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The word which I will speak is not mine.
Plato

Do only what only you can do.
Dijkstra






Abstract

History is often considered as a useless occupation, which conveys nothing other than
a knowledge of the past. This is especially true for the history of sciences: a scientific
curriculum does usually not comprise a single course on the history of the science
concerned. We will try, in this work, to see if an in depth study of the achievements and
writings of an important author in a discipline can help us to gain a better understanding
of the discipline itself. The chosen discipline is the computing science, and the author is

Dijkstra. We restrict our study to the first two decades of his life as a programmer.

Résumeé

L’histoire est souvent considérée comme une occupation inutile, qui transmet une
simple connaissance du passé. C’est particuliérement vrai pour l'histoire des sciences: les
programmes des études scientifiques ne comportent d’habitude pas un seul cours d’histoire
de la science en question. Nous essayerons dans ce travail de voir si ’étude approfondie
des écrits et des réalisations d’'un auteur important dans une discipline peut nous aider a
mieux comprendre cette discipline elle-méme. La discipline choisie est I'informatique, et
l'auteur est Dijkstra. Nous restreignons notre étude aux deux premiéres décennies de sa

vie de programmeur.
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INTRODUCTION

Before embarking on an ambitious project,
try to kill it.
Dijkstra

Dijkstra is often considered as one of the founding fathers of the computing science, along
with Turing, von Neumann and Knuth for instance. A characteristic of a founding father
is that he gives a new discipline some of its core concepts and methods, and this could
well be true for Dijkstra. However, another characteristic of a founding father is that
his writings are carefully studied by at least some of the later thinkers in the field, and
by this criterion one may argue that Dijkstra really isn't one of them. Of course, most
know that he invented an algorithm to compute the shortest path in a graph, that he
once wrote a paper entitled “Go To Statement Considered Harmful”, that he was a ardent
proponent of the so-called “structured programming”, and of the use of formal methods.
Those who have a more extensive culture in the history of computing science may also
cite the inventions of the stack, the semaphores, and the guarded commands. But except
for those commonplaces, his writings, which extend over about eight thousand pages, and
do probably include more than those few ideas, are for the most part simply ignored: no
systematic study of them has ever been undertaken, and no critical edition is planned.
This is the gap we will try to begin to fill.

The specific aim of this work is twofold: on the one hand, to give an insight into
some of the core concepts of computing science, and on the other hand, to illustrate a
way of thinking. In the hope of giving an insight into those core concepts, we will try to
precisely identify the origin of the difficulties which lead to their creation. Indeed, one
cannot correctly understand the nature of a concept if one does not see how it was born,
that is, for what problem it was a solution, what was the difficulty that it allowed to
overcome. Those concepts are not really as simple as it might seem to today’s computing
scientists: if they now look evident, it is because thinkers in the past struggled hard to
create them. We will therefore not present raw sequences of facts, or a patchwork of more
or less random inspiring quotations, but we will instead try to identify the connections
between them: we will show how the problems lead to solutions, how the solutions in turn
lead to new problems, and how experience leads to new ideas and new methods. By doing
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this we expect to illustrate a way of thinking, a way of approaching new problems. The
two goals we pursue may both be inspiring for today’s programmers: on the one hand,
the problems that the first programmers had to solve are indeed often typical, and we
constantly use the concepts they brought to the fore; on the other hand, the problems
we are faced with are always new in some of their aspects.

Our aim is thus neither to extol Dijkstra’s merits or to write his biography, nor to
attribute to him the paternity of this or that concept. The former would be of limited
interest, and further it does not belong to the type of work we have to achieve. The latter
would imply to compare his writings with those of all other thinkers of the field which
were published before or at the same time. This is clearly an impossible task, both because
the terminology is extremely fluctuating during the first decades of a new discipline, and
because similar ideas are often put forward by many different people. Further, many ideas
which seem novel when they appear in a given field of human knowledge did already exist
before, in a similar form, in one or more of the other fields of human knowledge. Finally,
we believe that the question of the paternity of ideas is relatively unimportant. It is indeed
far more enlightening to understand for what reasons someone became aware of this or
that idea. We venture the hypothesis that the sequence of problems that any programmer
is faced with during his life is, more or less, the same: if this is true, then we may take
some benefit from Dijkstra’s experience and walk faster on that path, avoiding some blind

alleys we would otherwise have been tempted to take.

The inherent limits of this kind of work are numerous. The first and most blatant
one is that it does not contribute to the progress of the discipline, as it does not propose
or evaluate any new ideas. But this is true for any synthesis effort, and yet they are not
devoid of interest. Further, we observe that the claim of novelty attached to many ideas
often proves later to be false: at a closer look, they reveal to be old ideas, which have been
forgotten because their limited interest had already been experienced. The study of the
old ideas may then have an interest to identify truly new ideas. A second inherent limit is
that this type of work is partial and subjective, as it is centered around a single author.
But it is anyway not possible to attain neutrality and objectivity whenever one wants to
go beyond the raw report of facts. In this context, it is then better to study the opinions
of a single author in depth than to present a colorless average of conflicting opinions of
multiple authors. A third limit is that it will inevitably give an impression of generality,
because it does not make use of mathematical formulz, and because it does not cover
all the technical details. But the absence of technical details and mathematical formulae
does not necessarily imply an absence of precision, and we note that, on the contrary, the
presence of formulas may often give a false impression of rigor. Finally, a fourth limit,
related to the previous one, is that this work, although its subject is clearly delimited, is
not exhaustive: many traits will be passed over in silence. But again this is true for any
synthesis effort, whose aim is to bring the essentials to light. This can be done only by
leaving the secondary points out.

Covering the whole subject in the imposed limits for this work revealed itself to
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be impossible; therefore we had to restrict our research to the first two decades of
Dijkstra’s achievements and writings. The choice of 1968 as the ending limit of our present
study is however not entirely arbitrary: it marks the beginning of the “software crisis”,
identified during the 1968 NATO Software Engineering Conference, which corresponds
to a strong shift in Dijkstra’s interests. Those seventeen years can be divided in three
periods, corresponding to Dijkstra’s three successive centers of interest: the first eight
years, during which he was involved in the design of four successive computers, and
designed an interrupt handler for the last one (Chapter I), the next three years, during
which his efforts were mostly centered around ALGOL 60 (Chapter II), and finally the
last six years, during which he had the responsibility of building an operating system
(Chapter III). To set the scene, we will first present some biographical elements, and
then, for each of those periods, we will devote a section to the analysis of his main
achievement (§ 2), a section to the analysis of the work preparing it (§ 1), and finally a
section to the analysis of his writings (§ 3). We hope, by these means, to achieve our aims
as well as possible.

Paris, 26 August 2009






BIOGRAPHICAL ELEMENTS

Dijkstra is born on 11 May 1930 in Rotterdam, The Netherlands. He is the third of four
children. His father, D. W. Dijkstra, is a chemist; he is teacher, and then principal, in a

secondary school in Rotterdam. His mother, B. C. Kluyver, is a mathematician.

He enters primary school in 1936, and secondary school in 1942, which he finishes in
1948, with the highest possible marks in all scientific disciplines. He wants to study law to
represent his country at the United Nations, but his parents and his teachers persuade him
to engage in scientific studies. He enters the University of Leyden to study mathematics
and theoretical physics. Three and a half years later, in March 1952, while pursuing his
studies in Leyden, he is hired by the Computation Department of the Mathematical
Center of Amsterdam. He completes his studies in Leyden in 1956. He presents his PhD
thesis on 28 October 1959 at the University of Amsterdam.

On 23 April 1957, he marries M. C. Debets. They have three children: Marcus, Femke,
and Rutger.

In September 1962, he is appointed Professor of Mathematics at the Technological
University of Eindhoven. In August 1973, he joins Burroughs as a Research Fellow,
and becomes Professor Extraordinarius at Eindhoven. In 1984, the Computer Science
Department of the University of Texas in Austin offer him the Schlumberger Centennial
Chair; he leaves Burroughs and the Technological University of Eindhoven, and settles in
the United States. He becomes Emeritus in 1999.

In November 2000 he is diagnosed with cancer. He goes back to the Netherlands in
April 2002, and dies in Nuenen on 6 August 2002. His cremation takes place four days

later.






CHAPTER I

COMPUTER DESIGN (1951-1959)

As a reward for having passed his third year of theoretical physics studies in Leyden,
Dijkstra’s father offer him to participate in a introduction to programming course on the
EDSAC in Cambridge, in September 1951. In connection with a letter of recommendation,
he meets A. van Wijngaarden, head of the Computation Department of the Mathematical
Centre, who offers to hire him as a programmer on his return. In March 1952, he accepts
his proposition; he works part-time in Amsterdam, while pursuing his studies in Leyden.
He gives his first courses in 1955, with van Wijngaarden. He soon decides to become a
programmer, rather than a theoretical physicist, and completes his studies in theoretical
physics as fast as possible, in 1956. Up to 1959, he will be involved in the design of the
ARRA, the FERTA, and the ARMAC (§ 1) — and finally of the X1, for which he designs

and writes an interrupt handler (§ 2).
§ 1. Introduction to Programming

One of the main objectives of the department van Wijngaarden leads being to design
and construct a computer, he had hired, four years earlier, two students in experimental
physics: C. S. Scholten and B. J. Loopstra. However, because of their lack of experience,
upon Dijkstra’s arrival, the machine under construction, the ARRA, still does not work
reliably. In November 1952, G. A. Blaauw, a Dutch engineer who just got his PhD at
the Computation Laboratory of the Harvard University, is hired; he’ll work with them
for two and a half years. He convinces the team to replace the electromechanical relays
with electronic components, and thirteen months later, in December 1953, a totally new
machine, also called ARRA (or sometimes ARRA II, to distinguish it from the original
ARRA), runs its first programs.

The small team organizes as follows: after having discussed and decided together
on the characteristics of the machine to build, Dijkstra is in charge of writing the
programmer’s manual, containing a complete functional description of the computer, as
well as the notation conventions for the code, which can be considered as a kind of minimal
assembly language. Afterward, while the rest of the team builds a machine meeting that

description, he writes the basic communication programs, permitting reading and writing

7



8 COMPUTER DESIGN (1951-1959) 1.1

of punched tapes, and the use of the keyboard and the typewriter: this way, the machine
and the programs needed to use it are ready at the same time. He’s also in charge of writing
the numerical subroutines (square and cubic roots, trigonometric functions, calculations
on fractional numbers, ...) permitting a more advanced use of the machine.

Technically speaking, the ARRA (1953) and the two machines who follow it, the
FERTA (1955) and the ARMAC (1956), are very similar; the FERTA is moreover an
improved copy of the ARRA. They are binary machines (that is, not binary-coded decimal
machines) working with two accumulators, with a memory of 1024 or 4096 words having a
length of 30 or 34 bits. Their thirty or so instructions are for the most strictly arithmetic,
and executed at an average speed of forty to thousand instructions per second. The speed
increase is mostly due to various improvements (for instance, the presence of two cache
memories in the ARMAC, one for the instructions and one for the data); they make the
FERTA two times faster than the ARRA, and the ARMAC, ten times faster than the
FERTA. Also, the presence of parity bits in the ARMAC make it safer to use than the

preceding ones.

They are strictly sequential machines, which means that they only execute a single
program, and that its execution is strictly sequential: the individual instructions of that
program are performed one after the other. This means particularly that the communi-
cation (input and output) operations cannot be completed while other instructions of
the program are executed. A certain concurrent execution is however allowed thanks to
the following optimization: the execution of a communication instruction only blocks the
execution of that same instruction for a certain time, the time usually needed for the
corresponding communication operation to complete. The machine can thus execute a
few other instructions while the communication operation proceeds, and the program
will temporarily be blocked if it asks for the execution of such an instruction during that
period of time, until it has elapsed. This optimization is, however, not without defects:
after an input operation, one has to take care of the number of instructions to execute,
and of their execution time, before one can use the result; after an output operation, one
has to take care of the particular cases of characters who, like the end of line character
for instance, take longer to print out. Those limitations justify the writing of higher level

communication routines taking care of all these details for the programmer.

A typical example of his programming work during those years is the ARMAC’s
division subroutine. The ARMAC does not have floating point numbers, but it is possible
to circumvent that limitation by observing that a word of n bits b;...b,, with the most
significant bit numbered 1, which is usually interpreted as representing the number b; X
2" 14 ... +b,x2° can have another interpretation: it can be interpreted as representing
the number b; x 271 4+ ... + b, x 2~ ™. The multiplication, subtraction and addition
operations do not need to be adapted to this fractional or fixed point interpretation,
but it is then possible to implement a subroutine to perform the division of two such

numbers:



1.1

INTRODUCTION TO PROGRAMMING

If the machine does not have built-in division, it needs to be programmed. We suppose
that the quotient of the division a/b of two fractional numbers is smaller than 1 in
absolute value. The iterative processes to calculate the reciprocal ! are:

en X (2—bXcp)=cny1 c=limec, =b " (quadratic convergence)
cn X (83=3x (bxcn)+ (bXcn)’) =car1 c=limc, =b"" (cubic convergence)
Initial approximation: fo < 1.92820323 — 2 x b. Instead of c,, the machine manipulates
fn=1cn—1.

Iteration scheme:
Gn—bX fnt+b—1

tn — Gn— gn
frri et X fanttn+ fn
f=lm f,=b"'—1
Completion: y < a X f + a, whereby the operation y < a/b is carried out.

}

b>07?
b+ —b
a+<—— —a
b< 1/2°?
b+ 2xb
a+ 2 X a
|
1+ 1
f+ 1.92820323 — 2 x b
I —
g« bxf+b
teq’+q
fetxf+t+f
14— —1
1> 07?
1 —
y+—a X f+a

}

The flowchart is executed in such a way that there are always two iterations. The error
is then smaller than 0.5 x 107!°, which is enough for the precision of the ARMAC.!

1. Cf. DUKSTRA, E. W., et al., Programmering voor Automatische Rekenmachines, pp. 56-58

9



10 COMPUTER DESIGN (1951-1959) 1.2

As one sees, the main problems are numerical analysis ones: one the one hand, to find
ways to perform elaborate operations with a very restricted instruction set, and on the
other hand, to arrange the concrete calculations in order to make sure that the numbers
never get out of the bounds | —1, 1[. The computer indeed manipulates f,, = ¢, — 1 instead
of ¢, since for 0.5 < b < 1, one would have 1 < b1 < 2.

Other typical examples of his programming work are the shortest path and the
minimum spanning tree algorithms which were both invented, during the year 1956,
with a strictly practical aim: the former to demonstrate the power of the ARMAC during
its official inauguration, the latter to minimize the use of copper in the wiring of the next

computer designed by the team.

§ 2. The X1’s Interrupt Handler

No sooner is the ARMAC finished that the team starts the construction of a new machine:
the X1. This time however, the conditions are somewhat different: because the mission
of the Mathematical Centre is not to manufacture computers, Loopstra and Scholten,
together with an insurance company, set up a firm to produce and sell it: Electrologica.
But, because the transition cannot happen immediately, the X1 will still be conceived at
the Mathematical Centre; it will be completed in 1958.

The X1 is a binary machine with, besides the two accumulator registers, an index
register, and a few one-bit condition registers; it has a memory of at most 32768 words
(with parity checks) having a length of 27 bits, and it works with about fifty instructions.
It is ten times faster than the ARMAC. But it is, technically speaking, revolutionary in
two of its aspects: it is the world’s first fully transistorized machine, and it is one of the
world’s first machines having an interrupt system.?

The addition of the interrupt mechanism has two goals: efficiency and adaptability.
As for efficiency, it aims at circumventing the inherent limitation of the communica-
tion apparatus, whose speed cannot be improved as fast as the calculation speed of the
computer itself: waiting for the completion of a communication instruction is not tolerable
any more on a computer like the X1, calculating more than hundred times faster than
the ARRA. Further, one of the design requirements of the X1 being its adaptability,
communication apparatus should be easy to add depending on the needs of the user.
Because the speed of the different operations of those a priori unidentified devices cannot
be known in advance, it is not possible to hard-wire their control entirely in the X1:
a part of the control, the determination of the end of their various operations, has to
be transferred to the devices themselves. This is where the interrupt system takes place:
when a program executes a communication instruction, the control returns to the program
without waiting for the actual completion of the communication operation; when this
operation finishes, the communication equipment signals its completion to the X1 by
means of an interrupt signal. The X1 reacts to that signal by transferring the control to a

2. Cf. LoopsTRA, B. J., The X1 Computer, and DIJKSTRA, E. W., Communication with an Automatic Computer, pp.
2-37
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“communication program,” or interrupt handler, which handles the situation, eventually
transferring the control back to the program. If the program does not make use directly
of the communiction instructions, but instead performs its communication operations
by calling higher level subroutines of the communication program, its communication
operations are then spread over the calculation time.

Once again, Dijkstra is in charge of deciding on the notation conventions for the
programs, and of writing the basic communication programs. It is the result of this work

that constitutes his PhD thesis, written under the direction of van Wijngaarden.

This time, his work is significantly more complicated. Indeed, because of the presence
of the interrupt mechanism, the X1, contrary to its predecessors, is not a strictly sequential
machine any more. It still executes only one program, but an interrupt, signaling the
completion of a communication operation, can take place at any moment, and this makes
it a non-deterministic machine. But, as he notes:

It is clear that this may not imply to make the task heavier for those who the machine
primarily use as a tool to obtain results. The conception of the interrupt mechanism gives
thus the duty to build up [a communication program] which on the one hand plucks an
important part of the possible fruits of the parallel programming, and on the other hand
does not burden the user unnecessarily.

The terms “parallel programming” refer to the intertwined execution of the main program
and the communication program. It is intertwined because the communication program
does more than simply calling the primitive communication instructions to read or write
a single word or character: it implements higher level routines to read or write a given
number of words in a given format, possibly with a conversion. For instance, if a program
asks for the writing of a word as an integer, the communication program determines
which is the first character to type out, executes a write instruction for that character,
and returns to the main program; when the typewriter has finished typing that character,
the X1 is interrupted, and the communication program proceeds with the next character,
etc.

Naturally, after every intermediate interruption the control returns to the main

program with complete restoration of the status quo.4

This means that the communication program should save and restore, besides its own
internal state, the state of the running program, that is, the state of the computer when
the program was interrupted: the contents of the various registers, and the instruction
counter.

To prevent mangling those records when a program asks for a communication opera-
tion while the communication program is still processing a previous request of the
same kind, which of course cannot be forbidden, the communication program should
be “synchronized” with the communication apparatus, that is, it should automatically

3. DuKSTRA, E. W., Communication with an Automatic Computer, p. 132

4. DUKSTRA, E. W., Communication with an Automatic Computer, p. 78



12 COMPUTER DESIGN (1951-1959) 1.2

wait for the previous communication operation to complete before proceeding with the
next one. This further prevents that the results of those operations be corrupted.

Finally, as many different communication apparatus can be connected to the X1, and
operate at the same time, it may be desirable to give them different priorities with respect
to each other, to ensure that a more urgent task will be processed before a less urgent
one. The X1 has therefore seven interrupt “classes”, defining seven priority levels. The
class with the lowest priority, which is even lower than the running program, is reserved
for the console keyboard; the six other classes, which have a higher priority than the
running program, are for the communication devices. At any given moment, interrupts
of those classes may be allowed to take place or not, depending on the “interrupt permit”
bit of their class; it is the responsibility of the communication program (and of other
programs) to use them according to their needs. For the communication program, this
means for instance disallowing interrupts of the same class to take place while it is running.
Furthermore, an additional global interrupt permit bit makes it possible to prevent all

interrupts without altering the individual permit bits of the seven classes.

It is now clear that the requirement of adaptability has been met by this organization,

as communication apparatus are easy to add and to manage:
It is possible to make a communication program for the X1 without paying any

attention to the relative timing of the external apparatus on the one hand and the X1

on the other hand.®
Indeed, the transfer of a part of the control to the external devices (namely, the deter-
mination of the end of their various operations, and consequently the control of the
start of the communication program), to solve the problem of the unknown timing of
their operations, in turn poses other problems; but these can been solved by the careful

writing of a suitable communication program.

The communication program written by Dijkstra for the X1 consists of about a thou-
sand instructions, about fifty reserved words holding variable values, and about twenty
constant words.® It can deal with four communication apparatus: the console keyboard
of the X1, a typewriter, a tape reader and a tape punch. The part of the communication
program handling the tape reader includes an assembler, which translates the sequence
of five-bit words read on the tape into instructions, numbers or full words, depending on
the directives punched on the tapes. The communication program is hard-wired in the
X1, but it is designed to be extensible to other apparatus: the control can be transferred
at will from its central part to instructions in live (not hard-wired) memory.

To illustrate that extensibility, after having presented the communication program,
Dijkstra solves two additional problems: namely, how to optimize the usage of the
computing time by further spreading the communication operations over the calculation
time, and how to couple an input and an output device in such a way that they can work
together independently of a running program. The first problem is described as follows:

5. DUKSTRA, E. W., Communication with an Automatic Computer, p. 27

6. Cf. DUKSTRA, E. W., Communication with an Automatic Computer, pp. 138-166
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The use of [synchronized output operations] can imply a loss of potential computing
time if two such calls succeed each other too quickly: when the second call is encountered
the control waits [...] until the previous [communication operation] has been completed
before actually starting on the new [communication operation]. Only when the latter has
been started does the control return to the main program. [...] If the time required by the
[output operation] is so much in excess of the total time necessary for the computation
that the typewriter nevertheless operates at full speed, this loss in computation time
is fictitious. Real loss in total time only occurs when the X1 is unproductive during a
“concentrated” number of [output operations], while the [output devices are] not active
at a later stage, because the X1 is still busy forming the next result.”

It can be solved by the use of a buffer. The solution given has the form of a flowchart,
taking the example of a one-line output buffer, but it is directly applicable to larger
buffers and it gives the general scheme of the solution. As to the second problem, it is
introduced as follows:

Our next problem is to construct a program that reads a tape and types and/or
punches out data depending on what has been read. One of the simplest examples is
merely reproducing a tape. Another example is typing out the binary words from a tape
in decimal form. In the latter case a number of symbols to be typed out are derived
from a group of consecutive [five-bit words] each time. We now demand that it must be
possible to execute this program simultaneously with any other program.®

The problem is thus to synchronize input and output mutually. The principle of the
solution is given as a flowchart using two buffers (whose size is not specified, but depends
on the calculations that have to be performed on the input data before sending the result

to the output device) and two one-bit variables:®

|

read < true
punch + false
read ? punch ?
read (z) punch (y)
punch ? read ?
punch < true i o fal read < true b o false
vz read < false Yz punc
I I I I

7. DUKSTRA, E. W., Communication with an Automatic Computer, pp. 95-96
8. DUKSTRA, E. W., Communication with an Automatic Computer, pp. 113-114

9. Cf. DIUKSTRA, E. W., Communication with an Automatic Computer, p. 114
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§ 3. Thoughts on Programming

Dijkstra’s thoughts about programming are not yet much developed, but some remarks
are worth mentioning. For example, the introduction of the Functional Description of
the ARRA (1953) begins with:

The ARRA is an automatic digital machine. In what follows is that machine described,
inasmuch as it is relevant for someone who uses the machine: it will be described what
the machine does, not how the machine works. 10

It is noteworthy that, right from the first sentences of the first report he writes, the distinc-
tion between functional description (or specification) and implementation (or operational
description) seems so important to him that he begins with it; whereas it is not evident,
and it will generally be recognized only more than twenty years later that this distinction
is a fundamental one. In the remainder of the report, one finds, after a minimal description
of the different parts of the machine (the memory, the control unit, the calculating unit
and its registers), a very clear and precise description of the twenty-five instructions, and
of each of the communication (input and output) units, without any reference to the way

they are built.

As for the nature of programming itself, he begins with a kind of general description

of his activity, indicating how programming fits within it:

The specific task of the programmer is a part of the preparation that is needed before
the machine can begin to calculate. To be complete, here are the most important stages:

15, mathematical formulation of the problem,

274 mathematical solving of the problem,

3. choice or construction of the numerical processes, which [...] to the desired result
lead,

4th, programming: detailed building of those [...] processes, with the elementary

operations, by which the machine directly in state is to solve the problem,

5th coding: writing of the program in the code of the machine, in such a way that

afterward a tape can be directly punched.!!

One should not interpret those remarks as indicating that he already had a clear under-
standing of a role of mathematics in programming. They are the consequence of the fact
that computers were considered and used above all as calculating machines, as reflected,
for that matter, by their instruction set: the problems they have to solve being mostly
numerical, their programming requires a mathematical formulation and solving of the
problem in question (see p. 8). That formulation and solving, as well as the choice of
the numerical processes to realize that solving, aren’t part, strictly speaking, of the
programming activity. Programming and coding are clearly set apart, the former being
a matter of construction and organization, the latter, a nearly mechanical translation of
the elementary operations of the program into instructions executable by the machine.
In concrete terms, programming consists in writing down a flowchart for the processes,

10. DIIKSTRA, E. W., Functionele beschrijving van de ARRA, p. 1
11. DUUKSTRA, E. W., Functionele beschrijuing van de ARRA, p. 33
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coding in translating the components of that flowchart into instructions.

It is clear that the mathematical formulation and resolution of the problem are entirely
independent of the machine on which the problem will be coded. On the contrary, the last
stage of the process, translating the program into machine code, is of course completely
dependent of it. Thus, as one goes along the stages, the dependence of the machine
is more and more significant, and the intermediary stage of programming, while not
as independent of the machine as the mathematical stages, still permits some general
considerations:

Programming is however, still such a general problem, that things can be said about
it, that are not only applicable to the ARRA.??

So, how should one proceed to write a program?

A program breaks down into a few distinct pieces in a natural fashion, for instance,
the instructions, a series of constant numbers, a series of separated changing parameters
of general numerical data, and a series of so-called working spaces (addresses where
intermediary results are stored in the meantime). But the instructions can also be divided
in groups: “this piece does this” and “this piece does that” etc.

When sketching a program out, one think initially solely in such terms: one first builds
the program in broad strokes. (Like: “This table must stay in the memory, different quan-
tities — who must be processed together in different ways — must be interpolated from
this table. Interpolation in the table is thus separated into a ‘small group of instructions’.
We have to calculate a sinus multiple times. This and that number are always calculated
by iteration: the piece of program in charge of this, may as well be isolated as a group

of instructions that could be considered as an entity, etc.”)

Then the programmer makes those separated pieces.13

The division criterion that should be used to break a program in parts is the sheet,
corresponding to a page in the memory:

A track contains 32 successive addresses: those are also called a sheet: with this last
name the accent is differently placed: the track is a concrete unit, that one can indicate
on the drum, the sheet is a (paper) unit, by which the instructions are divided in groups
by the programmer.14

Instructions are thus assembled in groups of thirty-two words; that group forms a sheet,
the unit into which programs are divided and written. It is clear then that subroutines
are not the concept that gives structure to programming: the programmer does not use
them in his programs, but thinks in terms of sheets.

If computers have instructions to call and return from a subroutine, their usage is
often limited to the call of the functions of the standard library. The subroutine call
and return instructions are simply regarded as specialized jump instructions, which differ
from the normal jump instruction in that they store or retrieve an address somewhere

in the computer’s memory. Subroutines are thus hardly ever used to write programs,

12. DUUKSTRA, E. W., Functionele beschrijuing van de ARRA, p. 33
13. DUKSTRA, E. W., Handboek voor de programmeur — FERTA, p. 37
14. DUKSTRA, E. W., Handboek voor de programmeur — FERTA, p. 37



16 COMPUTER DESIGN (1951-1959) 1.3

the only subroutines are the functions that are part of the library, stored more or less
permanently in memory, and written so as to be usable by different programs. Typical
subroutines offer the usual numerical and trigonometrical functions (square and cubic
roots, logarithms, sine, cosine, . ..), calculations on fractional numbers, input and output

operations, conversion of numbers between binary and decimal bases, ...

A subroutine is a series of instructions, which perform together a standard operation.

It is indeed the task of the programmer to build up a specific calculation with the
instructions. [...] It would be needless much work for him, if he had to build up each
program with those little stones, because each calculation can be split into bigger parts,
whose function is so general, that the same series of instructions certainly will also appear
in another program. |...]

Suppose that we want to type out the content of a memory address [...] as a whole
number; and that a series of instructions in a subroutine [...] type out the number
contained in the register S as a whole number. One could punch those instructions [...]
on a tape and, each time that a whole number must be typed out, arrange the program
so that the number to be typed out in S is, then copy the series of instructions on the
band, and then continue with the program. [...] However, this would imply, if later on
in the program another whole number must be typed out, entering those instructions a
second time: an identical series of instructions must then be read in two times, and is in
duplicate in the memory, which is a real waste of memory space.

One would readily let the control go through the same series of instructions both
times. This means however that, after the type operation, the control should encounter
a variable control redirection, according to whether the first or the second number was
typed out. This variable control redirection is called a coupling instruction.

In concrete terms, the execution goes now as follows: Somewhere in the memory are
a series of instructions, which perform the required operation (in this case the typing out
of the content of a register interpreted as a whole number). Each time a whole number
must be typed out the control is sent to that series of instructions, with two information:
[-..] the number that should be typed out, [and the coupling instruction] which sends the
control back to the right place in the program after c:omple‘cion.15

The main benefit of standard subroutines is that they offer a gain in memory space. They
are simply understood at the start (1953) as an alternative to copying a series of identical
instructions multiple times in memory, at different places in a program, or in different
programs. But that’s not all, and their use also has drawbacks.

The advantages to the use of subroutines are the following ones:

15t It limits the possibilities of errors in the program. [-]

274 Tt reduces the time needed to build up the program.

34, It reduces the punch time. [...]

4% Tt gives the program more clarity. [...]

5th Tt may, and will most often, give an important saving of time. |...]
6th. It may, and will most often, give an important saving of space. |...]

The disadvantages to the use of subroutines are the following ones:

158, It increases the number of conventions. |...]

274 A source of errors may arise because a programmer makes use of a subroutine
without precisely and clearly knowing what in that subroutine happens instruc-

tion by instruction.

15. DIUKSTRA, E. W., Functionele beschrijuing van de ARRA, p. 36
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. It may, but will not frequently, give a loss of time. [...]
. It may give a loss of space. [...]
. The machine executes irrevocably additional operations when taking care of

the coupling instruction, and the adaptation to the special conventions of the
16

subroutine.

Anyway, their main benefit is the savings they permit: in calculation time, in memory
space, in programming time, and in the time needed to punch and read tapes. The
fact that it could be necessary for the programmer who wants to use the subroutine
to understand “precisely and clearly” what in that subroutine happens, shows that the
distinction between functional and operational description is not evident right away in
the practice of programming. But a short while thereafter (1955), his understanding of
the nature of subroutines is a little more refined:

By subroutine, we mean a series of instructions, which together perform a clearly
delimited operation. [...] If a subroutine [...] is somewhere in the memory, the calling of
the subroutine in the main program acts as an extension to the instruction set.!”

The series of instructions grouped within a subroutine is henceforth seen as a unity, to

the extent that it is considered as a kind of additional instruction.

Besides those reflections on the nature of the programming activity, one finds a few
thoughts about the programs themselves. It is desirable indeed for every program that
it respects certain general properties, that is, properties which do not depend on some
given machine on which it is executed. But they exist only because programs exist, and

as such, they are part of the concern of programming.

The ideals that one pursue in the building of a program are the following:
15%, maximal speed [...],

274, minimal memory usage |[...],

3rd
4th
5th
gth

. maximal safety,
. maximal accuracy,
. maximal flexibility,
. maximal clarity.
15t and 274, The first two ideals are, up to a certain point, conflicting. [...]
3'd. The pursuit of safety is expressed by the precautions so that the machine gives
no wrong answer.. [...]

4*h, The ideal of accuracy means that one should be vigilant that precision is not
unnecessarily lost by the use of clumsily chosen methods. [...]

5P The pursuit of flexibility is very clearly expressed in the building of subroutines
[...] whereby a series of instructions once in the memory is stored, which carry out
a complicated operation, that in the course of the program multiple times occur. [...]
Flexibility also requires that the programmer the program organizes in such a way that,
if an error is found (which is almost always the case), he has not to rewrite the whole
program.

6th t.18

. Clarity is an obvious precep
16. DIJKSTRA, E. W., Functionele beschrijuing van de ARRA, pp. 38-39
17. DUIKSTRA, E. W., Handboek voor de programmeur — FERTA, pp. 4042
18. DIJKSTRA, E. W., Functionele beschrijuing van de ARRA, pp. 33-35
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The usual opposition between the speed and the memory usage of a program is under-
scored: on the ARRA for instance, a program calculating the sum of hundred successive
numbers will be executed in 2.5 seconds if it is composed of one instruction for each
of the terms of the sum, of course occupying about a hundred words in memory, and
in 14 seconds if it is written as a loop adding the successive numbers, occupying only
about twenty words in memory. The very presence of other requirements than speed and
memory usage is uncommon, and it is therefore worth trying to understand them better.

Safety stems from the unreliability of the machines: writing or reading a word in
memory sometimes happen incorrectly, without it being detected, because of the lack
of error detection mechanisms, which are not systematically used: the ARRA and the
FERTA do not have such mechanisms. Safety consists thus in trying to detect the errors
of the machine, for instance by doing the calculations on data for which the result is
already known, or by performing the same calculations two times in a row and comparing
the results. The same kind of errors may arise in the input-output operations, and similar
safety checks can be devised.

Accuracy does not consist in insuring that the program gives correct results (a require-
ment that is probably so evident that it does not need to be explicitly stated), but that
those results are as precise as possible: it is well-known, for instance, that in numerical
calculations an inappropriate evaluation order can end up in a loss of precision in the
final result because of successive rounding offs.

Flexibility consists in a certain adaptability of the programs and of their components.
It is desirable, for instance, that subroutines, stored more or less permanently in memory,
are written in such a way as to be callable at different places in a program, or even from
different programs; it’s the very reason of their existence. Further, because program-
ming errors (and not only coding errors) are considered inevitable, programs should be
organized so that the correction of an error does not lead to a complete rewrite of the
program.

Clarity being considered as “obvious”, we cannot develop it more for the time being.
This self-evidence perhaps signifies that, contrary to the notions of safety, accuracy and
flexibility which receive a specific meaning, it should be understood in its usual sense,
namely, the property of being easy to understand. In any case, one can already note that
it is a requirement that goes beyond simple usefulness.

This is, of course, not his last word. A few years later, with five years of programming
experience, he brings another desirable property to the fore: their restartability. As a sign
of its importance, its detailed exposition occupies five pages in the manual Programming
for the ARMAC (1957), which is about a hundred pages long. What is it about?

A program is called restartable, if the information entered by the input stays unaltered
in the memory during the calculations. [...] With such a program, it is possible to start the
calculation again, without reading the tapes anew, only by pressing the start button, for
every needed information is still intact in the machine. Restartability is a requirement,
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that each program must meet.??

It is because programs can modify themselves during the execution that this property
is not verified right away. The modification of a program by itself is seen as essential to
the power of the computers, and, from a practical point of view, the absence of index
registers render its usage necessary for writing loops. It is clear that, in general, after
those modifications, the program cannot be run as it is, which means that, if the program
has to be restarted, one has to load it again in memory by reading the punch tape again.
Because it is a lengthy and tedious operation, it would be wise to avoid it, if possible.
He does not merely formulate this requirement; he translates it as a concrete, simple and
clear, rule:

The formal consequence of restartability is that each used address should be filled in
either during the loading of the program, or by the program, but not by both.?°

What are the grounds for this requirement? One may, of course, want to restart a
program to run it on other data. But in that case reloading it from the tape would be
tolerable, as the time needed to read a tape is usually quite low compared to the running
time of a program; the reason lies elsewhere. Execution errors (due to memory errors,

physical errors in a communication apparatus, ...) are a better justification.

Stronger again is the argument of the testing of a program. Suppose that one starts
a program carelessly, and that, seeing the output — or its absence! — one comes to
the conclusion that something is wrong with it. (Inexperienced programmers often tend
to draw the nearly always wrong conclusion that the ARMAC a defect has!). In such a
case one will load the program again in the ARMAC, to stop the machine after some
known intermediary result; if it is already wrong, one starts the machine again, but this
time stopping it somewhat earlier, etc. trying to localize the error in this way. Having to
reload the program each time again would slow testing excessively; again different is the
situation, when the first error has been found and corrected “manually” in the machine:
the tapes are then no longer correct, before a correction tape has been made! However
one always waits, to punch a correction tape, that a significant number of errors, if not
each of them, were found and fixed.?!

It is thus clear he still thinks that (numerous) programming and coding errors are
unavoidable, because those errors are the deepest justification for the requirement of
restartability. Errors due to the machine being from now on automatically detected,
thanks to the presence of parity checks in the ARMAC, safety is not any more a property
that the programmer should worry about, so much so that he can now write:

In contrast to the past a stage has now been reached, where the weakest link in the
process is not the machine any more, but — the programmer!22

The new features of the X1 result in new thoughts about programming. For example,

19. DUIKSTRA, E. W., Programmering voor de ARMAC, p. 16
20. DuKsTRA, E. W., Programmering voor de ARMAC, p. 17
21. DUKSTRA, E. W., Programmering voor de ARMAC, pp. 16-17

22. DUKSTRA, BE. W., et al., Programmering voor Automatische Rekenmachines, p. 79
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in comparison to the ARMAC, the subroutine call and return instructions of the X1 have
been extended with an index argument m, indicating the place, in an array of successive
words in memory, where the return address should be stored and retrieved: this makes it

possible to have nested subroutine calls.

It is convention to choose m = 0 for those subroutines that do not call in another
subroutine; for subroutines that call in a sub-subroutine with at most m = 0, the m
is chosen = 1, etc. All this applies to subroutines that call in other known subroutines.
However, as soon as a subroutine calls in an “arbitrary” subroutine [...] this is no longer
possible. In such cases it is always safe to call in the outer subroutine with m = 0;
the latter starts off by transferring [the return address| to a location in its own working
space. The restriction that the index m can “only” take [sixteen] different values can be
circumvented by the same technique. (If need be a single value of m, e. g. m = 0, would
suffice; transferring [the return address] would then be [the] rule and no exception. [...])%

This, and the fact that subroutine calls are fast and take little space, has the consequence
that it is now possible to use subroutines in ordinary programs. It is then clear that the
use of subroutines is not any more restricted to the sole use of the standard library:

The fact that calling in a subroutine needs only one [instruction] in the main program
[...] is also attractive as far as program space is concerned; as a result it is worth
considering programming even rather simple operations as subroutines. [...] The fact that
[instructions to save the return address] are not necessary on entering the subroutine,
facilitates the making of compact, fast and flexible subroutines even further.?*

It should be noted that this possibility of nested subroutine calls is not used in the
standard communication program: it would prevent ordinary programs to use it, as the
array of return addresses is not stored and restored by the interrupt mechanism.

This new facility is however not enough to make the subroutines the criterion to
compose programs. Regarding that question, there is nonetheless room for improvement.
Based on the previous programming experiences, a novelty is included in the tape reading

functions of the communication program: the notion of “paragraph”.

The division of the memory into paragraphs has been introduced in order to meet
the needs of the programmer. In practice only very simple programs are conceived as
a whole and written down order by order from beginning to end. Very soon it is found
more convenient to split up the computation into sections, each having a separate function
which can be isolated to a greater or lesser extent from that of the other sections. It is
very important to choose these sections with care: the more clearly isolated the function
of these sections the clearer the arrangement of the program.

Normally one allocates a separate paragraph to each section and supplies each para-
graph with its own [identifiers]. These different [identifiers] make the program easier to
read, furthermore they make it possible for one to start programming one paragraph
while one or more of the others is incomplete.25

A “paragraph” is a logical group of sheets (a sheet being, as before, 32 successive words),
whose physical place in memory will be determined at the time the program is loaded, by
23. DUKSTRA, BE. W., Communication with an Automatic Computer, pp. 49-50

24. DUKSTRA, E. W., Communication with an Automatic Computer, pp. 50-51

25. DUKSTRA, BE. W., Communication with an Automatic Computer, p. 65
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means of directives punched on the tape. The paragraph abstracts the memory locations
in such a way that it is possible to write a program, broken into distinct “sections”,
without worrying about their physical location in the memory: therefore the main division
criterion for programs, while still based on the memory space, is not the sheet any more,
and is thus not as much dependent of the physical reality of the programs.

As one sees, flexibility and clarity, which are the ground of the notion of paragraph, are
still regarded as desirable qualities of programs. Memory usage and speed are sometimes
mentioned, but they don’t have the first place any more. No other properties are put
forward. Also, while the communication program of the X1 had to be written without
any testing, since it is wired into the machine and is necessary to use it, and nevertheless
be error-free, the presence of bugs is still seen as inevitable in other programs.

Even more interesting is the fact that a reflection is initiated on the structure of the
programs, more or less independently of concrete programs. Flowcharts are still used to
present the programs, but they are sometimes used to represent not a particular program,
but a general structure common to many programs. For instance, when Dijkstra presents
the “counting jump” instruction of the X1 (which sends the control to a given address,
depending on the value of a given memory location, and decreases that value by one),
he shows the three usual ways for its use: a loop that has to be executed n > 1 times,
a loop that has to be executed n > 0 times, and a loop that has to be executed n +%
times (that is, a loop for which one part must be executed n times, and another part
n + 1 times). Likewise, to explain how the communication program works, he presents a
flowchart of the common structure of the individual parts of the program, each dedicated
to the management of a distinct communication device, before going into the details of

the differences between those individual parts.

Finally, the reflection on the structure of programs is now coupled with the begin-
ning of a reflection on programming languages, in which the programs are written. The
programming languages Dijkstra knows of are the instruction sets of the four computers
designed in the Mathematical Centre. From his experience with them, he isolates a
desirable property for instruction sets: their elegance. Elegance refers to an equilibrium
between excessive flexibility and excessive rigidity. An instruction set is excessively flexible
if it is redundant, that is, if too many different instructions have an equivalent effect. This
causes confusion, as too much different solutions present themselves to the programmer
faced with a given problem. Each programmer then uses only a subset of the instruction
set, and becomes accustomed to his own methods, which renders the reading of programs
harder than necessary. On the contrary, an instruction set is excessively rigid if there is
only a single instruction at one’s disposal for each possible operation. The most usual
excess is obviously in the direction of flexibility.

There is, though, a small gap between the instruction set and the programmer, since
he doesn’t use the instructions in their binary form when he programs. This small gaps lies

in its notation: as the instructions written down on paper are first punched onto a tape,



22 COMPUTER DESIGN (1951-1959) 1.3

and then assembled by the communication program, it is possible to have some distance
between the way instructions are written down, and their actual representation as a
sequence of bits. Indeed, the notation of the instructions for the X1 was carefully designed
so that the order in which the name of the instruction and its different parameters appear
can logically be read from left to right. For instance, if an instruction should be executed
only if one of the condition registers is set, that condition appears on the left of its name;
if an instruction should set one of the condition registers, this is written down after all

the other parameters.

What preliminary conclusions can be drawn from those first observations? It is mani-
fest that Dijkstra approaches the new discipline with absolutely no preconceived ideas:
the principles and the methods he brings to the fore are all derived from his practical
experience on programs with a size of a few tens to a few hundreds of instructions, solving
well-defined problems. His theoretical education in mathematics and physics seems to
have had little influence on the way he works, except perhaps by giving him a sense of
precision and clarity. In particular, he views programming as, in most cases, a trial-and-
error process. The unusual notion of clarity, which seems to have a certain importance,

needs further analysis.

The two aspects of his work during those first eight years find their continuation in his
work during the next nine years, on problems with a higher level of complexity: the design
of the notation conventions for the instruction sets and the writing of assemblers, in the
design and the implementation of a programming language, ALGOL 60 (chapter II); the
design and writing of the communication programs, in the design and implementation of

an operating system, “THE” (chapter III).



CHAPTER II

A PROGRAMMING LANGUAGE (1959-1962)

Van Wijngaarden is seriously injured in a car accident in 1958. During his convalescence,
Dijkstra acts as the manager of the Computation Department. He also takes his place in
the international meetings, and participates in the preliminary discussions for the defini-
tion of ALGOL. After his recovery, van Wijngaarden’s interests shift from the building
of computers to the developing of programming languages. Therefore, while Loopstra
and Scholten set off on the Electrologica venture, he takes an active part, with the help
of Dijkstra, in the definition of ALGOL 60 (§ 1) — and then the latter writes, with
J. A. Zonneveld, a compiler for that new language (§ 2), named “MC” for “Mathematisch
Centrum?”.

§ 1. The Definition of ALGOL 60

ALGOL 60 is the result of a three year international effort to produce a universal program-
ming language. The objectives in designing ALGOL were threefold: the language “should
be as close as possible to standard mathematical notation”, it “should be possible to use it
for the description of computing processes”, and it “should be mechanically translatable
into machine programs.” While those two last objectives are compatible, and even go hand
in hand with each other, they are to a certain extent conflicting with the first one: on
the one hand, standard mathematical notation was not designed to describe computing
processes, that is, sequences of operations ordered in time, but rather to denote timeless
relations between quantities; on the other hand, it is often ambiguous, which is not a
problem for a human reader but renders it improper to a mechanical translation into
machine programs. Hence the discussions to try to fill this gap.

From a working document established during the mid-1958 conference in Ziirich
attended by four Europeans and four Americans (the preliminary report defining the
International Algebraic Language which will later be known as ALGOL 58), the language
is slowly build up by discussions in committees during meetings and conferences, and
by suggestions submitted to examination and approval by the interested parties, in the
Communaications of the ACM for the Americans and in the ALGOL-Bulletin for the
Europeans.

23
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Among van Wijngaarden and Dijkstra’s propositions, one finds for instance the sugges-

b

tion to denote the definition of a function with a ‘=’ sign rather than with a “:=’ sign
(neither of those two notations will finally be adopted), or to include other primitive types
in the language (besides integers, reals and Booleans) together with their usual operations:
complex numbers, vectors, matrices, lists, ... More interesting are their contributions to

the creation of the block concept — and to the inclusion of recursion in the language.

The block concept arguably represents the most important and the most innovative
contribution of the language: it is the aspect of the language that took the longest discus-
sions to agree on, it will be taken over by virtually any programming language following it,
and it will in turn give rise to many subsequent developments in programming languages

(closures and objects are the most obvious examples).

Till then, whichever be the programming language, each element (subroutine or vari-
able) of a program is at the same level as any other element: each one is accessible from
any point of the program and they all have, during the execution of the program, the
same life span as the whole program. This means particularly that there is a single level
of subroutines, and that subroutines do not have, except by means of conventions, their
own particular variables. In other words, the code of the programs is flat: even if nested
subroutine calls are used, the code of the subroutines and the variables are located in the
same words in memory from the beginning of the execution of the program to its end.

On the contrary, in ALGOL 58, inspired more by mathematics than by machine
languages, a program is a series of declarations of totally independent and self-sufficient
processes. There is a strict separation between their inside and their outside, which means
that a process can only use, access or modify the elements that it explicitly receives as
argument. Like mathematical functions and unlike subroutines, processes in ALGOL 58
therefore do not have any side effects. They form a kind of calculable equivalent of
mathematical functions. To emphasize the difference with the concept of subroutine,

they are called “procedures”.

That mathematical influence can also be felt in the fact that procedure declarations
cannot contain other procedure declarations (although the preliminary report is not
explicit on this point).

In June 1959, during a conference in Paris, a committee of which Dijkstra is a member
(but not van Wijngaarden) observes that it would be convenient to be allowed to refer,
from the inside of procedures, to certain entities (functions, which do not modify any
variable, but simply return a value calculated with the help of the value of their arguments,
and are therefore strictly speaking not processes), without having to supply them as argu-
ments. The committee proposes a notation to declare in the heading of a procedure that
certain functions are accessible in its body although they are not received as arguments.
The proposition is soon extended to the two other kinds of entities in ALGOL: procedures
and variables. Because of this feature, known as “hidden parameters”, the final language
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will thus have side effects.

Three months later, in September 1959, G. Ehrling observes that a program could be
allowed to become a procedure in another program, since it suffices to enclose a program
within a procedure heading to turn it into a procedure; consequently, he proposes that

procedures could be declared within other procedures.

Besides hidden parameters and nested declarations, a third improvement over stan-
dard mathematical notation, regarding the meaning of identifiers, is desirable. Indeed,
symbols are often loosely used in mathematical formulee, where their meaning is supposed
to be explicit enough for a human reader. As those formule are in particular not written to
be executed, there is no risk of conflict between possibly identical symbols used in different
formule. This problem does not appear in machine languages either, where identifiers
are merely used as abbreviations for memory locations. Four independent propositions to
solve it were submitted in October 1959, by van Wijngaarden and Dijkstra, K. Samelson,
H. Bottenbruch and J. Green et al. The first deals with three aspects of the problem
with three distinct suggestions, covering respectively the uniqueness of identifiers, re-
declarations, and hierarchical declarations; the three others cover only one aspect of the
problem.

In the language defined by the preliminary report, nothing prohibits an identifier to
be used in a program with multiple meanings, as long it is not used to designate two
entities of the same class. The same identifier therefore may have up to five different
meanings at a given point of a program text, since it may be used to designate a label,
a simple variable, an array variable, a function, and a procedure. As this possibility is
probably due to a forgetting, and as it does not contribute towards the clarity of programs,

van Wijngaarden and Dijkstra propose and argue that:

[Identifiers] should not be used for different purposes, e. g. for a variable and a label.

It has been shown that unexpected ambiguities may arise under special circumstances,

and there does not seem to be any serious need for multiple use of the same name.’

A second aspect of the problem lies in the fact that it is common to use the same
identifiers in successive formule with different meanings. This is not forbidden by the
preliminary report, but is neither explicitly allowed, and it does not have a precise
signification. They suggest to raise the possible ambiguities by including the following
sentences in the final report:

[Declarations] pertain to that part of the text which follows the declaration and which
may be ended by a contradictory declaration. Their effect is not alterable by the running
history of the program.?

A given identifier would thus be allowed to have successively different meanings, but at
any point of the program text it would have only one. It is therefore an offset to the
previous suggestion. Samelson’s and Bottenbruch’s propositions also concern this aspect

1. vaAN WIINGAARDEN, A., DuIKSTRA, E. W., ALGOL-Bulletin 7.32
2. VAN WIINGAARDEN, A., DUUKSTRA, E. W., ALGOL-Bulletin 7.31
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of the problem.

Samelson suggests that declarations should always be written in front of statements,
and have a meaning only in the statement following them:

A declaration is a prefix to a statement [...]. It is valid for, and part of, the statement
following it: if A is a declaration, and ¥ a statement, A.X is a statement and A is

valid through ¥ and ¥ alone. Conflicting declarations on different levels of statement are

€ITOIS. 3

The novelty is that declarations are given a precise place in program texts, and a precise
validity span which does not depend on a contradictory declaration, but the problem
of conflicting declarations is not dealt with in detail. Successive conflicting declarations
seem to be allowed, but on the same level of statements.

Bottenbruch’s proposition, while being less precise, is nevertheless of some importance.
He simply suggests to “give the declarations a dynamic meaning.” It can be understood
from the little example he gives to explain what this means that, to solve the problem of
contradictory declarations, he suggests that identifiers could have their meaning changed
while the program is running, namely when the control encounters a declaration that is
contradictory with another previously encountered one.

Finally, van Wijngaarden and Dijkstra’s third proposition explicitly introduces the

idea of a hierarchical nomenclature. It goes as follows:

The level [of nomenclature] declaration

new (I, I, ...)
has the effect that the named entities [with the identifiers I] have no relationship to
identically named entities before in the following text, until the level declaration

old ([, I,...)
which attributes to the entities named herein the meaning that they had before. These
level declarations may be nested and form the only way to introduce a new meaning to
a name. In particular, in a procedure to be compiled along with the main program, all
variables that should have no relationship [to identical variables outside the procedure]
should be declared new before they have appeared and declared old before the end.

These declarations do not only solve the problem of having “old” and “new” variables
alongside in a procedure, but are also extremely useful in an ordinary program. It should
be noted that after ‘new (z)’ the new z is fully independent of the old z and, therefore,
type declarations, if necessary, have to be given anew. On the other hand after ‘old (z)’
the type declarations of the old z are still valid.*

It is understood as a generalization of the hidden parameter feature, by reversing the
approach: instead of writing down in the program text which identifiers should be
imported from the surrounding environment, identifiers are imported by default, and
one should declare which identifiers become local, and when their global meaning is to
be restored. Further, the use of this feature to declare local variables in a procedure is

now only a particular case: it may be used in any other context.

3. SAMELSON, K., ALGOL-Bulletin 7.22
4. VAN WIINGAARDEN, A., DUKSTRA, E. W., ALGOL-Bulletin 7.33
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The problem is not only discussed in Europe; a similar recommendation is made by

the Americans Green et al.:

It is desirable to enable procedures to operate on variables which are defined and used
outside of the procedure. These variables can be designated in the procedure heading by
the following declaration:

global (I, I, ...)

A global declaration specifies certain identifiers contained within the procedure to
be defined as being identical to the same identifier when used outside of the procedure.
The global declaration may appear only in the procedure heading. All identifiers in a
procedure declaration not specified as global are considered as having no relation to
identical identifiers outside the procedure.

In addition to the global declaration it may be convenient to have a local declaration,
which is the inverse of global. A local declaration specifies the identifiers within a
procedure that have no relationship to identical identifiers outside the procedure:

local ([, I, ...)
If a local declaration is used, all identifiers in the procedure not specified in the local
declaration are considered to be global.’

As one sees, their proposition also goes further than the hidden parameter feature, by

extending it to any identifiers and by suggesting a complementary declaration, but it does

not go as far as the ‘new’/‘old’ proposition: it is still limited to the sole procedures, and

does not include the idea of a hierarchy.

In November 1959, a conference is held in Paris to discuss the remaining unsolved

questions in the language. A committee of which Dijkstra is a member (but again not

van Wijngaarden) discusses the problems concerning declarations. No agreement can be

reached, but they synthetize the different possibilities for the forthcoming conference.

Concerning the problem of the range of declarations, they note:

The principal problem is considered to be [the] range within which a declaration
should be valid. The extreme possibilities are the strict limiting by write-up or alterna-
tively by time succession. A further possibility is that of permitting dynamic declarations
only when those two extremes are coincident. Because of this, the [committee] is unable
to agree unanimously.®

The extreme possibilities mentioned are Samelson’s and van Wijngaarden and Dijkstra’s

propositions to give declarations of a lexical scope, that is, a static meaning in the

program text, and Bottenbruch’s proposition to give them a dynamic scope, that is,

a dynamic meaning while the program is running. Concerning the idea of a hierarchical

nomenclature, they remark:

The [committee] agrees that the notions new and old [...] are very important, and will
deserve a close study. However, since they are intimately connected with the questions
of the character of declarations in general, on which no definite decisions can be reached
at present, no further step can be taken with regard to them.”

5. GREEN, J., et al.,, Recommendations of the SHARE ALGOL Committee, p. 25
6. ELLis, G. V., et al., ALGOL-Bulletin 8.1.2.1
7. Buuis, G. V., et al., ALGOL-Bulletin 8.1.2.2
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The “questions of the character of declarations” refer to the problems of the uniqueness
of identifiers, of their range of validity, and of the dynamic or static meaning of the

declarations.

In December 1959, the seven European representatives to the final conference meet
in Mainz; van Wijngaarden is one of them, but not Dijkstra. The discussions are almost
exclusively concerned with two aspects of the language: declarations and procedures. The
block concept emerged as a general, elegant and simple solution to the different aspects
of the problems posed by declarations: identifiers have a unique meaning at a given level
in a block, re-declarations are permitted in inner blocks, and the blocks are organized
hierarchically, inner blocks importing those identifiers declared in outer blocks that they

do not re-declare. Lexical scope of identifiers is chosen against dynamic scope.

The final ALGOL 60 conference takes place in Paris in January 1960, and adopts the
block concept. The final ALGOL 60 report stands:

Declarations serve to define certain properties of the identifiers or the program. A
declaration for an identifier is valid for one block. Outside this block the particular
identifier may be used for other purposes. [...] All identifiers of a program must be
declared. No identifier may be declared more than once in any one block head. [...] The

same identifier cannot be used to denote two different quantities except when these

quantities have disjoint scopes as defined by the declarations of the program.8

A block is defined as a sequence of declarations followed by a sequence of statements,
between a ‘begin’ and a ‘end’. This definition is recursive, and it is therefore not needed
to mention explicitly that blocks are organized hierarchically, and that inner blocks import
identifiers that they do not re-declare. However, as an addition to the original description

of the block concept given in Mainz, its precise dynamic meaning is presented:

Dynamically this implies the following: at the time of an entry into a block (trough
[a] begin [...]) all identifiers declared for the block assume the significance implied by the
nature of the declarations given. If these identifiers had already been defined by other
declarations outside they are for the time being given a new significance. Identifiers which
are not declared for the block, on the other hand, retain their old meaning. At the time
of an exit from a block (trough end, or by a go to statement) all identifiers which are
declared for the block lose their significance again.’

Besides the block concept, another important contribution of ALGOL 60 is that of
recursion. ALGOL 58 did not forbid its use, but only through lack of mentioning it.
J. McCarthy, who introduced it in LISP a year ago, suggests in August 1959 to introduce
it explicitly in the new language, but his proposition does not draw much attention. The
problems discussed are indeed very different and seem much more important; recursion,
hardly ever used, looks like a minor detail. Eventually, in January 1960, during the
discussions to finalize the language, a proposition to include a ‘recursive’ declarator
is rejected. ALGOL 60 risks to be just as silent on that point.

8. NAUR, P. (ed.), Report on the Algorithmic Language ALGOL 60, sections 2.4.3 and 5
9. NAUR, P. (ed.), Report on the Algorithmic Language ALGOL 60, section 5
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In February 1960, P. Naur, who has the responsibility of the final edition of the report
before its publication, receives a phone call from van Wijngaarden and Dijkstra. They
point this deficiency out by showing that, if a procedure identifier is allowed to appear in
its own body on the left part of an assignment (thus changing the procedure, by giving
it a return value, into a function), it can be given no meaning, in the language as it is

defined, if it occurs in another place.

They further observe that it would be complicated to set up a rule to prevent the
use of recursion. It would for instance not be enough to prohibit that the identifier
of a procedure appears in its own body (in another place than in the left part of an
assignment statement): this rule could be easily circumvented by the use of mutually
recursive procedures. So they propose to add a short sentence to the report, to make it
clear that recursion is explicitly allowed:

Any other [other than in the left part of an assignment statement, where it sets the

value of the type procedure used as function designator] occurrence of the procedure

identifier within the procedure body denotes activation of the procedure.10

Charmed by the simplicity and the clarity of their proposition, Naur takes the risk to
follow it, without submission to the other members of the committee which established
the final version of the language.!!

In May 1960, the Report on the Algorithmic Language ALGOL 60 is published
in the Communications of the ACM, in Numerische Mathematik and in the Acta
Polytechnica Scandinavica. ALGOL 60 brings the new block concept to the fore, and
with it recursion enters into imperative programming languages. It also introduces a
new type of variables, the logical or Boolean type (whose domain is the two truth
values, denoted by ‘true’ and ‘false’), together with their usual operators: negation (),
conjunction (A), disjunction (V), implication (D), and equivalence (=). It is the first
language whose syntax is defined formally, with the help of what will later be known as
the Backus Naur Form. It is, finally, the first language that was not described in terms of
its implementation, but instead specified by the precise semantics of each of the elements
that constitute it.

§ 2. The “MC” ALGOL 60 Compiler

ALGOL 60 is far ahead of its time; at least far enough that its very authors do not know
how to implement it, and are not even sure that it is possible. Not surprisingly, the two
most innovative aspects of the language, namely blocks and recursion, are also the main
source of their difficulties. The great majority of the first compilers is, for that matter,
limited to a subset of the language, excluding particularly recursion. Dijkstra soon finds
a general solution to this problem — then he designs, with Zonneveld, an innovative

10. NAUR, P. (ed.), Report on the Algorithmic Language ALGOL 60, section 5.4.4
11. Cf. NAUR, P., The European Side of the Last Phase of the Development of ALGOL 60, p. 30
























































































































































































































