
N
AD.*O56 933 SYSTEM DEVELOPMENT CORP MCLEAN VA FIG 9/2

* METHODOLOGY FOR EVALUATING LANGUAGES ANO THEIR copetir~s FOR —EICCU)
JAN 70 F BOOK. P EGGERT. R UZGALIS OCA IOO—73—C—00 35

UNCLASSIFIF snc_ ’rM_wn-7gnqInnnInl CCTC—T* 17l- 78 NL

~i ~~~~~

U

• ~LtYt~17:

~~~Ilii~I iiCoNTM
TECHNICAL
~Ti~ R

I I _*uNS LAssu
I : i ’ b T W 1 1 R~~~~I‘~

; , ‘UcURi

.
e .

~~~~~~~~~~~~~~~~~~~ 
• •

•

~~

•
•

~~~~

. 

~~



,

~~

CO~~ AND AND CONflOL ~~ CHNI CAL CENT E~~~~~~~~ _~~~~~~~~~~

‘~Lc ~~~~ //~ T~ 
- -

Technical 1lemorandum~h4 171—78

/
(
~ ~~~~~ $ETHODOLOCY FOR EVALUAflNG

¼ - LANGUAGES AND THE IR ~DMP 1LERS
FOR SE~~JRE AYPLICAT1ONS

D D C
f~~~

[ BEfl
P-~ AUC 2 1978 I L

7 UU~~ uv~U
/ )~~~~~~~~ook , Pnul/Eggert

REVIEWE D ~y 
/

Robert/tJzr1i~ . i
___ •__ 

APPROVED ~Y :

MARSDEN E .  CHAMPAIGN JAME S A.  PAI NTER
Chief , Advanced Systems Division Techn~ ca] Director• WWMCCS ADP Directorate . WWMCCS ADP Directorate

/ -
~~~ 

, • , _ 7~~
, :~~~~~~~~~~

• ,i
/ f c ~ ‘ 1 / I —‘ / / /

I /
/_ / ~ ‘ /

Copies of this documen t may be obtained from the Defense Documentation
Center, Cameron Station , Alexandria , VA 22314

Approved for public release; distributio n unlimited.

‘p

‘
~~~~~ (.I7 13 026

Th r

— —  — — • --—-- E~~~ - - -  .~_



- - -

~~

-

~~

-- -.

~~~
—

~~

— --
- ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~

PREFAC E

This Technical Memorandum was written to provide CCTC/WAD with a metho-
dology for the evaluation of Higher Order Coii~ uter Progranmiing Languages
and their cosçilers, and to develop criteria for the evaluation of pro—
gra~~ing languages used to produ ce trusted software for use in secure
applications . This methodology will lead to the selection of languages!
coqiler tools for the Trusted Software Development System for CCTC/WAD.

i i

I

L
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ j.. . :. ~~~ - - ~~~---- — — --i——- .:~~~~~~

=
~~~~~~ — - -••

. ~~~~~~~~~~

.-— -
—~~~ j~~~~

ACKNc~JLEDQIEN T

This Technical Memorandum was prepared u n de r the direction of the Deputy
Director for WWMCCS ADP by the System Development Corporation unde r
Contract Number DCA lOO-73-C-0035.

Wflhi ictIN ~~
lvH $ictISI 0

uMusomicEl 0
*IIFICAIt ON

&

I!
DIS11ISU ’TIO~ AV AI 1ABIUt~ CCOU

_ DiIi . AVA I L I~d, ~ VtCI*L

V
lii

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~t -~~~~~~~~~~~~~~~ t -



____

CONTENT S

Sec t ion Page

PREFACE 

A(XNOWL EDCMENT i i i

ABSTRACT vii

INTRODUCTION 

1. 1 Deep Background 
1.2 Objective 
1.3 Motivation and Organization 

2 EV ALUATION OF LANGUAGES 

2.1 Previous Language Eva luation Efforts S
2.1 .1 Subjective Evaluations Check Sheet S
2.1.2 Language Evaluation Using Forma l

Description s 6
2.1.3 Feature Comp liance Language Evaluation. . .  6
2 .1.4 Feature Measurement Language Eva lua t i on  ~~~~~~~~~~~~~~~~

2.2 Proposed Language Evaluation Technique 6
3 PRINCIPLES OF LANGUAGE DESIGN FOR RELIABILiT Y 9

3.1 Secure App lications and Trusted Software 9
3.2 Primary Factors for Reliable Software 14
3.3 Analogy to Mathematical Theorems 14
3.4 Effect of Checkin g Upon Reliabilit y 15

4 LANGUAGE TECHNiQUES FOR iMPROVING RELIABILiTY 17

4.1 Advoidance Techniques 17
4.1.1 Manual  Techniques 17
4.1.2 Laissez—Faire Techn iques 17
4.1.3 Define—It—Away Techniques 18
4.1.4 Disadvantages of Avoidance Techniques . . .  18

4.2 Automatic Techniques 18
4.2.1 Confinement Techn iques 18
4.2.2 Predictive Techniques 19
4 .2 .3 Automated  Debugging 1 Q

4 .3 E v a l u a t i o n  of Langu age Techni ques for
1~~~roving Reliability 20

5 MAJOR LANGU~~~E ISSUES IN DES I GN OF RE LIA BLE SOFF WARE  2 1
5.1 R e l i ib i l i t y  Issues in P o r t a b l e  Sof tware  21

5 .1.1 Higher Orde r Lang uage and Machine
Independenc e 2 1

iv

__
~

_ - — ~~ ~~~~~~~~~~~~~~~~~~~ .~_ _. 
——



‘ f t

Section Page

5.1.2 Sociological and Technological issue  . .  21
5.1.3 Portability and Arithmetic 22
5.1.4 Portability and Libraries 22

5.2 Reliabili ty issues in Storage Management 23
5.2.1 Storage Typing 23

5.2.1.1 Argument/Parameter Typing 24
5.2.1.2 Pointer Access to Storage 24
5.2.1.3 Shared Stor*ge Features 24

5.2.2 Storage Protection 25
5.2.2.1 Array Access 25
5.2.2.2 Nil Pointers 25
5.2.2.3 Old Storage 26
5.2.2.4 Uninitialized Variables 26
5.2.2.5 Resource Limits 27

5.3 Reliability Issues in Input/Output 27
5.3.1 Bad Data 27
5.3.2 End—of—File 27
5.3.3 Device Unre liabi lty 28

5.4 Reliabilit y and Exceptional Conditions 28
5.5 Language Systems for Secure App lications 29
5.5.1 Interna l Problems 30
5.5.2 External Problems 31

5 .5 .2 . 1 Operatin g System Interfac e 31
5.5.2.2 Inter—Machine Interface 31
5.5.2.3 Inter—Module interfac e 32

5.5.3 Sums.ary of Language Systems 32
5.6 Summary of Language issues for Reliabl e

Sof tware 32

6 EXAMPLE EVALUATiON OF LANGUAG E SY STEMS 34
6.1 PL/ 1 Optimizing Couçiler (PLIX) 34

6.1.1 Storage Typing in PLIX 34
6.1 .1 .1 Argument/Para meter Typ ing in PL1X .    34
6.1.1 .2 Pointer Access to Storage in PLIX .    34
6.1.1.3 Shared Storage in PL1X 36

6.1.2 Storage Protection in PLIX 3t
6.1.2.1 Array Access in PLIX 3t~
6.1.2.2 Nil Pointers in PL IX 3~6.1.2.3 Old Storage in PLIX 
6.1.2.4 Vninitiali*ed Variables in PLI.X 3t~

6.2 Algo l 68 (Ca1 gol~ 
6.2.1 Storage Typing in Cilgo l 3t’

6.2.1.1 Argument/Parameter Typ ing in Calgo l . . . 3t~
6.2.1.2 Pointer Access to Storage in Cal gol 
6.2.1.3 Shared Storage in Calgol 37

6.2.2 Storage Protection in Calgo l 
6.2.2.1 Array Acces , in Calgo l 7
6.2.2.2 Nil Pointers in Ca l go l 37
6.2.2.3 Old Storage in Cal gol 3?

H



__________________________ —-,-.——w-- - - 
~~~~ 

- S
—~-—

--;:~:
‘:

~~~~~~~~~:~~~~~
- - -  ,-~~~~~._ ,— ._~~

- -
~~~~

-
~
—

~

-—,

Sect ion Page

6.2.2.4 Uninitial ized Variables in Calgol 37
6.2.2.5 Resource Limits in CalgoI 37

6.3 Pascal V 37
6.3.1 Storage Typing in Pascal V 37
6.3.1.1 Argument/Parameter Typing in Pascal V 37
6.3.1.2 Pointer Access to Storage in Pascal V 38
6.3.1.3 Shared Storage Featu res in Pascal V . 38

6.3.2 Storage Protection in Pascal V 38
6.3.2.1 Ar r ay Access in Pascal V 38
6.3.2.2 Nil Pointers in Pascal V 38• 6.3.2.3 Unini tialized Variables in Pascal V . . 38
6.3.2.4 Resource L imits in Pascal V 38

6.5 Summary and Cou~ arison 38

7 REFERENCES 41

DISTRI BUTION

DD FORM 147 3

LIST OF TABLES

TABLE I — Summary of Storage Management Problems 39

LIST OF FI GURE S

FIGU RE 3— 1 Idea l Deve l opment
3—2 Ac tua l Developme nt and Non—Secure Dep l oyment 10
3—3 Secure Dep loyment 11
3—4 Ii~,l i ca t ions Required for Secure App l i ca t i o ns 1

iv

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ .—-- -—-—— -—
~~

— -- - — -



. - - -.- - • - • ~~~~ —~~ - •~- - -•.~.w~~. ~~~~~~~~~~~~~~~~~~~

- ABSTRACT

A methodology is developed for  eva lua t ing computer programmin g l an gu a ges• and their compil er/runt ime syste ms for use in secure app lications
• r equ ir ing  r e l i ab l e  software , in contrast to previous evaluat ion metho-

dologies , this one concent ra tes  on the bas i c  proble ms whi ch imist be
resolved by a language to s a t i s f y  it s  r equ i r emen t s .  Eva lua t ions us in g
this  methodology are less s u b j e c t i v e  because they r equ ir e  u n d e r s t a n d in g
of the problems of s a t i s f y i n g  the r e q u i r e m e n t s .  Us ing  t h i s  methodolog y .
several stra teg ies for imp roving s o f t w a r e  r e l i a b i l i t y  through language
design are i dentif ied. The best such strateg ies are found to be both
pred ict ive (done at comp i le time ) and confin ing (prevent violations of
language restr iction s) . The basic language problems for rel i ab i li t y
are found to be the operating system interface , the inte r mach ine inter-
fac e , and separat e c omp i l a t i o n .  The methodology is demonstra ted by
comparing imp lementat ions of th ree  language s (P1./i. Algo l 68. and Pascal)
on a singl e problem (storage management ).

vii



~ 
• • : • _ _ _

~ . ~~~~~~~ 
-~~:z~~-—~~~ 

‘¼ •. SECTION 1. INTRODUCT ION

This report is part of work done for Task 0709 , Trusted Software Develop—
men t Support — Requirements Ana lysis and Planning. The pu rposes of
th is report  are 1) t o  e s t a b l i s h  a m e t h o d o l o g y  fo r  t he  eva luat ion of
Higher Order Computer Programmin g Languages and their compilers and 2)

• t o  develop c r i t e r i a  fo r  e v a l u a t i o n  of c om p u t e r  l anguages  used to de ve lop
trusted programs for use in secure app lications .

The me thodology developed in this report will be used to select
language/compiler tools for the Trusted Software Deve l opment System for
CCTC/WAD . A trusted Software Development System is a con~ ination of
concepts , methodolog ies , policies and software intended to support ,
contro l and improve t h e  software developme nt process  fo r  t r u st e d  s o f t w a r e .
The technical deve l opment p lan for the CCTC /WAD Trusted Software Deve lop-
ment System is contained in the SDC Report entitled , ibrrusted Software
Deve lopment System interim Operational Capability: Technical Deve l opment
Pla n”.

1.1  Deep_Background
DCA/CCTCIWAD is responsible for furnishing technical guidance to the
VVMCCS ADP P ro jec t  Manager ’s o f f i c e  in the i dentification and selection
of means for achieving the operations and technical requirements for ADP •

security. The ulttm ate goa l of the WWMCCS ADP S e c u r i t y  Program is the
achieve ment of usi It i—leve l secure systems ; t he  shor t  range objec t  ive

• to provide a significant increment in current WWMCCS ADP s e c u r it y  t h r o u g h
the implementation of secu re subsystems .

The secure subsystems approach ~s based upon experience in the area of
system penetration. it was found t h a t  some app lications could not be
p e n e t r a t e d  even t h r o u g h they  ex e c u t e d  on top  of o p e r a t i n g  sy s t ems
( i n c l u d i n g  GeOS) k nown to  be i n s e c u re .  E x a m i n a t i o n  showed the  appl ica-
t ions  to have three commo n characteristics. These were: limited
[unction , relative ly small size , and security as an initial design con-
sideration. These characterist:cs limit flexibil ity in the subsystems
and make it harde r for a penetra tor to mani pulate flaws. Using penetra-
bility as a criterion , an insta lation could be made secure if users
were a l l o w e d  access sole l y to secure  s u b sy s t e m s .

Developing secure software is s t i l l  on the  f r i n g e s  of t he  s t a t e — o f — t h e -
art. However , expected developments will rel y on three areas of tech-
nology .

The f i r s t  area is p e n e t r a t i o n  t echno logy . Mos t p e n e t r a t i o n — p rone def i -
cie ncies are common across systems . This delineates constructs to avoid
in develop ing secure software.

L ~ 
• - - ••—•

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . •- - .  — .



~~

.- ---— - -

~~
—-

~~~~

-

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~

The second area is research efforts directl y focused on developing se-
cure software. This research includes de ve l opment of a forma l mode l of
DOD security policy and software structuring techni ques such as security
kernels and implementation of a security mode l in con junction wi th
forma l techniques used to verif y com p atibility with that model. A
study of the relationship of verification technology to the deve lopment
of WWMCCS secure software was completed in December 1976 (1].

The third area is s o f t w a r e  engineering. The software engineering con-
cerns of corre..tness . reli ab tliz y and ma intainabil ity are intimatel y
connected with security . Software engineering techni ques pred icated
on a co~~~n information base can all.,w a large effort to be partitioned
and coordinated effect ive ly, can promote ~lear design and imp lementation.
and can reduce amb i guity of ~.o u s a in i c at i on  among de v e l o p e r s .

Software certification is the most important and difficult area of
software engineer ing. Software certification establishes the extent to
which a developed system meets its set of security r e q u i r e m e n t s .  Cer-
tification should be done in parallel with t h e  design  and imp leme n tation
of the system to be mos t effect ive. Most certification techniques
require special considerations during design . For examp le , forma l
verification techniques need sp.~cial imp lementation lan guages with a
limited number of formally defined syntactic cons t ructs. informa l
approaches to certificat ion , su ch as reviews of the design and code ,
demand deep unders t anding of the entire development process by the
certifiers in order to be effective. Certification methodolog ies should
not only generate the appropriate information but should also provide
convenient access and man i pulat ion. Testing used in support of certi fi-
cation can benefit from test base generators , storage of test data .
and maintenance of equivalen t system representat ions.

1.2 Ob~ ec~~ ve
The primary objective of t h i s  repor t  is to provide a new methodology
fo r  e v a l u a t i n g  computer lan guages and compilers used to develop
trusted software for sec ur e app lica tions . This methodology should
be app licable to the evaluation of the Waterloo Pascal comp iler , one of
t h e  proposed deve lopmen t  too ls  for  the CCTCtWAD Trusted Software
Deve l opment System.

1.3 Motivation and Organization
In any project  wh i ch employs  a c omp u t e r ,  the  c h o i c e  of a progr anun ing
language is an important decision. Lan guages most be carefu ll y examined
and then one must be chosen w i t h  knowled geable e v a l u a t i o n s  based not
onl y on the  lan guage but a l s o  on the  i mp l e m e n t a t i o n s  t h a t  e x i s t  in
the envi ronment in wh i ch the project will be arried out. A methodology
fo r  making  such an im p o r t a n t  c h o i c e  has never been common ly unders tood
nor emp loyed.

2



•-- —~•-—— - - •  — ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ •‘—.-—•,— ,~ •~~~ -—--- • - --— •.--—.--- — --••.-------—•,.- r .~ ,—.-. r-.. - —•~‘~
•
~

- — — ———--S--— 
~~~~~~~~ ~~~~~~

This report proposes a new me thod for evaluation of computer languages
based on resolution of inherent language issues. Previous l y proposed
techniques are describe d in Section 2 .1 followed by an outline of the
new evaluat ion me thod in Section 2.2. Section 3 discusse s reliable
sof tware and basic princi ples of languge desig n whic app l y to the
deve l opment of reliable software. Section 4 out l ines basi c lan guage
design approaches for solving problems related to software reliability.
Section 5 presents a taxonomy of lan guage issues which must be resolved
to produce reliable software.

Section 6 provides an example app lication of the proposed evaluation
method . Th i s example evaluates implem entati ons of three lan guages
(P1./ 1 . Algo l 68 , and P a s c a l) w i t h respect to a sing le language issue’
treatment of storage mansgeme n t issues for reliable software.

3

•~~~~~~~~--~~~•~~~~~~~~~~~~~ •~~~~ ~~~~ - .• , -~~~ •—- • . • - -- • • - - •

SECTION 2. EVALUATION IF LANGUAGES

This section surveys previous efforts of programming lan guage eva lua-
tion and proposes a new evaluat ion technique. This techni que evaluates
lan guages and compilers on the basis of how well issues are resolve d
in the design of the prog rame ing system.

No ma ter how lan guages ~~e evaluated , no evaluation for a particular
• application should br considered final. Both languages and comp i l e r s

are developing rapid lv and reevaluation is necessary as new develop-
ments start working Research into language technology and goals ,
s o f t w a r e e n g i n e e r i n g and forma l lan guages will also infli.~ence criteria.

2 .1 Previous Language Evaluation Efforts
Previous work on language eva luation has been done by Goodenough ,
Samme t , and W i ch m a n n . in a d d i t i o n , many r e c e n t s t u d i e s have aimed
toward rep lacing FORTRA N/JOVIAL/COBOL in milit ary programming appli-
ca tions. In general this work concentrated on language features and
qualitative aspects. The follovin~ fo u r sec t ions survey th i s wo rk and
cri ticall y anal yze each method to determine its usefulness for evaluat-
ing software for secure applications.

2 .1.1 Subjective Evaluations Check Sheet. ~Jean Saninet proposed a
numer ica l eva l u a t i o n t echn ique in w h i c h severa l a t t r i b u t e s of a language
are ranked by an eva luator from 0.0 to 1.0 (2] . These scores are

• weigh ted according to importance and then summed to arrive at a sing le
score for the language . To demonstrate the’ techniq ue her paper presents
a sample evaluation of COBOL and PL/l for a payroll app lication . The
eva luation show s a COBOL preference over PL/1 (0.933 to 0.644).

To crosscheck Sammet ’s eva luation techn ique , four programmers from UCLA ,
familia r with both languages , were samp led . Th ey were g iven the same
eva luation criteria and scales as the Sarnme t examp le . Although it is
ha rd to draw any direct conclusions from such a simplistic test , the
programme r responses were a lmos t u n i v e r s a l l y o p p o s i t e Samme t ’s p u b l i s h e d
examp le.

The S aimne t t echni que seems to ind ica t e p r i o r b i a s of the e v a l u a t o r more
than s u i t a b i l i t y of a language fo r an app l i c a t i o n . In lan guage e v a l u a —
t ion as much di stance as poss ib le mus t be p laced between the eva luator
and his or her pre judices or else the e v a lu a t ion may onl y ra t i o n a l i z e
prior cO~~ i tuent.

A simi lar t e c h n i que for eva lua t ing l angu age s for secure app l i c a t i o n s
was considered and rejected because the assigned numbers are easy to
bias unconsc ious ly so t ha t the f i n a l number is ha rd to t r u s t . Other
approaches seem more o b j e c t i v e and more f r u i t f u l .

- ~~~~~~~~~~~~~~~ -- -
~~~~

- •

~~~

- -j
II ~, PREC~~INQ p~~~ ~~~~~~~~~~

~

- _~- . •• - ~~~ -ir
- -

.
— - ___________

2.1.2 Language Evaluation Usin~~ Forinal Descri ptions. Goodenough 13.
41 compares and contrasts programming languages using a descri ptive
grammatica l formalism. His goal is to explica te differences clearl y
so the evaluator can make an informed judgetnent. This non—direct form
of evaluation tends toward unlimited stud y and no direct conclusions.
Although it is a usefu l tool for understanding, it does not provide
criteria for practical language evaluation.

2.3.1 Featur Compl i a n c e a~~_Eva1uation . Feature compliance
eva luation is done by l i s t i n g f a t u re s wh i ch a l angu age m o s t s a t i s f y .
These provide the crit eria for evaluation . The evaluator will then
call one or more experib in the language to discove r how many of the
listed features are satis fied. Unfortunatel y this technique is useful
only if the list is both performance—oriented and short and is thus
used to iden t i f y canthdates rather than narrow the choice to one.

L i s t s wh i ch are not p e r f o r m a n c e- or i e n t e d s u f f e r from previous bias .
For examp le , a feature—oriented list mi gh t include flow—of—control
features like if—then —else and while—do . However , a language using flow-
of—data rather than flow—of—cont rol will lack these features and yet
could fulfill easil y the performance requirements from which the features
were derived.

Long lis ts may suffer both from lack of justification and internal
inconsistencies. A long list is i t s e l f a r u d i m e n t a ry l ang uage design
and whatever techni que is used to justif y it mi ght as well be app lied
d i r e c t l y to candidate lan guages. Furthermore , if the list is not drawn
from a prev ious l y chosen language , because nothing guarantees the list ’s
i n t e r n a l cons is t ency , i t is p r o b a b l e t h a t no lan guage can p o s s i b l y
c o n t a i n a l l the f e a t u re s . For examp le , t h i s p r o b l e m is apparen t in
the Softech Stud y (5) of several lan guages agai .ist the Tinman (6 1
s p e c i f i c a t i o n s . Seve ra l i n c o n si s t e n t demands w i t h i n the Tinma n and
Ironman (7) specifica tions guarantee that no language can possibl y
s a t i s f y t h e r e q u i r e m e n t s comp l e t e l y .

2 . 1 .4 Feature Measurernenc Lan&ua~e Evalua tion . Wichmann (8 .9) p r o v i d e s
a nice method for examining effici ency considerations in both languages

• and comp i l e r s . H i s p i o n e e r i n g s t u d i e s have d em o n s t r a t e d w h i c h
features in Al gol 60 were successfu l and wh i ch were not. The compara-
tive language eva luation questions presented here are treated only
indirectl y by Wichmann. He measures Algol 60 features rather than
considering comparative analysis of different languages. The work of
Knuth (101 and Uzgalis [11) fall into this same area app lied respec-
tive ly to FORTRAN and PL/l.

2.2 !roposed Lan~ua~~~Evaluation_Techniqt~e
in contrast to pre~tous work , thu report proposes language evaluat ion
criteria and an evaluation methodology wh i ch concentrate s on require-
ments derive d f rom a s p e c i f i c app l i c a t i o n, i t should be assumed that
no single lan guage/comp iler will meet all requisites and that at the
end of an evaluation a difficult choice will have to be made between
languages. This choice will be made easier by knowing how well require-
ments are satisfied by the langu age candidates.

6

_

-- — •


~~~••~• .,. ~~~~~~~~~ • -
~~~

- -• • •••• ~~~~~~~~~~~~ •~~~~ ~
.

p t

(. The eva luation technique follow s these steps’

a. Define the app lication and its requirements for languages.

b. Outline basic issues or problems wh i ch most be resolved by
a language to s a t i s fy t he r e q u i r e m e n t s of (a) .

c. Outline general techniques for resolving these issues.

d. Evaluate each language in terms of the costs and bene fits
4 of how i t resolve s each issue of (b).

e. Choose a language based on comparing the lan guages ’ resolu—
tions of the basi~ issues .

A good way of manag ing an evaluation of this type is to appoint a reason-
able language advocate for each candidate lan guage. This group should
meet to choose requirements , strateg ies and problems by consensus
and experience. The criteria most be discussed extensively and the
reasoning traced by an &ndependt~nt grou p of cr i tics. After all concerned
parties are satisf ied , each language advocate should prepare a statement
eva luat ing how well that language satisfies the requirements. Decisions
should be reached from these statements.

This paper is an examp le evaluation of languages used for secure app li-
cations. The requirements for rel i able software are stated in Section
3. Techniques for improving reliab i lit y are discussed in Section 4.
Basic issues in languages for r,!liable software appear in Section 5.

7

~ - ~~~~
_ _ _ _

‘

~

“

Li
-

-

SECTION 3. PRINCIPLES OF LANGUAGE DESIGN FOR RELIABILITY

in order to evaluate how a set of languages solve certain problems , the
• . underl y ing principles of language design must be understood. This

section identifies the application area of reliable software , give s
its requirements , and defines basic terms needed for the development• of reliable software.

3.1 Secure Applications and Trusted Software
An application in here defined to be “secure” if its dep loyed programs
are trusted and must behave properly, and if its improper behavior may
cause loss of life or s u b s t a n t i a l economic loss . A program behaves
“properly” if its imp lementation never disagrees with its user ’s intent.
Thus a secure app lication requires assurances that an implementation

—
ma tches its user ’s intent.

In orde r to describe trouble spots wh ich plague attempts to increase the
integrity of software , some description should be made of the process
of software development. Unfortunately , developme n t from a user ’s intent
to an operational program is no easy matter , nor is it the same across
software projects. The mode l which follow s is a rough presentation of
prevailing software engineering philosoph y for norma l (non—secure) app li—
cat ions.

Figu re 3—1 presents an ideal model of the process of producing software.

user operational
intent program

design compiler

specification source
program

Fi gure 3—1 . Ideal Development

~~~~~~~~~~~~ ~~* :~r~~~~ ~~~ .r -
9 1 •

~~ICID11G p~~~ ~i a ~i~ J

L
_ _ _ _ _ _ _ _ _ _ __

I :
• -~~~—-- — - — .. ~~~~-- - _ -•-.~-- ——-- - _ - • - - -—— -

- ‘~~~~~~~~~~~~~~—- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• •~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ •

Each step of the~process, represented by the arrows, adds detail to a
previous version of the product. represented by the circles. Unfor-
tunately the process is not this ideal. At most, stepc there are
actually a great deal of feedback from a step ’s product to its input.
For example, as a program is vrLtten , it s specifications are usuall y
changed to account for unforseen difficulties. The only exception to
this feedback is the product ion compiler step . Furthermore, there is
feedback caused by program behavior wh i ch is not expected by the user.
Even in an ideal project , the user will be surprised both by arbitrary
deci sion s made by the deve lopers and by the user ’s intent ’s non -obvious
imp lica t ions and s e l f — co n t r a d i c t i o n s, In projects other than ideal ,
the user will also be surprised by errors made during development.
This relationship is depicted in Figure 3—2.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

designer compiler

• 

& i ~~~~~~~~~~~~~~~programmer s~~ rce

Figure 3—2. Actua l Development and Non—Secure Dep loyment

10

-_-~~~
---.

~~
-,_--••__ - ._ -__j___~ i~i1• ~~~~_.. .c~~r ,-r-.r’ ~r r t •~



- -~~~‘• — . ~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ... ~~~~~~~ ________

For simplic i ty, this mode l has omitted several les s crucial phases of
software development. For examp le , specifications have been i d e a lire d
aa a si ng le  document rather th en the more usual internal and user
specificat ions. Furthermore , the m atter of intent of the developers
has been omi tted~ i t  would be more comp lete to add more phases labelled
“designer ’s intent ” and “progra mme r ’s Int e nt ”. Howeve r , the mode l
is useful for po int ing out trouble spot s in secure applicat ions develop-
ment and for i dentif y ing those parts of the process treated in the
report .

The cru ci al difference between norma l and ~ec ur e  app lications become s
apparent only af ter  de ve l opment is done and dep loy ment has occurred. ln
norma l app licat ions , une xpected results are handled by a maintenance
process  wh i ch c l o s e l y  resembles  the  de v e l o p m en t  p r o c e s s  and is t h u s
also modelled by Figure 3— 2. in  se~ u re app lic ations , on the  o t h e r  hand ,
une xpected results are disastrou s . A se cu re p r ogram behaves prope r ly
only if its imp lementation neve r disagre es wi th the user ’s inten t~ that is ,
if there are neve r any unexpe~ ted result s . This produces the relation-
ship shown in Figure 3-3 and has grim im plic ac tons for software deve lopment.

user reading
the spec ifications

~~~~c t f i c a t i o n s  ~~~~~~~ gram

Figure 3-3. Secure Dep loyment

11

•

~

‘?‘~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ - • - •- • ~~~ ~1. I ~-

‘~~~~~~~ __________________________________
• . •“- “ -• - •

_ _ _

In Figure 3—3 , the double arrow stands for the re la ti onsh ip of “must
imp ly ” , or in other words , “ must not d isagree w i t h ” or “moat be a subset
of” . The only real way to insure that the user ’s intent implies the
imp l emen ta t i on is to build the cha in of im p l i c a t ions of F i gu r e 3-6 d u r i n g
deve iopment.

user op ora t t ona l
intent implied by program

(a), (b), and (c)

a

• specificat ions b source
- • p r o g r a m

Figure 3—4 . imp lications Req uired for Secure App lica t ions

• Thus for secure app lications, the steps labelled (a) , (b) and (c) in
Figure 3—4 mu st have some assurance that the result is consistent with
t h e In p u t These r e q u i r e m e n t s can be t r a n s l a t e d i n t o words , respec-
t i v e l y , a s :

a. spec ification Imist reflect user intent~

• b. a program must be consistent with its s p e c i f i c at i o n s ; and

c. actions tak en by an operational program must alway s be
p red i c t ab l e from i t s source t e x t .

Because today ’s pro gr ameii ng language s do not allow automated ptedict ion
of r e a l - t i m e program performance , another requirement must be adde d~

d . the operational progr am must meet real—t ime constraints.

12

f ,~

•
-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • •~~~~_~ •-•~~t__ - - •



This report desc r ibes  an e v a l u a t i o n  technique  for progr ataning lang uage s
only.  As such i t  will not discuss requirements (a) or (d) in detail .
Requirement (a) can never be met completel y because human intent can
nevet be determined accuratel y. Research in specif ication languages
(e.g. 121 focuses on this requirement by attempting to make specifica-
tions clearer to users. Requ irement ( d )  c u r r e n t l y is s a t i s f i a b l e  on l y
throu gh careful and expensive testing. Only a sma ll amount of work has
been done on proving real—time constrain ts (e.g. 13) and the resul ts are
far from satisfactory .

The greatest amount of work has been expende d on requirement (h). that
is , on v e r i f y ing programs c o r r e c t  w i t h  r e s p e c t  to  t h e i r  s p e c i f i c a t i o n s
114 , 15, 161 . The lessons of verification technology are twofold for
programming lan guages. First , a programming lan guage must be define d
adequatel y enough to allow proofs. Second , because verificat ion is
quite expensive , a language should be simp le and permit clear expression
of al g o r i t h ms.

Both requirements are onerous. The first is hard because the language
definition must be forma l so that a verif ier can emp loy it , and most
comple t el y define a useful and im p l e m e n t a b l e  langu age . Current language
definitions fall short of this goal either becuase they are informa l
( e . g . . t h e  FORTRAN or o t h e r  standards 117 , 18 , 1 9 ] )  or because  the
language is too simple for utility (e.g., the Pascal subset verifi ed by
(16)).

The second r e q u i r e m e n t  is h a r d  because  clarit y and sim p licit y are often
incompatible goals. Because most languages encourage programs with
hidden side effects , much research has concentrated on language design to
make such interconnections visible (20 , 21 , 221. ln fact the issue of
interconnections and proper access can be cons i dered a fundamental part
of the designer ’s intent for programs running in a secure environment.
Security kernels and simi lar techniques are being emp loyed to enforce
containment of user programs (e.g. 231 . The proper behavior of such
kernels is being proven by both manual and au t omatic verific ation
methods. Unfortunatel y interconnection features often mak e f o r  unread-
able programs .

Fi nall y , requirement (c), that a language system m u s t  i mp l e m e n t  a pro-
gram so that its actions are predictable , is the most crucial require-
ment in examining progranrnng language systems for a secure app li cation .
Be~ ause program verifiers rel y on lega l programs as input , it is incum-
bent upon the lang u age sys tem to check that its input programs are in
f a c t  l e g a l .  This  is a more d i f f i c u l t  p rocess  t h a n  mi gh t at f i r s t  be
supposed. T radeo f f s  between a lang u age ’s ease o f use , t m p l e n w n t a b i l i t v .
and verifiability become even more  d i f f i c u l t  to ap p o r t i o n  when t h e
constra int  of checkability is added. This problem is the subject of
the rest of this report.

13

— ~~~~~~~~~ •~~•_ i_ ~____ _•__ __• •__ ••• _ •— •_ _ — — — _~ -- —•



— t

3.2 !rima~~~ Fac tors for Rel iable Sottware
Two major factors in reliable so f twa re  de ve l opment are program methodolo~’vand progr an~ ing languages. The first factor uses precepts of stru c-
tured programming and design , review of source code , thorou gh testing,
and continuou s configurat ion ccet t rol . Unfor tunatel y , such methodolo gy
is labor—intens ive , cos tly and raugh t with opportunities for huma n erro t
The role of the second factor , ~rogr amm ing l an gu a g e s , is f a r  l ess  under-
s tood by the computing conami ni~i Iy . This is unfortunate because it
induces iner tia where lit t l e  should e xist.

A progr aussing language is a fori~al me chanism used  to  o r g a i l t r e - though t
about an informat ion processing task. Since it is a forma l mechanism .
i t  should have a precise def m i !  ion of what can and cannot be wr itten
and what is meant by any lega l statement. One of the ma jor research
issues of the past decade has bi’en the development of a successful metho l
for the definit ion of programm ing lan guages. An adequatel y defined

• language can lead a user into i II —de f m e d  or ant i guous l a n g u a g e  cons t  r u c -  s
which will cause the program to be unrel i able. A poorl y—defined lan guag
can fail to conui~m ni~ at e  t h e  lan ~ u age i n t e n t  to the user causing him
to use the languige imp roperl y. Thus , foE r e l i a b l e  s o f t w a r e  t he  l an gu a g
used mus t  be coher entl y and pr ecisel y defined.

3 .3 An a 1~~~ to Mathemat ical Th~ or ems
• There is a cons id era ble body of knowledge about t he  theory of formal

lan guages a s s o c i a t e d  with symbol ic logic and ma t hematics. The power
of such languages lies in t h e i r  a b i l i t y  t o  reduce ’  c e r t a i n  t ypes  of corn t
thinking to a set of rules . if one follows t h e  rules of symbolic log i c
and starts with a c o r r e c t  premise , one w i l l  emerge  w i t h  a c o r r e c t  con-
c l u s i o n , no m a t t e r  how lon g and tortuous seeming the path. Each transi-
tion from step to step along the p a t h  can be checked  me chanicall y even
though the path i tself represents cre at ive think ing which cannot be
g en e r at e d  m e c h a n i c a l l y .  The r u l e s  wh i ch allow checking of the step by
st e p  t r a n s i t i o n s  a re a nwchanization so that thoug ht can he avoided .
The rules are frame d independentl y of any hut t h e  f o r m a l  c o n t e x t  so
t h a t  no k n o w l e d g e  of c o n t e n t  is necessary to check each step by step
t r a n s i t  ion •

Progr arxsing language ’ s a re  a more  comp l i c a t e d  f o r m a l i s m  because  programs
control space and t i m e  f o r  the mecha nical computation of an al gori thm.
In reading mathematics it is not necessary to grasp an eve r —chan ging
environment to understand what is wr itten ; but in a p r o g r a m m i n g
language the dynami c environmei t is intrins ic to a program ’s meaning.
Thi s dynamic environment is vrtv hard to forma lize. Therefore , to the
greatest extent poss ible , progr aI~~ing language s should have a syn-
tactic structure that emphasizes static arg umen t s about the correctness
of dy nam i c alg oe ithma .

When a p rogr a rr writes in a computer langu age , he provide s a step by
step path whi ch pert orms some computati ons. Unl i ke a proof , the
sequences of step s c a n n o t  be checked me chani call y because one is not
de r ived fr om i t s  p r edece s sor .  Howe ve r , the lan guag e con ventions
pre s cribe a certain form that should be checkable me chanic a ll y for

14 

•— .~~-—~~~~~~~ • — - •~~~~~~~~~~
• •



,
~~~~~~~~~ ~~~~~~~~~~~ 

..
~

——-

a comp uter language . if the compiler for a language is sa t is fi e d w ith
a program , then the programme r has formu lated hi s step by step sol ution
within the conventions establi shed.

• 3.4 E f f e c t of Check in~~ U~on Re-i i a h i I ~~t v
The deeper and m o r e’ sophr s~~i ca t ~’d t h e r ang~iag~’ con ve n t ions become’, t h e ’
more sophis ticated the mechanical checking i mp leme’nted by th ’ com pile’r
can be. If the allowed checking consttJ ~ ns the progr1n~~’r suff~ ci e-nt lv ,
then trust in the resulti ng program increases.

This simple idea give s rise to the mo st t ru it fu l means ot cre at ing
automatic or semi —automatic aids to the de ve l opment ot re’l m.i h le , correct
software. A program is a specification of a computing t a s k written in
a forma l language. An a t t e m p t m u s t be made to use t h e r i g o r o u s r u l e s
of the’ lang u age and the redundancy aff orded by the’ de f i n i t i o n s t o check
the consistence and comp leteness of .i given program. The’ more a progr .em
can he checked au t oma t i cal l y for cons ~st e ’n c v and comp let eness , the
greater the conf i dence ’ in it. Programming languages must h~’ designed
to allow the m a x i m u m amount of .iu t omati.. ch eckin g .

in short , not o n l y do hi ght’r or der p rogr amming I .in gti .e ge’s p r o m o t e gre.et e’• p r oduc t iv ~ ty and m or~’ understandable ’ Cede ’ t h a n do asse’mblv language s .
but t h ey a l so a l l o w a system to perf o rm n~~re- au tomat ic chec king abou t
r e l i abi I i tv of progr ams writ ten in th e ir languag - More recent progr am—
ming lan guages p r o v i d e opportun t i e s fo r a g rea t de’,iI of checking for
r e l i a b i l i t y . The’ next sect ion discuss es language techni ques used tel
suppor t such r e l i a b i l i t y check ing .

Is

L ••• • ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~
• • •

.
-

F— .-:z~~~
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~

SECT ION 4 LANGUM E TE CHNIQUE S FOR IMP ROV ING RELiAB ILI TY

A lan guage designer faced with a specific language issue related to
r e l i a b i l i t y  can resolve the issue e i t h e r  by avoiding i t  or by f i n d i n g
a solution for it which provide s for  a u t o m a t i c  check ing. According l y ,
there are two kinds of techn iques wh ich can be employed to resolve
reliability issues in languages: avoidance techniques and automatic
techniques. Avoidance techniques are generall y easier to emp loy wh i l e
design ing but often lead to problems in imp lementation . 

• 
Automatic

techniques are often quite difficult to use in design but generally make
implementations easier ’ arid more reliable. This section identifies
six classes of techn iques for resolving reliabilit y issues. Of the six ,
three classes are of avoidance techniques and three are of automatic
techniques.

4 . 1  Avoidance Techni qu es
Avoidance techniques are methods by which a language designer may
either intentionall y or unintentionall y avoid coming to grips with a
real issue , or how he may de f ine the problem aw ay so that it becomes a
f ea tu re  in his lan guage.

4 .1. 1 Manual Techni ques. These are the mos t co~~non avo idance tech-
niques because they occur by default, if  a problem is not discerned
or if the designer can see no solution for it  then it remains  in the
language. This is called a manual techni que because the programmer
using the language must manuall y check for errors caused by the pro-
blem. For examp le , FORTRAN programmers must check manuall y whether the
COMI*DN blocks in separatel y compiled procedures are consistentl y de-
fined. - •

To help the progr aimne r avoid p itfalls left in language s, several
programm in g methodologies have been deve l oped. These include careful
production and review of code , thorough debugging,  and continuou s
monitoring and maintenance of the resulting software product. There are
many concep ts emp loy ing manual techni q ues such as the chief progr anmeer
team [24), modular decomposition [25), and code sty le manuals [e.g. , 26).
Thes e methodologies  should be used even w i t h good language s , of course,
because they have several other advantages. However , if they are being
used to circumvent language deficiencies then they are actuall y substi-
tuting expensive manual labor for cheap automatic checking.

4.1.2 Laissez—Faire Techniq~ues. The second class of avoidance tech-
niques , close ly related to manual techn iques is termed laissez—faire.
Using such a technique the language designer exp licitl y chooses to
leave some portion of the langu age  undefined or i l l e g a l . This is
usua l ly  done to allow the cons t ru c t ion  of e f f i c i e n t progr ausning sys tems.
Other portions of the lan guage definition may classify some situations
as illegal. For example , the use of an uninitialized variable is
usuall y considered undefined , whereas storage into an array element
which fall s outside the array ’s bounds is illegal. Any use of either
undefined or i l legal  s i tua t ions  in a program may cause actions of the
progr am to become unpr edic tab le  and t he r e fo r e  u n r e l i a b le .  For re l iab le

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


r “v - • -

software both unde fined and illega l situations should be detected by
the p r og r amming system ; in effect this means that no situations should
be only undefined and t h a t every undef ined situa tion should be illegal.

Unfortunatel y undefined or illega l actions are often nearl y impossible
to check comp letel y either at comp i le-time or during execution . Thus
problems created by loose definition require manual solution and are
ra r el y d iscovered u n t i l the program code enters a new environment (e.g.
a new machine or compiler).

4 . 1 . 3 D e f i n e — l t — A w a_y_Techni ques. D e f i n e - — i t — a w a y t echn i ques are the
third kind of avoidance t e c h n i ques. These are commonl y used when a
diffic ult language situation forces a language desi gner to make an
unp leasan t decision. One examp le is subscri pts out of range . One
define—i t —away solution mi gh t be to remove array subscri p t s f r om the
lan guage; ano ther mi ght be to define that when an out—of—range sub-
scr i pt is encountered , the nearest lega l subscri pt is used instead.
The disadvantage of define-it-away solutions is t ha t they ei ther t ake
usef u l power away from the progransne r (such as the first solution for
subscri pts), or add expense to comp ilation and exec ution and encourage
progranmiing t r i c k s which t ake a d v a n t a g e of the language def inition
(as does the second solution for subscri pts). Sometimes such techniques
are best , but t h e i r d i s a d v a n t a g e s should not be forgotton .

4.1.4 Disadvantages ,o~~~voidance Techniques. Manual and laissez—faire
techniques do not solve the problem of human mistakes , innocent or
deliberate , and thus will not be discussed further. Define—it—away
techniques tend to be either restrictive , inefficien t or trick y but
they can be used as a last resort. Section 4 2 concentrates on automatic
t echni que-s which deal effective ly with language problems .

4.2 Automatic_Techniques
in order to understand au t omatic techni ques , some understanding of the
programming system which imp lements them is required.

A prugranining system for these purposes can be broken into two parts :
the language processor and the run—time system. The lan guage processor
includes the comp iler which processes source text independent of program
data p roducing code , and the linkage editor wh i ch integrates separatel y
comp iled object modules into a sing le program prior to execution .
The run—time system is a combination of code produced by the comp i l e r
and pre — existing code integrated with system code producing a specialized
machine to perform the specific task described by the programmer.
Integral to the run—time system is the mach ine which executes the code
and the additional system code which forms part of the resulting
progr am.

4.2.1 Confinement Techn iques. Confinement techni ques are the f i r s t
class of automatic techniques. A confinement techni que prevents a
program from emp loy ing a machine in such a way that the machine does

18


~~~~r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~~~~~~~~~ ‘ -~-~ •~~

not l eg a l l y imp lement  the  langu .ige . Using a confinement t e c h n i q u e  f or
part of a system guarantees whether t h a t  t h e  p a r t  w i l l  a l w a y s f u n c t i o n
as s p e c i f i e d  or t h a t  a m a l f u n c t  tin w~ 11 he de- tecte d.

The d e f i n i t i o n  o f a pr ogra mming  l an g u a g e’ may imp l y that c er tain proper-
t ies of progr ams can o n ly  be checked  tw t h e  m a c h i n e  wh :ch executes the
program.  R u n — t i m e ’  con f i n e m e n t  echu iqucs ar e  u n i q u e  lv  app l i cable to
enforce these language rules. For example , many progr aming languages
allow div ision by a v a r i a b l e  and yet p ro hibit d i v : s i o n  by z e r o .  Dete ct—
t ng t he v :01 a t :  on of t h e ’ 1 angu .I~~e ru  les at e’xe’cu I :en t lim - t or ~i v : s : on t’v
z er o is a r u n — t i m e  c o n f :n e m e n t  techni que . An oth er examp le i s ntn—tlnx’
subscript checking which w:ll prevent a program from access :ug outs:de
arra y bounds.

The difficulty w: th run—t ime conf  :ne’nx ~u t  techu :qut ’ s ’. s t ha t  a l t  bou gh
they prevent any p r o g r a m  w r i t  t en  in the lan guage’ from v i o  tat ing the
l anguage ru l e s , a v :el ~t t on  :s not stopped nut :1 it is abou t t o  o c c u r .
For reliable software :t is des’r ahle to insure th a t the program
can neve r violate tht’ language rules.

4,2.~ ~~~~~~~~~~~~~~~~~~~ Prod ict:v, ’ t e c h n i q u e s  are the secon d
c l ass  of  ant ema c tochn:que’s A p r o d  ~

‘ : ye tech at quo a ii ow s sonw
pr opert y of a software ’ System t o  he :ut e r r e ’d w:t hout rt ’tt ’renct’ to the’
part ic~ lar data on w h i c h  it  w : l t  o p e r a t e  Au examp le - o t  a pr e ’d ict~~ve
technique is strong type checking where the d a t a  t y p e ’ o f  C V C I V  ob~ t’~~t
1*’. a progr am can b~ infer red at comp : Ic’ am’ • 1 .inguagt ’ s emp l oy  lu g
strong t vpe - check :ng (such as A • go! tiS ii si and l~ta c lid .‘Ci I a l l  ow
compilers to prevent :llega l ac-t’ ss to da t a ‘ s:u~’ a pr~’d~ ct lye ’ te’chn :qi e
fo r a p r o p e r t y  of a svst,’m paar ente ’os t i-at the p t o p e ’r t v  w : l !  h o l d  no
mat t or  w h a t  d a t a  t h e  s~- s t ’Th w 1 1 ope ’r a t , ’  up on .

Prod : c c :  %-e C ~‘cha ~tii ’s n~-o~ net de’a 1 v i  ~ c a l l  e rc  u c  I an c t t . a  t~,’ ru los  - F or
e xamp 1 ’ t a an gu .ag~- a i t  ow s don C t : c ,i on of o vet v p1 a c’ a var a b l e
can be am’d : f:e’ d , hen a comp I t ’: can  p ie-  ~i: c t who i t ’ v .U I .iN It ’s can he’
mod : t :e’d and can pa ev : ~i - an app: opr : ate’ c os ‘. t’ or once I :  st  : n g .  An t  on~t t  c
p r ogr am ver~ t : cat  :on :s a pr e d : c t  i v e ’ t e c h n : q t a - w h : c h  p r o v e s  a pr e~~r a m
has sent’ p r o p e r t i e s  by us ug  st  a t  : c  p r o p e r t  ~e -s  t~~t : t s  d o s c r :p t i o n .  The
advanta ge of p r e d :c t : v e  t e c h n i que s  is chat p t o p t ’r t : e ’s deduce d abou t
programs are alway s t r u e  and t h o r e f o a  e can  he t r u s t e d .

4.2.3 Aut~ rnate ~~hug t .  The’ t h ~~~d and f i n a l  c l a s s  O O U S : S t S  of
t e c h n i ques w h i c h  a r’ ne’:tht’r pr edict :ve nor cent : u : n g .  Al mo st al l of
these t e c h n i q u e s  are’ automat ed debugging aids su ch as ( t o w  anal y st’s,
symbol ic dumps , and au t omat :c g e n e r a t i o n  of t e s t  d a t a .  These  t e ch n i q u e s
are not p r e d i c t i v e  (u n l e s s  a l l  p~~ss~ b l t ’ comb : n a t  :ons  of in p u t  dat a are
t e s t e d )  because a p r e d :ct  :ve t e c h n i q u e’ m u s t  wet - k in d e p e n d e n t  lv of t h e’
p a r t i c u l a r  input  d a t a  emp l oyed. Nor are ’ the -v c o n f i n i n g  because a pro-
gram w h i c h  runs l e g a l l y  on test data may not run  legally when placed
into production. in gent’ral these techn :que-s are’ aids to manual tech —
n iques .

L ‘ - :T_~~
-. --’ • • •

~~~~
-

—“~~~~ --- •--•• -‘- • - - •

~~ •1~~’
‘•

~~~~~~~~
‘
~~

-‘ 

~~~~ 
‘
~
— -

~~
‘. - ~~ -.----.-..~~~..

Thts concludes the class if ic a t ion of language techniques which improve
sof tware r e l i a b i l i t y .

4 .3 Evaluat ion of Lan1ua~e Te~ hnr q~ies for lrnpr~~v t n g Rel iab t lr tv
in t h i s s e c tio n a c i a s s i f i c a t i o n of t e c h n i q u e s f o r the production of
r e l r ~~b ie s o f t w a r e has been p r e s e n t e d . This iS t h e f i r s t s t e p in
e v a l u a t ing lang uages f o r s ecu re app l a c a t io n s .

The best r e l i a b i l i t y t e ch n i q u e s a re b o t h p r e d i c t i v e and c en t i n i n g .

Pred ictive techn lques w h i c h a r e not cent ruin g (like a cross -refer ence’
l i s t i n g) w i l l a l l o w d a n g e r o u s s o f t w a r e hugs to ren~~in unchecked in t he
p r o g r a m .

C o n f i n i n g t e ch n i q u e s w h i c h a rt’ not pr e d i ct iv e (like run-ti me s u b s c r ip t
ch e c k i n g) given no a s s u r a n ce t h a t even thorou ghly tested code w i l l be
fr e e of r u n — t ime e r r o r s . Even though such breakdowns will he detected
when th~ v eventual lv occu r , tho~- w i l l not be welcome in crucial situat ions
and wt il be hard t o fix withou t the aid of the orig inal programer.
Furthermore , many c o n f i n i n g and non — pr e d i ctive te chn ique’s (e.g., unin i ti-
alized variables checkrng~ prove expensiv e in execution and are often
o m i t t e d .

In a p r o g r a m d e v e l o p m e n t sy s t e m w h i c h is to p roduce r e l i a b l e s o f t w a r e
for secure app licat io ns. predic :ive conf ining techni ques are necessa~~f o r a l l p ro gr a a~~tng language re s tr i ctions.

20

~~~~~~~~~ _ _  _____________________ 
_ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~ 

-- ——



- .

SECTION 5. MAJ OR LANCU~~ E ISSUE S IN DESIGN OF REI.1 A SLF SOFT WARE

this section discusses in t u r n  major  i s s ue’s in l a n gu a g e  desi gn f o r
r e l :ab i e  s o f t w a r e .  For each iSsue’. me ntion is made of v a r i ou s  tech -
niques available to  a t t a c k  t h e  p r o b l e m .  P r e d i c t i v e  c o n f i n i n g  tech-
niques are emphasiz ed where av a:la b l-; ethe’r tt’chn~ques are sunmuarized
and compared. Section 6 wil l  compare’ and contrast three language systems
to  d e m o n s t r a t e  how to accompi:sh the e’valuat ion for one particular
issue , storage management.

5.1 Re l:ah:l:t v issuet. :u Port ab le S~’tcw are~
Portable software can h~’ execute d in an under lyin g mach~ ne diff erent
f rom the one- on wh i ch it as orig ina l l y developed. Und erl ying machines ,
or hos t  c o m p u t er  sy s t e m s , a re  a comhinat:on of hardware , software and
f i n ~~are comp onents wh i ch prov~ de. a p a rt: cu l a r S O I V : C O  to users. lf ,
for examp le , the host computer system c on s i s t s  ci h a r d w a r e  a lone  ( p r o —
cessor And main memory ) then the data type’s woo Id c o r r e s p o n d  t o
interp retat ions of memo ry units :mp l~ c :t in t h e  hu l  I t — i n  operat:oars of
t h e  p r o c e s s o r .  -

‘

5 . 1 . 1  Hi th er  Or der Lan~ ua~ es and Mach :ne lndoo~endence . Most software
today rests upon an u n d e r l y i n g  m ach ’~u~- mad~’ up of layers of such
ma ch ines  as h a r d w a r e . o p e r a t i n g  sy s t e m s  p r o g r a m in g  language s , and
libraries of routines. When chan ges are - made to these’ mach i nes, or
when a p r o g r a m  is moved to a d~.t fe -rent phvs: cal machine, an ap p a r e n t l y
c o r r e c t  p rog ram w i l l  behave- unpredictably .

When software is writt en :n a t aming language that c la :ms to  be
machine independent that language forms e ither a permeabl e or an
imperme able layer eve r under lv iug rn a chi n Ss. When the pa ogransne r
p e n e t r a t e s  b e l ow  t h e  lan guage interface , h~’ w rit i ng in  asse’mhlv language
for example - the comp : lot and the laugu ago are not r e s p o n s i b l e  f o r  t h e

• non —p ort ah :lit v of result:ng softwar e . This is ha s: cal lv a lais sez—
fa :re- techn:qu~’ which p laces r e s p o n s i b : h tv  on the prograninor.

The i mportant que-st:on for reliable software’ :s the degree to which
l anguages  and comp : le t - s  t a k e  r e sp o n s  h: 1: t v  f o r  port ahi ii ty  - The answer
to this quest ion is pr m ar t lv soc : o l og :  cal and se’condari lv technohigi cal .

5 . 1 . 2  Socio1o~~~caI  and Technø1o ~~ica 1  l s s ue s .  S o c i o l o g : ca l  i ssues  a r i s e
because lan guage desi gners and comp : let- writers owe’ alleg iance to two
masters: portability and perfo rmance. if a question is r e so lved  in
favor of p o r t a b i l i t y  c e r t a i n  c l a s s e s  of programs wi l l  he i mpossible ,
aw kward to w r i t e , or inefficien t to execute. if the ~ue’st ion is
r e s o l v e d  in t e rms  of p e r f o r m a n c e  t h e n  c l a s se s  of p r o g r a m s  w i l l  behave
u n p r e d i c t a b l y when change s o c c u r  t o  their environme nt. 

~— — -  :~~~~~~~~~ —~~~~~~~~- .-— • ‘—~~~- - -- -‘-~ - - - --- • -“ —‘-



,L.

Techno log ical  issues arise when devisin g a l anguage  wh i ch i mpl ements
general software deve lopment , insures portable programs , and permits
efficient use of hos t machines. The hardest questions would be how
to require each machine to imp l ement exactl y the same ve rsion of the
lan guage.  A f a l l b a c k  q u e s t i o n  w o u l d  be how each compiler at least can
flag violations of the por tability property. No programing language
in use today solves this problem . it s tot al solution is a major re-

• search issue but partial solutions are available if either one of the
other  two c o n s t r a i n t s  are  relaxed.

A samp ling of d e t a t l e d  language /comp ile r problems in  portable software
are a r i t h m e t i c , chara ct er se t s , order of evaluation of statements aud/
or expressions , input/output , and scope of externall y de f ined names.

5.1.3 Portability and Arithmeti c. When a language defi nitio n does
not provide a complete specification of the rules of ari thmetic for finite
sized calculation s, each comp il er uses its own machine chara cteristics
to imp l ement an under l y ing mach ine’, V a r i a n c e ’  in  word sizes causes
d i f f i c u l t y .  C u r r e n t  lan guages frequent l y depend on imp licit pr operties
of t h e  mach ine  wh i ch are  independent of the algorithm. For examp le ,
the FORTRAN type iNTEGER provides no clue ’ as to the maxinxjm value which
can be presented. Such properties become a problem when an algorithm
is chan ged and unexpected overflow occurs or when the program is trans-
ported to a more restrictive machine and i t  f a i l s  to  b ehave in the
same wa y .  Even if the program uses a language -defined method of
accessing the largest available intege r , it may s t i l l  fail because of
an im plicit assumption that this number is not less than an ostensibl y
reasonable minimom. In this case the effort expended to make the
program conform to the lan guage specifications is iro: over because of
an additional unwrit ten assumption abou t the word size .

-
‘ 

~ 1.4  !urtabi!itv and Lib raries. Portability problems do not onl y
ar :s~ from hardwar e differences. Libraries assoc iate~d with a parti-
cular language and comp iler form an eand erl y ing m. ichine’ or extended
host system. If these librarie s are mo dified care lessl y, previousl y
de veloped software may behave as unpredictabl y as if it were moved to
a n o t h e r  h a r d w a r e -  hos t m a c h i n e .  L i b r a r i e s  have’ two classes of types
and functions: those avai lab le to the user and those meant to be used
onl y within the library as internal data types or f u n c t i o n s .  The
i n t e r n a l  f u n c t i o n s  g e n e r a l l y do not perform such checking of their
a r g um e nt u .  Us ing  the  s t a n d a r d  A l gol  b l o c k  s t r u c t u r e  t h e r e  is no way
to set up the library so as to p r e v e n t  t he  user  p r o gram f r o m  emp loy ing
i n t e r n a l  f u n c t i o n s , i f  such a l i b r a r y  is m o d i f i e d  such that the external
functions remain the same or are  u p w a r d s  c o m p a t i b l e , but the  i n t e r na l s
a re  drasti ,~all y ch anged , programs dependent upon the internals will no
longe r be com patible , in  order to i mp le men t a l i b r a r y  in the con tex t
of portability there’ must be a confinement techni que wh i ch prevents the

22



“I’~ 
-“-‘

~
-
~~‘ 

_
~~~~

.•‘- y • •.•-’._
~

- •
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

‘
~~~ 

- --, -

~

-.—- - -—-

~

.— • - -- - -----•- .—

user progr am from c o n t a i n i n g such d e p e n d e n c i e s . One ’ techni qu e emp loy ed
by i n d i v i d u a l FORTRAN p r o g r a m m e r s is s im p ly to keep the internal name-
se c r e t . U n f o r t u n a t e l y , these sec re t s cann ot be well kept because nor-
mall y the l inkage editor will publish them; furthermore if someone
blunders into the internal name then unexpected results occur. Another
solution is the abstract data type populari zed i n Clu [2 1 1 and Aip hard

• 1221 in which exp licit m ont ion a s ma de of whe ther a p a r t i c u l a r data
type or f u n c t i o n is e x t e r n a l . A b s t r a c t da t a types are the topic of
much current research and it is not yet c l e a r wha t i s t h e b es t wa y of
e x p r e s s i n g or implement ing them. However , any reasonable techni que
fo r i”~p tement i ng abs t r a c t t y p e s m o s t be h~ t h couf rac ing and p r e’di ct ive .

5 .2 Reliabi l it y issues in Stora~ e M a na~ emeut
The basic storage - management p r o b l e m is to prevent a program f rom using
storage not me-ant for it . i n F ORTRAN t h i s i s man i t e st ed in such common

• errors as subscript out of range’ . di ft er ’nt COP~fON blocks di sagre ’ e in g
as to l a y o u t , and attempts to enter .i r o u t i n e r e c u r s i v e ’ l v . Lan guage’ s
s ince FORTRAN have • ;o lve ’ d many of t h o s e p rob l ems hut these’ techni q ues
have introduced other problems .

The p r o b l e m of preventing misuse of storage’ can he’ spl i t intel two parts
called the typ ing and protec tiot’ problems respectivel y . The’ typing
problem is to prevent c o n f u s i o n as te a what is re’paesen te’d by a p a r t ic u l ar
s torage l o c a t i o n . The p r o t e c t i o n p r o b l e m is Ic ’ p r e ’vent access to st or a g e
if the storage is inaccessible according to the l a n gu a g e de finition .

5 .2 . 1 Stora~ e v~~in~~. A so lot ion t e a the’ t y p ing p r o b l e m p r e v e n t s
confusion ove r what data type appli es t e a a particular storag e’ l o c a t i o n .
For e x am p l e , a m a c h i n e word may repr esent an integer , a f l o a t i ng point
number , or a pointer. Typing i required in or-do t to solve prot cot ion
p r o b l e m s , for otherwise printer s could h~ man : pu l a t e d u s i n g , say,
float lug point oper at ions . r esu t i n g in h opt~ less conf us can -

Typ ing can be t ’n f o r e -ed c i t her at r u n — L i m e ’ or at ceamp i lt ’— t i ant . Run—
t ime’ t y p e c h e c k i n g imp ire s that each t i m e s t o r a g e ’ i s a cce s se d , i t i s
checked for appr opr ate’tce’ss of t y p e . Th is so lot ion i s a d o p t e d in APL

• 1 2 7 1 and in tagg ed—architecture ’ hardware ’ 12 8) . il~~t ert un atel v this
technique usuall y adds to run-t:me expense and i s not predictive.

Comp ile—ti me ’ type checking is perhaps the most pow erful au t o m a t i c tech-
ni que for reliable software. lt has been used in nearl y “ve ry ma j or
lang u age since FORTRAN . However , there ’ are’ some’ difficulti e s in
extending this checking to p r o t e c t a l l p o s s i h i l i t i c s in t h e ’ l a ngu ag e .
A l l pos sib a I i t i es flU St be check e’d t o inse ct -c con Ii ne’me nt • if any loop hol ’
exis ts , i t can be used to circumvent all o t h e c checking.

• 23

~~~~ T T T ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
•



~ ~~~

r .

~~~~

- - ______

5 . 2 , 1 . 1 A! en t / P a r a m et e r ~~~~~~~ The f i r s t p r o b l e m in storag e t y p i n g
is how to ensure that types of the actual paramet ers agree w i t h f o r m a l
parameter . when a procedure is called. This is n or checked in mo st FOR-

• TRAN imp l e m e n t a t i o n s and l eads t o many bugs when p r og r a m s are i n t e g r a t e d .
In orde r to e n f o r c e t h e - s e r u l e s , checks mo st b~ made t~ guarantee that

4 pa rame te r s passed to a p r o c e d u r e are of p roper t y p e . I t a ll the p r ~ace-
dures ’ de f initions and c a l l s a r t ’ ava : l a b l e ’ t o t he c~ mp le’t’ , t h en i t

can check compa tibil i t y o forma l and actual parame’te’rs in a procedure
call. This is p o s s i b l e in most l a n g u a g e s d e - v o l o p e d aft er FORTRAN .
in separa tel y compiled pr ocedu re’s a di t l& ’re ’nL selec t ton mu s t he’ found’
either the comp iler mo st keep track of type informa i o t a i n a ux ~ l i a r v

a files , as in the ALGOL68(’ compiler t 29 l~ or types ama st he’ checked by
the l inkage e d i t o r which r equ i r e s eithe r a spe cial , type-che cking
link age edi tor or clever us e of a stand ard linkage editor - 130) .

Language s such as A l gol 60 and Pascal w h i c h a l l o w p a s s i n g p r o c e d u r e s
as ,‘arameters face the problem that the l a n gu a g e s do neat req u ire enough
infer-ma t ion to check the’ t ype ot parame’ t ~r s passed t o a p r o c e ’dei a e par -a—
me t e r . This prob le’m can be overcome ’ by e i ther pr-oh i h it ing t h’ pr .aet ice
in special app licati ons (as in Euc li d) ear by extendin g the type check ing
of a procedure parameter t o i n c l u d e i t s par,ame’t e ’rs (as i n Al gol 6 8) .

5 . 2 . 1 .2 !o inter A c c e s s t o S t o i . a e’ A s e c o n d problem in storage typing
is how to p r e v e n t abuse ’ w h e a t a t Ce S S m g ~. t o r - a g e’ t h r ough a pea int e r - , i n
a I angu age l i k e ’ Pt . I ci wh eta a coraç ’ to r aim ,’ t p r.’ von t a po i f l t a’ r I rem
addressing any storage av.a r lab IC ’, a p r e a g a .am may iii: man se ’ or .age ’ by
addressing it through a ji s~~~ n r c r and t h e n u s i n g im p a ape ’r cap~~rat ions on
the s t or age. This p r -cab 1cm h.as been ave dod in a o c i ’nt Ian guage’ des i gn
by requ ar mnp . th.i i ro :nti ’r doe la r a t t on s de,s c r t b o t h e’ t V p . ’ of storage
the p o int ers m~ a c e ’ss . U s i n g this t i ’ e h a m i qaae .1 point e r t o , say , an

• intege r c anneaL be’ ass gam ‘d t ~‘ a v a r i abl e of t y p o ‘ p~’: ttte ’ r t e a t ea I ‘‘ (hat s
no c o n f u s i o n can ‘‘ x i t .a ma t wh a t t v pe of st or .1 ge w I I he ’ ac ’ a ’ a ’s sod
t h r o u g h t h e po~ n t a - r

S .2 I . Share’d S ora~ e’ t-Hi’.lt tires . The las t p r o b l e m in si ~ar age t y p in g
i~ h eiw to allow del :he’ratt ’ attempt s to mak e use’ at t h ’ same’ s to r a g e ’
fe’ f d: (fe-rent t y p e s ot v . c i u e s at di tf er cn t tint’s dea t ing p ioga am e’xe’cuti eaai.
Th: s :s ot ten deane wh en a part ced ar it em a s t o ho i ci t erpr eted di ft’ere-nt l v
depend~ ng upon COnt e’ X t . in FORTRAN cit PL/ 1) this i s don e’ by ev er I .cv i ng
~X)MMON (or EASED ’) storage’ and t h e n u s i n g the d ot: n i t ion wh i ch a p p l i e s
to a g ye-n case . tr n f ~ar t u n a t e lv ther e’ is no way tea check such a p r o g r am
to see that it deac s not access storage i mpi-oper Iv 1w using a d e f i n i t i o n
inappr op r i a t e t e a t h e v a l u e ’ :n storage at that tinx’ . in P .-asc ai and
Me sa I 3) 1 t he not ton ~a f v ar Iant r e c or d s e’a p t e c a . ’s t h e i d e a of dif fe ren t
uses of the same s t o r a g e . L i n f o r t un .c t c l v t h e - a o i s nea wa y f e a r a com piler
to check that a v a r i a n t r e c o r d is used consis te nt lv with its value;
f u r t h e r m o r e , such a check i s q u i t e di (f t cci I t t o a n a lement eve n d u r i n g
run-Lime 1 3 2 1 . The pr ogramming lan guag e E u c l i d t r i e s t e a cope with

A

24

_ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ - ~~~~~~~ .,~

•
‘

this problem by the use of an automatic program ve’a if i er ; this
solution is both predictive and c o n f i n i n g but is chancy and expen sive’
given current verified technology , in Al gol 68 a case conformity
clause , in which a copy of the appropriat e type’ is taken , is used:
this techn ique is e a s i l y i mp le mente’d , confinin g , and predictive , bei t
may require extra overhead if a progranine , USc ’S I t unwaril y on a da t a
type of a large size. Althou gh the last of the solution s is best for
reliability , it is still not ideal.

5.2.2 StOr-~ $,~, Pretc’ ct iofl . The protect t e a t i probl em of prevent ing access
to inaccessible storage can be attack ed , ca l i c O t h e t y p i n g p r ca b le ’m i s
so l ved in a cent m i m i n g and h o p e ’fu 1 l y pre ’d : cC i ve f a s h i o n . The ’ p r o t . c t i t a ll
problem here can be d i v : d e ’d into five subpr ohlc ’ms .

5 . 2 . 2 , 1 A r r a ~~~A c c e ss . The f i r s t p r o t e c t t o n suh p r o h l e ’m i s s u b s c r i p t
e r r o r s . L e t t i n g subs c r i pt errors go u n c h e c k e d w i l t a l l o w access aci d
modifica tion of arbitrar y parts of stearage ’. Perhaps the’ most conim an
solu tion to the subscri pt error p r - cabl e - rn :s dynami c- checking cat subscri pt
errors. Unfortunatel y t h i s me ’th o d i s net pr edict ive’ and is ex p en s i v e .
This expense can be reduced by suppres sing some’ e’I t h e c h e c k i n g ; f~’r
example , subscri p t check tug onl y upon ~‘~a T in ~ i n t o the arra y or when
it is an array of p o i n t e r s , or on Is’ check .‘mg the’ fi ci a l locat :on and h e a t
each subscri pt with t a i l t i d i m e ’ a m s ’, o n a l a r r . e v s . A n o t h e r p e s s i h : l i t v i s t o
eliminate s u b s c r i p t s from the- laiguage : this mi ght be done’ in an
array—oriented language’ such as APL , and has alread y been deane’ in some’
imp lementat ions of the li st— o ricam.e d language Lisp 1 2 4 1 , hut it suft er s
the usual drawbacks of del inc— i a —away selec t ions. A p rom i sing e’xper —

mental approach which is both Cc nf iam in g acid pr e’di ce iv e - is t e a u s e’ range
calculati ons on subscri pt e’xpre~ sioams , and to con strict the ’ language’ so
that a comp iler may check that ev ery subscri pt most fall within the
bou aids of its array . Howeve r n~’ ma je a a l a n g u a g e ’ de’ fin e-s p toga ams wh i ch
can be so ana l yzed. At present the subsci Pt err or probl em-— perhaps the’
most conim~n in terra~ of nuIT~ie’r of time ’s COIIITI I t teal ~4) ——is s t i l l very
most unre solved.

S .2 2.2 N :l Pea:cmte rs . The’ s ec o nd p l o t o c t i c au scah p r o b i e m :s c i i i
pointers. These point ers are g e n e r a l l v us ed in lis t processing to
i n d i c a t e t he end of a list , The’ pr ot ecti can pr ohle’m aris es whe’tm a program
falls off the end of a list and att empts tea use a n i l poi n t Cr - tea access
storage . in many systenm nil is represent i’d by ze r o , and t h i s e r r o r
leads to accessing storage ne-ar location r-e’ r c m , g e n e r a l l y v i t a l o p e r a t i n g
systems inf er-ma t iota meaning less h a the program. One solut t ean . both
confining and efficient , i s to case a valcat ’ for n Il which cannot possibly
be a lega l address. Unfortunat el y this solu tion IS not predict i vz’ and is
not app l i c a b l e to machin e-s wh i ch have’ o n l y lega l addresses . A less
efficient confining solution is to insert code wh i ch does “ni l check ing”
each time an attempt is made to load car store through a point e’r. This
solution is still not predictive , bect can be used can every m a c h i n e .

_ _

_ _ _

a

’
— —,-‘-— •_ - -._-,_~_,p,_ _____,_ -• - - •

—‘ - • - ‘_—• -----—--—_.—•, tn- -

_ _ _ - ___

The n i l p o t n t . c p to b l e may he s o l v e d by d e f i n i n g them away : n i l f o r
a~y g i ven p e a t n t e r t y p e can h ’ dt fined t e p o i n t to a s p e c i f i e d area of
storage , or n i l ‘ed it ~~t~~~a - ~ h~’ bann~’d I r o n t h e ’ language , forcing the’
pr ega am er to ~ ‘p w i t ta t Pia - p a el I em - ‘t h ow t o i cad e cat e ends of list s
These tv •~~ tea t t o t ’ s s i t t i c I a em t h e nec mea I pr ~ah I ec~e of de f t a m e — i t — a w ,ay
so l u ti on s .cd t u c t h e i ~~ ’i t ’ w a s t e ’ stc ar a~~,- . h~~ t’ve r the ’y are ’ b oth c o n f i n i n g
and pred ict Lye A a’cona S L I c K a ’~~ ‘ c i t~~’nt a t solca t t o r i is t o have’ th e
lan guage d i s t tngu . i ’t ’ b t w . ’~~ii pea .n t e a wh i ch may he nil and pe ainter s
wh ich ar e dcl intl e ’ Iy ci~’n n i l . low ’vc r t h i s s o l u t j ect t ~ c l e a t y e ’t f ound in
any ma)or progiammt a~ l an guage ’ Ie, t .

S 7.7 I Old S(~at a 1 1’ The’ (h i t I pr ot (’~ C Lena pr obl em is pointers access—
tug st ~a r age w h i c h was ,~~i t e ~

. va I i I hut h as s 1 l I c e been deal l~acat ed. This
p r - c a b l e - a a r i ses f team the •cha-as’ ~sed t o .i l b e ~t e and deal lea cat e ’ storage
dy nam tca l iv tat most I an guage’s this ~‘c eec ! S i i i two w a y s : s t a c k al loca —
t ion in wh ich at or age’ t d I l , ’c a t ,‘ ~l u p~’n p r oc a’ dcc c e ’ a - c a t as- acid deallocat e-ct
upon p r o cedure es m I , and ha.ap a 1 l e e ’ at m , ’ u in wh i c l i st ota~- , a s a l l o c at e d
and f r e e d upon exp l i c i t r equest ti- om t h e ’ p ao~ r a m. Se ’va ’ra l l a n g u a g e
a t t e m p t s have be’ecr made t e ~~~~i t e l p rt ’v eait ialg peat c ice - a s f r e a c i c acce s sing s t a c k
s t o r a g e ’ i m p r o p e r l y . P r o h i b i t t u g p o i n t e r s i n t o t h e ’ s t a c k ts a elc’fj ne’
it —away so lu t ton wh ic’h is h e a t h e~caci t r c c i a c ~~ and pc ~ die t i ye’ aaae l is used te a

good e f f e c t in P a s c a l Not ~t c ’a I l e a c a t ir ~~’ S t e al age’ el p e ac a l a t c a c e - d u r e e x i t
i f any p o i n t e r s a re s t i l l a c c e s s in g it is the a e’ten (t eaci st ra te ’gy of Oregano
I ~~

‘) . he~~ewr , this s t r a t e g y ca n be e x p e als l vi’ b e c a u s e it requires a
garbage c o l l e c t o c to mac cage the’ stac k s t o r a g e . Pv c c a m t ~ chc ’ e’k i ng e at t h e
prop riet y of pointe’rs Lu te th .’ stack cad be’ de cae upon c’xi t 1r~cm a pro-
cedure , upon aesmgume ’nt et a p o i c i t a ’i Va lec e’ , or upeali Use’ eat a pointer
va lue ’. These dy nami e’ cli,’ c k s at e ce a ca f t a t in ~ hii t c c , ’ 1 pa e d t c t I Vi and ar e
somewhat e xpensi vi ’; the ’ I i r s C me’ (hod c e~~~ i ii a - ~. .i s c act t h t c ’ec gh t h e cut ir e
s t a c k , the second pr o h i b i t s some’ t e .i s , a a a t ’ l , - ~a a o e ’ a nis , and t h e t h i r d i s
l e a s t e f f i c i e n t and is di t t 1 Ccc I t I t ’ k nit l , ’n ~~n t O i l a c t I v . lii short the
best so but ion te the’ ~~O i Itt c r 5 a ci t C) si de k si or aga ~~ ot’ em 1 s pr ohah lv
Paaca I ‘a bee ausa’ i t i s ,‘a sv ,a i c ~ -a I t ’ meat t • i s p c i ’ Ii c t i ii and con! t a m —

• m u g , and b ecaecse pc’.nt e ’r s t a i l , ’ s t a c k St cCt ~~~e a t e ge ne d .il I’~ cle at necessary

S .2 .2 . ~ Un in it i a ii ze’d ~‘a a t at ’ L a ’s . The’ I our -I It p i .‘t a- c t t on seih ptcah 1Cm is
t h e use of u n i c c i t t a i t r e e l v a r i a b l e ’s. Th i s is p a i l t c a c l a r l v a p r o b l e m w i t h
p o i n t e r p rocedure and 1 ahe I vat j a b Ic s. I t an ca l l i l l ~t 1,1 b t t e d p ea m i t t c r
v a r i a b l e is used , t h e n a r b i t r a r y s torage ’ can h1’ ac cessed or m o d i t i e d ; i f
an u n i n i t i a l i z e d p r o c e d ur e or labe l v a r i a b l e i s u s e d , t hec i the program
can t r a n s f e r to an a r b i t a a r v l o c a t i o n , F u r t h e r n s a r - e , u s e - el e c n i n i t i a l i s e d

- v a r i a b l e s is in g e ner a l an ccurel iahle ’ pra ct ice. ~n~’ de ft ne’—i t — awa y s~a l u tj oc i
is to de f ine the la ngu ag e so that c’Ve ’ i v c c n i n t t i a l ’c z e d v a r i a b l e is automa-
t i c a l l y given a r ea sonab le’ default valu e’ when it is allocated. This

• solution is i n e f f i c ie n t because of t he ‘x ra code g e c i e r a t e d and is
• t r i c k y because programmers w i l t r e l y on such i n i t i a l i z a t i o n . A n o t h er

s o l u t i o n is to force th ’ pr ogr adr ~ e’r (c ’ i nit i al iz e ’ every variable as i t

2Cc

• - • ~~ • _ - __ - --~~~_- _—-~~~--~~~~~~~~~~~~~ - ~~~~~

— ‘~~~ ‘~“ ~~~~~~~~~~~ — ~~~
__‘

~~“ —-—--‘ ,~ -

~•“?,

is declared. This solution is pred ictive and c o n f i n i n g and is mor e
efficient than the previous one bec ause needless dupli cation of initia-
lizati on ii unnecessary ; howeve r , it still may force some needless
initi ali zation because a program may use a loop or subroutine to initial ize
a variable. With a sop histic a ted enough language the latter problem can
be minimized; howeve r , it i t~ unclear whether extra sophistication does
not cause more pr oble m s than i t so lv es .

5 . 2 . 2 . 5 Resource L im i t s . The f i f t h and last pro tection subpruble aac is ,
the problem of storage limits , in l anguages w i t h dynami c a l lo c a t i o n of
resources , some method most e x i s t to pre vent a program from access ing
more storage than is ava i l a b le . The onl y language s w h i c h so lve t h i s
problem in a p r e d i c t i v e c o n f i n i n g f a sh ion are those w i t h o u t dynami c
s to rage a l loca t ion (such as FORTRAN) ; t h i s is a r e s t r i c t i v e de f i n e — i t ’-
~~ ay s olu t i on . A c o n f i n i n g check is to compar e each request w i t h the
amoun t of s torage r e m a i n i n g and abor t the program if it exceeds lim its.
Unfor tunate ly, stack—o r~ en ted lan guages such as Al gol , Pascal , and PL/l
make such a request upon every subrou t ine call and often such checks are
eliminated for efficiency ’s sake.

5.3 Reliabilit y ~~~~~~~~~~~~~~~~~~Many a p p l i c a t i o n s in r e l i a b l e s o f t w a r e do not require input /output
o p e r a t i o n s . Some app l i c a t i o n s should be cons idered to be imp l emen-

‘ t a t i o n s of the i n p u t / o u t p u t r o u t i n e s . App lications which requir~~ input/output generall y run into three probbecim .

5.3.1 Bad Data. The first is input which is not of t h e expec t ed f o r m a t
or type . This can a r i s e when t ry ing to use an 80—byte—per—record file
on a program expecting 133 by t e s per r e c o r d ; or more g e n e r a l l y when the
record type of the input file is differe’nt from t h e d e c l a r e d type of
the corresponding file variable in the program. This problem can be
r e so lve d by any of three dif ferent methods. The f i r s t and most coninonly
used is to insert code into the program which performs the check; this
me thod , if properl y implemented , is confining but not predic tive . The
second is to have the operating system strong ly type its files according
to the information they Contain and for the program to be declared illega l
if i t does not conform to the type f i l e s . The latter solution is
c o n f i n i n g and p r e d i c t i v e but is rarel y imp lemented. The last is treating
mismatched records as an exceptional condition : this technique is
discu ssed in Section 5.4

5.3.2 End - o f — F i l e , The second problem is h a n d l i n g the end-of—file
s i t u a t i o n r e l i a b l y . A p r e d i c t i v e c o n f i n i n g s o l u t i o n is a c aanp i l e — c i m e
check t h a t eve ry i n p u t o p e r a t i o n was preceded by a useful test for
e n d — o f — f i l e . More common is a n o n p r e d i c t i v e , c o n f i n i n g , run—time er ror
message that occurs when an a t t emp t is made to read past end—of—file.

21

_ _ _,._.,-•,e._ __,s _ ._ ~t,,•____ _
~,t _,_ _ _ , . _

—-- ‘•—-•,-•—• —-—‘ ~- i s

—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— ‘ —.
~~~

.—.———

- . -

Some langu ages (P1./i for instance) treat end— of—file as an exceptional
condition. Since it is hardl y exceptiona l that a file have an end ,
such t reatment seems d i f f i c u l t to j u s t i f y ; howeve r , this topic is handled
in more de ta i l in Sect ion 5 .4 .

5.3.3 Device Unreliabili ty. The last problem is handlin g device
errors. There is no way to prevent device errors with a p r e d i c t i v e
techni que be cause they are by nature unpredictable; eve~n confinementbecomes a problem because in attempt ing to handle machine errors , one is
sending co~~ands to an unreliable device. Here there are basicall y
three solutions : the language can assume comp le te reliabili ty on the
par t of its devices and abort otherwise; the language can define the
unreliabili ty and expect the user program to check continuall y for
device fai lure before doing 1/0; or an excep tional condition facility
can be defined to handle the problem. This problem is strong ly related
to “excep t iona l cond i t i ons ” and is d i s c u sse d in d e t a i l in the next
section.

5.4 Reliability and Exceptional Conditions
Many actions of a program can result in violations of the rules of the
u n d e r l y ing machine. Examp les of , such e x c e p t i o n a l c o n d i t i o n s are divi-
sion by ze ro , a r i t h m e t i c o v e r f l o w , input / ou t p u t device e r r or , or
exceeding storage l i mit s , in an ideal world exceptional conditions
should be excised from a program before it executes; in such a world
t he onl y reason for an exception would be a mach ine error. Thus a
language designed for reliabl e software need not have exp licit features
e i t h e r p r e d i c t i v e ly by the langu age comp i l e r or n on p r e d i c t i ve ly by the
software or hardware run —time sys tem.

in the real world machine errors do occur and some provision most be
made for them. This can take the form of regu la r check poi nt s and a
machine restart capabilit y; this should be specified by the programe r
because of h i s or h er un i que knowledge of the best checkpoin t locations.

Anderson and Lee at the U n i ve r s i t y of N e w c a s t l e upon T yne have de sc r ibe d
Recovery Blocks , a language feature desi gned to aid programs to become’
f a u l t tolerant [38]. Both hardware and software validity check ing are
emp loyed to insure the correctness of a computation coup led with alter-
native al gorithm specification for error correction. In any case , a
machine error risks disaster when a program is dep loyed in a secure
envi ronment.

W i t h this in mind there are three way s languages can take potential
exceptional condi tions into account: The first is for the language to
define that the error neve r occurs ; the second is to make information
about errors available to the program in terms of g lobal or returned

28

_ _ _•

- - -. - - - - -

.
~~~~ -—_ ~~~~~~~~~~~~~ - • - - ~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

flags so that it can be checked for ‘rrors as it processes ; the last
is for the language to define that flow of control passes e x p l i c i t l y
to some appropriate section of code whenever t he ex c ep t i o n o c c u r s . The
f i r s t method is both confining and predictive ; t he second is onl y
confining; and the third is n e i t h e r .

5.5 Language Sy s t e m s fo r Secure App i i c a t ions
Onl y the fortunate manager of a secure appiT~atio n can choose a lan guage
and then build a comp i ler ‘run— t ius~ system which imp lenx’t~ts the language .
More often the choice is from several existing lan guage systems . 1! t h e
s y s t e m s a l L im p l e m e n t t h e same l a n gu a g e , t h e n such a c h o i c e depends on
the quality of the sys t ems r a t h e r t h a n on any lan guage p r o p e r t y ; i f , on
t h e o t h e r hand , di I f er e n t s y s t em s imp lement di I f e r e n t l anguages , t h e n
the choice depends on the m e r i t s of bo th t h e sy s tem s and the lan guages .
in either case one needs to eva luate language systems and their properties,

G e n e r a l l y the choice of l angu age is more i m p o r t a n t t h a n t he cho ice of
s y s t e m . Many l angu ages have d e f e c t s t h a t no s y s t e m can c o r r e c t . When
faced w i t h a choice between a good sy s t em fo r a bad lan guage and a bad
s y s t e m f o r a good language , t h e l a t t e r is o f t e n b e t t e r because th e
sys t em can be improved or chan ged f a r more e a s i l y t han the language can.

When choosing a language system for a secure app l i c a t i o n t h e p r o b l e m of
language choice takes on extra importance. If a lan guage is not pro-
p e r l y designed with reliabilit y problems in mind , the n many problems
cannot be solved by any r e a s on a b l e co mp iler/r un—tim e system. For examp le ,

p Pasca l r e q u i r e s t h a t n e i t h e r the i n i t i a l nor t h e f i n a l v a l u e of a loop
may be modified within the loop bod y: but no P a s c a l s y s t e m checks t h i s
restriction because the check is nearl y impossible to implement. Thus
many of the problems of lan guage s y s t e m i mp l e m e n t a t i o n can be t r a c e d
back to flaws in th~’ la ngt .--~’. The best soluti on to such p rob le ms is
to change the l anguage w i t s . - ecuri tv issues in mind so that the system
can p e r f o r m the proper checks . in shor t , e t r o r — p r o n e f e a t u r e s of a
lan guage cannot be so lved by t a c k i n g on e x t r a s e c u r it y in t he lan guage ’s
system ; rather they mo st be mo dified to remove the unreliability.

Given that a lan guage is designed with reliability in mind , the basic
problem of language system design can be stated quite succinct ly: a
system most correctly implement lega l programs and report errors in
illega l progr ams . In the past most language imp lementation efforts
c o n c e n t r a t e d on the f o r m e r r e q u i r em e n t both because s o f t w a r e reliability
was not consider !d as i mp o r t a n t as it is now , and because problems in
translat ion are more s t r a i gh t f o r w a r d than p rob lems in d e t e c t i n g and
announcing errors. The latter require me nt——that the language system
should have a comp lete set of confining techni ques- -has been met far
less of ten . The a t t e m pt t o meet both requirements in general w i l l

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . 

21 

____________________ ______ __________________



• • ‘
~

encounter some difficult problems . In orde r to discuss  the problems
inherent in designing language systems , the systems ’ general structure
msist be understood. This structure was explained from the language
point of view in Section 3 but is repeated here from the perspective
of the Langu age system. The components of a language system can be
divided into two classes: the compile—time system and the  r u n — t i m e
mach ine. The comp ile—time system analyzes a prog ram before  i t s  e x ec u t i o n
regardless of its input data. Typical comp ile-time operations include
compilation , listing, cross—referencing, and l i n k age e d i t i n g .  The run—
t ime machine components are the underl y ing hardware , the operating
sy stem , and the run—time support software package for the language .

There is a close relationshi p between the comp ile—time /run—time
dich otomy in language systems and the predictive /non-predictive dichotomy
in techniques used to resolve lan guage issues. Predictive techniques
can be im p l e m e n t e d  at  e i t h e r  comp i l e — t i m e  or r u n — t i m e , w h i l e  non-pre-
d i c t i v e  techniques most be imp lemented at run-time , in any case , a
reliable language system most implement a comp le te set of confining

• techni ques. Basicall y the onl y design decision is whether a gi ven
predic tive technique is to be imp leme nted at comp ile— time or at run—
t im e . in t h i s  case the  p r e f e r re d  choice by far is to implement it at
comp i le—t ime because the  r e s u l t i n g  p r o g r a m  is g u a r a n t e e d  for  a l l  runs
after being compiled once and added check ing overhead is no t in the
executable code.

The p rob lems  a l angu age  s y s t e m  lesi gner faces may be divided into two
categories: internal problems caused by difficulties in gene rating
c~’r rec t  code or in p r o v i d i n g  a c om p l e t e  set  of c o n f i n i n g  check s , and
external problems caused by interfacing the language system with the
e x t e r n a l  o p e r a t i n g  sy s t e m  and m a c h i n e .

5.5.1 In ternal Problems. The ~n tern a l  prob l ems of gene ra t ing cor rec t
code has attracted ~ ich attention since the advent of higher orde r
prog ramming  l a n gu a g e s .  This  r e sea rch  in e f f e c t  has  r e s u l t e d  in the
s o l u t i o n  of the  p rob lem.  I t  is no longe r a d i f f i c u l t research p r o b l e m
to generate correct code for t h e  commonly  used programming l anguages .

The i n t e r n a l  problem of p r o v i d in g  c o n f i n i n g  checks has received far
less effor t. To date there has not been a complete specification of
how to im p l e m e n t  c o n f i n i n g  checks fo r  any majo r  p rog raming  language ,
inc luding such a well—defined language as Al gol 68, Because each
im p l e m e n t a t i o n  of ‘a l angu age  has  been l e f t  to make i t s  own dec is ions
on wh ich confining checks to make , the natural tendency has been to

• make as few checks as possible. Even worse , because language designers
have not t r a d i t i o n a l ly wor r i ed  about imp lementing their restrictions ,
many confining check s are simp y unimplementable. An honest implementor
most change the language so th. t the problem does not arise. The
latter solution is better in s ich a situ ation because otherwise the

30



~~~
• ~~~~~~~~~~~~~~~~~~~~

language system has not comp letely confined its programs . For examp le ,
the Pascal r e s t r i c t ion that the inde x v a r i a b l e of a for loop cannot
be mo dified within the loop is basicall y not imp l em e n t a b l e b ecause
of possible routine calls within the loop. The best solut ion to this
problem is to r e d e f i n e the langu age so t h a t the r e s t r i c t i o n does not
exist , e .g., by defining what happens when the index variable gets

• m o d i f i e d .

5 . 5 . 2 E x t e r n a l Problems. E x t e r n a l p r o b l e m s faced by t he l angu age
sys tem designer f a l l i n to th ree g roups : i mp l e m e n t i n g the connec t ion
between t h e p rogram and a g i v e n o p e r a t i ng s y st e m , check ing t h a t a
program can be connected to any s y s t e m f o r t he same langu age , and
connections between two or more progr ams running on the same system.

5.5.2.1 0perating ,,.~~!tem interface. The first external problem ,
i m p l e m e n t i n g the connec t ion be tween a prog ram and the o p e r a t i n g sy s t e m ,
is hard to solve fo r any major p rogra mming l a n gu a g e sy st e m . in genera l ,
the connection is reflected by the set of input/output operations in
the language. imp lementation of input /output operations varies wide ly
depending on operations required by langu age and the operations supplied
by the operating system. Languages vary in philosop hy f ro m Algo l 60
and Euclid which have no input/outpu t , Pascal which has a very limited
c a p a b i l i t y , t h r o u g h Al gol 68 wh i ch has e x t e n s i v e m a ch i n e — i n d e p e n d e n t
f e a t u r e s , to PL/ l which has an e x t e n s i v e m ach ine—dependen t s e t . t J n f o r —
tuna tel y the real problem is that no definition of input / ou tpu t opera-
tions is at once simp le , comprehensive and easy to implement on variou s
machines. Until this problem is solve d , an imp lemen ter is often forced
to change the language slightly so that it s input/outpu t operations
are r e a l i z a b l e or that its input/output restrictions are checkable. For
example , some languages emp loy a ‘1n e w l i n e ” character to represent an
end—of—line on input or output; this character is obvious l y spec i a l
and unp r i n t able . Howeve r , such languages are nearl y impossible to
implement on a CDC machine using the 6 5 — c h a r a c t e r A SC i I subse t because
all possible characters are alread y emp loy ed. This impasse mo st be
solved by changing the language; for example, the ori ginal vers ion of
Pascal required this change .

5.5.2.2 inter-Machine interface. The second external problem is the
problem of checking that a program is p r o c e s s a ble by a l l im p l e m e n t a t i o n s
of a given langu age. Even if a progr am apparentl y runs on a Honeywell
machine there is no guarantee that it will not e n c o u n te r sonic l i m i t a t i o n
on an IBM m ach ine . Comercial checkers of the fact that a progr am is
lega l Ansi FORTRAN are available (39] but of course cannot do a comp lete
job because of problems with confining the language . Even given an
idea l language in which every restrict ion was checked using predictive
con f ining techniques , a compiler which checked restrictions local to
one machine would probab ly not guarantee that a program would pass the
restrictions of an arbitrary machine, For instance , a Pasca l or Algo l
program containing integer constants will not be lega l on all machines

31

• •

because they do not make restrictions on the targe t machine word
size-—which can be mere ly one bit. This e x t e r n a l p r o b l e m w i l l
require research before it can be solved satisfactoril y.

S .S.2.3 Inter—Module interface. The last external problem is imple-
.e nt at in g separate comp ilia t ion of parts of a g iven progr am. Imp le-
.enting separate comp i l a t i o n s has been a problem since FORTRAN . The
basic problem is how to make separate comp ilations work as if they were
a single compilation of the entire program . The f i r s t work on this
was merely implementing libraries of subr ou t ines fo r FORTRAN prog r ams ,
w i t h actual interconnection be ing performed by a standard linkage
editor. However , type safety requires check ing that i function ’s
argument types match parameter types declared within the function.
Few FORTRAN im p l e m e n t a t i o n s or l i n k age e d i t o r s check t h i s .

Languages since FORTRAN have ti ghtened their checking requirements.
This improvement has been harder to impl ement via separate compilation
(see (40) for a discussion of this prob l e m ’. When compiling a segment
of code , not only most the language system check that an i d e n t i f i e r is
used c o n s i s t e n t ly w i t h a p r e v i ou s d e f i n i t i o n in a n o t h e r segment , but
also that the system often needs to check the correct use of an i d e n t i — —

f i e r whose d e f i n i t i o n has not y e t been comp i l e d at a l l . The d i s c i p l i n e
needed for this task generally requires a comprehens ive p rogram segmen t
manage ment system and link age editor along the lines of the one proposed
for the .~~TC/WAD Trusted Software Development System. The first part
of this report discusses the problem in much greater detail; see Sec t ion
2 2 .1. 2. 1 of the Technical Deve lopment Plan .

S , S .3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ For r e l i a b l e s o f t w a r e t h e
comp iler/run—t ime system must check all language restrictions. It
is usuall y preferable to have the comp iler provide the checking for
m i n i m u m overhead and m a x i m u m s e c u r i ty .

Languages developed without regard to check ing of lan guage restrictions
are ve ry co~~~ n , a l m o s t u n i v e r s a l . These l anguage s e i t h e r r e q u i t e
e xp e n siv e r u n —t i m e check ing or p e r m i t p r o g r a ms in which it is i mpossibl e
to completely check the language restrictions. Seldom is a static ,
compile—time check possible.

Lang uage problems direct lv related to a language system are the issues
of separatel y compiled program segments and local machine ‘system depen-
dencies intrinsic to progr am code .

.6 ~~~~~~~of 4~juq~ issues fo r Re h able SoC ~ iare
T h i s concludes the o u t l i n e of p roblems r e l a t e d to the product ion of
reliable software for secure applications. Sec ti ons 5.1 through S ,4
have treated the m o s t d i f f i c u l t c u r r e n t issues in programing language

.

32

.


~~~~~~~~~
-

~~~~~~
-
~~~

- -
~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

design. It should therefore be expected that evaluating modern
lan guages in terms of these problems w i l l not p roduce a s i n g l e c l e a r -
cut winner . Real e v a l u a t i o n is neve r so s im p l e .

Some of the c r i t e r i a presented for t h e e v a l u a t i o n of r e l i a b l e lan guage
systems are t r e a t e d less deep ly than others. This is because e i t h e r
the area is techn ica l l y comp lex and t h e r e f o r e was not w e l l s u i t e d
for this document ; or more often i t was because l i t t l e is know n about
problems in the area and the re the c~~i t e r i a are necessaril y succinct.
For example , an ext ens ive discussion of por tabilit y was possible but
deemed less important for this document that the storage management
issues . Others , like the input/outpu t and excep t ion h a n d l i ng c r it e r i a ,
are s t i l l im p o r t a n t research topics and little is know n about appropriate
c riteria.

The next section examines samp le PL/ l . Al gol 68 , and Pascal imp ienicnta—
tions in terms of the criteria establ ished for reliable storage manage —
men t.

33

_

I :


~~~ - --—~~~~~~~~~ - -— -—‘ •----

SECTION 6. EX AMPLE EVAL U ATION OF LANGUAG E SY STE?~

This section provides an examp le evaluation of lan guage systems for
the problems given in Section 5. The language s evaluated in this examp le
are Pt/ i , Algol 68, and Pascal. PL/l was chosen because it is the  best

• 
- example of a second—generation language with many features: Al gol 68

and Pascal were chosen because they are the  two b e s t — k n o w n  t h i r d — ge n e r a -
t ion languages which emphasize reliabilit y, althou gh neither have as
many features as does PLI1 or the DOD Ironman s p e c i f i c a t i o n s .

The problems addressed in this examp le are the reliab ility issues in
storage management of Section 5.2. This section was chosen becaus e
storage management is perhaps the best understood problem of implementing
progr aming languages for reliability.

This sect ion e v a l u a t e s  onl y e x i s t i n g  sys tems  and does not propose so lu —
tions for the problems of any of the  th ree  l anguages .  The implementa-
t ions chosen for each language were the ones most avai lable to the
eva lua to r s .  These were:  for Pt/ i , the  IBM PL/l  Opt imi z ing Compi le r

- • for  the IBM 360/370 [41 ] h e n c e f o r t h  c a l l e d  PLIX ; fo r  Al gol 68 , t h e  UCLA
Calgo l 68 c omp i l e r  for  the  IBM 360/370 (4 2 1  h e n c e f o r t h  c a l l e d  C a l g o l ;
and f o r  Pascal , t he  Pascal  6000—3.4 c omp i l e r  for  the  CDC 6000 ser ies
(191 henceforth called Pasca l  W.  The l angu age  d e f i n i t i o n s  chosen for

• each language are generally recogn ized standards for PL/1 ( 19) , for
Algo l 68 ( 18) , and for Pascal  [43) . i t  should  be recogn ized , however ,
that the PL/l compiler implements the somewhat different IBM PL/l
standard , that the Cal gol 68 l angu age  is not quite compatible with Algo l
68 , and even the Pascal 6000.34 compiler does not quite imp leme n t the
s t anda rd  d r a f t e d  s p e c i f i c a l ly f rom exper ience  imp lemen t ing  i t .

The next  t h r e e  p a r t s  of t h i s  sect ion evaluate the three languages on
how they solve s torage  management  i ssues .  The l a s t  sec t ion  summarizes
these evaluations by means of a comparison chart.

6.1 Pt/i 9pcimizing Compiler (PLIX)

6 .1 .1  Storage Typ ing in PLIX.

6.1.1.1 Argument/Parameter Typ ing in PL1X. PLIX checks the type of
ar guments  and pa rame te r s  if both appear in the same segment. However,
us ing  separa te  c om p i l a t i o n , t h i s  type  check ing is not p e r f o r m e d .  Fur the r -
more , PL/l does not require typing of ENTRY variables or parameters
and the types of parameters to a call using such ENTRYs are not checked.

6.1.1.2 Pointer Access to Storage in PL1X. Pt/I requires onl y that
pointer variables be of type POINTER and does not provi de a declaration
mechanism for the programme r to tell the compiler what kind of data a

_ _

~~

I

~~

I:ff

~~~~~ 

~~~



pointer is expected to access. PL1X provi des no check ing of the
language requirement that this power not be abused by confus ing  the
types pointed at. Furthermore (as seen in the next section ) some type
confusions are allowed.

6.1.1.3 Shared Storage in PLIX. A PL/I program can provide shared
storage access either by overlay ing two d i f f e r e n t  based v a r i a b l e s  w i t h
the same base pointer or by variables DEFINED to overlap . According
to the PL/l standard , different based variab les may overlay the same

• storage so long as they are structures whose initial subseq uences match
and only the common part is used for access . Different DEFiNED variables
may overlap only if  they are renamed sequences of c h a r a c t e r  or bit

• strings. PLIX checks neither language restriction.

6.1.2 Storage Protection in PL1X.

6 . 1 . 2 . 1  Array Access in PLIX. PLIX optional l y generates code to
perform subscript check ing at run—time . This feature is not quite
complete. Misuse of the size field in a REFERred a r r ay  w i l l  cai.se
some subscr ipt e r ro rs  to go unchecked.

6 . 1 . 2 . 2  Ni l Pointers  in PLIX. PL IX uses zero for nil pointers and so
i t s  check ing depends on the  vers ion of the  iBM op erating system. On
most opera t ing sys tems , user  programs have access to location zero
whi le  on a few no access is granted. Thus a few operating systems con-
f i ne a PL/1 program from accessing through nil while others provide no
such check ing.

6.1.2.3 21d Storage in PL1X. PL/l has both stack and heap storage ;
pointers can address any storage within the stack or heap. The PL/i
FREE statement is used to free prev iou s l y a l l o c a t e d  s torage . PLIX
does not check that the FREEd storage is on the  heap ,  nor t h a t  no
pointers access the old storage . PLIX does not check that pointers do
not access storage intermediate between stack and heap called controlled
storage ; but the check ing on controlled s torage is j u s t  as bad as for
heap storage. Misuse of a REFERred based v a r i a b l e ’s size f i e ld  may
cause too usich storage to be freed.

6 . 1 . 2 . 4  Un in i t i a l i zed  Variables in PL 1X. PLIX checks for  exceedin g
storage limi ts for both the stack and the heap .

6 . 2  Al gol 68 (Ca l gol)

6.2.1. Storage Typ ing in Calgol.

6.2.1.1 Argument/Parameter Typing in Calgol. The type of ~n a r gum e n t
to a procedure must match its corrresponding parameter exact ly. This

36



r e s t r i c t i o n  is checked even w i t h  s e p a r a t e  com pil ati on by swans of an
auxi l iary environment file.

6.2.1.2 ~~~~~~ ~~~
Stora

~
e i n SaIJ&.. A l g o l 68 requires that

eve ry p o i n t e r  be typed  acco rd ing  to the data type it p o i n t s  t o .  T h i s
is enforced by Cal gul. -

6.2.1.3 Shared Stora~ e i n Ca~j~ 1. Al goL 68 pr ov i d e s  f u l l y di scrim-
inated data t yp e  u n i o n s :  t h e i r  s t r u c t u r e  is s p e c i f i e d  at  comp i l e — t i u ~’
and can be assigned to and checked at run-tim e . Type c on f u s i o n  is
p revented  at comp i l e — t i m e  with a p r e d i c t i ve  c o n f i n i n g  a l gor i t h m .

6 .2  .2 Stora~~ Protecti on in Ca l
~~!.

6 . 2 . 2 . 1  Arr
~~~

Access in ca
~J~.!. Calg i l generat es code to perform

subscri pt checking at run—t ime . This checking may be supressed.

6.2.2.2 Ni l Pointers in Cal gol . Cal gol uses a value for nil w h i c h
is illega l on eve ry I B M 360 for read or write access. Thus the system
confines programs from addressing through n kl at r u n — t i n t ’ .

6.2.2 .3 Old Stor
~~

e i n Ca!~~j. Algo l 68 has both stack and heap
s t o r a g e : p o i n t e r s can add re ss any s t o r a ge w i t i i n the stack or heap
Al gol 68 does not have a FREE operation so no p o i n t e r s can access o l d
heap storage. Because Calgo l has not i mp lemented a garbage colle ct or ,
this requires large users of t h e heap t o p e r f o r m their own st o r ag e
reclamation. Cal gol does not check that pointers do not access o l d
stack st o r ag e when i t is au t om aticall y freed.

6.2.2.4 thi in itia1ire d V ariab Ies in Cal~~ol . Cal gol does not perform
checking for all u n i n i t i a l i z e d v a r i a b l e s . Howeve r , i t i n i t i a l i z e s a l l
pointers to an illegal value when they are created and confin es a
program from using such v a l u e s . U n i on , procedur e and labe l v,iriahles
are s i m i l a r l y t r e a t e d so that no program can violat e storage const raints
or t y p e s a f e t y via uniniti ali zed variables. The ini tializat ion can be
suppressed.

6.2.2.S Resource L i m i t s in ca i~~~. Cal gol checks for exceeding storage
l i m i t s (or every s torage reques t on both t h e s t a c k and the heap.

6.3 Pascal W

6.3 .1 Storate T v p i n~ in

6.3. 1 .1 Argument /Paramet er T~~~in& in Pasca l W . Pascal W checks types
o f a rg u m e n t s and p a r a m e t e r s i f both appear in the same segment . Howe ve r ,

37

~~~~-~~~- •  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _______


using separate co mpi lation , this type ch eck ing is not performed. Further-
mo re . Pascal does not require typ ing of proc edures or functions passed
as par amet ers and types of parameters to a call using such a procedure
or func t ion are not checked.

6.3 .1.2 Po in ter Access to Stor~j~~ in PattcaL W. Pascal r e q u i r e s t h a t
eve ry pointer be typed according to the data type it p oints to. This is
enforced by Pascal W.

6.3.1.3 St ed S t o r a e F e i tu t e s in !ascal W . Pascal c o n t a i n s var i an t
r e c o r d s w h i c h a l l o w a p r o g r a m to use the same storage h r dif ferent
types at different times. How ev e r , Pascal neither re qui re s the
e xi s t e n c e of nor e n f o r c e s t h e co r r e c t USC of a t y p e h e l d C o in d i c a t e
the current type of usage . Pascal W does not cont inc a progr am from
con f u s i n g types w i t h i n v a r i a n t r e c o r d s .

6.3.2 Stor a&e Pr~~~c c t i o n in !ascal W .

6.3.2.1 ~~~~~~~~ cess in !asca1 W. Pascal W g e n e r a t e s code to p e r f o r m
subscript Checking at run—ti me . This checking may be suppressed .

6.3.2 .2 Nil Pointers in Pascal W. Pascal has both stack and heap
s t o rag e but dues not permi t p o i n t e r s ~ U t r . ’ t h e s t a c k . Pasca l W does
have a ‘dispose ” procedure , so poin ters may access old heap stora ge .
(This “dispose ” p r o c e d u r e is not part of s t a n d a r d I’a s c a l .

• 6.~
, .2 .4 Uninit iai ized Vat i a b l e s in Pas ti W - Pasc~’ W does not check

for u n i n i t jatized vat iabtes . A p r o g r am can nu suse u n i n i t i a Liz
pointers to store into at btt arv b eat tons.

6.3.2. 5 Resource Limits in Pascal W. App arent lv Pascal W does not
check b r e x h a u s t i n g s tor a g e l i m i t s on procedure entry. There is no
error message fo r t h i s s i t u at i o n . Thus a p r o g r a m may v i o l a t e s t o r a ge
p r o t e c t ion by exceed ing s tor a g e l i m i t s .

64 Summary and
T) ab l e I suimna r i ze s sect ion 6 . 1 t h r o u g h sect ion 6. I in grap h i ci 1 form.
Eac h row of the t a b l e cor r e sponds to one s u b s e c t i o n o f 5 .? .

- —--~ - —~—
.

~
-- ~~~~~~~~~~~~~~~~~~~ —n-~.u ~.._ _ _ . 4

¶~
•~w*~ ~~~~~~~~~~~~

—
~~~~ 

~~~~~~~~~~ ~~~~~~~ ~~~~~~~ ______

IT

Table 1. Su sary of Storage Manage ment Problem s

Language
(and im p l em e n t a t i o n)

Language Problem in PL/I Al gol 68 Pasca l
Storage Management (PL1X) (Cal gol) (Pascal w)

Storage Typing

Argument/Parameter Typing + —

Pointer Access to St o~ age — + +
Shared Storage - + —

Storage Protection

Array Access — 1 1 ,2) 0t2] 0121
N i h Pointers — 0 —
Old Storage - — — 1 3 1
Unin i t i a l i zed Var iab les — 012 ,4) —
Resou rce L imits 0 0 —

Language Check ing Symbols:

+ means all restrict ions checked at compile time

o means all restriction s checked

— means nut all res trictions checked

Note 1: 0 except for “REFER ” option
Rote 2: can be suppresse d
Note 3: • except for “dispose ” bu i l t —in procedure
Note 4 : only storage —p ro tec t i on—sens i t ive var iab les are checked

39

!‘
~!
‘

~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_
~

_
~
___ _

-.—-.--.v “
~~

As can be seen , PLIX comes out looking rather poorl y. This is both
because Pt/i was designed before  the r e l i a b i l i t y  problems iir storage
management were wel l  understood and because PL IX a t t e m p t s  to generate
efficient rather than reliable code. In the IBM Pt/I Checkout Comp iler
144) most of the “ —“s w i l l  be “0’s, and using PL/C 145) Checkout Compiler
will even to “ +“ because Pt/C wisely does not imp lement PL /l pointers.

The Algo l 68 design paid particular attention to storage typing pro-
blems with good results. Protection problems fared less well , with the
worst  problem being old storage .

Pascal W is good on some p o i n t s  w h i l e  l a c k i n g  on others. Pascal W is
the only implementation wh ich comes close to solving the old storage
problem. However, it has significant problems in stora ge t y p i n g  wh i ch
w i l l  probably be quite difficult to handle without chan ging the
1 an gu age.

in book ing at Table 1 it mist be remeithered that this evaluat ion is be
no means complete. First , it only covers the problems of storage
management and does not address other rel iability issues wh ich are less
well understood. Second , i t  on l y t r e a t s  e x i s t i n g  i mp l e men t a t i on  and
does not a t t emp t to  address  w h e t h e r  a good , e f f i c i e n t  i mp l e m e n t a t i o n
would turn “ —“ to “0’s. With an ideal language des ign , of course , a l l
the entries would be “+ ‘ .

40

I



SECTION 7 .  REFERENCES

1. Lauer , H. C., “On the Deve lopment of Secure Sof tware ” , Sys tem
Develop ment Corporation , TM—WD—7826/00 0/Ol , 1976.

2. Samme t , J., “Problems in and a Pragmatic Approach to Progr amming
Lan guage Measurement ”, Fall Joint CornEu te r  Conference 1971 , pp.
243—251.

3. Goodenough , J. B. , “A Study of Programming Languages Using Linguis-
tic Methods ”, Thesis Harvard Univer~1~y~, 1969 .

4.  Goodenough , J .  B . , “Th e Comparison of Programming Langu ages :  a
Linguistic Approach” , Proc. AQ’I N a t i o n a l  Confe rence  1 968, pp.
765—785 .

5. Goodenough , 3 . B. , J . R. Ke l ly and .C. L. McGowan , “Evaluat ion of
Al go l 67, Jovial J35 , Pasca l , SinuIa 67 and Tacpo l versu s Tinman
Requirements for a Common High Orde r Programming Langu age ”, N T iS
AD—A037637, Octobe r 1976.

6. Fisher , D., “Department of Defense Requirements for Hi gh Order
Computer Lan guages Tinman ”. 1 April 1976.

S . Department of Defense Requiremen ts for High ‘Order Computer Program-
ming Lan guages , revised “i ronma n” ( J u l y  1 9 77 ) , SI CPLAN b4. ,tices ,
Volume 12 , Nurther 12 , Decerther 1977 , pp. 39-54 .

8. Wi chmann , B. A . ,  “The Pe r fo rmance  of Some Algo l Systems ”, Proc .
IFIP Congress 1971, Amsterdam , North Holland , pp. 323—334 .

9. W ichmann , B. A., ~J~go1 60 com~~ la tion and Assessment , New York
Academi c Press , 1973.

10. Itnuth , D. E., “An Emp irical Study of FORTRAN Programs ”, Com~uter

~cience _~~~ar tmen t _~~por t No. CS—l86 , Standford Universit y.

ii. Uzgalis. H., C. Simon , and R . Speckhart , “Comp i l e r  Measures in
the Perspective of Program Deve lopment ”, 6th Hawaii international

A on f e ren c e on S~ st em Science , University of Hawaii , January 9-11
197 3, pp. 104—107.

12 . SPECIAL specifications.

13. Wegbrei t , B. “Verif y ing Program P e r f o r m a n c e ” , Journa! of the AOl,
Vol ume 23 , Number 4 , October 1976 , pp. 69 1—669.

41

U
—-~~~~~ -~~~~~~~~~ — - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~



14. Floy d , K . V ., “Assigning Meanings to Programs ”, Proc. Symp. on
Applied Mathematics ,  Volume 19 , J. T. Sch artz , ed ., America n
Ma thematical  Society , Provi dence R i , 1967 , pp. 19—32 .

15. lbare , C. A. H . and N.  V i r t h , “ An Axiomat ic  D e f i n i t i o n  of t h e
Programming Language Pascal” . Acta intormat ion, Volume 2 , 1973 ,
pp. 325—355.

16. igarashi , S., R. L. London and D. C. Luckham , “Auto matic Program
Verification I: A Logical Basis and its imp lementation ”, Acta
info rmat ion, Volume 4 , 1975 , pp. 145—182.

17. 1 966 American National Standard in s t i t u t e, FORTRAN , X3.9— 1966.

18. van Wijngaarden , A., B. 3. Mailloux , 3. E.  L.  Peck , C. H .  A.
Poster , M. Sintzoff , C. H. Lindsey , L. C. L. 1. Meertens and
K .  C. Pisker , “Revised Report on the Algorithmi c Language Algo l
68:, SIGPLAN Notices, Volume 12 , Number 5 , May 1977 , pp. 1— 70 .

19. American Nat iona l  Standards  i n s ti t u t e , Programming Langu age PL/l.
X3 .53—1976.

20. Lampson , B. W ., J. 3. Horning, R. L. London , 3. M i t c h e l l  and C.
Popek , “Report on the Programming Language Euclid” , S1GPLAN
Notices, Volume 12 , Number 2 , February 1977.

21. Schiffer t , C . ,  A. Sny der and K . Atkinson , “The CLU Reference
M a n u a l ” , M a s s a c h u s e t t s  institute of Technology Project MAC ,
June 13, 1975 , unp ubl i shed .

22 . Wu l f , V . A. , R . L. London and M. Shaw , “Abstraction and Verifi-
cation in Aiphard”, Information Sciences institute IS1/RR—76—46 ,
June 14 , 19 76.

23. Popek , C. 3., “Princi p les of Kerne l Design ,” submitted for publi—
cation , 1977.

24. Baker , F. T., “thief Programme r Team Management of the Production
Programming”, iBM Systems Journal, Volume 11 , Number 1, 1972 , pp.
57—73.

25. Stevens , V. P., C. J. Meyers and L. L. Constantine , “Structured
Design ” , iBM Systems Journal,  Vo lume  12 , Number 2 , 1974 , pp.
115— 139 .

26. Kernighan , B. V . and P. 3. Plauger , “The Elements of Programming
Sty le ”, McGraw — H i l l , 1974 .

42 

-

~~ 

- - 
_ _ _



V .~~~~~~~—~~~~~~~~~~ -~~ —- - .-. - 
~
._.—.,.-,_,

~
-—-_— .- ---— - --— ‘T ‘U~~ 

-

3 7 .  lve rson , K. E. , APL, A Programming Language, New ’York, John Wiley
and Sons, 1962.

28. Feustel , E .  A . ,  “On the Mvantag es  of Tagged A r c h i t e c t u r e” , IEEE
Tran sac t ions on Computers , Volume C22 , 1973 , pp. 644—652.

29. Bou rne , S . ,  A. B i r r e l l  and 1. Walker , “ALCOL68C R e f e r e n c e  M a n u a l ” ,
.~~mbr idge U n i v e r s i t y ,  1974 .

30. Hamlet , K. C., “High Leve l Binding with Low-Leve l L inkers”
Communicat ions ACM, Volume 19, Number 11 , November 1976, pp.
642—644 .

31. Ges chk e , C. N., J. H. Morris and F . H. Sa tte r thw ai te , “Earl y
Experience wi th  Mesa ” , Communications ACM, Volume 20, Number 8,
August 1977 , pp. 540—553.

32. Fischer , C. N .  and R. J .  LeBl anc , “E f f i c i e n t  lm p l e m e n t a t i o n  and
i~~ t imizat ion  of Run Time .thecking in Pascal” , S1CPLAN N o t i c e s ,
Volume 12 , Number 3 , March 1977 , pp. 19—24 .

33. McCarth y ,  J .,  et a l .  “List 1.5 Programme r ’s Manual” , MIT ~Compu—
ta t ion .~~n ter and Research Lab , Cambridge , Massachusetts ,
August 1962.

34. Est rin , G., R. Muntz and K .  U z g a l i s , “ M o d e l i ng ,  M e a s u r e m e n t  and
Computer Power ” , AFIPS C o n f e r e nc e  Proceedings ,  Vo lume  40 . A t l a n t i c
City, New Jersey , May 1972, pp. 725-738 .

36. Eggert , P., “Prevention of Run—time Errors in Pascal” , UCLA Com-
p u t e r  Science D e p a r t m e n t , in p r e p a r a t i o n .

37. Berry , D., “introduction to Ore gano ” , SICPLAN N o t i c e s ,  Volume 6 ,
Number 2 , February 1971 , pp. 171-190.

38. Anderson, T. and P. A. Lee , “Principles of Fault—tolerant Design ”,
Technical  Memorandum SRM/ 186 , U n i v e r s i ty  of Newcastle upon Tyne
.Compu t er  Laboratory , October 1977.

39. Soft oo l .Corp. , “Ansi FORTRAN Checker ” , S1CPLAN Notices , Volume 12 ,
Number 12 , December 1977 , p. 3.

40. Schwar t z , H. L., “Parallel Compilation : A Design and its
Appl ica t ion  to Sinula 67”, Jet  Propuls ion  Labora to ry , NASA— C R-
5 2680 , JPL— PUBL— 71—4 , NTIS N77—22847/6 !~K, 1 Februar y 1977 .

41. IBM , “OS PL/1 C~timizing Compiler: Programme r ’s Qiide”, ThM
Program Product SC33-0006—4, October 1976.

43

- ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ 
— - -

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~


___ ______________

42. Eggert , P., N . Re a m s , A. Tanenbaum and K . Usga lis , “UCLA Caigo l
68 PrOgrammer ’s G.iide” , UCLA Computer Science Depar tment , Sept ember
1977.

43. Jensen , K. and N. Wir th , Pascal User Manual and Report, 4th print-
ing, Lec ture Notes in Computer Science , (18), New York , Springer—
Ve rlag—i 974, pp.88—103.

44. 11$, “OS Pi/l theckout Computer: Programming Guide ”, INI Program
Product SC33—0007—3 , October 1976.

46. Conway , R . , et . al. , “User ’s Guide to PL/ C (Release 7 .6)” , Cornell
Universi ty , 1977.

44

—
-——~~~~~~-— ——

~~~
--



DISTR I IPJ TION

Addressee Copies
CCTC Codes /

Cli0 1
C124 (Reference and Record Set), , , 3
C124 (Stqck ) 6C140 1C200 IC300 1C4l0
tYe3O 1
C600 1

,
1

DCA Codes /lOlA . . ~~~ I
205 . . ~~~~ 1
ESEO

DCEC Codes
R740 . . .

~~ i
R810 ,  1

O f f i c e  of Assistan ts for Auçomation, OJCS ,
The Pent agon, W\shin~ t~ n . DC 20301 1

Director  of Operat io~~ (4’3), OJCS
The Pentagon , Was l~~ngt on , DC 20301 1

Assistan t Director , Te1’~~rocessing /ADp , DTACCS ,
The Penta gon, Wa shi.nkon , CD 20301 1

Director , Defense Adva~lce d~~esea rch Projects Agency ,
ATTN : 1PT , 1400 Vilson ’ 3lvd . , Arlington , VA 222 09 1

Direc tor , Defense lnt ~ 11igence\ Agency , ATTN : SO— 6 ,
Washington , DC 20301 . .  I

Direc tor, Nati ona l Securi ty Agency . ATTN : S46,
Fort Meade , MD 20755 1

Depar tment  of the Army , ATTN : MDC S- D ,
The Pentagon , Washingt on , DC 20301 1

Department of the Na vy , ATTh : OP—942 ,
The Pent agon, Washingt on, DC 20301 1

De partment of the Air Force , ATTh: AP /XOOW ,
The Pentagon, Washing t on DC 20301 

______________________________________________________________________ _- --—



5- —~ 5- 
—— ~~~~~~~~~~~~~ 

—- 5-— -— ,-
~~~~~~~~~~~

—5---——-

DISTRI~ 3TION (Con t ‘d)

-
-

-Addressee N - -~ - _

Copies

Headquarters , U.S. ?~�~~ne Corps , ATTN : M$
’
IS*-7 ,

Washington, D.C. , 1

Commande r , Rome Air Deve 1o~~~~nt Cente , ATTN : ISIS ,
Griffis AFB , NY L3441. . ‘~~

- . . 1

Commanding Officer , Naval Air Deve pment Center ,
ATTN : Code 552 , Warminster , P 974 1

Defense Documentation Center ,
Cameron Station , Alezandria , VA 22314 .

~N 12

TOTAL 46 ,~I _

/

L - ___________________
- - . -

~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ - — —



— -- _______ 
~
-5- - ~~~

__
~~~ __•__•_ S5------S - ~~~ 5-S~ 5~~S5-~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~——_—--_- .--- — - I -

UNCLASSIIu,0
SICus * T v CLA$S ~F I C A t I O K O~ t H , S P~.GE (P~sn 0s4. i’Hsr.d)

*KAD fl4STRUCTIONsREPORT DOCUMENTATION PAGE BEFORE COMPLETU4G FORM
4. RIPOWT MU iSIS

TM—l71—78

GOV T ACCIU I ON NO I. SIC ,P ,C NT’S C A T A L O G NuNSt~~

4. TITLI (~~d ~~bd~l.) I tYeE or siPomt a ~Imoo Covz,uo

A Me thodo logy for Evaluating Languages and
Their Compilers for Secure Applications

•. PE~~IO~~~ I N G O~~O ~~E’O5? wuMsI ~~

__
Th— WD—7 909 /000/O 1

t. AuTHO~(.) I cowT mA cY o~~o~AwY wuNsI~(.~
Erwin Book
Paul Eggert DCA100-73—C-0035
Robert _Usga lis

A A NO UNIT NU MUI ~~$
5 PI~~PO~ W~N G O~~GAs ,ZAT,ON NAM t AND ADORI SS ‘0 P

~~~~

7CNT,P

~

oJEc,. T ASK
System Development Corpo ration p,~~ 017K7929 West pa r k Drive Proj~ct 2’302Mc Lean, VA 22101 

- Tyk ~‘~c log
fl CONtROLLING OrFICI NAM E AND AOOPISS ‘2 nEPONT DA~~I

31 January 1978Command and Contro l Technical Center (423) _____________________________
) N U M S E N O r  PAGESThe Pentagon

W4s
~
iin

~
ton

~
, I

~
C 20101 --—-

~4. MON~TO N% 0 A 4AMI * AODNI$S( , t  d~St., ,,1 tv,., C.~~trol IH ~4 OSt I ( • )  1 .  SLCLJNIYY CLASS . (•1 A~S ,sp.rO

UNCLASS IF IED
Th. occ~ *ss, w,c~~io~ oow~~i ~ö~~5SCHEDuLE

is mSTNISuT,O N STATEM ENT (•I this R.5.ii)

Approved for public release; distribution unlimited . Copies of this
documentation may be obtai ned f r om the Defense Document at ion  Cente r ,
Cameron Stati on , Alexandria , VA ~23l4

fl. DISYNICUTION STATEMENT (AVtfts .b.u.~, ~~~~~~~~~ IIocb 20. ~f J I U . , n1 tro., R.p.~ ()

1 SUPPLtM(HTA N’~ HOTES

5 KE y NONO S ~Ceni,,,... 5,, rsv. ,s. s~d It A•~.555fl ~4 Idsatity A, WocA n~~ A . )

Languages, compilers , portabilit y , storage management , exceptional
conditions , input/output , implementa tion , verification , secure appli-
cations , tru sted software , reliabilit y . Pt/i . Algo l 68, Pascal .

a ASS T NACT (C.nd~~,. .Id• II ~•C•I5 Y .~tt’~ i~ bi. s ~~~~~~~~~~~

This technical memorandum proposes a methodology for the evaluation of Higher
Order Programming Languages and their compilers that are to be used in the
developmen t of trusted software for secure application .

The bas ic language issues i den t i f i ed  are portable software , storage management ,
input/outpu t , and exceptiona l conditions and handling. Two general techniques
for resolving these issues are identified : (1) avoidance techni ques whereby
U.. Rever se Side)~ — —--- .

~~~
t5 ,—

P OSMDO JAN 7) 1473 EDI tI O N OP NOV AS IS OSSOLE TI

0, ~su S PAGE (UP,.,, D... ta,...

- —

~

--

~

—
.

~~
.-— - .

- .-~ -.-.
~~~~~~ t .. .‘

- . . .-S..---- . - -

UNCLASS1FLgD 
-

~~mvv c~.asswicanow OP ?MSS P A I ~UB D .~~UPis~ 
- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -- .: .~ - -

.

—- -- - .
.

a language design avoids the ‘IOue , and (2) automatic techniques in iVhi~h the
compiler or its run system help resolve the issue . The automatic techniques)
fall into three cat.$ortes: (1) confinement techniques, which prevent a
program from employing its underlying machine in such a way that the machine
woul d not legally implement the language ; (2) predictive techniques , which
infer some property of a program before it runs on any input data , and (3)
automated debugging techniques , such as test data generation and debugging

-
Output . -

- - - - - . -

r3e report concludes with the use of the evaluation criteria on three language
implementations , FL/i , Algol 68 , and Pascal , for their resolution of the
storage management issue .

-

-

- .

.

- -

I

S

A)NCLASSIFIED
*
.

— .- . . * — — —~~~ . — . 5 — — . — . —. — .. — —— — ... S . S

~~~~~~~~~~ — --—- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~ — ~~~~~~~~~~~~~~~~~~~~ . _._~~~~~~


