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PREFACE

This Technical Memorandum was written to provide CCTC/WAD with a metho-
dology for the evaluation of Higher Order Computer Programming Languages
and their compilers, and to develop criteria for the evaluation of pro-
gramming languages used to produce trusted software for use in secure

applications. This methodology will lead to the selection of languages/
compiler tools for the Trusted Software Development System for CCTC/WAD.
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ABSTRACT

A methodology is developed for evaluating computer programming languages
and their compiler/runtime systems for use in secure applications
requiring reliable software. In contrast to previous evaluation metho-
dologies, this one concentrates on the basic problems which must be
resolved by a language to satisfy its requirements. Evaluations using
this methodology are less subjective because they require understanding
of the problems of satisfying the requirements. Using this methodology,
several strategies for improving software reliability through language
design are identified. The best such strategies are found to be both
predictive (done at compile time) and confining (prevent violations of
language restrictions). The basic language problems for reliability

are found to be the operating system interface, the inter-machine inter-
face, and separate compilation. The methodology 1s demonstrated by
comparing implementations of three languages (PL/1. Algol 68, and Pascal)
on a single problem (storage management).
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SECTION 1. INTRODUCTION

This report is part of work done for Task #709, Trusted Software Develop-
ment Support - Requirements Analysis and Planning. The purposes of

this report are 1) to establish a methodology for the evaluation of
Higher Order Computer Programming Languages and their compilers and 2)

to develop criteria for evaluation of computer languages used to develop
trusted programs for use in secure applications.

The methodology developed in this report will be used to select
language/compiler tools for the Trusted Software Development System for
CCTC/WAD. A trusted Software Development System is a combination of
concepts, methodologies, policies and software intended to support,
control and improve the software development process for trusted software.
The technical development plan for the CCTC/WAD Trusted Software Develop-
ment System is contained in the SDC Report entitled, "Trusted Software

Development System Interim Operational Capability: Technical Development
Plan".

1.1 Deep Background

DCA/CCTC/WAD is responsible for furnishing technical guidance to the
WWMCCS ADP Project Manager's office in the identification and selection
of means for achieving the operations and technical requirements for ADP
security. The ultimate goal of the WWMCCS ADP Security Program is the
achievement of multi-level secure systems; the short range objective

to provide a significant increment in current WWMCCS ADP security through
the implementation of secure subsystems.

The secure subsystems approach 1s based upon experience in the area of
system penetration. It was found that some applications could not be
penetrated even through they executed on top of operating systems
(including GCOS) known to be insecure. Examination showed the applica-
tions to have three common characteristics. These were: limited
function, relatively small size, and security as an initial design con-
sideration. These characteristics limit flexibility in the subsystems
and make it harder for a penetrator to manipulate flaws. Using penetra-
bility as a criterion, an installation could be made secure if users
vere allowed access solely to secure subsystems.

Developing secure software is still on the fringes of the state-of~the-

art. However, expected developments will rely on three areas of tech-
nology.

The first area is penetration technology. Most penetration-prone defi-

ciencies are common across systems. This delineates consiructs to avoid :
in developing secure software.




The second area 1s research efforts directly focused on developing se-
cure software. This research includes development of a formal model of
DOD security policy and software structuring techniques such as security
kernels and 1mplementation of a security model in conjunction with
formal techniques used to verify compatibility with that model. A

study of the relationship of verification technology to the development
of WWMCCS secure software was completed i1n December 1976 [1].

The third area is software engineering. The software engineering con-
cerns of correctness, reliability and maintainability are intimately
connected with security. Software engineering techniques predicated

on a common 1nformation base can allow a large effort to be partitioned
and coordinated effectively, can promote clear design and implementation.
and can reduce ambiguity of commnication among developers.

Software certification is the most important and difficult area of
software engineering. Software certification establishes the extent to
which a developed system meets its set of security requirements. Cer-
tification should be done in parallel with the design and implementation
of the system to be most effective. Most certification techniques
require special considerations djuring design. For example, formal
verification techniques need sp2cial implementation languages with a
limited number of formally defined syntactic constructs. Informal
approaches to certification, such as reviews of the design and code,
demand deep understanding of the entire development process by the
certifiers in order to be effective. Certification methodologies should
not only generate the appropriate information but should also provide
convenient access and manipulation. Testing used in support of certifi-
cation can benefit from test base generators, storage of test data,

and maintenance of equivalent system representations.

1.2 Objective

The primary objective of this report 1s to provide a new methodology
for evaluating computer languages and compilers used to develop

trusted software for secure applications. This methodology should

be applicable to the evaluation of the Waterloo Pascal compiler, one of

the proposed development tools for the CCTC/WAD Trusted Software
Development System.

1.3 Motivation and Organization

In any project which employs a computer, the choice of a programming
language 1s an important decision. Languages must be carefully examined
and then one must be chosen with knowledgeable evaluations based not
only on the language but also on the implementations that exist in

the environment in which the project will be carried out. A methodology

for making such an important choice has never been commonly understood
nor employed.




This report proposes a new method for evaluation of computer languages
based on resolution of inherent language i1ssues. Previously proposed
techniques are described in Section 2.1 followed by an outline of the
new evaluation method in Section 2.2. Section 3 discusses reliable
software and basic principles of languge design whic apply to the
development of reliable software. Section 4 outlines basic language
design approaches for solving problems related to software reliability.

Section 5 presents a taxonomy of language 1ssues which must be resolved
to produce reliable software.

Section 6 provides an example application of the proposed evaluation
method. This example evaluates i1mplementations of three languages
(PL/1, Algol 68, and Pascal) with respect to a single language issue:
treatment of storage management 1ssues for reliable software.
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SECTION 2. EVALUATION JF LANGUAGES

This section surveys previous efforts of programming language evalua-
tion and proposes a new evaluation technique. This technique evaluates
languages and compilers on the basis of how well 1ssues are resolved

1n the design of the programming system.

No ma .ter how languages are evaluated, no evaluation for a particular
application should bc considered final. Both languages and compilers
are developing rapidly and reevaluation 1s necessary as new develop-
ments start working. Research into language technology and goals,
software enginefring and formal languages will also influence criteria.

2.1 Previous Language Evaluation Efforts
Previous work on language evaluation has been done by Goodenough,
Sammet, and Wichmann. In addition, many recent studies have aimed
toward replacing FORTRAN/JOVIAL/COBOL in military programming appli-
cations. In general this work concentrated on language features and
qualitative aspects. The following four sections survey this work and
crltlcally analyze each method to determine 1ts usefulness for evaluat-
ing software for secure applications. ¥

A

2.1.1 Subjective Evaluations Check Sheet. Jean Sammet proposed a
numerical evaluation technique in which several attributes of a language
are ranked by an evaluator from 0.0 to 1.0 {2]. These scores are
weighted according to importance and then summed to arrive at a single
score for the language. To demonstrate the' technique her paper presents
a sample evaluation of COBOL and PL/l for a payroll application. The
evaluation shows a COBOL preference over PL/1 (0.933 to 0.644).

To crosscheck Sammet's evaluation technique, four programmers from UCLA,
familiar with both languages, were sampled. They were given the same
evaluation criteria and scales as the Sammet example. Although it is
hard to draw any direct conclusions from such a simplistic test, the
programmer responses were almost universally opposite Sammet's published
examp le.

The Sammet technique seems to indicate prior bias of the evaluator more
than suitability of a language for an application. In language evalua-
tion as much distance as possible must be placed between the evaluator
and his or her prejudices or else the evaluation may only rationalize
prior commitment.

A similar technique for evaluating languages for secure applications
was considered and rejected because the assigned numbers are easy to
bias unconsciously so that the final number is hard to trust. Other
approaches seem more objective and more fruitful.




2.1.2 Language Evaluation Using Formal Descriptions. Goodenough [3.
4] compares and contrasts programming languages using a descriptive
grammatical formalism. His goal is to explicate differences clearly
8o the evaluator can make an informed judgement. This non-direct form
of evaluation tends toward unlimited study and no direct conclusions.
Although it is a useful tool for understanding, it does not provide
criteria for practical language evaluation.

evaluation is done by listing features which a language must satisfy.
These provide the criteria for evaluation. The evaluator will then
call one or more experts in the language to discover how many of the
listed features are satisfied. Unfortunately this technique is useful
only if the list is both performance-oriented and short and is thus
used to identify candidates rather than narrow the choice to one.

2.3.1 Feature Compliance Language Evaluation. Feature compliance

Lists which are not performance-oriented suffer from previous bias.

For example, a feature-oriented list might include flow-of-control
features like if-then-else and while-do. However, a language using flow-
of-data rather than flow-of-control will lack these features and yet

could fulfill easily the performance requirements from which the features
were derived.

Long lists may suffer both from lack of justification and internal
inconsistencies. A long list is itself a rudimentary language design
and whatever technique is used to justify it might as well be applied
directly to candidate languages. Furthermore, if the list is not drawn
from a previously chosen language, because nothing guarantees the list's
internal consistency, it is probable that no language can possibly
contain all the features. For example, this problem is apparent in

the Softech Study [5] of several languages against the Tinman [6)
specifications. Several inconsistent demands within the Tinman and

Ironman [7] specifications guarantee that no language can possibly
satisfy the requirements completely.

2.1.4 Feature Measurement Language Evaluation. Wichmann [8.9] provides

a nice method for examining efficiency considerations in both languages
and compilers. His pioneering studies have demonstrated which

features in Algol 60 were successful and which were not. The compara-
tive language evaluation questions presented here are treated only
indirectly by Wichmann. He measures Algol 60 features rather than
considering comparative analysis of different languages. The work of
Knuth [10] and Uzgalis [11] fall into this same area applied respec-
tively to FORTRAN and PL/1.

2.2 Proposed Eggggggg_Evaluation Technique

In contrast to previous work, this report proposes language evaluation
criteria and an evaluation methodology which concentrates on require-
ments derived from a specific application. It should be assumed that

no single language/compiler will meet all requisites and that at the

end of an evaluation a difficult choice will have to be made between
languages. This choice will be made easier by knowing how well require-
ments are satisfied by the language candidates.

6
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The evaluation technique follows these steps:
a. Define the application and its requirements for languages.

b. Outline basic 1ssues or problems which must be resolved by
a language to satisfy the requirements of (a).

¢. Outline general techniques for resolving these issues.

d. Evaluate each language 1n terms of the costs and benefits
of how 1t resolves each issue of (b).

e. Choose a language based on comparing the languages' resolu-
tions of the basic issues.

A good way of managing an evaluation of this type is to appoint a reason-
able language advocate for each candidate language. This group should
meet to choose requirements, strategies and problems by consensus

and experience. The criteria must be discussed extensively and the
reasoning traced by an independent group of critics. After all concerned
parties are satisfied, each language advocate should prepare a statement
evaluating how well that language satisfies the requirements. Decisions
should be reached from these statements.

This paper 1s an example evaluation of languages used for secure appli-
cations. The requirements for reliable software are stated in Section
3. Techniques for improving reliability are discussed i1n Section 4.
Basic 1ssues 1n languages for reliable software appear in Section 5.
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SECTION 3. PRINCIPLES OF LANGUAGE DESIGN FOR RELIABILITY v%

In order to evaluate how a set of languages solve certain problems, the
underlying principles of language design must be understood. This
section identifies the application area of reliable software, gives

its requirements, and defines basic terms needed for the development

of reliable software.

3.1 Secure Applications and Trusted Software

An application is-here defined to be "secure" if its deployed programs
are trusted and must behave properly, and if its improper behavior may
cause loss of life or substantial economic loss. A program behaves
"properly" if its implementation never disagrees with its user's intent.
Thus a secure application requires assurances that an implementation
matches its user's intent.

In order to describe trouble spots which plague attempts to increase the
integrity of software, some description should be made of the process

of software development. Unfortunately, development from a user's intent
to an operational program is no easy matter, nor is it the same across
software projects. The model which follows is a rough presentation of
prevailing software engineering philosophy for normal (non-secure) appli-
cations.

Figure 3-1 presents an ideal model of the process of producing software.

operational
program

compiler

source
program

specification

Figure 3-1. Ideal Development
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Each step of the process, represented by the arrows, adds detail to a
previous version of the product. represented by the circles. Unfor-
tunately the process is not this ideal. At most, step:s there are
actually a great deal of feedba:k from a step's product ro its input.
For example, as a program is written, its specifications are usually
changed to account for unforseen difficulties. The only exception to
this feedback is the production compiler step. Furthermore, there is
feedback caused by program behavior which 1s not expected by the user.
Even in an ideal project, the user will be surprised both by arbitrary
decisions made by the developers and by the user's intent's non-obvious
implications and self-contradictions. In projects other than ideal,

the user will also be surprised by errors made during development.
This relationship is depicted ia Figure 3-2.

user operational

intent unexpected program
behavior

programmer source
program

Figure 3-2. Actual Development and Non-Secure Deployment
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For simplicity, this model has omitted several less crucial phases of
software development. For example, specifications have been i1dealized
as a single document rather thpn the more usual internal and user
specifications. Furthermore, the matter of intent of the developers

has been omitted: 1t would be more complete to add more phases labelled
"designer's intent" and "programmer's intent'. However, the model

18 useful for pointing out trouble spots in secure applications develop-
mwent and for 1dentifying those parts of the process treated in the

report.

The crucial difference between normal and secure applications becomes
apparent only after development 1s done and deployment has occurred. In
normal applications, unexpected results are handled by a maintenance
process which closely resembles the development process and 1s thus

also modelled by Figure 3-2. In secure applications, on the other hand,
unexpected results are disastrous. A secure program behaves properly

only 1f 1ts 1mplementation never disagrees with the user's intent; that 1is,
1f there are never any unexpected results. This produces the relation-

ship shown in Figure 3-3 and has grim implications for software development.

operational
program

must imply

user reading
the specifications

source
program

Figure 3-3. Secure Deployment
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In Figure 3-3, the double arrow stands for the relationship of "must
imply", or in other words, "must not disagree with" or "most be a subset
of". The only real way to insure that the user's intent implies the
implementation 1s to build the chain of implications of Figure 3-4 during
deve lopment.

operational
program

implied by
(a), (b), and (c)

specifications source

program

Figure 3-4. Ilmplications Required for Secure Applications

Thus for secure applications, the steps labelled (a), (b) and (¢) in
Figure 3-4 must have some assurance that the result 1s consistent with
the input. These requirements can be translated into words, respec-
tively, as:

a. specification must reflect user intent;

b. a program must be consistent with its specifications; and

¢. actions taken by an operational program must always be
predictable from 1ts source text.

Because today's programming languages do not allow automated prediction
of real-time program performance, another requirement must be added:

d. the operational program must meet real-time constraints.

12
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This report describes an evaluation technique for programming languages
only. As such 1t will not discuss requirements (a) or (d) in detail.
Requirement (a) can never be met completely because human intent can
never be determined accurately. Research in specification languages
[e.g. 12] focuses on this requirement by attempting to make specifica-
tions clearer to users. Requirement (d) currently is satisfiable only
through careful and expensive testing. Only a small amount of work has
been done on proving real-time constraints [e.g. 13) and the results are
far from satisfactory.

The greatest amount of work has been expended on requirement (b), that
18, on verifying programs correct with respect to their specifications
(14, 15, 16]. The lessons of verification technology are twofold for
programming languages. First, a programming language must be defined
adequately enough to allow proofs. Second, because verification 1s

quite expensive, a language should be simple and permit clear expression
of algorithms.

Both requirements are onerous. The first 1s hard because the language
definition must be formal so that a verifier can employ it, and must
completely define a useful and 1mplementable language. Current language
definitions fall short of this goal either becuase they are informal
(e.g., the FORTRAN or other standards [17, 18, 19]) or because the
language 1s too simple for utility (e.g., the Pascal subset verified by

[16}]).

The second requirement is hard because clarity and simplicity are often
incompatible goals. Because most languages encourage programs with
hidden side effects, mich research has concentrated on language design to
make such interconnections visible [20, 21, 22]. 1n fact the issue of
interconnections and proper access can be considered a fundamental part
of the designer's intent for programs running in a secure environment.
Security kernels and similar techniques are being emploved to enforce
containment of user programs [e.g. 23]. The proper behavior of such
kernels 1s being proven by both manual and automatic verification
methods. Unfortunately interconnection features often make for unread-
able programs.

Finally, requirement (c), that a language system must implement a pro-
gram so that its actions are predictable, is the most crucial require-
ment 1n examining programming language systems for a secure application.
Because program verifiers rely on legal programs as input, it is incum-
bent upon the language system to check that 1ts input programs are in
fact legal. This 1s a more difficult process than might at first be
supposed. Tradeoffs between a language's ease of use, implementability.
and verifiability become even more difficult to apportion when the
constraint of checkability i1s added. This problem is the subject of

the rest of this report.

13




3.2 Primary Factors for Reliable Software

Two major factors in reliable scftware development are program methodolopy
and programming languages. The first factor uses precepts of struc-

tured programming and design, review of source code, thorough testing,

and continuous configuration control. Unfortunately, such methodology

1s labor-intensive, costly and traught with opportunities for human error.
The role of the second factor, programming languages, 1s far less under-
stood by the computing commumnity. This 1s unfortunate because 1t

induces 1nertia where little should exist.

A programming language 1s a formal mechanism used to organize thought
about an information processing task. Since i1t is a formal mechanism,

1t should have a precise definition of what can and cannot be written

and what 1s meant by any legal statement. One of the major research
1ssues of the past decade has been the development of a successful methol
for the definition of programming languages. An adequately defined
language can lead a user into 1ll-defined or ambiguous language construc:s
which will cause the program to be unreliable. A poorly-defined languag:
can fail to communicate the language intent to the user causing him

to use the language improperly. Thus, for reliable software the languag:
used must be coherently and precisely defined.

3.3 Analogy to Mathematical Theorems

There 1s a considerable body of kR;;Tedge about the theory of formal
languages associated with symbolic logic and mathematics. The power

of such languages lies i1n their ability to reduce certain types of corre-t
thinking to a set of rules. 1f one follows the rules of symbolic logic
and starts with a correct premise, one will emerge with a correct con-
¢lusi1on, no matter how long and tortuous seeming the path. Each transi-
tion from step to step along the path can be checked mechanically even
though the path 1tself represents creative thinking which cannot be
generated mechanically. The rules which allow checking of the step by
step transitions are a mechanization so that thought can be avoided.

The rules are framed independently of any but the formal context so

that no knowledge of content 1s necessary to check each step by step
transition.

Programming languages are a more complicated formalism because programs
control space and time for the mechanical computation of an algorithm.
In reading mathematics 1t 18 not necessary to grasp an ever-changing
environment to understand what 1s written; but 1n a programming
language the dynamic environment is intrinsic to a program's meaning.
This dynamic environment 18 very hard to formalize. Therefore, to the
greatest extent possible, programming languages should have a syn-

tactic structure that emphasizes static arguments about the correctness
of dynami¢ algorithms.

When a programmer writes in a computer language. he provides a step by
step path which performs some computations. Unlike a proof, the
sequences of steps cannot be checked mechanically because one 1s not
derived from 1ts predecessor. However, the language conventions
prescribe a certain form that should be checkable mechanically for
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a computer language. 1f the compiler for a language 1s satisfied with
a program, then the programmer has formulated his step by step solution
within the conventions established.

3.4 Effect of Checking Upon Reliability

The deeper and more sophisticated the T;nguagv conventions become, the
more sophisticated the mechanical checking implemented by the compi ler
can be. 1f the allowed checking constrains the programmer sufficiently,

then trust in the resulting program increases.

This simple idea gives rise to the most fruitful means of creating
automatic or semi-automatic aids to the development of reliable, correct
software. A program is a specification of a computing task written in

a formal language. An attempt must be made to use the rigorous rules

of the language and the redundancy afforded by the definitions to check
the consistence and completeness of a given program. The more a program
can be checked autumatically for consistency and completeness, the
greater the confidence in it. Programming languages must be designed

to allow the maximum amount of automatic checking.

In short, not only do higher order programming languages promote greater
productivity and mire understandable code than do assembly languages.
but they also allow a system to perform more automatic checking about
reliability of programs written in their language. More recent program-
ming languages provide opportunities for a great deal of checking for
reliability. The next section discusses language techniques used to
support such reliability checking.




SECTION 4 LANGUAGE TECHNIQUES FOR IMPROVING RELIABILITY

A language designer faced with a specific language issue related to
reliability can resolve the issue either by avoiding it or by finding
a solution for it which provides for automatic checking. Accordingly, ;
there are two kinds of techniques which can be employed to resolve

reliability issues in languages: avoidance techniques and automatic
techniques. Avoidance techniques are generally easier to employ while
designing but often lead to problems in implementation. ~ Automatic
techniques are often quxte difficult to use in desxgn but generally make
xmplementatxons easier and more reliable. This secticn identifies

six classes of techniques for resolving reliability issues. Of the six,

three classes are of avoidance techniques and three are of automatic
techniques.

4.1 Avoidance Techniques
Avoidance techniques are methods by which a language desxgner may
either intentionally or unintentionally avoid coming to grips with a

real issue, or how he may define the problem away so that it becomes a
feature in his language.

4.1.1 Manual Techniques. These are the most common avoidance tech-~
niques because they occur by default. 1f a problem is not discerned
or if the designer can see no solution for it then it remains in the
language. This is called a manual technique because the programmer
using the language must manually check for errors caused by the pro-
blem. For example, FORTRAN programmers must check manually whether the

COMMON blocks in separately compiled procedures are consistently de-
fined.

To help the programmer avoid pitfalls left in languages, several
programming methodologies have been developed. These include careful
production and review of code, thorough debugging, and continuous
monitoring and maintenance of the resulting software product. There are
many concepts employing manual techniques such as the chief programmer
team [24]), modular decomposition [25], and code style manuals [e.g., 26].
These methodologies should be used even with good languages, of course,
because they have several other advantages. However, if they are being
used to circumvent language deficiencies then they are actually substi-
tuting expensive manual labor for cheap automatic checking.

4.1.2 Laissez-Faire Techniques. The second class of avoidance tech-
niques, closely related to manual techniques is termed laissez-faire.
Using such a technique the language designer explicitly chooses to

leave some portion of the language undefined or illegal. This is
usually done to allow the construction of efficient programming systems.
Other portions of the language definition may classify some situations
as illegal. For example, the use of an uninitialized variable is
usually considered undefined, whereas storage into an array element
which falls outside the array's bounds is illegal. Any use of either
undefined or illegal situations in a program may cause actions of the 5
program to become unpredictable and therefore unreliable. For reliable

- me———— .. gy
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software both undefined and illegal situations should be detected by
the programming system; in effect this means that no situations should
be only undefined and that every undefined situation should be illegal.

Unfortunately undefined or illegal actions are often nearly impossible
to check completely either at compile-time or during execution. Thus
problems created by loose definition require manual solution and are
rarely discovered until the program code enters a new environment (e.g.,
a new machine or compiler).

4.1.3 Define-lt-Away Techniques. Define-it-away techniques are the
third kind of avoidance techniques. These are commonly used when a
difficult language situation forces a language designer to make an
unpleasant decision. One example is subscripts out of range. One
define-it-away solution might be to remove array subscripts from the
language; another might be to define that when an out-of-range sub-
script is encountered, the nearest legal subscript is used instead.
The disadvantage of define-it-away solutions is that they either take
useful power away from the programmer (such as the first solution for
subscripts), or add expense to compilation and execution and encourage
programming tricks which take advantage of the language definition

(as does the second solution for subscripts). Sometimes such techniques
are best, but their disadvantages should net be forgotton.

4.1.4 Disadvantages of Avoidance Techniques. Manual and laissez-faire
techniques do not solve the problem of human mistakes. innocent or
deliberate, and thus will not be discussed further. Define-it-away
techniques tend to be either restrictive, inefficient or tricky but

they can be used as a last resort. Section 4 ? concentrates on automatic
techniques which deal effectively with language problems.

4.2 Automatic Techniques
In order to understand automatic techniques, some understanding of the
programming system which implements them is required.

A programming system for these purposes can be broken into two parts:

the language processor and the run-time system. The language prccessor
includes the compiler which processes source text independent of program
data producing code, and the linkage editor which integrates separately
compiled object modules into a single program prior to execution.

The run~-time system is a combination of code produced by the compiler

and pre-existing code integrated with system code producing a specialized
machine to perform the specific task described by the programmer.
Integral to the run-time system is the machine which executes the code

and the additional system code which forms part of the resulting
program,

4.2.1 Confinement Techniques. Confinement techniques are the first
class of automatic techniques. A confinement technique prevents a
program from employing a machine in such a way that the machine does
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not legally implement the language. Using a confinement technique for
part of a system guarantees whether that the part will always function
as specified or that a malfunct . on will be detected.

The definition of a programming language may imply that certain proper-
ties of programs can only be choecked by the machine which executes the
program. Run-time confinement techniques are uniquely applicable to
enforce these language rules. For example, many programming languages
allow division by a variable and yet prohibit division by zero. Detect-
ing the violation of the language rules at execution time for division by
zero 1s a run-time confinement technique. Another example is run-time
subscript checking which will prevent a program from accessing outside
array bounds.

The difficulty with run-time confinement techniques is that although
they prevent any program written in the language from violating the
language rules, a violation i1s not stopped unt:l 1t is about to occur.
For reliable software 1t is des rable to insure that the program

can never violate the language rules.

4.2. Predxctxve Teghnxgues Predictive techniques are the second

class of automatic techn: ques. A predictive technique allows some
property of a software svstem to be inferred without reference to the
particalar data on which 1t will operate An exampie of a predictive
technique 1s strong type checking vhorc the data tvpe of every object

1t a program can be inferred at compile-time. Languages employiung

strong type checking (such as A.gol 68 [18] and Fuclid [20]) allow
compilers to prevent illegal access to data. Using a predictive technique
for a property of a svstem guarantees that the property will hold no
matter what data the svstem will operate upon,

Predictive techniques need not deal with entorcing language rules. For
example 1f a language allows identification of every place a variable

can be modified, then a compiler can predict where variables can be
modified and can provide an appropriate cross-reterence listing.,  Automat:ic
program verification is a predictive technique which proves a program

has some properties by using static properties of its description. The
advantage of predictive technigues 1s that properties deduced about
programs are always true and therefore can be trusted.

4.2.3 Autgqf}gﬁ_?ebug&&ﬂg The third and final class consists of
techniques which are ne:ther predictive nor confining. Almost all of
these techniques are automated debugging aids such as flow analvses,
symbolic dumps, and automatic generation of test data. These techniques
are not predictive (unless all possible combinations of input data are
tested) because a predictive technique must work independently of the
particular input data employed. Nor are they confining because a pro-
gram which runs legally on test data mayv not run legally when placed

into production. In general these techniques are aids to manual tech-
niques.
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This concludes the classification of language techniques which improve
software reliability.

4.3 Evaluation of Language Techniques for Improving Reliability
In this section a classification of techniques for the production of
reliable software has been presented. This 1s the first step 1in

evaluating languages for secure applications.
The best reliability techniques are both predictive and confining.

Predictive techniques which are not confining (like a cross-reference
listing) will allow dangerous software bugs to remain unchecked in the
program,

Confining techniques which are not predictive (like run-time subscript
checking) given no assurance that even thoroughly tested code will be

free of run-ti1me errors. Even though such breakdowns will be detected
when they eventually occur, thev will not be welcome 1n crucial situations
and will be hard to fix without the aid of the original programmer.
Furthermore, many confining and non-predictive techniques (e.g., uniniti~
alized variables checking) prove expensive 1n execution and are often
omitted.

In & program development svstem which 1s to produce reliable software

for secure applications, predictive confining techniques are necessary
for all programming language restrictions.
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SECTION 5. MAJOR LANGUAGE 1SSUES IN DESIGN OF RELIABLE SOFTWARE

This section discusses in turn major issues in language design for
reliable software. For each issue. mention is made of various tech-
niques available to attack the problem. Predictive confining tech-
niques are emphasized where available: other techniques are summarized
and compared. Section 6 will compare and contrast three language systems
to demonstrate how to accomplish the evaluation for one particular

issue, storage management.

S.1 Rel:agxlxtxrg§suc§ in Portable Software

Portable software can be executed 1n an underlying machine different
from the one on which it as originally developed. Underlving machines,
or host computer systems, are a combination of hardware, software and
firmware components which provide a particular service to users. 1If,"
for example, the host computer system consists of hardware alone (pro-
cessor 4nd main memory) then the data types would correspond to
interpretations of memory units implicit in the built-in operations of
the processor.

3.1.1 Higher Order Languages and Machine Independence. Most software
today rests upon an underlying machine made up of layers of such
machines as hardware, operating systems. programming languages. and
libraries of routines. When changes are made to these machines, or
when a program is moved to a different physical machine. an apparently
correct program will behave unpredictably.

When software is written in a programming language that claims to be
machine independent that language forms either a permeable or an
impermeable layer over underlying machines. When the programmer
penetrates below the language interface, by writing in assembly language
for example, the compiler and the language are not responsible for the
non-portability of resulting software. This 1s basically a laissez-
faire technique which places responsibility on the programmer.

The important question for reliable software is the degree to which
languages and compilers take responsibility for portability. The answer
to this question is primarily sociological and secondarily technological.

5.1.2 Sociological and Technological lIssues. Sociological issues arise

because language designers and comp:ler writers owe allegiance to two
masters: portability and performance. 1f a question is resolved in
favor of portability certain classes of programs will be impossible,
awkward to write, or inefficient to execute. 1f the asuestion is
resolved in terms of performance then classes of programs will behave
unpredictably when changes occur to their environment.
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Technological issues arise when devising a8 language which implements
general software development, insures portable programs, and permits
efficient use of host machines. The hardest questions would be how

to require each machine to implement exactly the same version of the
language. A fallback question would be how each compiler at least can
flag violations of the portability property. No programming language
in use today solves this problem. lts total solution is a major re-
search issue but partial solutions are available if either one of the
other two constraints are relaxed.
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A sampling of detailed language/compiler problems in portable software
are arithmetic, character sets, order of evaluation of statements and/
or expressions. input/output, and scope of externally defined names.
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5.1.3 Portability and Arithmetic. When a language definition does

not provide a complete specification of the rules of arithmetic for finite
sized calculations, each compiler uses its own machine characteristics
to implement an underlying machine. Variance in word sizes causes
difficulty. Current languages frequently depend on implicit properties
of the machine which are independent of the algorithm. For example,
the FORTRAN type INTEGER provides no clue as tc the maximum value which
can be presented. Such properties become a problem when an algorithm
is changed and unexpected overflow occurs or when the program is trans-
ported to a more restrictive machine and it fails to behave in the

same way. Even if the program uses a language-defined method of
accessing the largest available integer, it may still fail because of
an implicit assumption that this number is not less than an ostensibly
reasonable minimum. In this case the effort expended to make the
program conform to the language specifications is not over because of
an additional unwritten assumption about the word size.
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$ 1.4 Portability and Libraries. Portability problems do not only
arise from hardwarc differences. Libraries associated with a parti-
cular language and compiler form an underlying machine or extended

host system. 1f these libraries are modified carelessly, previously
developed software may behave as unpredictably as if it were moved to
another hardware host machine. Libraries have two classes of types

and functions: those available to the user and those meant to be used
only within the library as internal data types or functions. The
internal functions generally do not perform much checking of their

‘ arguments. Using the standard Algol block structure there is no way

1 to set up the library so as to prevent the user program from employing
internal functions. 1f such a library is modified such that the external
functions remain the same or are upwards compatible, but the internals

i are drastically changed, programs dependent upon the internals will no
longer be compatible. 1In order to implement a library in the context

of portability there must be a confinement technique which prevents the
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user program from containing such dependencies. One technique employed
by individual FORTRAN programmers is simply to keep the internal name
secret. Unfortunately, these secrets cannot be well kept because nor-
mally the linkage editor will publish them: furthermore if someone
blunders into the internal name then unexpected results occur. Another
solution is the abstract data type popularized in Clu (21] and Alphard
[22] in which explicit mention i1s made of whether a particular data
type or function is external. Abstract data types are the topic of
much current research and it is not yet clear what 1s the best way of
expressing or implementing them. However, any reasonable technique

for implementing abstract types must be both confining and predictive.

The basic storage management problem 1s to prevent a program from using
storage not meant for 1t. 1n FORTRAN this is manifested in such common
errors as subscript out of range, different COMMON blocks disagreeing
as to layout, and attempts to enter a routine recursively. Languages
since FORTRAN have solved many cf these problems but these techniques
have introduced other problems.

$.2 Relxabxlxty Issues 1n Storage Mana&ement

The problem of preventing misusc of storage can be split into two parts
called the typing and protectior problems respectively. The typing
problem is to prevent confusion as to what is represented by a particular
storage location. The protecticn problem is to prevent access to storage
if the storage is inaccessible according to the language definition.

5.2.1 Storage Typing. A solution to the typing problem prevents
confusion over what data type applies to a particular storage location.
For example, a machine word may represent an integer, a floating point
number, or a pointer. Typing is required in order to solve protection
problems, for otherwise printers could be manipulated using, say,
floating point operations, resu ting in hopeless confusion.

Typing can be enforced either at run-time or at complle-time. Run-
time type checking 1mplies that each time storage is accessed, it is
checked for appropriateness of type. This solution 1s adopted in APL
[27) and in tagged-architecture hardware [28]. Uafortunately this
technique usually adds to run-t:me expense and is not predictive.

Compile-time type checking is perhaps the most powerful automatic tech-
nique for reliable software. 1t has been used in nearly every major
language since FORTRAN. However, there are some difficulties in
extending this checking to protect all possibilities in the language.
All possibilities must be checked to insure confinement: if any loophole
exists, it can be used to circumvent all other checking.




5.2.1.1 Argument/Parameter Typing. The first problem in storage typing
is how to ensure that types of the actual parameters agree with formal
parameters when a procedure is called. This 1s nof checked in most FOR-
TRAN implementations and leads to many bugs when programs are integrated.
In order to enforce these rules, checks must be made to guarantee that
parameters passed to a procedure are of proper type. [f all the proce-
dures' definitions and calls are available to the compiler, then it

can check compatibility of formal and actual parameters in a procedure
call. This is possible in most languages developed after FORTRAN.

In separately compiled procedures a different soluttion must be found:
either the compiler must keep track of type information in auxiliary
files, as in the ALGOL68C compiler [29]; or types must be checked by

the linkage editor which requires either a special, type-checking
linkage editor or clever use of a standard linkage editor [30].

Languages such as Algol 60 and Pascal which allow passing procedures

as parameters face the problem that the languages do not require enough
information to check the type of parameters passed to a procedure para-
meter. This problem can be overcome by either prohibiting the practice
in special applications (as in Euclid) or by extending the tvpe checking
of a procedure parameter to include i1ts parameters (as in Algol 68).

is how to prevent abuse when accessing storage through a pointer. In

a language like PL/1 in which a compiler cannot prevent a pointer from
addressing any storage available, a program may misuse storage by
addressing 1t through a pointer and then using improper operations on
the storage. This problem has been avoided in recent language design
by requiring that pointer declarations describe the type of storage

the pointers mav access. Using this technique a pointer to, say, an
integer cannot be assigned to a variable of tyvpe "pointer to real" thus
no confusion can exist as to what type of storage will be accessed
through the pointer

5.2.1.2 Pointer Access to Storage. A second problem in storage tvping

is how to allow deliberate attempts to make use of the same storage

for different types of values at different times during program execution.
This is often done when a particular item is to be interpreted differently
depending upon context. 1n FORTRAN (or PL/1) this 1s done by overlaying
COMMON (or BASED) storage and then using the definition which applies

to a given case. (Unfortunately there is no way to check such a program
to see that it does not access storage improperly by using a definition
inappropriate to the value in storage at that time. In Pascal and

Mesa [31] the notion of variant records captures the idea of different
uses of the same storage. Unfortunately there is no way for a compiler
to check that a variant record is used consistently with its value;
furthermore, such a check 1s quite difficult to 1mplement even during
run-time [32]. The programming language Euclid tries to cope with

5.2.1.3 Shared Storage Features. The last problem in storage typing
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this problem by the use of an automatic program verifier: this
solution is both predictive and confining but is chancy and expensive
given current verified technologv. 1In Algol 68 a case conformity
clause, in which a copy of the appropriate type is taken, is used:
this technique is easily implemented, confining, and predictive, but
may require extra overhead if a programmer uses it unwarily on a data
type of a large size. Although che last of the solutions is best for
reliability, 1t is still not 1ideal.

5.2.2 Storage Protection. The protection problem of preventing access
to inaccessible storage can be attacked, once the typing problem is
solved in a confining and hopefully predictive fashion. The protection
problem here can be divided into five subproblems.

5.2.2.1 Array Access. The first protection subproblem is subscript
errors. Letting subegrip( errors go unchecked will allow access and
modification of arbitrary parts of storage. Perhaps the most common
solution to the subscript error problem is dynamic checking of subscript
errors. Unfortunately this method is not predictive and is expensive.
This expense can be reduced by suppressing some of the checking: for
example, subscript checking only upon storing into the array or when

it 1s an array of pointers, or oily check.ng the final location and not
each subscript with multidimensional arrays. Another possibility is to
eliminate subscripts from the language: this might be done in an
array-oriented language such as APL, and has already been done in some
implementations of the list-oriented language Lisp [24], but it suffers
the usual drawbacks of define-it-away solutions. A promising experi-
mental approach which is both ccnfining and predictive is to use range
calculations on subscript expre:sions, and to constrict the language so
that a compiler may check that every subscript must fall within the
bounds of its array. However no major language defines programs which
can be so analyzed. At present the subscript error problem--perhaps the
most commn in terms of number of times committed [34)-~is still very
must unresolved.

5.2.2.2 N L.fﬂiﬂiﬂii The second protection subproblem is nil
pointers. These pointers are generally used in list processing to
indicate the end of a list. The protection problem arises when a program
falls off the end of a list and attempts to use a nil pointer to access
storage. In many systems nil is represented by zero, and this error
leads to accessing storage near location zero, generally vital operating
systems information meaningless to the program. One solution, both
confining and efficient, is to use a value for nil which cannot possibly
be a legal address. Unfortunately this solution is not predictive and is
not applicable to machines which have only legal addresses. A less
efficient confining solution is to insert code which does "nil checking”
each time an attempt is made to load or store through a pointer. This
solution is still not predictive, but can be used on every machine.
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The nil pointer problems may be solved by defining them away: nil for
any given pointer type can be defined to point to a specified area of
storage, or mil (ould simply be banned from the language, forcing the

! programmer to cope with the problem of how to indicate ends of lists.
These tw = lutions sufter from the normal problems of define-it-away
aolutions <ud furthermore waste storage, however they are both confining
and predictive A promising experimental solution 1s to have the
language distinguish between po.nters which may be nil and pointers

| which are definitely non nil.  However this solution is not yet found in

! any major programming language 36!
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$.2.2.3 0ld Storage The thirt protection problem is pointers access-

ing storage which was once valid but has since been deallocated. This

problem arises from the scheme used (o allocate and deallocate storage

g dynamically. 1ln most languages this occurs in two ways: stack alloca~

! tion in which storage 1s allocated upon procedure entry and deallocated

' upon procedure exit, and heap allocation 1n which storage is allocated
and freed upon explicit request from the program. Several language
attempts have been made toward preventing pointers from accessing stack
storage improperly. Prohibiting pointers into the stack is a define-
it-away solution which i1s both confining and predictive and is used to
good effect in Pascal. Not deallocating storage upon procedure exit
1f any pointers are still accessing 1t 1s the retention strategy of Oregano

i [37); however, this strategy can be expensive because 1t requires a

¢ garbage collector to manage the stack storage. Dynamic checking of the

: propriety of pointers into the stack can be done upon exit from a pro-

cedure, upon assignment of a pointer value, or upon use of a pointer

value. These dynamic checks are confining but not predictive and are

somewhat expensive; the first method requires a scan through the entire

stack, the second prohibits some teasonable programs, and the third is

least efficlent and (s ditficult to r1aplement -orrectly. In short the

best solution to the pointers nto stack storage problem is probably

Pascal's because it is easy to implement, 1s predictive and confin-

ing, and because pointers into stack storage are generally not necessary.
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5.2.2.4 Uninitialized Variables. The tourth protection subproblem is
the use of uninitialized variables. This is particularly a problem with
pointer procedure and label variables. 1f an uninitialized pointer

variable is used, then arbitrary storage can be accessed or modified; if

an uninitialized procedure or label variable 1s used, then the program

can transfer to an arbitrary location. Furthermyre, use of uninitialized
-wariables is in general an unreliable practice. One define-it-away solution
is to define the language so that every uninitialized variable is automa-
tically given a reasonable default value when 1t is allocated. This
solution is inefficient because of the extra code generated and is

tricky because programmers will rely on such initialization. Another
solution is to force the programmer to initialize every variable as it
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is declared. This solution is predictive and confining and is more
efficient than the previous one because needless duplication of initia-
lization is unnecessary; however, it still may force some needless
initialization because a program may use a loop or subroutine to initialize
a variable. With a sophisticated enough language the latter problem can

be minimized; however, it is unclear whether extra sophistication does

aot cause more problems than 1! solves.

5.2.2.5 Resource Limits. The fifth and last protection subproblem is
the problem of storage limits. In languages with dynamic allocation of
resources, some method must exist to prevent a program from accessing
more storage than is available. The only languages which solve this
problem in a predictive confining fashion are those without dynamic
storage aliocation (such as FORTRAN); this is a restrictive define-it-
away solution. A confining check is to compare each request with the
amount of storage remaining and abort the program if it exceeds limits.
Unfortunately, stack-oriented languages such as Algol, Pascal, and PL/]
make such a request upon every subroutine call and often such checks are
eliminated for efficiency's sake.

5.3 Reliability lssues in Input/Output

Many applications in reliable software do not require input/output
operations. Some applications should be considered to be implemen -
tations of the input/output routines. Applications which require input/
output generally run into three problems.

5.3.1 Bad Data. The first is input which is not of the expected format
or type. This can arise when trying to use an 80-byte-per-record file

on a program expecting 133 bytes per record: or more generally when the
record type of the input file is different from the declared type of

the corresponding file variable in the program. This problem can be
resolved by any of three different methods. The first and most commonly
used is to insert code into the program which performs the check: this
method, if properly implemented, is confining but not predictive. The
second is to have the operating system strongly type its files according
to the information they contain and for the program to be declared illegal
if it does not conform to the type files. The latter solution is
confining and predictive but is rarely implemented. The last is treating
mismatched records as an exceptional condition; this technique is
discussed in Section 5.4

5.3.2 End-of-File. The second problem is handling the end-of-file
situation reliably. A predictive confining solution is a compile-time
check that every input operation was preceded by a useful test for

end-of-~file. More common is a nonpredictive, confining, run-time error

message that occurs when an attempt is made to read past end-of-file.
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Some languages (PL/1 for instance) treat end-of-file as an exceptional
condition. Since it is hardly exceptional that a file have an end,

such treatment seems difficult to justify; however, this topic is handled
in more detail in Section 5.4.

5.3.3 Device Unreliability. The last problem is handling device
errors. There is no way to prevent device errors with a predictive
technique because they are by nature unpredictable; even confinement
becomes a problem because in attempting to handle machine errors, one is
sending commands to an unreliable device. Here there are basically
three solutions: the language can assume complete reliability on the
part of its devices and abort otherwise; the language can define the
unreliability and expect the user program to check continually for
device failure before doing 1/0; or an exceptional condition facility
can be defined to handle the problem. This problem is strongly related

to "exceptional conditions" and is discussed in detail in the next
section.

5.4 Reliability and Exceptional Conditions

Many actions of a program can result in violations of the rules of the
underlying machine. Examples of such exceptional conditions are divi-
sion by zero, arithmetic overflow, input/output device error, or
exceeding storage limits. In an ideal world exceptional conditions
should be excised from a program before it executes; in such a world
the only reason for an exception would be a machine error. Thus a
language designed for reliable software need not have explicit features

either predictively by the language compiler or nonpredictively by the
software or hardware run-time system.

In the real world machine errors do occur and some provision must be
made for them. This can take the form of regular checkpoints and a
machine restart capability; this should be specified by the programmer
because of his or her unique knowledge of the best checkpoint locations.

Anderson and Lee at the University of Newcastle upon Tyne have described
Recovery Blocks, a language feature designed to aid programs to become
fault tolerant [38]. Both hardware and software validity checking are
employed to insure the correctness of a computation coupled with alter-
native algorithm specification for error correction. In any case, a
machine error risks disaster when a program is deployed in a secure
environment.

With this in mind there arc three ways languages can take potential
exceptional conditions into account: The first is for the language to
define that the error never occurs; the second is to make information
about errors available to the program in terms of global or returned
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flags so that it can be checked for errors as it processes; the last

is for the language to define that flow of control passes explicitly

to some appropriate section of code whenever the exception occurs. The
first method is both confining and predictive; the second is only
confining; and the third is neither.

5.5 Language Systems for Secure Applications

Only the fortunate manager of a secure application can choose a language
and then build a compiler/run-time system which implements the language.
More often the choice is from several existing language systems. If the
systems all implement the same language, then such a choice depends on

the quality of the systems rather than on any language property; if, on
the other hand, different systems implement different languages, then

the choice depends on the merits of both the systems and the languages.

In either case one needs to evaluate language systems and their properties.

Generally the choice of language is more important than the choice of
system. Many languages have defects that no system can correct. When
faced with a choice between a good system for a bad language and a bad
system for a good language, the latter is often better because the
system can be improved or changed far more easily than the language can.

When choosing a language system for a secure application the problem of
language choice takes on extra importance. 1f a language is not pro-
perly designed with reliability problems in mind, then many problems
cannot be solved by any reasonable compiler/run-time system. For example,
Pascal requires that neither the initial nor the final value of a loop
may be modified within the loop body: but no Pascal system checks this
restriction because the check is nearly impossible to implement. Thus
many of the problems of language system implementation can be traced
back to flaws in the langu-~e. The best solution to such problems is

to change the language with _ecurity issues in mind so that the system
can perform the proper checks. In short, error-prone features of a
language cannot be solved by tacking on extra security in the language's
system; rather they must be modified to remove the unreliability.

Given that a language is designed with reliability in mind, the basic
problem of language system design can be stated quite succinctly: a
system must correctly implement legal programs and report errors in
illegal programs. In the past most language implementation efforts
concentrated on the former requirement both because software reliability
was not considerad as important as it is now, and because problems in
translation are more straightforward than problems in detecting and
announcing errors. The latter requirement--that the language system
should have a complete set of confining techniques--has been met far
less often. The attempt to meet both requirements in general will
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encounter some difficult problems. In order to discuss the problems
inherent in designing language systems, the systems' general structure
must be understood. This structure was explained from the language
point of view in Section 3 but is repeated here from the perspective

of the language system. The components of a language system can be
divided into two classes: the compile~time system and the run-time
machine. The compile-time system analyzes a program before its execution
cegardless of its input data. Typical compile-time operations include
compilation, listing, cross-referencing, and linkage editing. The run-
time machine components are the underlying hardware, the operating
system, and the run-time support software package for the language.

There is a close relationship between the compile-time/run-time
dichotomy in language systems and the predictive/non-predictive dichotomy
in techniques used to resolve language issues. Predictive techniques
can be implemented at either compile-time or run-time, while non-pre-
dictive techniques must be implemented at run-time. In any case, a
reliable language system must implement & complete set of confining
techniques. Basically the only design decision is whether a given
predictive technique is to be implemented at compile-time or at run-
time. In this case the preferred choice by far is to implement it at
compile-time because the resulting program is guaranteed for all runs
after being compiled once and added checking overhead is not in the
executable code.

The problems a language system lesigner faces may be divided into two
categories: internal problems caused by difficulties in generating
correct code or in providing a complete set of confining checks, and
external problems caused by interfacing the language system with the
external operating system and machine.

5.5.1 Internal Problems. The internal problems of generating correct
code has attracted much attention since the advent of higher order
programming languages. This research in effect has resulted in the
solution of the problem. 1t is no longer a difficult research problem
to generate correct code for the commonly used programming languages.

The internal problem of providing confining checks has received far
less effort. To date there has not been a complete specification of
how to implement confining checks for any major programming language,
including such a well-defined language as Algol 68. Because each
implementation of 'a language has been left to make its own decisions

on which confining checks to make, the natural tendency has been to
make as few checks as possible. Even worse, because language designers
have not traditionally worried about implementing their restrictions,
many confining checks are simp y unimplementable. An honest implementor
must change the language so th.t the problem does not arise. The
latter solution is better in such a situation because otherwise the
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language system has not completely confined its programs. For example,
the Pascal restriction that the index variable of a for loop cannot

be modified within the loop is basically not implementable because

of possible routine calls within the loop. The best solution to this
problem is to redefine the language so that the restriction does not

exist, e.g., by defining what happens when the index variable gets
modified.

5.5.2 External Problems. External problems faced by the language
system designer fall into three groups: implementing the connection
between the program and a given operating system, checking that a
program can be connected to any system for the same language, and
connections between two or more programs running on the same system.

5.5.2.1 Operating System Interface. The first external problem,
implementing the connection between a program and the operating system,
is hard to solve for any major programming language system. In general,
the connection is reflected by the set of input/output operations in

the language. Ilmplementation of input/output operations varies widely
depending on operations required by language and the operations supplied
by the operating system. Languages vary in philosophy from Algol 60
and Euclid which have no input/output, Pascal which has a very limited
capability, through Algol 68 which has extensive machine-independent
features, to PL/1 which has an extensive machine-dependent set. Unfor-
tunately the real problem is that no definition of input/output opera-
tions is at once simple, comprehensive and easy to implement on various
machines. Until this problem is solved, an implementer is often forced
to change the language slightly so that its input/output operations

are realizable or that its input/output restrictions are checkable. For
example, some languages employ a "newline' character to represent an
end-of-line on input or output; this character is obviously special

and unprintable. However, such languages are nearly impossible to
implement on a CDC machine using the 65-character ASCl1 subset because
all possible characters are already employed. This impasse must be
solved by changing the language; for example, the original version of
Pascal required this change.

5.5.2.2 Inter-Machine Interface. The second external problem is the
problem of checking that a program is processable by all implementations
of a given language. Even if a program apparently runs on a Honeywell
machine there is no guarantee that it will not encounter some limitation
on an 1BM machine. Commercial checkers of the fact that a program is
legal Ansi FORTRAN are available [39] but of course cannot do a complete
job because of problems with confining the language. Even given an
ideal language in which every restriction was checked using predictive
confining techniques, a compiler which checked restrictions local to

one machine would probably not guarantee that a program would pass the
restrictions of an arbitrary machine. For instance, a Pascal or Algo)
program containing integer constants will not be legal on all machines
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because they do not make restrictions on the target machine word
size--which can be merely one bit. This external problem will
require research before it can be solved satisfactorily.

5.5.2.3 Inter-Module Interface. The last external problem is imple-
mentating separate compiliation of parts of a given program. Imple-
menting separate compilations has been a problem since FORTRAN. The
basic problem is how to make separate compilations work as if they were
a single compilation of the entire program. The first work on this

was merely implementing libraries of subroutines for FORTRAN programs,
with actual interconnection being performed by a standard linkage
editor. However, type safety requires checking that a function's
argument types match parameter types declared within the function.

Few FORTRAN implementations or linkage editors check this.

Languages since FORTRAN have tightened their checking requirements.

This improvement has been harder to implement via separate compilation
(see [40] for a discussion of this problem). When compiling a segment
of code, not only must the language system check that an identifier is
used consistently with a previous definition in another segment, but
also that the system often needs to check the correct use of an identi-
fier whose definition has not yet been compiled at all. The discipline
needed for this task generally requires a comprehensive program segment
management system and linkage editor along the lines of the one proposed
for the .OCTC/WAD Trusted Software Development System. The first part

of this report discusses the problem in much greater detail; see Section
2.2.1.2.1 of the Technical Development Plan.

5.5.3 Summary of Language Systems. For reliable software the
compiler/run-time system must check all language restrictions. 1t

is usually preferable to have the compiler provide the checking for
minimum overhead and maximum security.

Languages developed without regard to checking of language restrictions
are very common, almost universal. These languages either require
expensive run-time checking or permit programs in which it is impossible
to completely check the language restrictions. Seldom is a static,
compile-time check possible.

Language problems directly related to a language system are the issues

of separately compiled program segments and local machine/system depen-
dencies intrinsic to program code.

5.6 Summary of Language lssues for Reliable Software

This concludes the outline of problems related to the production of
reliable software for secure applications. Sections 5.1 through 5.4
have treated the most difficult current issues in programming language
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design. 1t should therefore be expected that evaluating modern
languages in terms of these problems will not produce a single clear-
cut winner. Real evaluation is never so simple.

Some of the criteria presented for the evaluation of reliable language
systems are treated less deeply than others. This is because either
the area is technically complex and therefore was not well suited

for this document; or more often it was because little is known about
problems in the area and there the criteria are necessarily succinct.
For example, an extensive discussion of portability was possible but
deemed less important for this document that the storage management
issues. Others, like the input/output and exception handling criteria,

are still important research topics and little is known about appropriate
criteria,

The next section examines sample PL/1, Algol 68, and Pascal implementa-

tions in terms of the criteria established for reliable storage manage-
ment.
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SECTION 6. EXAMPLE EVALUATION OF LANGUAGE SYSTEMS

This section provides an example evaluation of language systems for

the problems given in Section 5. The languages evaluated in this example
are PL/1, Algol 68, and Pascal. PL/l was chosen because it is the best
example of a second-generation language with many features: Algol 68

and Pascal were chosen because they are the two best-known third-genera-
tion languages which emphasize reliability, although neither have as

many features as does PL/1 or the DOD Ironman specifications.

The problems addressed in this example are the reliability issues in
storage management of Section 5.2. This section was chosen because

storage management is perhaps the best understood problem of implementing
programming languages for reliability.

This section evaluates only existing systems and does not propose solu~
tions for the problems of any of the three languages. The implementa-
tions chosen for each language were the ones most available to the
evaluators. These were: for PL/1, the 1BM PL/1 Optimizing Compiler
for the IBM 360/370 [41] henceforth called PLIX; for Algol 68, the UCLA
Calgol 68 compiler for the IBM 360/370 [42] henceforth called Calgol;
and for Pascal, the Pascal 6000-3.4 compiler for the CDC 6000 series
[19] henceforth called Pascal W. The language definitions chosen for
each language are generally recognized standards for PL/1 [19), for
Algol 68 [18], and for Pascal [43). 1t should be recognized, however,
that the PL/]1 compiler implements the somewhat different 1BM PL/1
standard, that the Calgol 68 language is not quite compatible with Algol
68, and even the Pascal 6000.34 compiler does not quite implement the
standard drafted specifically from experience implementing it.

The next three parts of this section evaluate the three languages on
how they solve storage management issues. The last section summarizes

these evaluations by means of a comparison chart.

6.1 PL/1 Optimizing Compiler (PLIX)

6.1.1 Storage Typing in PLIX.

6.1.1.1 Argument/Parameter Typing in PLIX. PLIX checks the type of
arguments and parameters if both appear in the same segment. However,
using separate compilation, this type checking is not performed. Further-
more, PL/1 does not require typing of ENTRY variables or parameters

and the types of parameters to a call using such ENTRYs are not checked.

6.1.1.2 Pointer Access to Storage in PLIX. PL/l requires only that
pointer variables be of type POINTER and does not provide a declaration
mechanism for the programmer to tell the compiler what kind of data a




pointer is expected to access. PLIX provides no checking of the
language requirement that this power not be abused by confusing the
types pointed at. Furthermore (as seen in the next section) some type
confusions are allowed.

6.1.1.3 Shared Storage in PLIX. A PL/l program can provide shared
storage access either by overlaying two different based variables with
the same base pointer or by variables DEFINED to overlap. According

to the PL/1 standard, different based variables may overlay the same
storage so long as they are structures whose initial subsequences match
and only the common part is used for access. Different DEFINED variables
may overlap only if they are renamed sequences of character or bit
strings. PL1IX checks neither language restriction.

6.1.2 Storage Protection in PLIX.

6.1.2.1 Array Access in PLIX. PLIX optionally generates code to
perform subscript checking at run-time. This feature is not quite
complete. Misuse of the size field in a REFERred array will cause
some subscript errors to go unchecked.

6.1.2.2 Nil Pointers in PLIX. PLIX uses zero for nil poiq}ers and so
its checking depends on the version of the 1BM operating system. On
most operating systems, user programs have access to location zero
while on a few no access is granted. Thus a few operating systems con-

fine a PL/1 program from accessing through nil while others provide no
such checking.

6.1.2.3 01d Storage in PLIX. PL/1 has both stack and heap storage;
pointers can address any storage within the stack or heap. The PL/1
FREE statement is used to free previously allocated storage. PLIX

does not check that the FREEd storage is on the heap, nor that no
pointers access the old storage. PLIX does not check that pointers do
not access storage intermediate between stack and heap called controlled
storage; but the checking on controlled storage is just as bad as for
heap storage. Misuse of a REFERred based variable's size field may
cause too much storage to be freed.

6.1.2.4 Uninitialized Variables in PLIX. PLIX checks for exceeding
storage limits for both the stack and the heap.

6.2 Algol 68 (Calgol)
6.2.1. Storage Typing in Calgol.

6.2.1.1 Argument/Parameter Typing in Calgol. The type of an argument
to a procedure must match its corrresponding parameter exactly. This
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restriction is checked even with separate compilation by means of an
auxiliary environment file.

6.2.1.2 Pointer _Access to Storage in Calgol. Algol 68 requires that

every pointer be typed according to the data type it points to. This
is enforced by Calgol.

6.2.1.3 Shgigg_§tora§p in Calgol. Algol 68 provides fully discrim-
inated data type unions: their structure is specified at compile-time
and can be assigned to and checked at run-time. Type confusion is

prevented at compile-time with a predictive confining algorithm.

6.2.2 Storage Protection in Calgol.

6.2.2.1 Array Access in Calgol. Calgol generates code to perform
subscript checking at run-time. This checking may be supressed.

0.2.2.2 le Poxgip{iwiﬂ_galgo Calgol uses a value for nil which

is xllegal on every 1BM 360 for read or write access. Thus the system
confines programs from addressing through nil at run-time.

6.2.2.3 Old Storage in Calgol. Algol 68 has both stack and heap
storage: pointers can address any storage within the stack or heap.
Algol 68 does not have a FREE operation so no pointers can access old
heap storage. Because Calgol has not implemented a garbage collector,
this requires large users of the heap to perform their own storage
reclamation. Calgol does not check that pointers do not access old
stack storage when it is automatically freed

6.2.2.4 gnlqlpxalxgod_Varxabloe in (algnl Calgol does not perform
checking for all uninitialized variables However, 1t initializes all
pointers to an illegal value when they are created and confines a
program from using such values. Union, pruocedure and label variables
are similarly treated so that no program can violate storage constraints
or type safety via uninitialized variables. The initialization can be
suppressed.

6.2.2.5 Resource Lxmxts in Calgol Calgol checks for exceeding storage

limits for every sturlgc request on both the stack and the heap.
6.3 Pascal W
6.3.1 Storage Typing in Pascal W.

6.3.1.1 Argument/Parameter Typing in Pascal W. Pascal W checks types
of arguments and parameters if both appear in the same segment. However,
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j’ using separate compilation, this type checking is not performed. Further-
£ wmore, Pascal does not require typing of procedures or functions passed
i as parameters and types of parameters to a call using such a procedure

or function are not checked.

6.3.1.2 Poilnter Access to Storage in Pascal W. Pascal requires that
every pointer be typed accurdxng to the data tvpe it points to. This 1is
enforced dby Pascal W.

records which allow a program to use the same storage tor different
types at different times. However, Pascal neither requires the
: existence of nor enforces the correct use of a type field to indicate
i the current type of usage. Pascal W does not confine a program from
4 confusing types within variant records.

i

E 6.3.1.3 Shared Storage Features in Pascal W. Pascal contains variant
f

i

; 6.3.2 Storage Protection in Pascal W.

6.3.2.1 Array Access in Pascal W. Pascal W generates code to perform
subscript checking at run-time. This checking may be suppressed.

i 6.3.2.2 Nil Pointers in Pascal W. Pascal has both stack and heap
.torag; but does not permit pointers into the stack. Pascal W does
have a "dispose' procedure, 8o pointers may access old heap storage.

. (This "dispose' procedure is not part of standard Pascal.)

6.3.2.4 Un\nxltgLquq quxablgg_\n Pascal W. Pascal W does not check

for uninitialized variables A program can misuse uninitialized
pointers to store into dtbxllary locations.

6.3.2.5 Resource Limits in Pascal W. Apparently Pascal W does not
check for exhaustxng storage limits on procedure entry. There is no
error message for this situation. Thus a program may violate storage

protection by exceeding storage limits.

! 6.4 Summarzwgqu(bmparxsun

; Tlable | summarizes section 6.1 through section 6.1 in graphical form.
Each row of the table corresponds to one subsection of 5.2,
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Table 1. Summary of Storage Management Problems

Language
(and lmplementation)
Language Problem in PL/1 Algol 68 Pascal |
Storage Management (PL1X) (Calgol) (Pascal W) _

Storage Typiung

Argument /Parameter Typing - +
Pointer Access to Stoiage - +
Shared Storage - +

Storage Protection

Array Access -[1,2] 0[ 2] 0[2]
Nill Pointers - 0 -
0ld Storage = - -[ 3]
Uninitialized Variables - 0(2,4]) -
Resource Limits 0 0 -

Language Checking Symbols:
+ means all restrictions checked at compile time
0 means all restrictions checked

- means not all restrictions checked

Note
Note

0 except for "REFER" option
can be suppressed

1
2
Note 3: + except for "dispose" built-in procedure
4: only storage-protection-sensitive variables are checked

Note




As can be seen, PLIX comes out looking rather poorly. This is both
because PL/]1 was designed before the reliability problems in etorage
management were well understood and because PLIX attempts to generate
efficient rather than reliable code. In the IBM PL/1 Checkout Compiler
[44) most of the "-"s will be "0"s, and using PL/C [45) Checkout Compiler
will even to "+" because PL/C wisely does not implement PL/l pointers.

The Algol 68 design paid particular attention to storage typing pro-
blems with good results. Protection problems fared less well, with the
worst problem being old storage.

Pascal W is good on some points while lacking on others. Pascal W is
the only implementation which comes close to solving the old storage
problem. However, it has significant problems in storage typing which

will probably be quite difficult to handle without changing the
language.

In looking at Table 1 it must be remembered that this evaluation is be
no means complete. First, it only covers the problems of storage
management and does not address other reliability issues which are less
well understood. Second, it only treats existing implementation and
does not attempt to address whether a good, efficient implementation
would turn "-" to "0"s. With an ideal language design, of course, all
the entries would be "+'".
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