific computer in order to directly take into

account its particular capabilities and limitations. These applications often require
the use of conventional assembly codes, where it is particularly difficult, if not ira.
possible, to express and clearly exhibit the structure and the characteristics of an
algorithm. The language described here is designed with the aim of providing a
clear and systematic exposition of the available computing facilities, and a to01
which encourages a programmer to write programs in a disciplined, lucid, and read-
able style while still maintaining control over the optimal use of specific machine
characteristics. The result of a systematic language design based on consistent rules
is reliability on the part of the implemented translator as well as on the part of the
user, who is discouraged from using "tricks" and is less subject to pitfalls and mis-
understandings about the nature of complicated or ill-defined facilities.

ht the summer of 1965, the author decided to undertake efforts to implement the
proposed successor to ALGOL described in [1] on the IBM 360 computer, which at
that time had been chosen as Stanford's next generation machine. I t was felt that
the evolving project should be conducted in a thorough and systematic manner,
worthy of an academic endeavor, and making use of the best, available methods on
compiler construction known. The results should consist of a well-organized system
whose structure and principles are sound and precisely understood, and which is
intelligibly documented.

After many years of experience with ALGOL, it was clearly recognized that a corn.

plier written in 360 Assembly Language would neither be able to meet the desired
documentation standards, nor constitute a sumciently convenient programming
tool. The only other language available on the 360, FOttTRAN, was not deemed ade-
quate either. Against the strong arguments of the undesirability of the large amount
of additional efforts required to produce a new language and its compiler, it was
decided to develop a tool which would (1) allow full use of the facilities provided by
the 360 hardware, (2) provide convenience in writing and correcting programs, and
(3) encourage the user to write in a clear and comprehensible style.

As a consequence of (3), it was felt that programs should not be able to modify
themselves. The language should have the facilities necessary to express compiler
and supervisor programs, and the programmer should be able to determine every
detailed machine operation. In this respect, the language features the property of
conventional assembly code. In its appearance, however, it resembles a high level
programming language due to the presence of phrase structure. Being specifically
tailored for the 360 computer, the language was named PL360.

Section 2 contains the definition of the language. I t is given in terms of a synt~xi
and the semantic explanations of the individual syntactic constructions. Knowledge
about the nature of the 360 architecture is prerequisite (cf. [2,3]); however, the
definition does not require familiarity with the 360 Assembly Ltmguage.

In Section 3 several examples of PL360 (sub)programs are given. Since PL360
allows (and requires) the programmer to denote almost every machine instruction
explicitly, its use inherently bears some of the tediousness of assembly language {

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

PL860 39

programming. However, the presence of structure in the lal~guage, and in particu-
lar the introduction of blocks, procedures, and if, for, and while clauses, helps to
improve the readability of the language significantly. It drastically reduces the num-
ber of necessary program labels and thus of invented names. The method used for
assigning base registers and initializing them with the correct values at run time
considerably eases the complicated and pitfall-loaded addressing problem of the
360 computer.

We devote Sections 4 and 5 to the implementation of PL360. We exhibit the
code which the compiler generates corresponding to various language statements,
and the method of segmentation and addressing. In Section 6 we give an account
of the organization of the compiler, which relies on a rigorous syntax analysis of the
text while at the same time generating the target code. The compiler constitutes a
large-scale practical example for the application of the techniques described in [4]
which have been extended to process incorrectly constructed texts and to mean-
ingfully diagnose errors. The success of this facility is considered to be a major
contribution to making precedence grammars useful in practical applications.

The methods employed in producing the compiler are described in Section 7. A
bootstrapping technique was used to make the compiler aw~ilable on the 360 com-
puter without prior use of any of the languages existing on that machine. Program-
ruing the compiler in its own language provided a thorough test for the adequacy
of the language to its anticipated purpose.

In Section 8 we give a brief account of the size and the performance of the trans-
lator on a 360/50 computer. Concluding remarks about the language and its im-
plementation lead to a brief examination of the appropriateness of the 360 archi-
tecture for this experiment.

2. Definition of the Language

2.1. TERMINOLOGY, NOTATION, AND BASIC DEFINITIONS

The language is defined in terms of a computer which comprises a processing
unit and a finite set of storage elements. Each of the storage elements holds a
content, also called value. At any given time, certain significant relationships may
hold between storage elements and values. These relationships may be recognized
and altered, and new values may be created by the processing unit. The actions
taken by the processor are determined by a program. The set of possible programs
forms the language. A program is composed of, and can therefore be decomposed
into, elementary constructions according to the rules of a syntax, or grammar. To
each elementary construction corresponds an elementary action specified as a semantic
rule of the language. The action denoted by a program is defined as the sequence
of elementary actions corresponding to the elementary constructions which are
obtained when the program is decomposed (parsed) by reading from left to right.

2.1.1. The Processor
At any time, the state of the processor is described by a sequence of bits called

the program status word (PSW). The status word contains, among other informa-
tion, a pointer to the currently executed instruction, and a quantity which is called
condition code.

Storage elements are classified into registers and core memory cells, simply called

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

40 NIKLAUS WIRTH

cells. Registers are divided into three types according to theii • size aud the operations
which can be performed on their values. The types of registers are:

(a) in teger or logical (a sequence of 32 bits),
(b) real (a sequence of 32 bits),
(e) long real (a sequence of 64 bits).

Cells are classified into five types according to their size and the type of value which
they may contain. A cell may be structured or simple. The types of simple values
and simple cells are:

(a) byte (a sequence of 8 bits = 1 byte),
(b) short integer (a sequence of 16 bits = 2 bytes, interpreted asan integerin

two's complement binary notation),
(c) integer or logical (a sequence of 32 bits = 4 bytes, the former to be in-

terpreted as an integer in two's complement binary notation),
(d) real (a sequence of 32 bits = 4 bytes, to be interpreted as a floating point

binary number),
(e) long real (a sequence of 64 bits = 8 bytes, to be interpreted as a floating

point binary number).
The types integer and logical are treated as equivalent in the language, and con-
sequently only one of them, namely integer, is mentioned throughout the report

2.1.2. Relationships
The most fundamental relationship is that which holds between a cell and i t s

value. I t is known as containment; the cell is said to contain the value.
Another relationship holds between the cells which are the components of a

structured cell, called an array, and the structured cell itself. I t is known as sub'
ordination. Structured cells are regarded as containing the ordered set of the values
of the component cells.

A set of relationships between values is defined by monadic and dyadic functions
or operations, which the processor is able to evaluate or perform. The relationships
are defined by mappings between values (or pairs of values) known as the operands
and values known as the results of the~ evaluation. These mappings are not to be
precisely defined in this report; instead, references will be given to their definition
in publications on the system 360 computer [5]. !:

2.1.3. The Program
A program contains declarations and statements. Declarations serve to list the

cells, ~'egisters, and procedures which are involved in the algorithm denoted by the
program, and to associate names, so-called identifiers, with them Statements specify
the operations to be performed on these quantities, to which they refer through use of
the identifiers.

A program is a sequence of tokens, which are basic symbols, strings, or com-
ments. Every token is itself a sequence of characters. The following conventions are
used in the notation of the present article:

(a) Basic symbols constitute the basic vocabulary of the language (ef. 1.6.)i i
They are either single characters or underlined letter sequences.

(b) Strings are sequences of characters enclosed in quote marks (").
(c) Comments are sequences of characters (not containing a semicolon) preceded I

by the basic symbol c o m m e n t and followed by a semicolon (;). I t is under ~
stood that during execution of a program, all comments are ignored.

Journal of the .Association for Computing Machinery, Vol. 15, No. I, January 1968

PL360 41

In order that a sequence of tokens be an executable program, it must be constructed
according to the rules of the syntax.

2.1.4. Syntax
A sequence of tokens constitutes an instance of a syntactic entity (or construct)

if that entity can be derived from the sequence by one or more applications of syn-
tactic substitution rules. In each such application, the sequence equal to the right
side of the rule is replaced by the symbol which is its left side.

Syntactic entities (ef. 2.1.5) are denoted by English words enclosed in the brackets
< and }. These words describe approximately the nature of the syntactic entity,
and where these words are used elsewhere in the text, they refer to that syntactic
entity. For reasons of notational convenience and brevity, the script letters (~, N,
and 5 are also used in the denotation of syntactic entities. They stand as abbrevia-
tions for any of the following words (or pairs) :

integer integer byte
short integer real integer
real long real short integer
long real real

long real
Syntactic rules are of the form

(A) : :=

where (A} is a syntactic entity (called the left side) and } is a finite sequence of
tokens and syntactic entities (called the right side of the rule). The notation

(A> ::= ~ [~ I [Sn

is used as an abbreviation for the n syntactic rules

(h> ::= ~1, (A) ::= ~2, . - . , (A> ::= ~,,.

If in the denotations of constituents of the rule the Script letters a, ~, or 5 occur
more than once, they nmst be replaced consistently, or possibly according to fur-
ther rules given in the accompanying text. As an example, the syntactic rule

(~ register) ::= (;~t~ register identifier)

is an abbreviation for the set of rules:

(long real register) : := (long reM register identifier)
(integer register) ::= (integer register identifier)
(real register) : := (real register identifier)

2.1.5. Syntactic Entities

Section Section
((~ cell assignment> 2.2.7 (combined condition) 2.3.1
((~ number) 2.2.2 (compound condition) 2.3.1
(alternative condition) 2.3.1
(arithmetic operator) 2.2.6 (digit) . 2.2.2

(declaration) 2.3.5

(block body) 2.3.5 (for clause) 2.3.4
(block head) 2.3.5 (for statement) 2.3.4
(block) 2.3.5 (format code) 2.2.8

(fractional number) 2.2.2
(case clause) 2.3.2 (function declaration> 2.2.8
(case sequence) 2.3.2 (function definition) 2.2.8
(case statement) 2.3.2 (function identifier) 2.2.1
(character sequence) 2.2.2 (function statement) 2.2.9

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

42 NIKLAUS WIRTH

Section Section
(go to s tatement) 2.3.6 (p r o e e d u r e identifier) 2.2.1

(p r o e e d u r e statement) 2~ 3.8
(hexadecimal digit) 2.2.2 (p r o g r a m) 2.3.5
(hexadecimal value) 2.2.2

(r e l a t i o n) 2.3.1
(identifier) 2.2.1
(if clause) 2.3.1 (sca le factor} 2, 2.2
(if statement} 2.3.1 (s e g m e n t base declaration} 2.2.11
(increment) 2.3.4 (sh i f t operator} 2.2.6
(index) 2.2.5 (s imple ~ register assignment) 2.2.6
(initial value) 2.2.4 (s imple statement} 2.3.5
(initial value list) 2.2.4 (s imple 5 type) 2.2.4
(instruction code) 2.2.8 (s t a t e m e n t) 2.3.5
(item) 2.2.4 (s t r i ng) 2.2.2

(s y n o n y m o u s cell) 2.2.10
iX register assignment) 2.2.6
(~ register synonym declaration) 2.2.10 (3 cel l declarat ion) 2.2.4
(3~ register) 2.2.1 (3 cell designator) 2.2.5

(5 cel l identifier) 2.2.1
(label definition) 2.3.5 (3 cel l synonym declaration) 2.2.10
(letter) 2.2.1 (3 n u m b e r) 2.2.2
(limit) 2.3.4 (3 p r i m a r y) 2.2.6
(logical operator) 2.2.6 (3 t y p e) 2.2.4

(3 v a l u e) 2.2.6
(monadic operator} 2.2.6 (t rue p a r t) 2.3.1

(parameter) 2.2.9 (uns igned ~ number} 2.2.2
(parameter list) 2.2.9
(procedure declaratiorQ 2.3.7 (whi le clause} 2.3.3
(procedure heading) 2.3.7 whi le s ta tement} 2.3.3

2.1.6. Basic Symbols

A IBICID[EIFIGIH[II J[K]L]MI NIOIP[QI[¢I Sl Ti U[Vl W[X[Y[Z
a i b i c l d l e l f l g l h l i l J l k l l [m l n l o l p l q [r l s l t l u l v l w [z] y l z t
0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 [
+ l - I * [/ [< l = I > 1 ~ 1 := 1 ,1 .1 ;1 :1 (I) 1 @ [,~ I ' l " l ~]
a n d I or [xor l a b s I neg I s h l l] sh r l I sh la] s h r a t
i f [t h e n] e l se [case I of l whi le [do [for] s t e p [u n t i l I
b e g i n [e n d [go to [c o m m e n t] nu l l]
i n t e g e r I r ea l [l og i ca l I b y t e I l ong [s h o r t [a r r a y I
f u n c t i o n I p r o c e d u r e [r e g i s t e r [syn] overf low]
s e g m e n t] base

2 .2 . DATA MANIPULATION FACILITIES

2.2.1. Identifiers

(letter) : := A] B [C [D J E I F I G [H [I I J] K I L [M I N] O] P [Q] R [S [T [U I
v I w I x [y [z I

a] b [c] d] e] f] g [h t i] j l k] l i m] n [o] p i q j r [s [t [u [v J w [z y[z
(identifier) : := (letter) [(identifier)(letter) J (ident i f ier}(digi t)
(~ register) : := (identifier)
(5 cell identifier) : := (identifier)
(procedure identifier) : := (identifier)
(function identifier) : := (identifier)

An identifier is a ~ register-, 5 cell-, procedure-, or function-identifier if it has re-
spectively been associated with a ~ register, 5 cell, procedure, or function (called a
quanti ty) in one of the blocks surrounding its occurrence. This associati(m is
achieved by an appropriate declaration. The ident i f ie r is said to designate the asso-
ciated quantity. If the same identifier is associa ted to more than one quantity,
then the considered occurrence designates the q u a n t i t y to which it was associated

Journal of the .Association for Computing Machinery, Vol. 15, No. 1, January [968

PL360 43

in the smallest block embracing the considered occurrence. Ii1 any one block, an
identifier must be associated to exactly (:)~e qu~mtity. In the parse of a program,
that association determines which of the rules given above applies.

Any processing computer can be considered to provide a~l eIlvironment iu which
the program is embedded, and in which some identifiers are permanently declal~d.
Some identifiers are assumed to be known M every environment; they are called
standard identifiers, and ~tre listed in the respective paragr~phs on declaratio~ts.

2.2.2. Values

(digit) : := o] 1 1 2 1 3 1 4 1 5 1 6 1 7] S] 9
(unsigned integer number} ::= (digit}] (unsigned integer number)(digit)
(unsigned short integer number) : := (unsigned integer nmnber) S
(fractional number) : := (integer number), (digit) [(fractional number}(digit)
(scale factor} : := (integer number}
(unsigned real number) : := (fractional number)] (unsigned integer number} RI

(fractional number}'(scale factor)] (unsigned integer number}'(scMe factor)
(unsigned long reM number) : := (fractionM number} L I (unsigned integer number) L I

(fractional number)'(scale factor) L [(unsigned integer number)'(scale factor) L
(~ number) : := (unsigned ~ number) [_ (unsigned ~ number}

Integer, real, and long real numbers are represented in decimal notation. The
latter two can be followed by a scale factor denoting an integral power of 10.
Short integers are distinguished from integers by the letter S following the number.
In order to denote a negative number, it is preceded by the symbol "__',.

{hexadecimal value} : := (digit} [A]B] C] D [E] F
(hexadecimal value) : := %(hexadecimal digit) [(hexadecimM vMue>(hexadecimM digit)

A hexadecimal value denotes a sequence of bits. Each hexadecimal digit stands
for a sequence of four bits defined as follows:

0 = 0000 4 = 0100 8 = 1000 C = 1100
1 = 0001 5 = 0101 9 = 1001 D = 1101
2 = 0010 6 = 0110 A = 1010 E = 1110
3 = 0011 7 = 0111 B = 1011 F = 1111

(string) ::= "(character sequence)"
(character sequence) : := (character} I (character sequence)(character)

A string is a sequence of characters enclosed in quote marks. The set of characters
depends on the implementation (cf. [2,3]). I f the character " is to be an element
of the sequence, it is represented by a pair of consecutive quote marks.

Examples:

"ABC" denotes the sequence ABC
"A'" 'Z" denotes the sequence A"Z
'""'A'"'" denotes the sequence "A"

(byte value} : := "(character}"] (hexadecimM vMue}X
(short integer value} : := (short integer number)] (hexadecimal value)S
(integer value) : := (integer number) [(hexadecimal value}
<real value) : := (real number}] (hexadecimal value)R
(long real value) : := (long real number) I (hexadecimal value)L

Journal of the .Association for Computing Machinery, Vol. 15, No. 1, January 1968

44 NIKLAUS WIIRT~: t

Examples:

byte values: "B" ~' ?" # 1FX
short integer values: 10S #FFOOS
integer values: 0 1066 __1 N 1F2E3D4C
real values: 1.0 __3.1416 2.7'8 % 46000001R
long real values: 3.14159265359L ~4E00000000000001L

Note. If hexadecimal values are used in conjunction with arithmetic operators
in a program, they must be considered as the sequence of bits which constitutes
the computer's representation of the number on which the operator is applied.
ttexadecimal values followed by the letter R or L may be used to denote numbers i~1
mmormalized floating point representation [2,3].

2.2.3. Register Declarations
The System/360 computer features 16 registers which contain integer numbers

and are said to be of type in teger (or logical). They are designated by tile follow-
ing standard register identifiers (cf. 2.1):

RO, R1, R2, R3, R4, RS, R6, R7, R8, R9, R10, R l l , R12, R13, R14, R15

Moreover, the computer features four registers which contain real numbers or long
real numbers. If those registers are used in conjunction with real numbers, they are
said to be of type real, and are designated by the standard register identifiers

F0, F2, F4, F6.

If they are used in conjunction with long real numbers, they are said to be of type
long real, and are designated by the standard register identifiers

F0I, F23, F45, F67.

The above register identifiers are assumed to be predeelared, and no further register
declarations can be made in a program (el. also 2.2.10).

2.2.4. Cell Declarations

(simple byte type) ::= byte
(simple short integer type) ::= short integer
(simple integer type) ::= i n t e ge r [logical
(simple real type) ::= real
(simple long real type) ::= long real
<5 type) ::= (simple 3 type) [a r r ay (integer number)(simple 5 type)
(3 cell declaration) ::= (5 type)(item> [<5 cell declaration), (item)
(item) ::= (identifier)](identifier) = @litial value} I (identifier } = ((initial value list))
(initial value list) ::= (initial value) I (initial value list), (initial value)
(initial value)::= <5 value> I (string}

A cell declaration introduces identifiers and associates them with cells of a speei =
fled type. The scope of validity of these cell identifiers is the block in whose heading
the declaration occurs (cf. 2.3.5). Moreover, a declaration may specify the assign=
ment of an initial value to the introduced cell. This assignment is understood to
have occurred before execution of the program has started.

If a simple type is preceded by the symbol ar ray and an integer number, say n,
then the declared cell is an array (ordered set) of n cells of the specified simple type.

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

PL360 45

An initial value list with m < n entries specifies the initial values of the first m
elements of the array.

A string is understood to stand as an abbreviation for a sequence of byte values,
i.e:

is an abbreviation of

"(ehar-1><char-2> . . . (char-n}"

"(char-l>", "(char-2}",..., "(char-n)"

Examples:

byte flag
short integer i, j
integer age = 21, height = 68
long real z, y, z = 27'3L
array 3 integer size = (36, 23, 37)
array 1000 real quant, price
array 8 byte flags
array 132 byte line

2,2.5. Cell Designators

(5 cell designator) ::= (3 cell identifier) [(5 cell identifier>(<index>)
(index) ::= (integer number)] (integer register)] (integer register) A- (integer number) I

(integer register) - (integer number)

Cells are denoted by cell designators. In the case of cells of simple type, the desig-
nator consists of the identifier associated with that cell; in the case of arrays of
ceils, the identifier associated with the array is followed by an index. The current
value of that index, divided by the number of memory units (bytes) occupied by
each array element (cf. 2.1.1), is taken as the ordinal number of the selected ele-
ment cell.

Note. Tile remainder resulting from that division must be 0, and register R0
must not be specified as an index constituent.

Examples:

age
size (8)
price (R1)
line (R2 + 15)

2.2.6. Register Assignments

(5 primary) ::-~ (5 value) [(5 cell designator)
(5~ primary) : := (5{~ register)

A primary is either a value or the content of a designated cell or register.

(simple 3~ register assignment) : := (3~ register) := (~ primary) I
(3C register) := (monadie operator>(~ primary) [(integer register) := (string) [
(integer register) := @ (5 cell designator)

A simple register assignment is said to specify the register appearing to the left
of the assignment operator (:=). To this register is assigned the value designated
by the construct to the right of the assignment symbol. T h a t designated value may
be obtained through execution of a monadic operation specified by a monadic
operator.

(monadic operator) ::= abs [neg I neg abs

Journal of the .Association for Computing Machinery, Vol. 15, No. I, January 1968

46 NIKLAUS WIRTH

TABLE I

integer integer
integer short integer
real real
long real real
long real long real

The monadic operations at~ t.hose of taking the absolute value, of siga inversion,
and of sign inversion after taking the absolute value.

If a string is assigned to a register, that string must consist of not more than fore
characters. If it consists of fewer than four characters, null characters are appended
at the left of the string. The bit representation of characters is defined in [2, 31
(EBCDIC).

The construction with the symbol @ is used to assign to the specified registel
the address of the designated cell.

The legal combinations of types to be substituted respectively for the letters 31
and e{ in preceding and subsequent rules of this paragraph are given in Table I.

Examples of simple register assignments:

R0 := i F0 := quant (R1) R D := abs height
R2 := R10 F23 := x
R6 := age F45 := n e t F01

<"K~ register assignment) : := (simple ~E regis ter assignment)]
(3¢ register ass ignmcnt}@ri thmet ic oper~tor}(a primary> I
(in teger register assignment>(logicM operator)(in tegcr pr imary) I
(integer register assignment)<shift opera tor) (uns igned integer number} I
(integer register assigmnent)(shif~ operator)(in teger register)

(ar i thmet ic operator) : := + I -- [* [/ I + ' + [- -
(logical operator) : := a n d] o r [xor
(shift operator) : := sh l l [s h l a I s h r l I s h r a

A register assignment is said to specify the same register which is specified by th
simple register assignment or the register assignment from which it is derived.
this register is assigned the value obtMned by applying a dyadic operator to tt!
current value of that specified register and the value of the primary following th
operator. The operations are the arithmetic operations of addition (A-), subtrm
tion (-) , multiplication (,) , and division (/) , the logical operations of conjun(
tion (and) , exclusive and inclusive disjunction (xor, or), and those of shifting t
the left and right, as implemented in the/360 system. The operators A- + and - -
denote "logical" or unnormalized addition and subtraction when applied to iJ
teger or real registers respectively.

Examples of register assignments:

R0 := R3 F2 := 3.1416
R1 := 10 F0 := quant (R1) * pr ice (R1)
R10 := i + age - R3 + s ize (8) F45 := F45 + F01
R9 := R8 a n d R7 s h l l 8 o r R6

Journal of the .Association for Computing Machinery, VoL 15, No. 1, January 1968

PL360 47

Notes. 1. Thesyntax implies~hat sequences of operators, including assignment,
are executed strictly in sequence from left. Go right. Thus

is ~lot equivalent to

but rather to the two statements

R1 := R1 + R2

R1 := R2; R1 := R1 + R1.

2. Multiplication and division with integer operaffds can only be specified with
the multiplicand or dividend register Rn with odd n. The register Rm with m =
n - 1 is then used to hold the extension to the left of the product and dividend
respectively. In case of division, this register will moreover be assigned the resulting
remainder.

Example:

R3 := x * y + z
R2 is affected by the multiplication.

2.2.7. Cell Assignments

(~ cell assignment) ::= (~ cell designator) := (~ register)

The value of the N register is assigned to the designated a cell. The allowable
combinations of cell and register types a and 5C are indicated in Table I.

Examples of cell assignments:

i :=RO
price(R1) := F0

:= F67

2.2.8. Function Declarations

(format code) ::= (unsigned integer number)
(instruction code) ::= (integer value)
(function definition) ::= (identifier)((format code), (instruction code))
(function declaration) ::= func t ion (function definition)]

(function declaration), (function definition)

There exist various data manipulation facilities in the 360 computer which can-
not be expressed by an assignment. To make these facilities amenable to the lan-
guage, the function statement is introduced (cf. 2.2.9), which uses an identifier
to designate an individual computer instruction. The function declaration serves
to associate this identifier, which thereby becomes a function identifier, with the
desired computer instruction code, and to define the instruction fields which cor-
respond to the parameters given in function statements. The format code defines
the format of the instruction according to Table II. The instruction code defines
the first two bytes of the instruction.

In the following example, the identifiers were chosen to be the symbolic codes
used in [5], and they are standard function identifiers.

funct ion MVI(4, ~9200), CLI(4, #9500), MVC(5, YJD200), CLC(5, $D500), STM(3,
fJ9000), LM(3, f~9800), SRDL(9, $8C00), SLDL(9, $8D00), IC(2, ~4300), STC(2,
~4200), LA(2, ~4100), RESET(8, ~9200), SET(8, $92FF), UNPK(IO, ~F300),
CVD(2, ~4EOO),EX(2, f~4400), ED(5, ~DEO0)

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

4~ NIKLAUS WIRTI-[

TABLE II
re~is~r
prlmt~ry

fields in function (L = integer value (literal)

o o C--Yi-Z

0 8 16 32

2.2.9. Function Statements

(parameter} : := (5 value}] (string}] (~E register}] <5 cell)
(parameter list} : := (parameter} I (parameter list), (parameter)
(function statement} : := (function identifier} [(function ideatifier)((parameter list})

Examples:

S E T (flag) STM (RO, RF, save)
RESET(f lag) MV[(t' * r~, line)
LA (R1, line) IC (RO, flags (R1))
MVC (15, line, buffffer)

2.2.10. Synonym Declarations

(5 cell synonym declaration} ::= <5 type)<identifier}<synonymous cell)]
(3 cell synonym declaration), <identifier)(synonymous cell)

<synonymous cell> : := syn (5 cell designator) [syn (integer value)
(~ register synonym declaration) :: = (simple ~ type) regis ter (identifier) syn <3~ register)

(~ register synonym declaration), (identifier) syn (5~ register)

Synonym declarations serve to associate synonymous identifiers with previousl
(i.e., preceding in the text) declared cells or registers. The types associated wit
the synonymous cell identifiers need not necessarily agree.

If a synonymous cell is specified by a~ integer value, then that integer vM~
represents the displacement and base register part of the cell's machine addres

Examples:

integer a16 syn a(16)
a r r ay 32768 shor t in teger mere syn 0
in teger timer syn ~50
integer B1 syn mere(R1)

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

PL360 49

Note. The synonym declaration c~m be used to associate several different types
with a single cell. Each type is connected with a distinct identifier.

Example:

long real x (~ 4E00000000000000L)
integer xlow syn x(4)

A conversion operation from a number of type integer contained in register R0
to a immber of type long real contained in register F01 can now be denoted by

xlow := R0; F01 := x

and a conversion vice versa by:

F01 := F01 -I--{-- $4E00000000000000L; x := F01; R0 := xlow.

No initialization can be achieved by a synonym declaration.

2.2.11. Segment Base Declarations

(segment base declaration} ::= segment base (integer register}

A base declaration causes the compiler to use the specified register as the base
address for all cells subsequently declared in the block in which the base declaration
occurs. Upon entrance to this block, the appropriate base address is assigned to
the specified register (cf. 5.2).

2.3. CONTROL FACILITIES

2.3.1. I f Sta tements

(relation) ::= = I--1= [< [< = I > = I >
(condition) ::= (~ register)(relation)((~ primary)] (byte cell) I -1 (byte cell)[

(relation)]overflow

A condition is said to be met or not met. A condition consisting of a relation en-
closed by a register and a pr imary is met if and only if the specified relation holds
between the current values of the register and the primary. A condition specified
as a byte cell (or a byte cell preceded by -7) is met if and only if the value of the
cell is % FF (or not ~ FF). A condition consisting of a relation or the symbol
overflow is met if the condition code of the processor (cf. 2.1.1) is in a state specified
by Table I I I .

TABLE I I I

Symbol State

= 0
m= 1 or2
< 1

< = 0or 1
> = 0 o r 2
~> 2

overflow 3

(combined condition) ::= (condition) I (combined condition) and (condition)
(alternative condition) ::= (condition} [(alternative condition) or (condition}
(compound condition) ::= (combined condition} I (alternative condition)

Journal of the Association for Computing Machinery, Vol. 15, No. I, January 1968

50 NIKLAUS w~ ~.~TI-i~

A compound condition is either of the form

cl a n d c2 a n d c3 a n d " " a n d cn

which is said to be met if and only if all constituent conditions are met, or

cl o r c2 or C3 o r " " o r cn

which is said to be met if and only if at least one of the constituent conditions i s
met.

<if clause> : : = i f <compound condition> t h e n
<true par t} : := <simple s t a t emen t> e l s e
<if s t a t emen t> : : = <if c l ause)<s ta t ement) t<if elause}<true pa r t } (s t a t emen t}

The if statement specifies the conditionM execution of statements:

1. <if c lause}(s ta tement>

The statement is executed if and only if the colnpound condition of the clause i s
met.
2. <if clause}<true pa r t) (s t~ tement>

The simple statement of the true part is executed and the statement is s k i p p e d ,
if and only if the compound condition of the if clause is met. Otherwise the t r u e
part is skipped and the statement is executed.

Examples:

i f R0 < 10 t h e n R1 := 1
i f F2 >__3.75 a n d F 2 < 3.75 t h e n F0 := F2 e l s e F 0 := 0
i f < t h e n SET(flags(O)) e l s e

i f = t h e n SET(flags(I)) e l s e SET(flags(2))

Note. If the condition consists of a relational operator without operands, t h e n
the decision is made on the basis of the condition code as determined by a p r e v i o u s
instruction.

Example:

CLC(15,a,b); i f = t h e n . . '

2.3.2. Case Statements

<case clause> : := e a s e <integer register> o f
<case sequence> : : = <case clause> b e g i n]<case sequence)<s tu t emen t) ;
<case s t a t emen t> : : = <case sequence> e n d

Case statements permit the selection of one of a sequence of statements a c c o r d -
ing to the current value of the integer register (other than register R0) specified i n
the case clause. The statement whose ordinal number is equal to the register v a l u e
is selected for execution, and the other statements in the sequence are ignored. T h e
value of that register is thereby multiplied by 4.

Example:

e a s e R1 o f
b e g i n c o m m e n t i n t e r p r e t a t i o n of i n s t ruc t i on code R1;

F01 := F01 + F23;
F01 := F01 - F23;
F01 := F01 * F23;
F01 := F01 / F23;
F01 := n e g F01;
F01 : = a b s F01;

e n d

Journal of "the Association for Computing Machinery, Vol. 15, No. 1, January 1968

P L36 0 51

2.3.3. While Statements

@hile clause) ::= while (compound eonditio@ do
(while statement) ::= (while elause)(sCatcment}

The while statement denotes the repeated execution of a statement as long as the
compound condition in the while clause is met.

Examples:

while F0 < prize(R1) do R1 := R1 + 4

while R0 < 10 do
begin R0 := R0 -4"- 1;
end

F01 := F01,F01; F23 := F23,F01;

2.3.4. For Statements

(increment} ::= <integer number)
(limit) ::= (integer primary} I (short integer primary)
(for clause) ::= for <integer register assignment} step <increment} u n t i l (l imit} do
(for statement)::= (for clause)(statement)

The for statement specifies the repeated execution of a statement, while the con-
tent of the integer register specified by the assignment in the for clause takes on
the values of an arithmetic progression. That register is called the control register.
The execution of a for statement occurs in the fellowing steps:

(1) the register assignment in the for clause is executed;
(2) if the increment is not negative (negative), then if the value of the control

register is not greater (not less) than the limit, the process continues with
step 3; otherwise the execution of the for statement is terminated;

(3) the statement following the for clause is executed;
(4) the increment is added to the control register, and the process resumes with

step 2.
Examples:

for R1 := 0 step 1 unt i l n d o STC(RO, line(R1))

for R2 := R1 s t e p 4 u n t i l R0 do
b e g i n F23 := quant(R2) * price(R2);

F01 := F01 -4- F23;
e n d

2.3.5. Blocks

(declaration) ::= (5 cell declaration) I (function declaration) I (procedure declaration) I
(5 cell synonym declaration) I <~ register synonym declaration)]
(segment base declaration)

(simple statement) ::= (~K: register assignment)](5 cell assignment) I
(function statement) I (procedure statement)] (case statement) I (block) I
(go to statement) I nul l

(statement) ::= (simple statement} [(if statement)](while statement) I(for statement)
(label definition) ::= (identifier) :
(block head) ::= begin I (block head)(deelaration);
(block body) ::= (block head) I (block body)(statement); I (block body)(label definition)
(block) ::= (block body) e n d
(program) ::= (statement).

A block has the form

b e g i n D; D; . . . ; D; S; S; .- . ; S; e n d

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

52 NIKLAUS WIRT I{

where the D's stand for declarations and the S's for statements. The two main pur-
poses of a block are:

(1) To embrace a sequence of statements into a structural unit which as a whole
is classified as a simple statement. The constituent statements are executed
in sequence from left to right.

(2) To introduce new quantities and associate identifiers with them. These ideil-
tifiers may be used to refer to these quantities in any of the declarations and
statements within the block, but are not known outside the block.

Label definitions serve to label certain points in a block. The identifier of the label
definition is said to designate the point in the block where the label definition occurs.
Go to statements may refer to such points. The identifier can be chosen freely,
with the restriction that no two points in the same block must be designated by the
same identifier.

The symbol n u l l denotes a simple statement which implies no action at all.
Example of a block:

b e g i n i n t e g e r bucket;
i f flag t h e n
b e g i n bucket := R0; R0 : = R1; R1 := R2; R2 := bucket;
a n d e l s e
b e g i n bucket := R2; R2 := R1; R1 := R0; R0 := bucket;
e n d ;
R E S E T (flag);

e n d

2.3.6. Go To Statements

(go to statement) ::= got() (identifier)

The interpretati°n of a go to statement proceeds in the following steps:
(1) Consider the smallest block containing the go to statement.
(2) If the identifier designates a program point within the considered block,

then program execution resumes at that point. Otherwise, execution of the
block is regarded as terminated and the smallest block surrounding it is
considered. Step 2 is then repeated.

2.3.7. Procedure Declarations

(procedure heading) : := p r o c e d u r e (identifier)((integer register));
segment procedure (identifier)((integer register));

(procedure declaration) ::= (procedure heading)(statement>

A procedure declaration serves to associate an identifier, which thereby becomes
a procedure identifier, with a statement (cf. 2.3.5) which is called procedure body.
This identifier can then be used as an abbreviation for the procedure body any-
where within the scope of the declaration. The register specified in the procedure
heading is assigned the program address of the invoking procedure statement. This
register must not be R0.

If the symbol p rocedure is preceded by the symbol segmen t , the procedure
body is compiled as a separate program segment (cf. 5.1). I t has no influence on
the meaning of the program.

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

PL860 53

Examples:

p r o c e d u r e nextchar (R3);
beg in i f R5 < 71 t h e n R5 := R5 + 1 else

beg in R0 := @ card; r e a d ; R 5 := 0; R0 := 0;
e n d ;
IC(RO, card(R5));

end

p r o c e d u r e sort (R4);
for R1 := 0 s t e p 4 u n t i l n do
beg in R0 := a(R1);

for R2 := R1 + 4 step 4 u n t i l n do
i f R0 < a(R2) t h e n b e g i n RO := a(R2); R3 := R2; end ;
R2 := a(R1);a(R1) := R0;a(R3) := R2;

end

Note. The code corresponding to a procedure body is followed by a branch in-
struction taking the program address from the register specified in the procedure
heading, where the invoking procedure statement had deposited the return address.
Thus, the programmer must either not use that register within the procedure, or
explicitly store and reload its value in the beginning and end of the procedure body.

2.3.8. Procedure Statements

(procedure statement} ::= (procedure identifier}

The procedure statement invokes the execution of the procedure body desig-
nated by the procedure identifier. A return control address is assigned to the register
specified in the heading of the designated procedure declaration.

3. Examples

procedure Magicsquare (R6) ;
commen t This procedure establishes ~ magic square of order n, if n is odd and 1 < n < 16.

X is the matrix in linearized form. Registers R0 . . .R6 are used, and register R0 initially
contains the parameter n. Algorithm 118 [Comm. A C M 5 (Aug. 1962)];

begin s h o r t i n t e g e r nsqr:
integer r e g i s t e r n syn R0, i syn R1, j syn R2, x syn R3, i j syn R4, k syn R5;
nsqr := n; R1 := n * nsqr; nsqr := R1;
i := n + 1 sh r l 1; j := n;
for k := 1 s t e p 1 u n t i l nsqr do
b e g i n x := i s h l l 6 ; i j := j s h l l 2 + x; x := X (i j) ;

i f x m = 0 t h e n
b e g l n i := i - - 1; j : = j - - 2;

i f i < 1 t h e n i := i --F n;
i f j < 1 t h e n j := j + n;
x := i s h l l 6 ; i j := j s h l l 2 + z ;

end ;
X (i j) := k;
i := i + 1; i f i > n t h e n i := i - n;
j := j + 1; i f j > n t h e n j := j - n;

end ;
end

Journal of the Association for Computing Machinery, Vol. 15, No. I, January 1968

54 NIKLAUS WIRTtt

p r o c e d u r e Inreal(R4) ;
beg in c o m m e n t This procedure reads characters forming a real number according to the

PL360 syntax. A procedure nextchar(R3) is used to obtain the next character in sequence
in register R0. The answer appears in the long real register F01. Registers R0. . .R4 and
all real registers ,are used;
i n t e g e r r e g i s t e r char syn RO, accum syn R1, scale syn R2, ext syn R3;
l ong real r e g i s t e r answer syn F01;
b y t e sign, ezposign ;
l o n g rea l converted = ~ 4EOOOOOOOOOOOOOOL ;
i n t e g e r convert syn converted (4) ;
f u n c t i o n SR DL(9 , #8C00), L T R (1 , ~1200);
nexlchar; R E S E T (s i g n) ;
whi le char < tf0tf do
beg in i f char = iw ~ t h e n S E T (s i g n) else R E S E T (s i g n) ; nextchar;
e n d ;
c o m m e n t Accumulate the integral part in aeeum;
accum := char a n d SF ; nextchar;
whi l e char > = ~T011 do
b e g i n char := char a n d g F ; aecum := accum * 10S + char; nextchar;
e n d ;
scale := 0;
convert := accum; answer := converted + 0L;
i f char = tt.ll t h e n
b e g i n c o m m e n t Process fraction. Accumulate number in answer;

nextehar ;
whi le char > = H011 do
beg in char := char a n d ~ F ; convert := char;

answer := answer * 10L + converted; scale := scale - 1;
nextchar ;

end ;
e n d ;
i f char" = It ~ It t h e n
b e g i n c o m m e n t [Lead the scale factor and add it to scale;

nextchar; i f char = ff It t h e n
b e g i n SET(expos ign) ; nextchar;
e n d e lse
i f char = tl+tv t h e n
b e g i n RESET(expos ign) ; nextchar;
e n d e lse RESET(expos ign) ;

accum := char a n d ~ F ; nextchar;
whi le char > = rr0t~ do
beg in char := char a n d ~ F ; accum := accum * 10S + char; nextchar;
end ;
i f exposign t h e n scale := scale -- accum else scale := scale + accum;

e n d ;
i f scale "--1 = 0 t h e n
b e g i n c o m m e n t Compute F45 := 10 T scale;

i f scale < 0 t h e n
b e g i n scale := abs scale; SET(expos ign) ;
e n d e lse RESET(e~pos ign) ;
F23 := 10L; F45 := 1L; F67 := F45;
whi le scale --~ = 0 do
beg in SRDL(scale , 1) ;

c o m m e n t divide scale by 2, shift remainder into scale extension;
F23 := F23 * F67; F67 := F23; L T R (e x t , ext);
i f < t h e n F45 := F45 * F23; c o m m e n t < if remainder is 1;

e n d ;

Journal of the Association for Computing Machinery, Vol. 15, No. I, January 1968

PL360 55

i f ezposign t h e n answer := answer / F45 e lse answer := answer * F45;
e n d ;
i f sign t h e n answer := n e g answer;

end

p r o c e d u r e Outreal (R4) ;
beg in c o m m e n t Th i s procedure conve r t s the (long) real number in reg is te r F01 in to a s t r ing

of 14 cha rac te r s which cons t i t u t e one of i t s possible decimal deno ta t ions . The cha rac t e r
pa t t e rn is bsd.dddddd'sdd, where b is a b lank , s a s ign, and d a digi t . Regis te rs R0, R2, R3,
R4, and all real regis ters are used . U p o n en t ry , regis ter R1 m u s t con ta in the address of the
ou tpu t area . I t s v a h m remains u n c h a n g e d ;
i n t e g e r r e g i s t e r exp s y n RO, scale s y n R2, ext s y n R3;
l o n g r e a l r e g i s t e r x s y n F01;
l o n g r e a l convert;
i n t e g e r converted s y n convert (4), expo s y n convert (0);
b y t e sign;
f u n c t i o n LTR(1, ~ 1200) ;
a r r a y 4 l o g i c a l patlern = (g 4021204B, g 20202020, $ 20207D21, g 20200000) ;
i f x = 0L t h e n MVC(13, B I , " 0 ") e l s e
b e g i n i f x < 0L t h e n SET(s ign) e l s e RESET(s ign) ; x := a b s x; convert := x;

c o m m e n t Ob ta in an e s t i m a t e d decimal scale fac tor f rom the exponen t p a r t of the
f loat ing po in t r e p r e s e n t a t i o n ;

exp := expo s h r l 2 4 -- 6 4 . 3 0 7 S ; i f < t h e n exp := exp + 255;
exp := exp s h r a 8 -- 1; scale := a b s e x p ;
c o m m e n t compute F45 := 10 T scale;
F23 := 10L; F45 := 1L; F67 := F45;
w h i l e scale "-1 = 0 d o
beginSRDL(scale , 1); F23 := F23 * F67; F67 := F23;

LTR(ext , ext); i f < t h e n F45 := F45 * F23;
e n d ;
c o m m e n t Normal i ze to 1 < x < 10;
i f exp < 0 t h e n
b e g i n x := x * F45;

w h i l e x < 1L d o
b e g i n x := x * 10L; exp := exp -- 1;
e n d ;

e n d e l se
b e g i n x := x / F45;

w h i l e x > = 10L do
b e g i n x := x * 0 . 1 L ; ezp := exp + 1;
e n d ;

e n d ;
x := z * l 'TL + + ~4E00000000000005L;
convert := x; ext := converted;
c o m m e n t ext is here used to hold the in teger resul t ing f rom the convers ion;
i f ext > = 100000000 then
b e g i n e~t := ext / 10; exp := exp + 1;

c o m m e n t a d j u s t m e n t needed when convers ion resul ts in rounding up to 10.0
N o t e t h a t R2 = 0;

e n d ;
MVC(13, B1, pattern); CVD(ext, convert); ED(9, BI, convert(3));
i f sign t h e n M V I (u - " , B1 (1)) ;
CVD(exp, convert); ED(3, Bi(10) , convert(6));
i f exp < 0 t h e n M V [(H - " , B i (l l)) e l s e M V I (u+, , , B I (l l)) ;

e n d ;
end

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 19fi8

56 NIKLAUS WIRTff

procedure Binary Search (R8) ;
comment A binary search is performed for an iden~itier in a table via an alphabetically or-

dered directory containing for each entry the length (number of characters) of the ide~lti.
tier, the address of the actual identitier, and a code number. The global declarations

array N integer directory
array N short integer code syn directory (0)
array N short integer length syn directory (2)
array N integer address syn directory (4)
integer n

are assumed, n equals 8 times the number N of entries in the table, which appear as di.
rectory(8), directory(16), . . . , directory(n). It is assumed that code(O) = 0. Upon entry, Rt
contains the length of the given identifier, R2 contains its address. Upon exit, R3 contains
the code number if a match is found in the table, 0 otherwise. Registers R1-R8 are used;

begin integer register L syn R1, low syn R3, i syn///4, high syn R5, x syn R6, m syn R7;
array 3 short integer compare = (~D500S, #2000S, ~6000S);
high := n; low := 8; comment index step in directory is 8;
while low < = high do
begin i := low + high shrl 4 shll 3; x := address(i);

if L = lenqth(i) then
begin EX(L, compare); if = then goto found;

if < then high := i -- 8 else low := i + 8;
end else
if L < length(i) then
begin EX(L, compare);

if < = then high := i - 8 else low := i '4- 8;
end else
begin m := length(i); EX(m, compare);

if < then high := i - 8 else low := i + 8;
end;

end;
i := 0;

found: R3 := code(i);
end

iJil

iii
4. T h e O b j e c t C o d e

Three principal postulates were u sed as guidelines in the design of the language:

(1) S ta tements which express operations oil da ta mus t correspond to machine
instruct ions in an obvious way. Their s t ructure mus t be such tha t they de-
compose into s t ruc tura l elements, each corresponding direct ly to a single
instruct ion.

(2) No storage element of the computer should be hidden from the programmer.

In particular, tile usage of registers should be explicitly expressed by each
program.

(3) The control of sequencing should be expressible implici t ly b y the structure
of certain s ta tements (e.g., through prefixing them with clauses indicating
their conditional or i terat ive execution).

The following paragraphs serve to exhibit the machine code into which the vari-
ous constructs of the language are translated. The mnemonics of the 360 Assembly
Language are used to denote the individual instructions. The notation {A} serves
to denote the code sequence corresponding to the construct <A).

1. (~ register) := ((~ primary)

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

P L 3 6 0 57

TABLE]IV

Operands Operator

register (~ prinmry

Integer register
Integer register
Integer register
Real register
Real register
Long real register
Long real register
Long real register
Long real register

Integer register
Integer cell
Short integer cell
Real register
Real cell
Real register
Long real register
Real cell
Long real cell

1
;=

LR
L
LH
LEI
LE
LEI
LD:
LE
LD

AR SR
A S
AII SH
A E SE:
AE SE
AE SE:
AD SD
AE SE
AD SD

4

M
MH
MER
ME
MER
MDR
~ E
MD

9

DR
D

DER
DE
DER
DDR
DE
DD

ALR
AL

AUR
AU
AUR
AWR
AU
AW

SL
SL

SU
SU
SU
SW
SU
SW

8

ST
ST~

STE

STE
STY)

CR
C
CH
CER
CE
CER
CDR
CE
CD

The code consists of a single load instruction depending on the types of register
and primary (cf. Table IV, col. 1).

2. (N register assignment)(operator)((~ primary}

The code consists of a single instruction depending oil the operator and the types
of register and primary. I t is determined according to Table IV, cols. 2-7.

3. (a cell) := (~ register}

The code consists of a single store instruction depending on the types of cell and
register as indicated by Table IV, col. 8.

4. if (condition-l} a n d . . , and (condition-n-l) and (condition-n} then
(simple statement) else (statement}

{ condition-1 }
BC cl, L1

{ condition-n- 1 }
BC c,~-1, L1
I condition-n }
BC c~, L1
{simple statement }

B L2
L1 {statement }
L2

c~ is determined by tile i th condition, which itself either translates into a compare
instruction depending on the types of compared register and primary (cf. Table
IV, col. 9), or has no corresponding instruction, if it merely designates condition
code states.

Example:

i f R1 < R2 then R0 := R3 else R0 := R4

CR 1,2
BC 10,L1
LR 0,3
B L2

Li LR 0,4
L2

Journal of the Association for Computing M[achinery, Vol. 15, No. 1, January 1968

5 8 N I K L A U S W I R T I t

5. i f (condition-i) o r . . . or (condition-n - I)or (condition-n) then (simple statement)
else (statement)

Icondition-1 }
BC cl, L1

{ condition-n-- 1 }
BC cn-,, L1
{ condition-n }
BC c,,, L2

L1 {simple statementl
B L3

L2 {statement}
L3

6. c a s e (integer register-m) of
begin (statement-l);

<statement-2);
, ° .

<statement-n);
e n d

SLL m,2
B SW(m)

L1 {statement-1 }
B LX

L2 {statement-2}
B LX
, o .

Ln {statement -n }
SW B LX

B L1
B L2

. . .

B Ln
LX

7. while (condition) do (statemenO

L1 {condition}
BC c,L2
{ statement }
B L1

L2

I f the condit ion is compound, then code sequences similar to those given under 4
and 5 are used.

8. for (integer register assignment)
step (increment) u n t i l (limit) do (statement)

{integer register assignment l
B L2

L1 {statement}
A m,INC

L2 C m,LIM
BC c,L1

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

PL360 59

Rm is the register specified by the assignment, INC the location where the incre-
ment is stored, and L I M the location where t, he limit is stored. The compare in-
struction at L2 may be either a C, CH, or CR instruction depending on the type of
limit. Moreover, c depends on the sign of the increment.

9. procedure (identifier}({integer register-m}); {statement}

P {statement}
BR m

10. {procedure identifier>

BAL m,P
or

L 1 5 , n e w b a s e

BAL m,P
L 15,oldbase

It is here assumed that P designates the procedure to be called, and Rm is the
return address register specified in its declaration. The first version of code is ob-
tained whenever tile segnmnt in which the procedure is declared is also tile one in
which it is invoked.

5. Addressing and Segmentation

The addressing mechanism of the 360 computers is such that instructions can indi-
cate addresses only relative to a base address contained in a register. The program-
mer must insure that (1) every address in his program specifies a "base"-register;
(2) the specified register is loaded with the appropriate base address whenever an
instruction whose address refers to it is executed; (3) the difference d between the
desired absolute address and the available base address satisfies 0 < d < 4096.

This scheme not only increases the amount of "clerical" work in programming,
but also constitutes a rich source of pitfalls. A translator should therefore be de-
signed to ease the tedious task of base address assignment, and to provide checking
facilities against errors.

The solution adopted here was that of program segmentation. The program is
subdivided into individual parts, so-called segments. Every quanti ty defined within
the program is known by the ,Lumber of the segment in which it occurs arid by its
displacement relative to the origin of that segment. The problem then consists of
subdividing the program and choosing base registers in such a way that

(a) the compiler knows which register is used as base for each compiled address,
(b) the compiler can assure that each base register contains the desired base

address during execution, and
(c) the number of times base addresses are reloaded into registers is reasonably

small.
First, it must be decided whether the process of subdividing the program should

be performed by the programmer or by the compiler. In the latter case, a fixed num-
ber of registers must be set aside to serve as base registers which the compiler has
freely at its disposal. This was considered undesirable. Furthermore, a program using
a number of segments much larger than that of available base registers would be

Journal of the As~sodation for Computing Machinery, VoI. 15, No. 1, January 1968

60 NIKLAuS WIRTtt

subject to considerable inefficiencies due to the reloading of base addresses at points
which might have been ill chosen. I t was therefore decided that the programmer
should express explicitly which parts of his program were to constitute segments.
He has then the possibility of organizing the program in a way which minimizes
the nunlber of cross references between segments.

I t should be noted that tile programmer's knowledge about segment sizes and
occurrences of cross references is quite different in the eases of program and data.
In the latter ease he is exactly aware of the amount of storage needed for the de-
clared quantities, and he knows precisely in what places ,of the program references
to a specific data segment occur. In the former case, his knowledge about the even-
tual size of a compiled program section is only vague, and he is in general unaware
of the occurrence of branch instructions implicit in certain constructs of the lan-
guage. I t was therefore decided to treat programs and data differently, and this
decision was also in conformity with the desirability of keeping program and data
apart as separate entities.

5.1. PROGRAM SEGMENTATION

Due to the fact that the language does not allow programs to modify themselves,
branches are the only instructions referring to locations within program segments.
Since control lies by its very nature in exactly one segment at any instant, it seemed
appropriate to designate one fixed register to hold the base address of the program
segment currently under execution. A branch leading into another segment must
then always be preceded by an instruction loading that register with the base
address of the destination segment. Register R15 was chosen for this purpose.

An obvious approach to the problem of segmentation requires the compiler to
automatically generate a new segment, when the currently generated segment's
length exceeds 4096 bytes. This solution was rejected for two reasons: (1) The
programmer is not aware of the position of segment boundaries, and therefore has
no way to minimize branches from one to another segment. (2) In most cases, the
destination of an implicit branch (in if, case, while, and for statements) is not known
to the compiler at the time of its generation. Therefore it is not known whether it
will consist of one or two machine instructions.

The approach taken consists in connecting segment structure with the obvious
program structure. The natural unit for a program segment is the procedure. The
only way to enter a procedure is via a procedure statement, and the only way to
leave it is at its end or by an explicit go to statement. The fact that no implicitly
generated instruction can ever lead control outside of a procedure minimizes the
number of cross references in a natural way. Since only relatively large procedure
bodies should constitute segments, a facility was provided to designate such pro-
cedures explicitly: a procedure to be compiled as a program segment must contain
the symbol s e g m e n t in its heading. In practice, the requirement tha t such pro-
cedures be explicitly designated has proven to be no handicap. I t is relatively easy
for a programmer to guess which procedure exceeds the prescribed size, or other-
wise to insert the symbol s e g m e n t after the compiler has provided an appropriate
comment in the first compilation attempt. Obviously, the outermost block is always
compiled as a segment.

5.2. DATA SEGMENTATION

In the case of data, the programmer is precisely aware of the amount of allocated

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

PL360 61

memory as well as of the instances where roference is made to these quantities. A
base declaration was therefo~ introduced Which implies that all quantities declared
thereafter, but still within the same block and preceding another base declaration,
:rder to the specified register as their base. These quantities form a data segment.
At the place of the base declaration code is compiled which ensures that the register
~s loaded with the appropriate segnmnt address. However its previous contents are
neither saved nor restored upon exit from the block.

A base declaration is implicit in the heading of the outermost block. I t always
desit,~lates register R14 .

Obviously, data segments declared in parallel (i.e., not nested) blocks, can safely
refer to the same base register. Data segments declared within nested blocks should
refer to different base registers. If they do not, it is the programmer's responsibility
~to ensure that the register is appropriately loaded when data in either of the seg-
~nents are accessed.

There is no limit to the size of data segments. All cell designators must, however,
refer to cells whose addresses differ from the segment base address by less than 4096.
I f they do not, the compiler provides an appropriate indication.

5 .3 . PROGRAM LOADING

A scheme using program and data segments as described above results in an ex-
~tremely simple relocating loader program, since the segments can be loaded without
modification. I t was felt that this benefit provided by a computer incorporating a
base register scheme should be put to full advantage. Although the 360 computer
still makes use of absolute addresses in a few instances (program status words, data
channel commands), it was decided not to allow for absolute addresses in a program.
'They can, however, be generated at execution time. Consequently, the functions of
the loader are reduced to:

(a) reading program and data segments into memory,
(b) assigning the origin address of each segment to an entry in the segment

address table, and
(c) transferring control to the program segment representing the outermost

block.

5.4 . PROBLEMS CONNECTED WITH INPUT-0UTPUT PROGRAMMING

The direct programming of input-output operations in PL360 is impractical in
the scheme described so far for the following reasons:

(1) Input-output operations on the 360 are designed to use the interrupt mech-
anism to signal termination of processes performed by data channels and devices
in parallel with CPU operations. In order to use the interrupt feature, it is neces-
sary to create program status words (PSW) and store them in certain fixed locations
o f memory. A PSW contains the absolute address of a point in the program, which
is a quantity that cannot be generated by a PL360 program.

(2) Particularly in routines servicing interrupts, but also in some other cases,
i t is desirable to be able to dispense of a program base register. This could be done
b y locating these routines within the first 4096 bytes of core memory. The loader
described above, however, chooses the absolute location of a segment on its own.

These two shortcomings can be overcome in many ways. The following is sug-
~'ested:

(1) A facility is introduced to designate a segment as an interrupt service rou-

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

62 NIKLAUS WIRTH

fine, with the effect that the compiler supplies information to the loader, causing
the loader to assign the segment's base address to the appropriate PSW cell instead
of the segInent address table. The compiler itself terminates this segment with an
LPSW instead of a BR instruction (ef. 5.6). This approach forces a programmer to
make explicit the fact that an interrupt routine is conceptually a closed segment,
and it circumvents the undesirable introduction of a facility to generate labels as
manipulatable objects.

(2) A provision is introduced to cause the compiler not to refer to a base register
in the branch instructions contained in the interrupt service segment. The loader is
at the same time instructed to allocate this segment within the first, 4096 bytes of
core memory.

Usually, however, these facilities are not needed, because the program is exe-
cuted in the environment of an operating system (whose choice is normally not
up to the individual programmer) which executes programs in the program-mode
where input-output instructions are not executable. The form which statements
communicating with such an environment assume is determined by that particular
environment and cannot be defined as part of the language proper (el. also [6]).

6. Compiler Methodology

6.1. GENERAL ORGANIZATION

The compiler is a strictly syntax directed one-pass translator. Its design served
as a major test for the applicability of the techniques described in [4] to practical
programming languages. The development of a precedence syntax with productions
to which the meaning of the language could be properly attached, is no easy task
Interestingly enough, however, this design process provided many insights into the
nature of various conceptual elements, led to their clarification and often simplifica-
tion, and contributed a great deal to the systematic structure of the resulting lan-
guage.

The algorithm for syntactic analysis constitutes the core of the compiler. It
operates on the basis of a table containing the rules of syntax and a table containing
the precedence relations among input tokens, and evokes the execution of an inter-
pretation rule whenever a parsing step is taken. The input tokens are obtained by
calling a procedure

Syntax
Rules

Analyser

Precedence
Relat ions

In t e rp re t a t i on
Rules

Journal of the Association for Computing Machinery, Vol. 15, No. i, January 1968

FL360 63

"insymbol," which scans the sequence of input characters and yields as a result
either a basic symbol of the language, ~u, identifier, ~ I~umber, or a string. I t auto-
matically suppresses comments. I t should be noted that in the implemented lan-
guage no equivalent for the u n d e r l i n i n g of basic symbols is provided, and that
therefore ~ sequence of letters and digits, starting with a letter and not eont:~ining
blanks, may constitute a basic symbol. Any such sequence must be matched by the
insymbol routine against a table containing the representations of all "letter-sym-
bols." If a match is found, the result is a basic symbol, otherwise an identifier.
As a consequence, identifiers could not be constructed by the syntax analyser itself
upon receiving merely a sequence of letters and digits. The consideration of num-
bers as tokens, on the other hand, was not a necessity but rather a convenience.

The syntax analyser makes use of a stack (called "symbol stack,") to store not yet
reduced symbols. Whenever a reduction takes place, the interpretation rule cor-
responding to the applied syntactic rule is activated. These interpletation rules
make use of a second stack (called "value stack") to store information about each
syntactic entity occurring in the reduction process. To each entry in the symbol
stack corresponds an entry in the value stack, and vice versa. Ideally, an interpre-
tation rule should exclusively reference data in those entries of the value stack
which correspond to symbols in the symbol stack being reduced by the applying
syntactic rule. This principle has been followed in the simple example presented in
[4]. Here, however, a deviation from it was made by the i11troduction of eonventioual
identifier tables, one containing identifiers denoting program points (labels), one
for all declared identifiers.

6.2. IDENTIFIER TABLES
The presence of identifier tables simplifies the search for identifiers and eliminates

the need for the specific right ~ecursive definition of the declaration structure used
ill [4]. The separation of the table into one containing declared identifiers and one
containing labels has its reason in the fact that labels are the only identifiers which
carl occur in a statement before being defined in the program, and must therefore
be treated differently as discussed below.

(1) (3 cell identifier) ::= (identifier)
(2) (function identifier) ::= (identifier)
(3) (procedure identifier)::= (identifier)

etc.

constitutes a violation of the requirement that in an unambiguous precedence
grammar no two rules should have identical right parts. This violation required a
slight complication of the analysis algorithm with the effect that an interpretation
rule may cause an otherwise applicable syntactic rule to be rejected. In the given
example, the interpretation rules specify that the considered identifier be located
in the identifier table. If location is successful, then rule 1 is rejected unless the table
indicates that the identifier indeed designates a 3 cell, rule 2 is rejected unless it
designates a function, etc. This decision of the applicability of a syntactic rule on
grounds of essentially semantic information reflects the argument that languages
of "ALGOL type" are strictly speaking not context free.

The above identifier search implies that the entire block-structured identifier

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

64 NIKLA.US WIRTH

table be searched. The following program demonstrates that labels cannot be sub-
jeet to the same process, and that therefore

(4) (label) : : = (ident i f ie r)

must not be a rule of the language.

A : b e g i n L : . . .
B : b e g i n g o t o L;

L:
e n d ;

e n d

In this example, Rule 4 applying to L after the symbol go to would detect L as
present in the identifier table, because L was defined as a label in the outer block
(A). This would, however, be an erroneous assumption, since a local L is defined
later in the inner block (B), to which goto L should refer. Consequently, searches
for labels must be confined to the innermost block, and such a restricted search
must be represented by an interpretation rule connected with a distinct syntactic
rule with a different right part. In the language, that rule is

<go to s t a t emen t> : := g o t o (ident i f ie r)

Identifiers in the label table are marked as either defined or not yet defined.
Upon exit of a block, all undefined entries are collected and considered as entries
in the outer block, where some of them may be found as already defined. This
process made the use of a separate label table desirable.

The compiler is designed to read the source program from cards or tape; it pro-
duces (optionally) a listing, each line containing a corresponding target program
address. The code is compiled into core memory, and as soon as a segment is closed,
it is written out() secondary storage. The segment is preceded by a record indicating
the kind of the segment (program or data), its number, and its length. The program
loader later collects the segments from the secondary storage, lists the base address
which it assigns to each segment, and assigns it to the corresponding entry in the
segment address table.

6.3. HANDLING OF SYNTACTIC ERRORS

The syntax anMysis algorithm described in [4] makes the assumption that ana-
lysed programs are syntactically valid. This assumption is not tenable in the prac-
tical world of computer programming. Syntactic errors are detected by the fact
that for some string recognized as reducible there is no matching entry in the table
of productions. After an error has been encountered, it is in most cases desirable to
continue compilation in order that subsequent errors may be located and indicated.
A method has to be devised to let the analysis algorithm proceed after having made
some assumption about the nature of the error.

This is in general a rather hopeless task. An investigation of a large number of
programs containing syntactic errors reveals, however, that most of the committed
errors exhibit strong similarities and can be diagnosed by a relatively simple al-
gorithm. In most cases, syntactic errors are due to omission or wrong use of sym-
bols merely conveying information about structural properties of the program,
such as commas, semicolons, and the various kinds of brackets. Omission of elements
explicitly denoting program activities, such as operators and operands, are rare.

A second important consideration is that an incorrect construction should be

Journal of the Association for Computing Machinery, Vol, 15, No. 1, January 1968

PL360 65

detected as early as possible, i.e., before further steps are [aken on the basis of the
incorrect text. The precedence grammar technique is an excelleut scheme in this
respect, because it is based upon reh:~tions exist.ing among symbol p~firs. That none
of the relations denoted by ~ , ~ , > exists between two symbols in@lies the impos-
sibility of these two symbols being adjacent in ~[ny senience of the l~nxguage. The
empty relation (denoted by @) shall be defined as holding whenever none of the
others hold. On a left-to-right setm, its encounter constitutes the e~u'liest possible
detection of an en'oneous construction.

It. should be noted that the use of two precedence functions inst.ead of the prece-
dence relations implies that the analysis algorithm is based on a condensation of
the inform~tion contained in the matrix of relations [4]. This condensation relies
on the assumption that empty relations can simply be ignored. The above considera-
tions lead to the conclusion that fox" practical reasons it is advantageous to have t;tle
relation matrix a[the disposal of the analyser rather than the functions.

The algorithm fox' diagnosing of and recovery from errors described subsequently
is a heuristic solution rather than one based on rigorous theoretieaI principles. I t
is contended here that any such scheme must make a very drastic selection from all
the possible forms which errors may assume. The important aspect is that those situ-
ations, which are likely to occur often, are mastered intelligently. Since a frequency
statistic of errors reflects the behavior of the huInan users, such a selection nmst
by definition be based on heuristics.

There exist two places in the anMysis process, where illegM constructions may be
detected (el. [4, p. 18]):

1. The empty relation holds between the symbol on top of the stack and the in-
coming symbol:

Si Q Pk

In this case a list I of insertion symbols' is scanned. If for some m, S~ ~ I,~ and
I,~ @ P~., then I,, is inserted into the scanned string in front of Pk. Since this in-
sertion may lead to a correct program (in about 90 pereent of the tested cases it
did), an according comment must be delivered to the programnler,

If for no m, S~ ~ I,~ and I~ ¢ Pk , then the symbol Pk is stacked,
2. The value of the flmetion

Lef(part (Si " " Si)

is undefined (~), i.e., there exists no syntactic rule whose rightpart is S~ . . . S.i.
This situation may occur even if for all]c (j .< k < i) Sk ~) Sk+l.

In this case a table of erroneous productions is scanned for a right-part identical
to S~. • • • S~. I f a match is found, an error message corresponding to that rule can
be printed, and the analysis can proceed with the statement:

i : = j

The augmented algorithm for syntactic analysis is then described as follows:

p r o c e d u r e Invalid pair;
b e g i n i n t e g e r m; m :-- t ;

w h i l e m _< n A (Si @ I,~+ V I, . @ Pk) do m :~ m ~ l ;
i f m < n t h e n (Pk "'" P~+i) := I ~ e a t (Pi, ' " P~)

end;

Journal of the Association for Computing M[achlnery, Vol. 15, No. 1, January 1968

66 NIKLAUS WIRTIt

w h i l e Pk ~ rl-I-II do
b e g i n i := j := j + l ; $ i := P~:; k := /~+1;

w h i l e S] > @ Pk do
b e g i n i f Sj @ Pk t h e n Invalid pair;

w h i l e Sj_, ~ @ Sj d o j := j - l ;
t := Lef lpar t (S i . . . Si);
Sj := i f t = { ~ t h e n E r r o r (S ¢ . . . S ,) e l s e t ; i := j

e n d
e n d

This technique enables a compiler to deliver meaningful error messages, because
the analyser has found an erroneous production to be applicable, which was antici-
pated by the compiler designer who, in turn, knowing the reasons why programmers
inadvertently write such a construction, was in a position to devise an approprbtte
coInment. It was found to be beneficial to accompany the diagnostic message by the
list of symbols currently stored in the parsing stack. These symbols represent ail
unfinished syntactic entries in the current parse, and may give the programmer
valuable insights about his misuse of the language.

The choice of the appropriate insertion symbols and erroneous productions re-
quires a thorough understanding of the analysis algorithm on the part of the com-
piler designer, as well as a subtle feeling to anticipate frequent misuses of the sya-
tax. Of course, further insertion symbols and productions can easily be added to
the tables in order to increase the diagnostic capabilities of the analyser. If a com-
piler is capable of gathering statistical information about encountered erroneous
situations, this information could be evaluated from time to time in order to expand
the tables. As a result, the compiler would truly seem to adapt itself to its imperfect
human environment in order to gradually become a better and better teacher.

7. Development of the Compiler

At the time when the project to develop a compiler for PL360 was started, no 360
computer was available to tile author, nor did the facilities promised with the forth-
coining machine look too enticing to use. I t was therefore decided to use tile avail-
able Burroughs B5500 computer for the design and testing of the compiler, which
was completed by the author within two months of part time work. I t accepted a
preliminary version of PL360 as described in [7] which contained the basic features
of the presently described language.

The compiler was then reprogrammed in its own language. Through a loader and
supervisor program (written in assembly code), the program, recompiled on the
B5500, became immediately awfilable on the 360 computer.

The experiment of describing the compiling algorithm in PL360 itself proved to
be the most effective test on the usefulness and appropriateness of the language,
and it influenced the subsequent development of the language considerably. During
this process, several features which seemed desirable were added to the language,
and many were dropped again after having proved to be either dubious in value,
inconsistent with the design criteria, or to() involved and leading to misconceptions.
The leading principle and guideline was to produce a conceptually simple language
and to keep the number of features and facilities minimal. The "bootstrapping"
method in combination with the described compiling technique proved to be very

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

pL360 67

successful for experimentation with a~ld alteration of the language. The process of
incorporation of a new feature consists of representing the new feature in the
syntax of the language, and of defining the compiler actions corresponding to the
new constructs in the form of additional interpretation rules. These rules must of
course be denoted in terms of previously available facilities.

In general, a significant drawback of the bootstrapping technique is the fact that
programming errors are easily proliferated. However, the combination of the boot-
strapping method with the rigorous approach to systematic compiler organi-
zation by means of strict syntax analysis proved to be very successful, since the
latter constitutes an enormous step towards reliability, which can never be achieved
by common heuristic methods of compiler design.

8. Per formance

The development, of a job control and supervisor program was undertaken in paral-
lel with the construction of the compiler (el. [6]). The following performance figures
reflect the operation of the compiler under that supervisor. It should be noted that
the supervisor considers the compiler in the same way as a regular user's program.

Size (in bytes, approximately)
Supervisor 4 600
Job control 4 400

9 000

Compiler program
Various compiler data

16 000
5 400

21 400

Identifier tables; adjusted according to available core size.
Output area)

Timing. The processing of a job consists of the following steps, described in
terms of the present implementation on a 360/50 computer:

1. Loading of the compiler from tape.
2. Compilation, with input from cards or tape, and output to tape (and op-

tionally to cards).
3. Loading of the compiled program from tape (or cards).
4. Execution of the program.

Steps 1 and 3, constituting what is usually called "overhead," take 4.7 seconds
execution time. Compilation proceeds at the speed of the card reader (1000
cpm). If the source program is read from tape (640 character records, unbuffeI~d)
and the program listing is suppressed, the compiler (about 1500 card records)
recompiles itself in 39 seconds (with listing in 109 seconds). The time required to
load the system initially is 2 seconds.

9. Reflect ions o n t h e 360 A r c h i t e c t u r e

Based on the experiences drawn h'om the compiler development, it can be con-
eluded that the objective to make direct machine programming more convenient by

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

~ NIKLAUS WI~PH

providing a too] which is superior to common assembly codes with respect to reada-
bility and writability, is commendable and important. I t can also be concluded that
PL360 is fairly successful ill meeting this objective. The decisive factor, in the
author's opinion,]s the simplicity, frugality, and coherence of tile language. A
limiting factor to this is the architecture of the underlying machine. In this respect,
the question "how well is the computer suited for %his kind of language?" becomes
more significant than tile opposite question, "how well is the language suited for
the machine?" The author feels indeed strongly about this point, and recommends
:future hardware designers to confront themselves seriously with the first question,
before yielding to the well-known policy of answering every problem with the
common and omnipotent reply : "There is a bit somewhere".

As a matter of fact, the relatively systematic architecture of the 360 computer
series provided a strong encouragement to devise a tool in the sense of PL360. It
seems nevertheless worth while to locate some of its less fortunate features:

(1) Tile idea of a "two-dimensional instruction set" with one coordinate specify-
ing the operation, the other the type of operand, is very commendable, and is
properly reflected in PL360. But, the better a principle is, the worse are its viola-
lions. There exist operands of type full word integer, half word integer, full word
logical, short and long floating point, and byte in the 860 system. Operations on
them are more or less grouped into columns in the matrix of instructions. However,
instructions on logical and full word integer operands occur in the same column,
certain operations are missing in the half word format, and operations on bytes
differ radically from all others. A striking example is the inconsistency of the LH
and STH instructions, the first of which performs the function of assigning an
integer to a register, the second one that of assigning a half word logical quantity
to a memory cell. This is not merely an unfortunate feature, but a conceptual flaw.

(2) The fact that many instructions are indexable only through misuse of the
base register field is very unfortunate. I t is one reason why none of those instruc.-
tions fits into the scheme of the PL360 assignment statement. I t is also due to tNs
fact that the desirable construct

(3 cell} := (5 p r imary)

is not part of the language, and that s t r ing was not adopted as a simple data type.
(3) The more complex a single instruction is, the more debatable becomes the

choice of its detailed form. The BCT, BXLE, BXH instructions are such examples,
none of which fitted into the scheme of PL360 structures.

(4) The 360 instructions exhibit a remarkable consistency in the scheme of con-
dition code setting, with the very peculiar exception of the TM instruction. I t is
obvious that the condition code plays a somewhat odd role in this language. I t can
only be altered by hidden side @cts of arithmetic, logical, comparison, and certain
other operations, and be tested by branch instructions. There is no way, however,
to copy its value or even to perform operations on it.

This short list of architectural misfits is by no means complete. I t omits, e.g.,
mentioning some dismal properties of the floating point arithmetic and of the input-
output mechanism. However, these have no immediate effect on the structure of
the PL360 language.

ACK~OWLr:DGMENTS. The author wishes to express his sincere thanks to Mr. Y. W.
Wells for his indispensable assistance. Mr. Wells receded the compiler in its own

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

pL860 69

language, and developed the support ing moni tor system. Thanks are also due to
the OSG group at the Stanford Linear Accelerator Center for their generous pro-
vision of computer time. And finally, the support of the Nat ional Science Founda-
tion under grant GP 4053 is gratefully aekl.towledged,

REFERENCES

1. WroTH, N., ~ND HOAnE, C. A.R. A contribution to the development of ALGOL. Comm.
ACM 9, 6 (June 1966), 413-432.

2. AMD~HL, G. M., BLnAUW, G. Ai, AND BROm(S, F. P., Ja. Architecture of the IBM Sys-
tern/360. IBM J. Res. and Dev. 8 (April 1964), 87-101.

3. BLAa~'W, G. A., ~.~T AL. The structure of System/360. IBM Syst. J. 3, 2 (1964), 119-164.
4. WroTH, N., AND WEBr~R, H. EULER: A generMization of ALGOL, and its formM defi-

nition: Part I. Comm. ACM 9, 1 (Jan. 1966), 13-23.
5. "IBM System/360 principles of operation," IBM Syst. l~eference Libr. A22-6821-2.
6. WIUTH, N. (Ed.). The PL360 System. Tech. Rep. CS 68, Stanford U., Stanford, Calif.,

June 1967.
7. Wm'rH, N. A programming language for the 360 computers. Tech. Rep. CS 33, Stanford

U., Stanford, Calif., Dec. 1965.

RECEIVED DECEMBER, 1966; REVISED JUNE, 1967

Appendix I . E x a m p l e o f C o m p i l e d C o d e

Tile Assembly Language Coda corresponding to the procedure Magic square (ef.
Section 3) is as follows:

MAGICSQR STH O,NSQR BC 11,L3
LR 1,0 AR 2,0
MH 1 ,NSQR L3 LR 3,1
STH 1,NSQR SLL 3,6
LR 1,0 LR 4,2
A 1,ONE SLL 4,2
SRL 1,1 AR 4,3
LR 2,0 L4 ST 5,X (4)
L 5,ONE A 1,ONE
B L7 CR ' 1,0

L1 LR 3 ,ONE BC 13 ,L5
SLL 3,6 SR 1,0
LR 4,2 L5 A 2,ONE
SLL 4,2 CR 2,0
AR 4,3 BC 13,L6
L 3,X(4) SR 1,O
C 3,ZERO L6 LA 5,1(5)
BC 8,L4 L7 CH 5,NSQR
S 1,ONE BC 12,L1
S 2,TWO BR 6
C 1 ,ONE NSQR DC H
BC ll,L2 ZERO DC F 1'0 'v
AR 1,0 ONE DC F " I "

L2 C 2,ONE TWO DC FVV2 vl

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

70
~qIKLAUS WIRTH

0 A @

~ ~ ~ v ~ , ~ v ,~

~ M ~ ~ . ~

' ~ ~ - ~ ~ - ~ ~ ~ ~ ' ~ ~ ~ : v ~ v

£

o

~y
hlO

©

ii !1. !~. !L.

+

I . ~

o ¢9

- .
~ ~ ,--I ~

II II II II li tl li II li II
~ : : : : : : : : : : : : : : : : : : : :

v v v ~ V

©

v

2

v v v

© O o

v v v

i~ A v A r r . ~ . ~
II It

o

© o

v

o

+.~ ..~ ,.2 v v ~

!~. !l. !l !l !l !l !i !

II II II

©

J o u r n a l of t h e ,Association for C o m p u t i n g M a c h i n e r y , Vol . 15, No . 1, J a n u a r y 1968

PL360 71

v v v ~

~ . ~ ~ ~

II tl II II II II II U It II

"~®~ ~ ~ ~ ~ ~ ~ ~ ~ - ~

~ ~ ~ ~ ~ ~ o o ~ . . . ~ ~ o o o o ~
~,,~ ,..,.~ >.~ ~ ~ ~ ~ ~ ~ ~ 0 0 0 0 + , ~ -:~

II II Jr It II II II]1 It II II It

v v v v v v

0A

~ v C0 v
~ A A

~ v
~ v ' ~

~ ~ ~ ~ A A ~ v

O O © © . ~

v . ~ . ~ v ~ v ~ ° ~ ~ ~ ~ ~ v

II II H II II II II H II H II II II

B A

¢D v

H rl II

J o u r n a l o1 t h e A s s o c i a t i o n f o r C o m p u t i n g M a c h i n e r y , V o l . 1 5 , N o . I , J a n u a r y 1 9 6 8

Appendix IlIo PL360 Syntax (In convenient precedence form)

1 <K REG> : : = < iD>
2 <T CELL ID> : : = <IO>
3 <PROC ID> : : = < [D>
4 <FUNC ID> : : : < ID>
5 <T CELL> : : = <T CELL ID>
6 <T CELL i>)
7 <T CELL2> }
8 <T CELL I> : : = <T CELL2> <ARITH OP> <T NUMBER>
9 <T CELL3> <T NUMBER>

10 <T CELL2> :~= <T CELL3> <K REG>
I t <T CELL3> : : = <T CELL ID> (
12 <UNARY OP> : : = ABS
13 NEG
14 NEG ABS
15 <ARITN OP> : : = +
16
17 *
18 /
19 + ÷
20
21 <LOG OP> : : = ANO
22 OR
23 XOR
24 <SHIFT OP> : : = SHLA
25 SHRA
26 SHLL
27 SHRL
28 <K REG ASS> : : = <K REG> := <T CELL>
29 <K REG> := <T NUMBER>
30 <K REG> := <STRING>
3 t <K REG> := <K REG>
32 <K REG> := <UNARY OP> <T CELL>
33 <K REG> := <UNARY OP> <T NUMBER>
34 <K REG> := <UNARY OP> <K REG>
35 <K REG> := @ <T CELL>
36 <K REG ASS> <ARITH OP> <T CELL>
37 <K REG ASS> <ARITH OP> <T NUMBER>
38 <K REG ASS> <ARITH OP> <K REG>
39 <K REG ASS> <LOG OP> <T NUMBER>
#0 <K REG ASS> <LOG O?> <T CELL>
4 t <K REG ASS> <LOG OP> <K REG>
42 <K REG ASS> <SHIFT OP> <T NUMBER>
43 <K REG ASS> <SHIFT OP> <K REG>
44 <FUNCI> : : = <FUNC2> <T NUMBER>
45 <FUNC2> <K REG>
46 <FUNC2> <T CELL>
47 <FUNC2> <STRING>
48 <FUNC2> ::= <FUNC IO>
49 <FUNCI> ,
50 <CASE SEQ> ::= CASE <K REG> OF BEGIN
51 <CASE SEQ> <STATEMENT>
52 <SIMPLE ST> ;:= <T CELL> := <K REG>
53 <K REG ASS>
54 NULL
55 GOTO <ID>
56 <PROC IO>
57 <FUNC IO>
58 <FUNCI>

Journal of the Association for Computing Machiaery, Vol. 15, No. 1, January 1968

PL360 '73

59
60
61
62
63
64
65
66
67
68
69
7O
71
72
73
74
75
76
77
78
79
8O
81
82
83
84
85
8~
87
88
89
90
91
92
93
94
g5
96
97
98
99

I00
I01
102
103
104
105
106
107
108
I09
IT0
111
IT2
I13
I14
115
I16
I I ?
I18

<CASE SEQ> END
<BLOCKBODY> END

<REL 0P> : : = <

>
< =
> =

<NOT> : : =
<CONDITION> : : = <K REG> <REL OP> <T CELL>

<K REG> <REL OP> <T NUMBER>
<K REG> <REL OP> <K REG>
<K REG> <REL OP> <STRING>
OVERFLOW
<REL OP>
<T CELL>
<NOT> <T CELL>

<COMP CONO> ; : = <CONDITION>
<COMP AOR> <CONDITION>

<COMP AOR> : : = <COMP COND> AND
<COMP COND> OR

<CONO THEN> : : = <COMP COND> THEN
<TRUE PART> : : = <SIMPLE ST> ELSE
<WHILE> ; ; = WHILE
<COND DO> : : = <COMP COND> DO
<ASS STEP> : : = <K REG ASS> STEP <T NUMBER>
< L I M I T > : : = UNTIL <K REG>

UNTIL <T CELL>
UNTIL <T NUMBER>

<DO> : ; : DO
<STATEMENT*> : : = <SIMPLE ST>

IF <COND THEN> <STATEMENT*>
IF <COND THEN> <TRUE PART> <STATEMENT*>
<WHILE> <COND DO> <STATEMENT*>
FOR ~ASS STEP> < L I M I T > <DO> <STATEMENT*>

<STATEMENT> : ~ : <STATEMENT*>
<ST T TYPE> ::= SHORT INTEGER

INTEGER
LOGICAL
REAL
LONG REAL
BYTE
CHARACTER

<T TYPE> : : = <SIT TYPE>
ARRAY <T NUMBER> <SI T TYPE>

<T DECLi> ::= <T TYPE> <ID>
<T DECL2> <ID>

<T DECL2> : ; = <T DECL7> ,
<T DECL3> : : = <T DECLI> =
<T DECL4> : : = <T DECL3> (

<T OECLS> ,
<T DECLS> ::= <T DECL4> <T NUMBER>

<T DECL4> <STRING>
<T DECLB> ::= <T DECL3>
<T DECLT> ;:= <T DECLI>

<T DECLB> <T NUMBER>
<T DECLB> <STRING>
<T DECL5> }

<FUNC DCI> : ; = FUNCTION
<FUNC DCT>

(Continued on following page)

Journal of the Association for Comput ing .~Iachiaery, Vol. 15, No. 1, January 1968

74 NIKLAUS WIRTH

Appendix III--Continued

1 [9 <EUNC DC2> : : = <FUNC DCi> < ID>
120 <FUNC DC3> : : = <FUNC 0C2> (
12 l <FUNC DC4> : : = <FUNC 0C3> <T NUMBER>
122 <FUNC DCS> ::= <FUNC 0C4>
123 <EUNC DC6> : : = <EUNC DCS>' <T NUMBER>
124 <FUNC DC7> ; ; = <FUNC DC6>)
125 <SYN DCI> : : = <T TYPE> < ID> SYN
126 < S I T TYPE> REGISTER <ID>
127 <SYN DC3> <ID> SYN
128 <SYN DC2> : := <SYN DCI> <T CELL>
129 <SYN OCt> <T NUMBER>
130 <SYN DCI> <K REG>
131 <SYN DC3> : : = <SYN DC2>
132 <SEG HEAD> : : £ SEGMENT
133 <PROC HDI> : : = PROCEDURE
134 <SEG HEAD> PROCEDURE
135 <PROC HD2> : : = <PROC HDI> <IO>
136 <PROC HD3> : := <PROC HD2> (
137 <PROC HD4> : : = <PROC HD3> <K REG>
138 <PROC HD5> = : = <PROC HD4> }
139 <PROC HD6> : : = <PROC HD5> ;
140 <DECL> : ; = < I DECL7>
141 <FUNC DCI>
142 <SYN DC2>
143 <pROC HDB> <STATEMENT*>
144 <SEG HEAD> BASE <K REG>
145 <LABEL DEF> : := <ID> :
146 <BLOCKHEAD> : := BEGIN
147 <BLOCKHEAD> <DECL> ;
I~8 <BLOCKBODY> : := <BLOCKHEAD>
L49 <BLOCKBODY> <STATEMENT> ;
150 <BLOCKBODY> <LABEL DEF>
151 <PROGRAM> ::= . <STATEMENT> •

SYN

Journal of "the Association for Computing Machinery, Vol. 15, No. i, January 1968

